Insights to the function of ion channels through an integrated in-house computational toolbox

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Giacometti, Achille it_IT
dc.contributor.author Moi, Jacopo <1994> it_IT
dc.date.accessioned 2022-06-26 it_IT
dc.date.accessioned 2022-10-11T08:26:09Z
dc.date.available 2022-10-11T08:26:09Z
dc.date.issued 2022-07-19 it_IT
dc.identifier.uri http://hdl.handle.net/10579/21679
dc.description.abstract Using Molecular Dynamics, Graph and Network Theory as well as Machine Learning techniques, we develop an integrated pipeline that can be used to study the function-structure relationship of ion-channels. We apply this concepts to the analysis of variants in sodium channel Nav1.7 subunit found in clinical studies of painful syndromes it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Jacopo Moi, 2022 it_IT
dc.title Insights to the function of ion channels through an integrated in-house computational toolbox it_IT
dc.title.alternative Insights to the function of ion channels through an integrated in-house computational toolbox it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Science and technology of bio and nanomaterials it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Scienze Molecolari e Nanosistemi it_IT
dc.description.academicyear 2021/2022_sessione estiva_110722 it_IT
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 847329 it_IT
dc.subject.miur FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA) it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend it_IT
dc.provenance.upload Jacopo Moi (847329@stud.unive.it), 2022-06-26 it_IT
dc.provenance.plagiarycheck Achille Giacometti (achille@unive.it), 2022-07-11 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record