dc.contributor.advisor |
Marcomini, Antonio |
|
dc.contributor.author |
Hristozov, Danail <1983> |
it_IT |
dc.date.accessioned |
2013-06-25T06:59:22Z |
|
dc.date.available |
2016-05-20T11:20:40Z |
|
dc.date.issued |
2013-03-19 |
|
dc.identifier.uri |
http://hdl.handle.net/10579/3036 |
|
dc.description.abstract |
La produzione e l'utilizzo di nano-oggetti e dei loro aggregati e agglomerati (NOAA) sono oggetto del regolamento europeo REACH № 1907/2006, che impone l’analisi dei rischi (AR) per ogni sostanza chimica prodotta o importate in quantità superiori a 10 tonnellate all'anno. L'analisi della fattibilità dell’AR per NOAA ha identificato limiti sostanziali, quali deficit di dati e carenze metodologiche relative alle loro caratteristiche fisico-chimiche e tossicologiche, e ai percorsi di esposizione e destino finale. Queste problematiche hanno portato ad un aumento dei finanziamenti di progetti finalizzati a rendere possibile l'analisi dei rischi dei nanomateriali. Uno dei progetti finanziati dalla Commissione Europea nell’ambito del settimo programma quadro è il progetto ENPRA, che ha finanziato questo lavoro di dottorato.
Prima di ENPRA, la maggioranza delle attività scientifiche si è concentrata sulla produzione di dati sperimentali utili per l'AR. Questo approccio, tuttavia, richiede decenni per colmare le attuali lacune di conoscenza, mentre le analisi di rischio sono urgentemente necessarie oggi per attivare e supportare la richiesta normativa. Il deficit di dati quantitativi ha portato a stime del rischio largamente qualitative e in gran parte basate su giudizi esperti, tali da non giustificare sufficientemente iniziative di gestione del rischio. C'è bisogno di approcci quantitativi, capaci di integrare i dati attualmente disponibili per consentire analisi e controllo del rischio in una prospettiva di breve termine.
In risposta a questa necessità, il lavoro di tesi qui riportato propone un approccio quantitativo basato sul peso delle evidenze (Weight of Evidence, WoE) basato su metodi di analisi decisionale multicriteriale per l'integrazione di dati fisico-chimici, tossicologici e di esposizione, e supportato da giudizio esperto per consentire una robusta analisi di rischio a breve termine. Per la prima volta, un approccio WoE incorpora una valutazione esplicita della qualità dei dati, e al tempo stesso utilizza metodi consoplidati, come il margine di esposizione (Margino of exposure) e la derivazione di livelli di non-effetto.
L’approccio proposto è stato applicato a dati di esposizione e di effetto ottenuti nell’ambito di ENPRA e a dati di letteratura peer-reviewed facenti riferimento a un gruppo di NOAA commercializzati (ad esempio, biossido di titanio, ossido di zinco, nano-argento, nanotubi di carbonio a pareti multiple) al fine di classificarli e prioritizzarli per ulteriori test (ai livelli di approfondimento più bassi) e di stimare quantitativamente i rischi occupazionali (ai livelli di approfondimento più alti). Tutte le incertezze relative ai dati di input, l'uso di modelli e l'applicazione di procedure di aggregazione basati sul WoE sono stati analizzati probabilisticamente utilizzando il metodo di Monte Carlo. |
it_IT |
dc.description.abstract |
The production and use of nano-objects and their aggregates and agglomerates (NOAA) are addressed by the European REACH regulation № 1907/2006, which requires Risk assessment (RA) for each chemical substance produced or imported in quantities above 10 tons per year. The analysis of the feasibility of the RA for NOAA has identified substantial limitations, such as data deficits and methodological concerns with respect to their physico-chemical identity, toxicity, exposure pathways and fate. These issues have led to an increased global funding of projects aimed to facilitate nano risk analysis. One of these projects is the European Seventh Framework ENPRA, which funded this doctoral work.
Before ENPRA most scientific activities were focused on the production of experimental data for RA. However, filling the knowledge gaps will take decades, while risk analyses are urgently needed to trigger adequate regulatory response. The deficit of quantitative data has led to uncertain and ambiguous, largely qualitative risk estimations based on expert judgments, which have failed to inform proper Risk management actions. There is need for quantitative approaches, which effectively combine the currently available data to allow risk analysis and control in the foreseeable future.
In response to the above need, this thesis reports a tiered quantitative Weight of evidence (WoE) framework that utilizes Multi-criteria decision analysis methods for integrating physico-chemical, toxicological and exposure data with expert judgement to allow robust near-term risk analysis. For the first time, a WoE approach incorporates an explicit evaluation of data quality, while at the same time uses well-established methods such as the Margin of exposure and the Derived No-effect Level.
The framework was applied with exposure and effects data from the ENPRA project and the peer-reviewed literature that refer to a panel of commercially available NOAA (i.e. titanium dioxide, zinc oxide, silver and multi-walled carbon nanotubes) to rank and prioritise them for further testing (in lower tiers) and quantitatively estimate their occupational risks (in a higher tier). All uncertainties related to the input data, use of models and the application of the WoE aggregation procedures were probabilistically analysed using the Monte Carlo approach. |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it |
dc.rights |
© Danail Hristozov, 2013 |
it_IT |
dc.subject |
Engineered nanomaterials |
it_IT |
dc.subject |
Weight of evidence |
it_IT |
dc.subject |
Risk assessment |
it_IT |
dc.subject |
Risk regulation |
it_IT |
dc.title |
Development of an integrated framework for human health risk assessment of engineered nano-objects and their aggregates and agglomerates |
it_IT |
dc.type |
Doctoral Thesis |
en |
dc.degree.name |
Scienze ambientali |
it_IT |
dc.degree.level |
Dottorato di ricerca |
it |
dc.degree.grantor |
Scuola di dottorato in Scienze e tecnologie (SDST) |
it_IT |
dc.description.academicyear |
2013 |
it_IT |
dc.description.cycle |
25 |
it_IT |
dc.degree.coordinator |
Pavoni, Bruno |
|
dc.location.shelfmark |
D001247 |
it |
dc.location |
Venezia, Archivio Università Ca' Foscari, Tesi Dottorato |
it |
dc.rights.accessrights |
openAccess |
it_IT |
dc.thesis.matricno |
955765 |
it_IT |
dc.format.pagenumber |
X, 183, XXX p. |
it_IT |
dc.subject.miur |
CHIM/04 CHIMICA INDUSTRIALE |
it_IT |
dc.subject.miur |
CHIM/12 CHIMICA DELL'AMBIENTE E DEI BENI CULTURALI |
it_IT |
dc.description.tableofcontent |
Chapter 1: Introduction
1.1 Motivations and objectives
1.2 Thesis structure
1.3 ENPRA project
1.4 References
Chapter 2: Regulatory frameworks for nanomaterials
2.1 Definitions of “nanomaterial” for regulatory purposes
2.1.1 Definitions by international organizations
2.1.2 Definitions by European organizations
2.1.3 Definitions by national authorities
2.2 European legislation and requirements
2.3 US legislation and requirements
2.4 Assessing the limitations in EU and US regulations
2.4.1 Thresholds and exemptions
2.4.2 Uncertainty and the burden of proof
2.4.3 Risk assessment and management challenges
2.4.4 Confidential Business Information and voluntary reporting
2.5 Solving the limitations in EU and US regulations
2.6 References
Chapter 3: Theoretical foundations of human health Risk assessment and management
3.1 Risk management framework
3.1.1 Hazard identification
3.1.2 Exposure assessment
3.1.3 Dose-response assessment
3.1.4 Risk characterization 40
3.1.5 Risk classification 41
3.1.6 Risk-benefit analysis
3.1.7 Risk reduction
3.1.8 Monitoring and review
3.1.9 Estimation of uncertainty and variability
3.2 Weight of evidence
3.3 Multi-criteria decision analysis
3.4 Expert elicitation
3.5 References
Chapter 4: Risk assessment of engineered nano-objects and their aggregates and agglomerates: state of the art
4.1 Limitations and uncertainties
4.2 Data availability
4.2.1 Data in online databases
4.2.2 Data in the literature
4.2.3 Future data availability
4.3 Frameworks, methods and tools
4.3.1 Frameworks
4.3.2 Emerging methods
4.3.3 Tools
4.4 References 86
Chapter 5: Tiered human health Risk assessment of engineered nano-objects and their aggregates and agglomerates: framework and methodology
5.1 Objectives
5.2 Conceptual framework
5.2.1 Tier I: Quantitative hazard, exposure, risk screening
5.2.2 Tier II: Quantitative relative Risk assessment
5.2.3 Tier III: Quantitative actual Risk assessment
5.3 Methodological approach
5.3.1 Tier I: Quantitative hazard, exposure and risk screening
5.3.2 Tier II: Quantitative relative Risk assessment
5.3.3 Tier III: Quantitative actual Risk assessment
5.4 References
Chapter 6: Tiered human health Risk assessment of engineered nano-objects and their aggregates and agglomerates: results and discussion
6.1 Tier I: Quantitative risk screening
6.1.1 Pre-assessment
6.1.2 Hazard screening
6.1.3 Exposure screening
6.1.4 Integrating hazard and exposure
6.2 Tier II: Quantitative relative Risk assessment
6.2.1 Pre-assessment
6.2.2 Ranking and prioritization
6.2.3 Uncertainty characterization
6.3 Tier III: Quantitative actual Risk assessment
6.3.1 Pre-assessment
6.3.2 Hazard assessment
6.3.3 Exposure assessment
6.3.4 Risk characterization
6.3.5 Uncertainty characterization
6.4 Discussion
6.5 References
Chapter 7: Conclusions
Acknowledgements
Annex 1: Definitions of “nanomaterial” and related terms
Annex 2: Recommendations for inclusion of nano-specific data and information in the chemical safety data sheet (SDS)
Annex 3: List of toxicity studies used for Tier I hazard assessment
Annex 4: Dose-response analysis
Annex 5: Exposure assessment
A5.1 NanoSafer model
A5.2 Analysis
A5.3 Results
A5.4 References
Annex 6: Endpoint/body system-specific Margins of exposure |
it_IT |
dc.identifier.bibliographiccitation |
Hristozov D. (2013). "Development of an integrated framework for human health risk assessment of engineered nano-objects and their aggregates and agglomerates". University Ca' Foscari Venice. |
it_IT |
dc.degree.discipline |
Risk assessment of emerging pollutants |
it_IT |