Essays on Markov Switching models with applications in economics and finance

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Billio, Monica
dc.contributor.author Cavicchioli, Maddalena <1985> it_IT
dc.date.accessioned 2014-04-05T10:33:37Z
dc.date.available 2015-04-07T13:58:32Z
dc.date.issued 2014-03-21
dc.identifier.uri http://hdl.handle.net/10579/4602
dc.description.abstract In questa tesi studiamo alcuni problemi legati a modelli Markov Switching (MS) e alle loro applicazioni in Economia e Finanza. Lo scopo del nostro studio è proporre soluzioni per la selezione del modello e per la stima di serie storiche multivariate soggette a cambiamenti di regime. Nel primo Capitolo presentiamo la letteratura che tratta di sistemi dinamici per modellare serie storiche con cambiamenti di regime. Nel secondo Capitolo studiamo il problema della determinazione del numero di regimi nell’ambito di modelli MS-VARMA e proponiamo alcuni metodi per la scelta del modello basati sulla funzione di autocovarianza e sulla rappresentazione stabile del sistema. Questi metodi sono poi applicati all’analisi del ciclo economico. Nel Capitolo 3 introduciamo modelli a cambiamento di regime per la volatilità di dati finanziari e proponiamo un metodo unificato per la stima di modelli MS-GARCH e modelli a volatilità stocastica con MS (teorema di dualità). Nel quarto Capitolo esploriamo altre questioni che riguardano i modelli MS come la stima e la loro rappresentazione spettrale. Riguardo al problema della stima, otteniamo semplici formule matriciali per la stima di massima verosimiglianza dei parametri per modelli MS-VAR e MS-VAR con effetti ARCH. Questo permette di determinare in maniera esplicita la matrice di varianza-covarianza degli stimatori, e quindi offre una possibilità concreta per l’uso dei test statistici classici. Riguardo al secondo aspetto, studiamo varie proprietà della funzione di densità spettrale di modelli MS-VAR e otteniamo espressioni in forma chiusa per la densità spettrale. La tesi è completata da diversi esercizi di simulazione e applicazioni a dati macroeconomici e finanziari. it_IT
dc.description.abstract In this thesis we discuss problems emerging in the application of Markov Switching (MS) models both in Economics and Finance. The aim of the study is to propose solutions for model selection and estimation of multiple time series subject to regime shifts. In Chapter 1 we review the literature about dynamic systems for modeling time series with changes in regimes. In the second Chapter we investigate the problem of determining the number of regimes in MS-VARMA models and describe methods for model selection based on the autocovariance function and on stable representation of the system. Application to business cycle analysis is conducted. In Chapter 3 we introduce MS models for volatility of financial data and propose a unified framework for estimating MS-GARCH and MS-Stochastic Volatility models (duality result). In the fourth Chapter we explore other questions concerning with MS models as estimation and spectral representation. With regards to the first, we obtain simple matrix formulae for maximum likelihood estimates of parameters in the class of MS-VAR and conditional heteroskedastic models. This allows us to determine explicitly the asymptotic variance-covariance matrix of the estimators, thus giving a concrete possibility for the use of classical testing procedure. Concerning the second, we study the properties of spectral density function for MS-VAR models and derive close-form formulae for the spectral density. Several simulation exercises and applications to macroeconomic and financial data complete the work. it_IT
dc.language.iso eng it_IT
dc.publisher Università Ca' Foscari Venezia it
dc.rights © Maddalena Cavicchioli, 2014 it_IT
dc.subject Markov Switching it_IT
dc.subject MS-VARMA models it_IT
dc.subject MS-GARCH models it_IT
dc.subject MS-SV models it_IT
dc.subject State space representations it_IT
dc.subject Spectral representations it_IT
dc.subject Maximum likelihood estimates it_IT
dc.title Essays on Markov Switching models with applications in economics and finance it_IT
dc.type Doctoral Thesis en
dc.degree.name Economia it_IT
dc.degree.level Dottorato di ricerca it
dc.degree.grantor Scuola superiore di Economia it_IT
dc.description.academicyear 2014 it_IT
dc.description.cycle 26 it_IT
dc.degree.coordinator Bernasconi, Michele
dc.location.shelfmark D001322 it
dc.location Venezia, Archivio Università Ca' Foscari, Tesi Dottorato it
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 955787 it_IT
dc.format.pagenumber XVI, 182 p. it_IT
dc.subject.miur SECS-P/05 ECONOMETRIA it_IT
dc.description.note Doctor Europaeus
dc.description.tableofcontent Contents List of Figures vii List of Tables ix Introduction xiii 1 Some of Representations of Dynamic Systems. Modeling Time Series with Changes in Regimes 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ARMA and ARIMA Representations . . . . . . . . . . . . . 2 1.3 Characterizing ARMA Representations . . . . . . . . . . . . 7 1.3.1 Markov Coe cients . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Hankel Matrix Rank . . . . . . . . . . . . . . . . . . . 8 1.4 State-Space Representation . . . . . . . . . . . . . . . . . . . 9 1.5 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 The De nition . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2 Representing a Markov chain by an Autoregression 14 1.5.3 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.4 Reducible Markov chain . . . . . . . . . . . . . . . . . 16 1.5.5 Ergodic Markov chains . . . . . . . . . . . . . . . . . . 17 1.5.6 Periodic Markov chains . . . . . . . . . . . . . . . . . 18 1.6 Time Series Models of Changes in Regime . . . . . . . . . . 19 1.6.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.2 Optimal Inference for the Regime . . . . . . . . . . . 211.6.3 Forecasts and Smoothed Inferences for the Regime 24 1.6.4 Forecasts for the Observed Variables . . . . . . . . . 28 1.6.5 Maximum Likelihood Estimation of Parameters . . 29 1.7 EM algorithm and Likelihood function . . . . . . . . . . . . 30 1.7.1 EM algorithm: general principles . . . . . . . . . . . 31 1.7.2 First characterization of EM algorithm . . . . . . . 33 1.7.3 Second characterization of EM algorithm . . . . . . 34 1.7.4 Explicit form of the EM algorithm . . . . . . . . . . 35 1.8 State-Space Models with Markov Switching . . . . . . . . . 39 1.8.1 Speci cation of the Model . . . . . . . . . . . . . . . 40 1.8.2 Basic Filtering and Estimation . . . . . . . . . . . . . 40 1.8.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.9 Determination of the Number of Regimes . . . . . . . . . . 51 2 Markov-Switching VARMA Models 57 2.1 Determining the Number of Regimes in Markov-Switching VAR and VMA Models . . . . . . . . . . . . . . . . . . . . . . 57 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 58 2.1.2 VARMA Representations . . . . . . . . . . . . . . . . 60 2.1.3 Markov Switching Moving Average Models . . . . . 67 2.1.4 Markov Switching Autoregressive Models . . . . . . 73 2.1.5 Data Simulation . . . . . . . . . . . . . . . . . . . . . . 78 2.1.6 Application on foreign exchange rates . . . . . . . . 81 2.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.1.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.2 Business Cycle and Markov Switching Models with Dis- tributed Lags: a Comparison between US and Euro Area 89 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.2.2 Markov Switching Models and Business Cycle . . . 92 2.2.3 The MSI(M; r) - VAR(0) Model . . . . . . . . . . . . 94 2.2.4 The MSI(M; r)-VARMA(p; q) Model . . . . . . . . . . 97 2.2.5 Business Cycle Models . . . . . . . . . . . . . . . . . . 99 2.2.6 Empirical Application . . . . . . . . . . . . . . . . . . . 1052.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3 Markov Switching Models for Volatility: Filtering, Approxima- tion and Duality 117 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.2 Markov Switching GARCH . . . . . . . . . . . . . . . . . . . 121 3.3 Auxiliary Models for MS-GARCH . . . . . . . . . . . . . . . 122 3.4 State Space Representation and Filtering . . . . . . . . . . 124 3.5 Duality Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.6 Markov Switching Stochastic Volatility . . . . . . . . . . . . 129 3.7 Numerical and Empirical Applications . . . . . . . . . . . . 131 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4 Estimation and Spectral Representation 145 4.1 Analysis of the Likelihood Function for Markov Switching VAR(CH) Models . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.1.2 Time Series Models of Changes in Regime . . . . . . 147 4.1.3 The Basic Markov Switching Model . . . . . . . . . . 152 4.1.4 State-dependent Autoregressive Dynamics . . . . . . 158 4.1.5 State-dependent Multivariate ARCH Models . . . . 163 4.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.2 Spectral Density of Regime Switching VAR Models . . . . 170 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.2.2 Markov-switching VAR(0) process . . . . . . . . . . . 171 4.2.3 Markov-switching VAR(p) process . . . . . . . . . . . 176 4.2.4 A numerical example . . . . . . . . . . . . . . . . . . . 177 4.2.5 Long memory or Regime Switching? . . . . . . . . . 178 4.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 181 it_IT
dc.identifier.bibliographiccitation Cavicchioli, Maddalena. "Essays on Markov Switching models with applications in economics and finance", Università Ca' Foscari Venezia, PhD Thesis, 26 cycle, 2014. it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record