dc.contributor.advisor |
Toniolo, Luigi |
it_IT |
dc.contributor.author |
Amadio, Emanuele <1981> |
it_IT |
dc.date.accessioned |
2010-03-27T07:29:25Z |
it_IT |
dc.date.accessioned |
2012-07-30T15:50:52Z |
|
dc.date.available |
2013-11-04T10:32:21Z |
|
dc.date.issued |
2010-03-15 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/946 |
it_IT |
dc.description.abstract |
The complexes trans–[Pd(COOR)(H2O)(PPh3)2](TsO) (R = Me, Et, nPr, iPr, nBu, iBu, secBu) and trans–[Pd(COOR)nX2–n(PPh3)] (R = Me, n = 1, 2; X = ONO2, ONO, OTs, Br. R = iPr, n = 1, X = Cl, Br) have been synthesised and characterised. Most of them have been used as catalyst precursors for the oxidative carbonylation of MeOH, selective to dimethyloxalate, using p–benzoquinone (BQ) as an oxidant. BQ changes properties of the reaction centre. When using iPrOH in place of MeOH, high activity and selectivity toward diisopropyloxalate have been achieved using trans–[PdX2(PAr3)2] with strongly coordinating X (Br), in presence of a base (NEt3 or PAr3–BQ adduct) and of an excess of LiBr. The slow step of the catalysis (RDS) might be the reoxidation of Pd(0), which is formed in the product–forming step. Using [PdX2(P-P)] the best performance has been achieved with weakly coordinating X (TsO) and using P-P of relatively wide bite angle but with cis–geometry. The RDS is related to the nature of P-P. |
it_IT |
dc.description.abstract |
Sono stati sintetizzati e caratterizzati i complessi trans–[Pd(COOR)(H2O)(PPh3)2](TsO) (R = Me, Et, nPr, iPr, nBu, iBu, secBu) e trans–[Pd(COOR)nX2–n(PPh3)] (R = Me, n = 1, 2; X = ONO2, ONO, OTs, Br. R = iPr, n = 1, X = Cl, Br). Molti sono stati utilizzati come precursori catalitici nella carbonilazione ossidativa di MeOH, selettiva a dimetiloxalato, impiegando p–benzochinone (BQ) come ossidante. Il BQ modifica le proprietà del centro di reazione. Con iPrOH al posto di MeOH si ottengono elevate attività e selettività a diisopropyloxalato utilizzando trans–[PdX2(PAr3)2] con X fortemente coordinanti (Br), in presenza di base (NEt3 o PAr3–BQ) e di LiBr in eccesso. Lo stadio lento della catalisi (RDS) potrebbe essere la riossidazione del Pd(0) che si forma nello stadio di formazione dell’ossalato. Con [PdX2(P-P)] le migliori prestazioni sono state ottenute con X debolmente coordinanti (TsO) e con P-P ad angolo di morso relativamente ampio ma di geometria cis. L’ RDS dipende da P-P. |
it_IT |
dc.format.medium |
Tesi cartacea |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Emanuele Amadio, 2010 |
it_IT |
dc.subject |
Oxidative carbonylation |
it_IT |
dc.subject |
Palladium |
it_IT |
dc.subject |
Phosphine |
it_IT |
dc.subject |
Carbonylation |
it_IT |
dc.subject |
Alkanol |
it_IT |
dc.title |
Oxidative carbonylation of alkanols catalyzed by Pd(II)-phosphine complexes |
it_IT |
dc.type |
Doctoral Thesis |
it_IT |
dc.degree.name |
Scienze chimiche |
it_IT |
dc.degree.level |
Dottorato di ricerca |
it_IT |
dc.degree.grantor |
Facoltà di Scienze matematiche fisiche e naturali |
it_IT |
dc.description.academicyear |
2008/2009 |
it_IT |
dc.description.cycle |
22 |
it_IT |
dc.degree.coordinator |
Ugo, Paolo |
it_IT |
dc.location.shelfmark |
D000877 |
it_IT |
dc.location |
Venezia, Archivio Università Ca' Foscari, Tesi Dottorato |
it_IT |
dc.rights.accessrights |
openAccess |
it_IT |
dc.thesis.matricno |
955382 |
it_IT |
dc.format.pagenumber |
V, 188 p. |
it_IT |
dc.subject.miur |
CHIM/04 CHIMICA INDUSTRIALE |
it_IT |
dc.description.note |
Doctor Europaeus |
it_IT |
dc.description.tableofcontent |
GENERAL INTRODUCTION 1
PREFACE 1
Oxidative carbonylation of alkanols 6
General aspects. 6
Industrial production of oxalates using alkyl nitrites as oxidant. 7
Other oxidative reactions using p–benzoquinone 11
Oxidative carbonylation of styrene. 11
1,4 Dialkoxylation of conjugated dienes. 14
Oxidation of ethene to acetaldehyde (Wacker process). 15
SCOPE AND CONTENTS OF THE THESIS 17
REFERENCES 18
CHAPTER 1 21
INTRODUCTION 21
RESULTS AND DISCUSSION 23
Synthesis and characterization of the carboalkoxy complexes reported in Table 1 23
X–ray structure analysis of [Pd(COOMe)(TsO)(PPh3)2]•2 CHCl3 (IIa) 27
Reactivity 31
Reactivity with alkanols. 31
Reactivity with acids HX (X = Cl, OAc, TsO). 32
Reactivity with water and with water/TsOH. 32
Reactivity with ethene and catalytic properties of complexes (Ia–g) in the hydrocarboalkoxylation of ethene. 33
CONCLUSIONS 38
EXPERIMENTAL SECTION 39
Instrumentation and Materials 39
Preparation of the Complexes 39
Synthesis of trans–[Pd(COOR)(H2O)(PPh3)2](TsO) (R = Me, Et). 39
Synthesis of trans–[Pd(COOR)(H2O)(PPh3)2](TsO) with R bulkier than Et. 39
Reactivity tests 40
Experiments of hydroesterification of ethene using the carboalcoxy complexes reported in Table 1 as catalyst precursors in the relevant ROH 40
X–ray data collection, structure solution and refinement 41
REFERENCES 42
CHAPTER 2 48
INTRODUCTION 48
RESULTS AND DISCUSSION 50
Synthesis and characterization of I, Ia, II, III and IIIa 50
Reactivity and catalytic properties of I, Ia, II, III, and IIIa 59
Structural Characterization of Ia and of I.CH2Cl2 65
CONCLUSIONS 74
EXPERIMENTAL SECTION 75
Instrumentation and Materials 75
Preparation of the Complexes 76
Synthesis of cis–[Pd(ONO2)2(PPh3)2] (I). 76
Synthesis of trans–[Pd(COOMe)(ONO2)(PPh3)2] (Ia). 76
Synthesis of trans–[Pd(COOMe)2(PPh3)2] (II). 77
Synthesis of [Pd(ONO)2(PPh3)2] (III). 78
Synthesis of trans–[Pd(COOMe)(ONO)(PPh3)2] (IIIa). 78
Synthesis of cis–[Pd(C2O4)(PPh3)2] (IV). 79
Reactivity tests 80
X–ray Structure Determinations 80
REFERENCES 82
CHAPTER 3 86
INTRODUCTION 86
RESULTS AND DISCUSSION 88
NMR investigations on the reactivity of I, II and III 88
Reactivity of I. 90
Reactivity of II. 103
Reactivity of III. 108
Catalytic oxidative carbonylation of methanol using I, II and III 115
On the catalytic cycle of the oxidative carbonylation reaction of alcohols 117
CONCLUSIONS 121
EXPERIMENTAL 121
Instrumentation and Materials 121
Preparation of the Complexes 122
Synthesis of trans–[Pd(COOMe)2(PPh3)2] (II). 122
Synthesis of [Pd(COOMe)(PPh3)3](TsO). 122
High pressure NMR experiments 122
REFERENCES 124
CHAPTER 4 126
INTRODUCTION 126
RESULTS AND DISCUSSION 127
Influence of counter anion on the activity and selectivity of [PdX2(PPh3)2] 127
Effect of promoters on the activity and selectivity of [PdX2(PPh3)2] 128
Effect of NEt3. 128
Effect of added halides. 129
Influence of added PPh3. 131
Effect of operative conditions on the activity and selectivity of trans–[PdBr2(PPh3)2] 132
Effect of reaction time and of BQ. 132
Effect of temperature. 133
Effect of the pressure of CO. 134
Electronic and steric effects of the phosphine ligands 134
On the catalytic cycle of the oxidative carbonylation of iPrOH 136
On the coordination of L to the palladium centre during catalysis. 136
Product forming step and attempted reformation of the precursor. 141
Reactivity with LiBr. 144
Proposed catalytic cycle. 146
CONCLUSIONS 147
EXPERIMENTAL SECTION 148
Instrumentation and Materials 148
Preparation of the Complexes 148
Synthesis of [PdCl2L2] (L = (zY–C6H4)3P (z = o, m, p; Y= CH3, CH3O, F); [o,o’(CH3O)2(C6H3)]3P). 148
Synthesis of [PdBr2L2] (L = PPh3, (zY–C6H4)3P (z = o, m, p; Y= CH3, MeO, F), [o,o’(MeO)2(C6H3)]3P). 149
Synthesis of cis–[Pd(SO4)(PPh3)2]. 150
Synthesis of trans–[PdBr(COOiPr)(PPh3)2]. 150
Synthesis of H2BQ–BQ adduct 150
Catalytic Oxidative Carbonylation of iPrOH 152
Reactivity of trans–[PdBr2(PPh3)2] in oxidative carbonylation conditions 152
High pressure NMR experiments 153
REFERENCES 154
CHAPTER 5 156
INTRODUCTION 156
RESULTS AND DISCUSSION 157
Influence of the anion of the catalyst precursor [PdX2(dppf)] (dppf = 1,1’–bis(diphenylphosphino)ferrocene 157
Effect of the pressure of carbon monoxide 159
Influence of the natural bite angle of the diphosphine ligands 161
Electronic and steric effects of the diphosphine ligand 166
Reactivity of [Pd(COOR)2(P-P)] 169
CONCLUSIONS 173
EXPERIMENTAL SECTION 174
Instrumentation and Materials 174
Catalytic Oxidative Carbonylation of iPrOH 175
Ligand synthesis 175
Synthesis of pCF3–dppf. 175
Complex synthesis 176
Synthesis of cis–[Pd(OAc)2(P-P)] (P-P = dppe, dppb, dppf, dippf, dtbpf, dcypf, pCF3–dppf, DPEphos, Xantphos). 176
Synthesis of [PdCl2(P-P)] (P-P = pCF3–dppf, pMeO–dppf, SPANphos) 177
Synthesis of [Pd(OH2)n(OTs)2–n(P-P)](TsO)n (n = 0, 1; P-P = dppe, dppb, dppf, dippf, dtbpf, dcypf, pCF3–dppf, DPEphos, Xantphos, pMeO–dppf, SPANphos). 178
Synthesis of cis–[Pd(C2O4)(dppf)]. 180
Synthesis of cis–[Pd(SO4)(dppf)]•H2O. 180
Synthesis of cis–[Pd(COOMe)2(P-P)] (P-P = dppe, dppp). 180
Synthesis of trans–[Pd(COOMe)(OTs)(SPANphos)]. 181
In situ NMR study on the preparation of [Pd(COOMe)2(P-P)] (P-P = dppe, dppp, dppb, dppf, DPEphos, Xantphos, SPANphos) by exchange reaction. 181
REFERENCES 185
SHORT FINAL COMMENT 188
ABSTRACT/RIASSUNTO 189 |
it_IT |
dc.identifier.bibliographiccitation |
Amadio, Emanuele. "Oxidative carbonylation of alkanols catalyzed by Pd(II)-phosphine complexes", Ca' Foscari University Venice, 22. cycle, 2010 |
it_IT |