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Abstract

Using Molecular Dynamics, Graph and Network Theory as well as Ma-
chine Learning techniques, we develop an integrated pipeline that can
be used to study the function-structure relationship of ion-channels.
We apply this concepts to the analysis of variants in sodium channel
Nav1.7 subunit found in clinical studies of painful syndromes
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Chapter 1

Introduction

Nowadays neuropathic diseases are still poorly understood and unre-
solved disorders that continue to attract the interest of the scientific
community. Within this class of diseases, Neuropathic Pain Disorders
represent an even more challenging issue and the key to their action
seems to be mediated by a class of membrane proteins, the voltage-
gated sodium channels [13]. Recently, a computational Pipeline de-
voted to this problem has been developed at Ca’ Foscari University
[51], with a focus on Painful Neuropathies expressed by the NaV1.7
protein belonging to this class. The key point addressed was the de-
velopment of a reliable in silico tool able to classify experimentally
performed point-mutations in pathogenic (leading to a disease) and
non-pathogenic (not leading to any disease). The proposed method,
which combined homology models, graph theory and machine learning
techniques, was tested against a set of 85 mutations that have exper-
imentally studied before. While successful, the original implementa-
tion displayed several drawbacks including computational speed, lack
of proper tests of each single element of the pipeline, as well as an
overall difficulty in extending it to other case studies. In addition,
a systematic computational study on the structural effects of these
point-mutations was missing. This thesis is devoted to address both
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points, to improve the computational protocol on one hand and to
perform dedicated molecular dynamics studies on the structural ef-
fects of a representative sample of the point mutations, in order to
gain more insight on their pathogenic pathway. NaV1.7 ionic channel
is of extreme interest for medical applications because it is highly ex-
pressed in the peripheral nervous system and it has been speculated
that gain-of-function mutations are in direct connection with the on-
set of painful neuropathies [13]. On the other hand, this is a complex
protein made of 1659 residues grouped in two long intracellular-coils
and four voltage-sensing domains arranged around a central aqueous
channel formed by the pore domain [43].

Hydrophobic core

Intracellular coils

Extracellular coils

Figure 1.1: MOESM3 Wild-Type

It is worth emphasizing that, because of the size and fragility of
NaV1.7 structure, it is difficult to refine and purify it by in-vitro tech-
niques, and this is one of the main advantage of a preliminary in-silico
approach in this particular case.
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The original pipeline involved first the use of homology-modeling [28]
to obtain the mutated structures starting from three different tem-
plates of the NaV1.7 protein (MOESM3 for Acrobacter Bultzieri, 6a90
for Periplaneta Americana and 6j8j for Homo Sapiens), and then an
energy minimization of the obtained structures using the Fragment-
Guided Molecular Dynamics [56] protocol. Subsequently to this first
phase, graphs of the non-covalent interactions (RINs) of the obtained
structures were generated and then compared with each other using
Graph Kernel methods [34]. This allows the analysis and extraction of
properties within a reduced dimensionality and a corresponding gain
in speed a reliability. Finally, machine learning techniques were im-
plemented on the result to perform a binary classification between
pathogenic and non-pathogenic mutations. As the authors noted in
the original article [51], this task is only possible if the refined struc-
tures have achieved a high degree of differentiation among themselves
and a lack of control of this requirement could invalidate the whole
process.

The first part of this thesis then focuses mainly on the in-house
implementation of two tools of the original pipeline: a new Residue
Interaction Network generator was already developed by a computer
science team at the Ca’ Foscari DAIS Department and needed to be
tested with a suitable set of molecules, and a new protocol Fragment-
Guided Molecular-Dynamics (FG-MD) has been implemented since the
already employed FG-MD tool [56] was one of the main shortcomings of
the original Pipeline. Before their inclusion in the new Pipeline, both
these tools were tested separately by creating an ad- hoc environment
for each of them. After that, the new Pipeline was tested step by
step in order to validate the results. Encouraged by the results, the
Pipeline was then applied in full production. The thesis is organized as
follows: Chapter 2 is devoted to introducing the concepts of Residue
Interaction Network and Kernel method on graphs. Chapter 3 presents
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the used Molecular Dynamics techniques, with a specific focus on the
Fragment-Guided refining protocol, which will be then successively
implemented and tested. In Chapter 4 the tools and workflow of the
original version of the Pipeline is briefly reminded, and its shortcomings
and drawbacks highlighted. In Chapter 5, the new implementation of
the Pipeline is then presented, including all performed tests on the in-
house implementation of the FG-MD protocol and the RIN generator
RINmaker. In Chapter 6 the new Pipeline is tested with the same set
of structures of the original pipeline, thus providing an independent
double-check of the original results. This is followed by the application
of the new Pipeline in a full-fledged way, with a critical assessment of
the strengths of this improved pipeline. Finally, Chapter 7 reports
the results of free energy landscape (FEL) studies first performed a
on Trp-Cage protein as benchmark and then on a set of point-mutated
structures related derived from the MOESM3 template. This study has
a two-fold objective. Firstly, it provides an overview of the effect of
the FGMD protocol on the specific point-mutated studied structures.
Secondly, it paves the way to a full all-atom MD study of the whole
NaV1.7.
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Chapter 2

Residue interaction network

2.1 Graph theory

2.1.1 Elements of graph theory

In its simplest form, a graph is a collection of vertices that can be
connected to each other by means of edges. In particular, each edge of
a graph joins exactly two vertices. Using a formal notation, a graph is
defined as follows [47]:

Definition 2.1.1 (Undirected simple Graph) An undirected sim-
ple graph G consists of a set V of nodes and a set of edges E = {{u, v} |
u, v ∈ V, u ̸= v}, for which we write G = (V,E). Each edge {u, v} ∈ E

is said to join two nodes u, v, which are called its end points.

A useful way to fully describe a graph in matrix form is by its adjacency
matrix Adj(G) [6]. This matrix is defined as :

Definition 2.1.2 (Adjacency matrix) Let aij be the element in the
i-th row and j-th column of a matrix Adj(G). Then, the Adj(G) adja-
cency matrix of a graph G(V,E) can be defined as follows:

aij =

{
1 if v, u ∈ E(G),

0 otherwise.
(2.1)
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Definition 2.1.1 gives the foundations for understanding the graph ob-
ject (See Fig. 2.1(a)). Since the E set is thought as an unordered set
of V pairs, this definition does not allow to have more than one edge
connection two nodes u, v. This definition can be extended in order to
have an undirected multigraph [4]:

Definition 2.1.3 (Undirected Multigraph) An undirected multigraph
G = (V,E) consists of a set V of nodes and a multiset of edges
E = {{u, v} | u, v ∈ V, u ̸= v}.

This definition extend the notion of Undirected Simple Graphs and
allow to have more edges for a given unordered pair of vertices (See
Fig. 2.1(b)). To complete the description is important to introduce
the notion of labeled graph:

Definition 2.1.4 (Labeled Graph) A labeled graph is a graph which
has labels associated with each edge and/or each vertex.

From the Definition 2.1.4 is possible to add labels to an Undirected
Multigraph (See Fig. 2.1(c)).

Network will become prominent in the next section because it’s
one of the most useful representation for the non-covalent interactions
between residues in a protein.

(a) Undirected graph (b) Undirected multigraph (c) Labeled graph

Figure 2.1: Different type of graphs according to the definitions [9]
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An important concept also used in this work is the subgraph[47]:

Definition 2.1.5 (Subgraph) A graph H is a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G) such that for all e ∈ E(H) with e = e(u, v)
we have that u, v ∈ V (H).

2.1.2 Residue interaction network (RIN)

Protein structures can be represented as networks (graphs) where amino
acid residues are nodes and their interactions are edges. This approach
was used to study various protein aspects, including protein structure
flexibility, folding of protein domains, structural patterns, key residues
in folding, residue fluctuation, and side-chain clusters [2]. In a typical
Residue Interaction Network, every node is uniquely labeled with its
position along the protein backbone, while the edges are labeled with
the specific type of non-covalent interaction that occour between its
end points. Its form is clearly an undirected multigraph (See 2.1(b))
since:

• A specific interaction that occour between two residues in a pro-
tein exists without a specified direction (undirected)

• Different non-covalent interactions can occour between two residues
(multigraph)
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Figure 2.2: A small detail of the RIN of the Trp-Cage miniprotein made with RINmaker
and visualized with Cytoscape

2.2 Functions and parameters defined on graphs

2.2.1 Metrics on graph: centrality

An important metric for network analysis is deciding on whether there
are any vertices “more important” than others. The importance of
a vertex is, of course, dependent on what a graph is actually mod-
eling [47]. There exists multiple and qualitatively different centrality
measures, here is reported the ones used in this work [47]:

Definition 2.2.1 (Betweenness Centrality) Given a graph G=(V,E)
where E ̸= ∅, the betweenness centrality cB(u) of vertex u is defined as:

cB =
∑
x ̸=y

|S(x, u, y)|
|S(x, y)|

(2.2)
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where S(x, y) is the set of all the shortest paths between two nodes
x, y ∈ V (G) and S(x, u, y) ⊆ S(x, y) the ones that pass through vertex
u ∈ V (G).

2.2.2 Graph comparison: Kernel functions on graphs

In the context of graph representations of protein interaction, one
prominent question is how to measure how much two graphs are sim-
ilar. Within the protein realm, for example, one might want to know
whether or not a given protein is an enzyme or be able to predict if
point-mutations are pain-related or not [52]. Kernel methods offer a
natural framework to study these questions. Starting directly from the
definition of Kernel:

Definition 2.2.2 (Kernel function) A kernel is a function k that
for all x, z ∈ X satisfies:

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ (2.3)

Here

ϕ : X → F
x 7→ ϕ(x) ∈ F

(2.4)

is a map between a vector x ∈ X to a Hilbert space ϕ(x) ∈ F

The kernel function k is positive-definite and essentially compute
the inner-product between two given vectors which are mapped by ϕ
to a feature space F , which is an abstract inner-product vector space.
The F is the space of features related to some properties of the graphs.
This mathematical statement is important since it is not possible to
define directly an inner-product between graphs but it is possible to
map them to a feature space, where the features form a basis. The
kernel can be normalized in order to have a value [0, 1]. More this

14



value approach 1 more the assessed graphs are similar, respect the
chosen kernel. Below are defined some important kernels used during
this work, they also represent a general framework for deriving other
kernels [34].

Vertex-Histogram kernel The vertex histogram kernel is a basic linear
kernel on vertex label histograms. The kernel assumes node-labeled
graphs.

Definition 2.2.3 (Vertex-Histogram kernel) Let G be a collection
of graphs, a set of node labels L and a function ℓ : V → L which assigns
labels to the vertices of the graphs, the vertex label histogram of a graph
G = (V,E) is a vector f = (f1, f2, ..., fd) such that fi = |{v ∈ V : ℓ(v) =
i}| for each i ∈ L.

Given two graphs G1, G2, the vertex histogram kernel is defined as:

k(G,G′) = ⟨f , f ′⟩ (2.5)

In other words, given a labelling function ℓ, the vertex-histogram first
assign labels to vertex V by the function ℓ for each input graphs; it
counts how many vertex have the same label i in each graph and it
assign the result to a vector f , so the resulting vectors f ,f ′ are multiplied
by the dot-product rule (See Fig. 2.3(a)). The result of the dot-product
is the kernel function output. This is a fast kernel and the complexity
is linear, suitable for computational application.

Similarly to Definition 2.2.3, is possible to define the feature vectors
f and f ′ as an histogram on edge labels where now ℓ : E → L is a func-
tion that assigns labels from an edge label set L to the edges collection
E of the graphs. In this case the kernel is called Edge Histogram (See
Fig. 2.3(c)).

Subgraph-Matching kernel The subgraph matching kernel counts the
number of matchings between subgraphs of bounded size in two graphs.
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The kernel is very general since it can be applied to graphs that contain
node labels, edge labels, node attributes or edge attributes.

Definition 2.2.4 (Subgraph-Matching kernel) Given two graphs
G = (V,E) , G

′
= (V

′
, E

′
), the set of all bijections B between S ⊆ V

and S
′ ⊆ V

′
and a wight function λ : B(G,G

′
) → R, The subgraph

matching kernel is defined as:

k(G,G
′
) =

∑
ϕ∈B

ϕ(λ)
∏
v∈ϕ

kV (v, ϕ(v))
∏

e∈ϕv×ϕv

kE(e, ϕ(e)) (2.6)

More intuitively, the bijection set B in this case is made by the
subgraphs of G and G

′
which V (G) → V (G

′
). For constructing this

set, in first instance the graph product G × G
′
is made; every nodes

and edges of the graph product is weighted by a set of rules, in order
to obtain a weighted graph product; from this graph product the algo-
rithm enumerate every cliques for constructing the B(G,G

′
) set. the

kernel compare every nodes and edges with desired kV , kE for every
bijection ϕ selected from B(G,G

′
).

Weishfer-Lehman Kernel The key idea of the Weisfeiler–Lehman al-
gorithm is to replace the label of each vertex with a multiset label
consisting of the original label of the vertex and the sorted set of la-
bels of its neighbors. Te resultant multiset is then compressed into a
new, short label. Such new label refects the knowledge of the node
and its neighborhood. This relabeling process is then repeated for
h iterations. By performing this procedure simultaneously on all in-
put graphs, it follows that two vertices from diferent graphs will get
identical new labels if and only if they have identical multiset labels.
The kernel function in this case compare the node labels of the graphs
resulting after each iteration and summarizes the comparison with a
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real number. It can be shown that this is equivalent to comparing the
number of shared subtrees between the two input graphs (the kernel
considers all subtrees up to height h)[51].

The output of a kernel can be organized in a matrix containing the
evaluation of the kernel function on all pairs of graphs. This matrix is
said Gram-matrix:

Gi,j = ⟨ϕ(Gi), ϕ(Gj)⟩ (2.7)

(a) Vertex Histogram (b) Shortest Path

(c) Edge Histogram (d) Subgraph Matching

Figure 2.3: Representation of the obtained feature vectors ϕ(G) and ϕ(G′) for the selected
Kernel functions.
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Chapter 3

Molecular dynamics

Molecular dynamics is one of the main methods for exploring the con-
formational space of large molecules such as proteins. The simulation
of the motion is realized by the numerical solution of the classical New-
tonian dynamic equations. Usually, Newton’s equations of motion are
used to capture the trajectories of particles in the system where the
forces applied to the particles composing the system derives from a
description of the potential energy, called forcefield. The simulation
procedure is usually constructed as follows:

1. Initialize the system in the desired ensemble.

2. Compute the potential energy from the topology of the system
according to a specific forcefield.

3. Compute the forces for each particle.

4. Integrate Newton’s equation of motion.

5. Repeat steps 3 and 4 for a desired length of time.
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3.1 Forcefield

How described above, the MD simulation needs a description of the
potential energy respects all of the particles and bonds present in the
system. The basic definition for a forcefield has the standard form:

V (rN) = vb(li) + vθ(θi) + vω(ω) + vLJ(rij) + vC(rij) (3.1)

Writing every terms in detail:

V =
∑
bonds

Kr(ri − r0)
2 +

∑
angles

Kθ(θ − θeq)
2+

+
∑

dihedrals

Vn
2
[1 + cos(nϕ− γ)] +

∑
i<j

[
Aij

R10
ij

− Bij

R6
ij

]
+

+
∑

H−bonds

[
A

r12
− B

r6

]
+
∑
i<j

qiqj
ϵRij

(3.2)

In Table 3.1 a detailed description of every term is reported:
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Type Formula f graph Description

Harmonic potential
∑

bondsKr(ri − r0)
2 Harmonic potential for

bond length, fixed at r0

Bending potential
∑

anglesKθ(θ − θeq)
2

Harmonic potential for
bond angle vibration,
fixed at θeq

Torsional potential
∑

dihedrals
Vn

2
[1 + cos(nϕ− γ)]

Periodic potential for dihe-
dral angles, where Vn is
the amplitude and γ the
phase factor

H-Bond potential
∑

i<j

[
Aij

R10
ij
− Bij

R6
ij

] L-J potential for H-Bonds
modelled as 10-6. Aij
and Bij are characteristic
length of atoms referred to
the minimum of the func-
tion (potential well)

VdW potential
∑

H−bonds

[
A
r12

− B
r6

] L-J potential for VdW
modelled as 12-6. A and B
are characteristic length.

Coulomb potential
∑

i<j
qiqj
ϵRij

Coulomb potential where
qi and qj refers to partial
charges defined in the cho-
sen forcefield.

Table 3.1: Standard forcefield terms description (AMBER) [39]

ECoulomb

Figure 3.1: Illustration of the potential energy terms that make up the force field expres-
sion and the interactions they correspond to.[29]

The equilibrium parameters req and θeq,partial charges q and LJ
characteristic length A and B as well as other parameters, are specified
for every type of atoms and interaction in the forcefield description.
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In this work the used forcefield were CHARMM36[21] and AMBER-
14[30], which suits well for membrane and globular protein.

3.2 Integrators

Newton equations of motion are clearly continuous respect time but
discrete in the context of simulation, since there is the discretization
induced by the machine. Integrators allow to discretize the Newton’s
equation and to recursively update velocity and position of particles
subjected to forces. In this work two integrators were mainly used:
Verlet integration which use a deterministic approach for calculate nu-
merically equation of motion and Langevin integrator, which is an
extension of Verlet in the context of system accounting for the solvent
effect.

3.2.1 Velocity Verlet integration

This algorithm allows to approximate Newton’s equation of motion in
order to update simultaneously position and velocity of a particle at
consecutive times. This latter aspect is possible since in a classical
system is safe to state that:

ẋ(t) = v(t) ẍ(t) =
F(x(t))

m
(3.3)

Velocity Verlet integration algorithm is, in first instance, obtained from
the tylor expansion of r(t+∆t), v(t+∆t), v̇(t+∆t) around t:

r(t+∆t) = r(t) + v(t)∆t+
1

2

F(r(t))

m
∆t2 +O(∆t3) (3.4)

v(t+∆t) = v(t) +
1

2
v̇(t)∆t+

1

2
v̈(t)∆t2 +O(∆t3) (3.5)
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Substituting in Eq.(3.5) to the v̇(t) term the rearranged Tylor ex-
pansion of v̇(t+∆t), in order to approximate v̈(t):

v(t+∆t) = v(t) +
∆t

2m
(F(t) + F(t+∆t)) +O(∆t4) (3.6)

Eq.(3.4) and (3.6) are now ready for a recursive calculation of r(t)
and v(t) at consecutive step: Given xk, vk, ∆t and a forcefield for
evaluate F:

1. Calculate xk+1=xk +∆tvk +∆t2F (xk)2m

2. Evaluate F(xk+1) (forcefield)

3. calculate vk+1

4. Go to step 1

Clearly this algorithm can be extended to all of the atoms present in a
system. In this case, the system is represented by a matrix, where every
entry is the position and velocity of the particle-i. The ∆t is called the
timestep. Generally, the timestep chosen in a simulation is of 1 or 2
femtosecond, which is sufficient smaller of the solvent relaxation time
(∼ 2 ps). Higher timestep value could add a too much error, since the
Verlet method is approximated.

3.2.2 Langevin integrator

Langevin equation of motion is a stochastic differential equation of the
form:

mi
d2x(t)

dt2
= Fi − γi

dri
dt
mi + ηi(t) (3.7)

Eq. (3.7) is the Newton’s equation of motion equipped with two
additional term: the friction coefficient γi and the noise term η⃗i(t)
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taken from a Gaussian distribution N (0, 1) that describe random fluc-
tuations due to solvent-solute collision. The integration is carried out
in the same framework of the Verlet integration, with an additional
random force η⃗(t) obtained from the distribution and added to i-th
particle.

The Langevin and Verlet integrators ”simply” resolve the equation
of motions for a system of forces, so naturally they run over time toward
a system in quiet, that correspond to the minimum of the energy at a
given set of parameters (T ,P ,Tbath,etc).

3.2.3 Limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS)

Langevin and Verlet integrators resolve the time-dependent equation
of motions. Another class of integrator not-dependent on time are the
Quasi-Newtonian methods. This class of algorithm, instead of resolv-
ing the equation of motions respect time, are designed to search for
the minimum energy conformation between the possible states given a
starting conformation. L-BFGS is the most used in molecular dynam-
ics applications. More precisely, gradient minimization is the problem
of finding the set of positions which is the minimum of the gradient
respect the potential:

min∇V (rij) (3.8)

This work is basically done searching iteratively for position rij which
minimize the potential function. This is done in first instance expand-
ing ∇V (r+∆r) around ∆t = 0:

∇V (rk +∆rk) = ∇V (rk) +H∆r (3.9)

Where H is the Hessian matrix of the potential. Setting the gradient
∇V (rk+∆r) = 0 and writing ∆r = rk+1−rk an update rule is obtained
for estimating rk+1:
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rk+1 = rk −H−1∆V (rk) (3.10)

This algorithm is mostly used for removing steric clashes and search-
ing conformation which minimize locals interaction. It can be also used
for simulated annealing simulations but it does not guarantee to find
the global minimum.

3.3 System parameters

The system where the simulation is carried out heavily influence the
outcome and must be balanced between a detailed approximation of
a real life model and the available computational power. In protein
simulation the most important aspects are:

• Presence or not of boundary conditions (BC)

• Solvent description (lipid or water)

• Coupling of pressure and temperature respect the chosen ensemble

• Description of non-bonded interaction

3.3.1 Periodic boundary conditions

Periodic boundary conditions (PBCs) are a set of boundary conditions
which are often chosen for approximating a large system by using a
small part called a unit cell. The box enclosing the system is sur-
rounded by other boxes containing the same system (for example, in
the case of a 2D system, the number of adjacent boxes is eight (See
Fig. 3.2). It’s normal to use this kind of approximation for obtaining
bulk properties of liquid or solid in a simulation. In the case of pro-
tein they are mostly used for calculating long-range interactions with
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Particle Mesh Ewald (PME) methods and for applying algorithm for
maintaining constant pressure (Monte Carlo barostat).

Figure 3.2: Boundary conditions as repetition of a cubic box

3.3.2 Water models

Most molecular dynamics simulations are carried out with the solute
surrounded by a droplet or periodic box of explicit water molecules.
In a typical case, water molecules will account for over 80% of the
particles in the simulation. Water–water interactions dominate the
computational cost of such simulations, so the model used to describe
the water needs to be fast as well as accurate. Many different water
models exists nowadays, but in this work the TIP3P explicit water
model is used. The original TIP3P site model has positive charges on
the hydrogens and a negative charge on oxygen. The potential consid-
ered here involve a rigid water monomer that is represented by three
interaction sites, and is described by an energy functions composed by
a Coulomb potential term and a Lennard-Jones potential term [23]:

VTIP3P =
on m∑
i

on n∑
j

kCqiqj
rij

+
A

r12OO
− B

r6OO
(3.11)
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Where kC is the electrostatic constant equal to 332.1 Å·kJ
mol·eV2 , qi, qj

the partial charges of the involved atoms, rij the distance between two
atoms or charged sites and A,B the LJ-parameters. The sum extends
to atoms of the monomers m and n.

Figure 3.3: Water model

In Tab. 3.2 a comparison of forcefield parameters for common water
models is provided.

Model O sigma (Å) O epsilon (kcal/mol) O charge H charge O-H bond H-O-H angle
SPC 3.166 0.15535 -0.82 0.41 1.0 109.466667

TIP3P 3.15061 0.1521 -0.834 0.417 0.9572 104.52
TIPS3P 3.1506 0.1521 -0.834 0.417 0.9572 104.52

Table 3.2: Comparison of forcefield parameters for three point charge common water
models

3.3.3 Temperature coupling

To meet the requirement of having constant temperature in the chosen
ensemble a statistical strategy is to deploy a thermostat function. A
thermostat function couple a fictitious bath Tf with the absolute Tabs
of the system, which is function of the total kinetic energy of every
particle:

Tabs =
1

kBNdf

N∑
i=1

miv
2
i (3.12)
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whereNdf are the degrees of freedom of the system. From Eq. (3.12)
is clear that imposing a condition Tabs = Tbath needs an expression
vbath(t) for modify velocity (here momentum) of the particles. This
task is left to the chosen thermostat.

Andersen thermostat Andersen is the simplest but powerful thermo-
stat for coupling the system to a heat bath in the canonical ensem-
ble. This function add stochastic forces, sampled by the Maxwell-
Boltzmann distribution, that modify the kinetic energy of the atoms
or molecules [11]:

P (vx,i) =
(βmi

2π

) 1
2

exp
(
−
miβv

2
x,i

2

)
(3.13)

Where vx,i is x−component of the velocity of particle i. Since this
method has to mimic particle collisions, the probability that this event
happen is sampled from a Poisson distribution:

P (t) = νe−νt (3.14)

Where ν = 1
τ is the frequency of collisions. Most of the times the input

parameter is τ . In this work, this thermostat was used especially in the
simulation regarding canonical ensemble, where the Verlet integrator
is used.

Langevin thermostat Langevin equation 3.7 has a temperature control
just embedded in his form, since the η⃗(t) factor is chosen by a Gaussian
distribution, which can be scaled with variance equal to:

σ2 = 2miγikBTbath/∆t (3.15)

Where Tbath is the chosen bath temperature in Kelvin.

27



3.3.4 Monte Carlo barostat

Simulations in the NPT ensemble need to maintain a constant fixed
pressure P ∗. In the NPT ensemble, the relevant probability function
is:

pNPT = exp
(
− βU({r⃗, r⃗})− βP ∗V ({r⃗})

)
(3.16)

So for maintaining the simulation in the correct ensemble the sampled
states must be constrained to have P ∗V be constant. One algorithm is
the so called volume rescaling [14]. During a simulation with timestep
∆t, the volume V (t+∆t) is scaled toward the pressure P (t) according
to:

V (t+∆t) = τ−1
p V (t)

(P (t)− P ∗

P ∗

)
∆t (3.17)

Where τp is the characteristic time for this process. The smaller the
relaxation time τp , the more closely the instantaneous pressure is tied
to the target, and the stronger the disturbance of the actual dynamics
by individual rescaling operations. In molecular dynamics, τp must be
large enough to produce meaningful data

3.3.5 Approximation of non-bonded interaction

The largest computational cost s from identifying and calculates non-
bonded interactions. Both Lennard-Jones and Electrostatic interac-
tions are pairwise, since they involve the computation of potential en-
ergy on two different particle. This means that for a system formed by
N particles, the computational cost is O(N 2), that become inaccessible
for large systems. However, is possible to control this cost as follows:
(See Eq. (3.1)).

• Lennard-Jones potential after 2.5σ can be considered neglectible

• Coulombic potential can be summed both in real space and fourier
space
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Lennard-Jones Cutoff The first approximation is modyfing LJ poten-
tial introducing a cutoff rLJC ≥ 2.5σ, above which the functions can be
approximated to 0.

v′LJC =

{
vLJC (r) r < rLJC
0 r > rLJC

(3.18)

This approximation clearly needs to be refined in the case of simula-
tions in the NVE ensembles but in the case of this work the simulations
were carried in NPT and NVT ensembles, where energy conservation
is not strictly required. Furthermore, the simulated system were com-
posed by a single protein, where the great majority of LJ interactions
distances are in the order of σ.

Columbic potential- Reaction Field Using Explicit solvation for big
protein can be computationally expensive. Reaction field is a mathe-
matical approximation where, the solvent effects on coulombic inter-
action is approximated by introducing a correction to the Coulombic
potential [41] in vacuo:

E =
q1q2
4πϵ0

(
1

r
+ krf r

2 − crf

)
(3.19)

krf =

(
1

rcutoff 3

)(
ϵsolvent − 1

2ϵsolvent + 1

)
(3.20)

crf =

(
1

rcutoff

)(
3ϵsolvent

2ϵsolvent + 1

)
(3.21)

Where ϵsolvent refers to the dielectric constant of the solvent and krf
and crf the constant used for the approximation.
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Coulombic potential- Particle Mesh Ewald Generally a cutoff rqC is also
introduced for Coulombic potential. However, the truncation with
a cutoff rqC > rLJC of the Coulombic potential alone is not sufficient
to approximate long-range electrostatic interactions since it vanishes
slowly respect the LJ-potential. For improving this aspect the Particle
Mesh Ewald (PME) method is used.

In the PME method, the electrostatic interaction are split as a sum
of a term relating interactions in real space and interactions in Fourier
space [16]. First point the Coulomb potential is written as a sum of
two terms:

V (r) = Vsr(r) + Vlr(r) (3.22)

Here V (r) is the Coulomb potential. That can be regarded as a sum of
two terms where the first is the contribution of short-range interaction
while the second means contribution from long-range interaction. The
basic idea is to write the long-range contribution in Fourier space while
the short-range interaction remains in the real space:

V (r) =
∑
ij

Vsr(ri − rj) +
∑
i

qiϕ
k(ri) (3.23)

ϕk(r) =
1

V

∑
k

ρ̃(k)eikri (3.24)

Where ϕk is the recovered Fourier transform of the potential as sum
on a lattice of k points, where ρ̃(k) is the Fourier transform of charge
density. In Eq.(3.23) the summation is performed on the charge qi, in
order to recover the potential value. It’s important to fix the two main
requisites of this method:

• The system must be periodic, since Fourier transform implicitly
assume periodicity.

• The system must be in neutral charge condition, so must be add
counter-ions (Na+) in the case of charged proteins.
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3.3.6 Simulation routine

Before starting MD, the system parameters must be chosen according
to the kind of objects that one want to simulate. In the case of this work
different parameters were used according to the simulation context and
aim, so here the common setups are reported . A molecular dynamics
simulation is divided in multiple step:

System preparation In a first instance, a forcefield needs to be cho-
sen in order to describe the topology of the systen, which is used for
calculate the energy between atoms.

Energy minimization (See Section 3.2.3) In a 3D molecular structure
can occur unphysical situation like distance between atoms smaller
than the VdW radius or improper angles. Most of the time these
defects generate enormous forces; for example if in the topology are
present two atoms with distance smaller than the VdW radius, the
calculated potential from LJ potential fell before the characteristic
length, giving an enormous potential and so a big force. Integration of
this forces tend to generate unphysical velocities which destabilize the
system, in jargon ”explode”. For suppressing these defects, the first
step is a minimization via L-BFGS.

Simulation (start) At the beginning of the simulation the timestep ∆t,
the bath temperature Tbath and the bath pressure Pbath and a force-
field are chosen. The initial velocity are sampled from the Maxwell-
Boltzmann distribution according to a fixed Tbath. The thermostat and
the barostat are eventually fixed to the desired temperature and pres-
sure, according to the chosen ensemble where the simulation is carried
out.
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Simulation (production) During the simulation the integrator update
forces and position at every amount of steps, the thermostat and the
barostat update also the position and velocities of the particles in order
to maintain constant temperature and pressure.

End After the desired amount of timesteps are integrated, the trajec-
tory of the particles is analyzed in order to extrapolate ensemble data.
Since in nature proteins naturally tend to stay in the most favourable
energetic conformation, there is the need to find the minimum of the
potential function respect the simulated system. For this scope a vari-
ation to the procedure called Simulated Annealing is used. In this case
the Tbath is slowly reduced; since the Esystem = Ekin + Epot is constant
at a fixed T , reducing the Tbath allows to gradually remove the kinetic
energy, in order to find the minimum potential energy.

3.4 Observables from MD simulations

In principle, macroscopic properties of a system can be estimated from
the trajectory of molecular dynamic simulation, where time averages on
these represent thermodynamic properties of a system at the macro-
scopic scale [35]. Indicating with Γ = {r(t),p(t)} the phase space
where ri and pi are respectively position and momentum, the observ-
able ⟨A⟩ can be calculated as:

⟨A⟩t = lim
T→∞

1

T

∫ T

0

A(rN(t),pN(t))dt (3.25)

Clearly, is not possible to solve this integral for a molecular system,
given the extraordinary large number of position and momentum de-
grees of freedom. However, under the ergodic hypothesis, time average
of a property can be computed from the ensemble average:
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⟨A(r,p)⟩t = ⟨A(Γ(t)⟩ρ (3.26)

And so

lim
t→∞

1

T

∫ T

0

A(rN ,pN)dt =

∫
ρ(Γ)A(Γ)dΓ (3.27)

Where ρ(Γ) is the probability density in the chosen ensemble. This
hypothesis allows essentially to calculate a time average of a property
directly from the explored ensemble of microstates:

⟨A(r,p)⟩t =
1

M

N∑
i=1

A(pN , rN) (3.28)

With this approach, also the probability density ρ respect microstates
i can be sampled. This will become important in the next subsection,
where it will be managed for obtaining the free energy surface (FES).

3.4.1 Free energy surface

An important observable used in this work is the free energy defined
from a microscopic description as:

F = −kBT lnZ (3.29)

Since from the partition function Z(N, V, T ) only the accessed states
are known, the F can be described as a probability distribution where
Z(qi) is the region of the partition function described by a parameter
qi, called collective variable or reaction coordinates:

F (qi) = −kBT ln
Z(qi)

Z
(3.30)

Z(qi) =

∫
drNdpNe−βH(rN ,pN )δ(Q(rN , pN)− qi) (3.31)
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where kB is the Boltzmann constant, T the temperature of the sys-
tem and Z the partition function in the canonical ensemble (N,V,T).

In essence, qi act as a parameter for partitioning all the available
microstates Q(rN , pN) into a set of macrostates parametrized by qi.
The integral in Eq. (3.31) entails a delta function that filters for only
those Boltzmann factors for configurations with the specified qi. This
allow to recover p(qi):

p(qi) =
Z(qi)

Z
= e−βF (qi) (3.32)

And so the free energy contributions for every macrostate qi can be
recovered by the use the inverse Boltzmann law in Eq.(3.30):

− ln p(qi) =
F (qi)

kBT
(3.33)

What is obtained at the end of the simulation is a set of qi values
taken at different times. For compute p(qi) a histogram technique
is exploited: the qi values obtained are divided in a number of bins
[q0i , q

j
i ], ..., [q

max−j
i , qmaxi ]. For each bin the occurence of qi is counted and

the values are scaled in order to have
∫ +∞
−∞ p(qi)dqi = 1. As collective

variables are usually coupled, a slightly different procedure is used.
Let q1 and q2 be to reaction coordinates extracted from the trajec-

tory, is possible to describe the surface free energy as:

F (q1, q2)

kBT
= − ln p(q1, q2) (3.34)

Where p(q1, q2) is obtained by extracting the joint distribution (2D-
histogram): in practice, every event Eq1,q2 = p(q1, q2) is counted in a
binned grid:

[q01, q
j
1], ..., [q

max−j
1 , qmax1 ]× [q02, q

j
2], ..., [q

max−j
2 , qmax2 ] (3.35)
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After the grid is constructed, the free energy contribution of every
2D-bin is calculated from Eq. (3.34).

3.4.2 Reaction coordinates

In molecular dynamics, a reaction coordinate (collective variable) is
a 1-dimensional abstract coordinate which in principle, correspond to
any parameter that could be measured throughout the simulation [22].
These coordinates can be geometric quantities ( Radius of Gyration,
RMSD, etc. ), chemo-physical quantities (Accessible Surface Area,
polarization, etc.) and also more abstract parameters. In this thesis,
the Kernel similarity from the Shortest-Path kernel was also used as
reaction coordinate. In the following, some of these reaction coordi-
nates are listed. Choosing the right collective variable is not a trivial
task because it needs a pre-knwoledge respect important parameter of
the examined system. This complication worsen in the case this vari-
ables are used as basis for describing the free energy surface because
they needs to be uncorrelated. The best choice in this case is Rg and
Fraction of native contact.

Radius of gyration Radius of gyration is one of the most common
reaction coordinates, is defined as:

Rg =

(∑
j ∥ri∥2mi∑

imi

) 1
2

(3.36)

Where rj is the position vector of the Cα carbon in the backbone in
the simulation frame i. Rg is essentially the square root of the weighted
average respect positions of a chosen set of atoms.
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Fraction of native contact The fraction of native contacts for a confor-
mation can be calculated in different ways. The basic definition involve
first to select a reference group in the protein (Sidechains, Cα, charged
residues, atoms, etc.) and count as a native contact when distance dij
between element-i and j is below some distance radius. Defining as
Nat the ensemble of all of this native contact, the fraction is defined
as:

ρ =
|{Nat}|i
|{Nat}|0

(3.37)

Where i and 0 are from the i-th and 0-th frames of the trajectory
respectively.

In this work, native contacts are defined from the group comprising
Cα separated at least by 4 residues in the backbone, with a cutoff
radius equal to 6.5 Å[36]. Although crude, this approach was chosen
because of the large size of the proteins in question (1639 residues)
and the large number of frames obtained in the molecular dynamics
trajectories (25000 frames), in which a calculation on the full-atom
model was too computationally time-consuming, moreover there was
not enough information on any important specific atomic subset to
choose as reference group.

RMSD Root mean-square standard deviation (RMSD) is defined as:

RMSD(t1, t2) =

[
1

M

N∑
i=1

mi∥ri(t1)− ri(t2)∥2
] 1

2

(3.38)

In this form is defined as the measure of the average distance be-
tween the atoms of the same structure at moment t1 and t2.
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Other important scoring functions

Surface-Area Solvent Accessibility (SASA) The solvent accessible sur-
face area (SASA) describes the area over which contact between protein
and solvent can occur [42]. Essentially, taken an atom (or a residue)
of interest, with an approximated method is possible to estimate how
much surface of the probed object s theoretically available to the sol-
vent. This is clearly dependent on the type of solvent used in the
system, neighborhood and quality of the residue of interest; a residue
with a low SASA are meant as ”buried”, which it means that there are
no contacts with the surrounding solvent.

Figure 3.4: Example of SASA calculation

Shake-Rupley is most used algorithm for calculating SASA of a
given atom or residue [42].

Kernel similarity Given the desire to find faster and finer computation
than the fraction of native contacts described above, a novel score
defined as the normalized dot-product from the kernel computation on

37



graphs (See Section 2.2.2). Specifically, the score is defined as:

Kernel Similarity =
k(G0, Gi)√

k(G0, G0)k(Gi, Gi)
(3.39)

Where G0 and Gi stands for the Residue Interaction Network at
0-th and i-th frames of the trajectory respectively.

3.5 FG-MD protocol

In the following, the FG-MD protocol is described.

3.5.1 Intro

Taken a protein of interest, the native structure correspond to the
unique geometric conformation that sit on the global minimum of the
free energy. The most common way for getting this native state is using
Molecular Dynamics simulations, that allow to explore the free energy
landscape. Despite the key role played by these methods, discovering
the native structure remains an open problem for the reasons listed
below:

1. Exploring the energy landscape needs the overcome of high energy
barriers between them, and this is extremely demanding from the
computational point of view.

2. A complete description of the systems (and so his real energy
landscape) is essentially impossible.
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While point 1 can be tackled by tuning the simulation parameters
and setting the right simulation environment, point 2 hinge upon the
intrinsic uncertainty given by the approximations embedded in the
forcefield. Most of these models, called physical-based forcefields, use
precomputed values obtained by quantum-mechanical calculations and
fit well for describing local interactions in the system. Another class
of models are the knowledge-based forcefield, where the values are
extrapolated from a large dataset of structures. These two classes
have in some way mutually exclusive performances: the physical one
seems to have a better convergence but most of the time it drives
the structure away from the native state, the knowledge-based instead
seems to have in general poor performance because is highly-specific
and so is not also suitable for protein close to the class from which the
forcefield where obtained.

So, the FG-MD[56] protocol proposed by Zhang and collaborators,
take advantage of this performance difference to derive his own force-
field, where the distance-maps from structures close to the initial one
and a knowledge H-Bond potential appears in forces computed as a
”correction” to AMBER99[40]. This seems to work well for refining
near-native structure obtained by homology modelling.

3.5.2 Assumptions

In order to obtain such term and given its unknown nature, the de-
scription must rely on some assumptions listed below. Some of these
are of general validity.

1. The backbone H-Bond network greatly contribute to maintain the
protein secondary structures in folded state.
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2. The long-range interactions reflects mostly on the Cα protein local
topology, maintaining properly folded the secondary structures
and giving the final tertiary structure.

3. If the initial model is near-native (this assessed by the use of
a bunch of scoring functions, explained in the 1.4 section) the
topology (and so the energy landscape) can be improved with a
good accuracy.

The 1st and the 2st points are the basis for constructing the FG-MD
forcefield:

The backbone H-Bond network is defined as the ensemble of all H-
Bonds between the carboxyl group and the amino group of every
residue main carbon. The angles αN−H−O and βC−H−O and the dis-
tance dO−H characterize the secondary structure. In the FG-MD pro-
tocol these important values are forced to averages, pre-computed from
a set of experimentally high-definition structure.

3.5.3 Alpha-carbon structure and his role in refining struc-
ture

The Cα structure is the chain formed by the main backbone carbons
each carrying a sidechain group. The Distance-map of Cα can be re-
garded as a matrix where each entry is the distance rij from every Cij.
This is a very important object because it binds the structure of the
protein to its folding state, while the non-bonded interactions between
different Cα sidechains are responsible for the quality of the folding.
So, proteins with similar Cα distance-map are expected to be in the
same fold. In fact, all of the most famous scores like TM-score and
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GDT-HA use the Cα distance as metrics for measuring how much two
structures are similar, that it are in the same fold. In the FG-MD
protocol, TM-score is deployed for searching through a non-redundant
PDB database structures which their Calpha distance map is close to
the protein of interest, and use the distance-map for guiding the sim-
ulation toward the native state. TM-score, H-Bond score as GDT-HA
are described in Section 3.4.2 and Kernel similarity is introduced in
the next paragraph.

3.5.4 Original score

TM-score TM-score [58] is one of the most famous and important
scoring function: given two structures, the initial model and second
as the native state, it first finds the best superposition between the
two structures (aligning a random set of carbon iteratively) and then
counts the Cα from the initial and from the native template whose
distance between them is less than 5 Å. The score is calculated as:

TM-score = max

[
1

LN

Lc∑
i=1

1

1 + ( dd0 )
2

]
(3.40)

where LN is the length of the amino acid sequence of the target protein
that is interested, Lc the number of residues that commonly appear on
the template and target structures, di is the distance between the i-
th pair of residues between the template and the target structures
and d0 is a distance scale that normalizes distances. This score is
based on the assumption that sequence-gap between two amminoacid
sequences does not affect the recognition of the folding degree between
two structures. In fact this is a sequence-independent score and it use
both in the global sequence-dependent alignment (See Sectoin 3.5.5)
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and on the sequence-independent alignment TM-Align[57], that is the
basic tool used in this protocol.

GDT-HA The Global Distance Test-High Accuracy (GDT-HA) is the
main scores used in CASP competition [55]. The GDT score is cal-
culated as the largest set of amino acid residues’ alpha carbon atoms
in the model structure falling within a defined distance cutoff (0.5 Å,1
Å,..) of their position in the experimental structure, after iteratively
superimposing the two structures. It is very strict because it war orig-
inally devised for guiding the X-Ray refinement of protein. In fact, the
MD based refining improve it just of a slight amount.

HB-score In order to measure the similarity between the H-Bonds
network of the native and an alternative model, Zhang et al.[56] defined
a score based on the number of consensus hydrogen bonds between the
two structures:

HB-score =
N° of consensus hydrogen backbone bonds

N° of hydrogen backbone bonds present in the native model
(3.41)

This score is calculated using HBPLUS[31], a software which gives
in output the H-Bond network of a given protein. Note that in the
original publication the authors didn’t give information on what kind
of H-Bond interactions (MC-MC and MC-SC) are taken in account
in this score. In the present thesis, a modified algorithm is proposed
within the FG-MD framework, and instead of counting the H-Bonds
and mathching pairwise, the H-Bond network is first obtained by the
auxilium of the RINmaker (See Section 5.1.1) and after compared pair-
wise with the native one. This method is explained in Section 5.2.1.
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3.5.5 TM-Score software and TM-Align

TM-Score software Despite the sequence-independent nature of the
TM-Score function, the first software made with this score was a
sequence-dependent structure aligner called TM-Score.

It finds the best superimposition of two structures (initial vs. native),
counts the Cα with d < 5 Å, after this set is found it show the TM-
Score, the RMSD, GDT-HA and the alignment of the two structures.
Since it’s sequence-dependent, the difference of two residues in the
sequence is counted as a -1 penalty. So, from two completely different
structures, the TM-Score of the superposition probably will be close
to 0, conversely it will be 1 for two closely matching structures.

TM-Align This tool is of prominent interest in bio-informatics area.
The main difference between TM-Score software is on the algorithm
used for the superposition: it doesn’t compare two structures only
globally but also locally, in a sequence-independent fashion. Essen-
tially, given two structures the TM-Score doesn’t find only the best
axis between them, but also the best local-superposition on the Cα
with d < 5 Å. In fact, it discriminates better between folded or non-
folded structure. And it it commonly assured that a TM-Score > 0.5
indicates nearly identical folds. A useful function of this program is
the Cross-comparison mode, in which given a set of PDBs as input, it
provides a matrix of the calculated TM-Score for each pair in the set.

With the knowledge of the tools and of the assumptions discussed
above in mind, the FG-MD protocol can be now discussed.
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3.5.6 The modified-AMBER99 FG-MD Forcefield

Basically the ultimate goal of a forcefield is to provide a way to ex-
press the potential energy between entities in a system, so the improved
forcefield used by FG-MD can be rewritten as:

E = EAMBER99 + EFG-MD (3.42)

While AMBER99 is expressed by Eq. (3.2), the FG-MD term is made
as a sum of several terms, Each one discussed in the following para-
graphs.

EFG-MD = ECα
+ EHB + ECα−CLASH (3.43)

Knowledge-based H-Bond potential -EHB This terms compute energy
between donor and acceptor (N-H-O,C-O-H) groups from the main
chain. The energy is defined as:

EHB = k1(dij − d0)
2 + k2(α− α0)

2 + k3(β − β0)
2 rij < 3 Å (3.44)

Where dij is the distance between O-H, α is N-H-O angle and β is the
H-O-C angle.The equilibrium distance and angle d0, α0, β0 are respec-
tively 1.95 Å,150° and 160° respectively. These averages were computed
by Zhang et al.[56] from a reference database of high-resolution struc-
tures.
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Cα clash potential -ECα−clash
In order to speed-up the convergence a

clash potential was added for relaxing the Cα−ij with serious clash
between them. It’s an important term because it allows to disorder
the system when all of the other forces tends to constraints. This
terms is continuously evaluated during the annealing, and prevents
apparition of local clash.

ECα−CLASH
(rij) = k(3.6− rij) rij < 3.6 Å (3.45)

Where the force constant k is 200 kcal
mol and rij is the distance in Å

between the Cα−ij of the initial model. The cutoff guarantees the
application only on local clash.

Cα distance restraints-ECα This is the heart of the protocol: the dis-
tance restraints added from global and fragmental template. The pro-
cess is explained after the equation is presented:

ECα(rij) = k1(rij− r(1)ij )
2+k2(rij− r(2)ij )

2+k3(rij− r(3)ij )
2 rij < 15 Å

(3.46)

Where rij is the distance in Å between the Cα−ij of the initial model,

and r
(2)
ij ,r

(3)
ij the corresponding distance taken from Cα−ij of the global

templates and fragmental templates. The r
(1)
ij distances from the ini-

tial model are added in order to avoid unfolding that occour during
simulated annealing at high temperature,and it allows also to speed-
up the simulated annealing that is carried out at high temperature.
The r

(2)
ij and r

(3)
ij distances are collected from PDB structures searched

by TM-Align software against a database of high-resolution structures
(Xray resolution < 1.5 Å).The 20 templates with highest TM-Score
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are selected for collecting the distance-maps. An outline is given in
the next subsection.

The distance cutoff of rij < 15 Å was chosen according to the obser-
vation which highlights the fact that long-range retraints have a bad
performance in terms of refinement.

The importance of this terms emerges from the fact that exists more
accurate fragments rather than global templates, in fact the application
of this potential and the distance-restraint from the initial model is
sufficient to achive a good refining of the model of interest.
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3.5.7 Fragmental routine and Simulated Annealing
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Figure 3.5: FG-MD protocol with detailed description of distance-map sampling routine

The FG-MD protocol shown in the Fig. 3.5 can be divided into three
main parts, which are Distance-maps sampling for the forcefield con-
struction and simulated annealing. Each of these steps is described
below:
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Distance-map sampling

The values that will form the modified part of the forcefield in Eq.
(3.43) are, as mentioned above, obtained from the Distance-map from
the initial model, global template and for every discovered fragment
in the local PDB database (See Eq.(3.46)) . Since a TM-score > 0.5
means an high grade of folding, both fragmental and global templates
are chosen with a cutoff of 0.5. All Distance-maps are sampled with
respect to the cutoff in Eq.(3.43).

Distance-map from the initial model At this stage, the Distance-map
is derived directly from the initial model.

Distance-map from the Global template Before collecting the Distance-
map, TM-Align with the initial model in input is run against the local
PDB database and the structure (i.e. Global template) corresponding
to the highest TM-Score is collected. After this step, the Distance-map
is obtained from the selected Global-template.

Distance-map from Fragments At first, a DSSP algorithm assigns sec-
ondary structures along the backbone of the initial model. After this,
the initial model is divided into all possible fragments formed by three
consecutive secondary structures. Each of the obtained fragments is
run against the local PDB database with TM-Align to search for similar
fragments (i.e. with an high TM-Score). Fragments with the highest
TM-Score found by TM-Align are collected for every evaluated ini-
tial fragment. Lastly, Distance-maps for every collected fragment are
sampled.
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Simulated Annealing After all of the Distance-maps are obtained, the
modified-AMBER99 is constructed and applied to the initial model for
the Simulated Annealing.

3.5.8 Original implementation

This protocol is only available in a web version[15] and the authors
have not coded any distribution to implement locally. For the needs of
this work, a local version was implemented and consequently integrated
into the new implementation of the Pipeline (See Section 5.2.1).

3.5.9 Problems and future improvements

Despite the proven reliability on refining, this protocol rely greatly on
some aspects:

• It’s highly dependent on the number of available PDB data and
on their experimentally resolution. There are some classes of pro-
tein (such as the membrane proteins) for which the experimental
resolution, it is not yet sufficient for refining with this protocol.
For the MOESM3 example, the only structures with appreciable
global TM-Score are the 6A90, that has a resolution of 2.9 Å and
3RVY with a 1.5 Å resolution but the latter has less residues than
MOESM3.

• The H-Bond potential essentially drives the backbone H-Bond
toward pre-computed averages, used as equilibrium parameter.
These averages don’t account for the specific type of secondary
structure were the potential is applied and do not discriminate
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the class which the initial model belongs to. For this point an
improvement can be carried out by RIN graph analysis: after
searching with TM-Align, the graph of these fragment contains
the equilibrium distances of the backbone H-Bond. Applying this
distance as a contrain to the correspondent H-Bond in the inital
model, a faster and more accurate convergence could be probably
obtained.

• Although Zhang’s energy landscape of near-native model obtained
by FG-MD potentials reassembles a funnel-like landscape, when
the TM-Score is less than 0.4 an high energy barrier appear, mak-
ing the global minimum unaccessible.
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Chapter 4

Old Computational Pipeline

4.1 Introduction

In this pipeline, homology modelling, graph theory and machine learn-
ing are combined in order to investigate and find similarities between
different point mutations of a given protein, where the mutations are
pre-known and labeled with respect to whether they are pathogenic or
non-pathogenic [51]. Given a Wild-Type and a set of known mutation,
the workflow can be summed up as follow:

1. Production of point-mutated structures from the Wild-Type by
SWISS-MODEL [54], a powerful homology modelling tool.

2. Energy minimization of the obtained structures using Zhang’s FG-
MD implementation.

3. Production of Residue Interaction Networks by RING2.0[38] tool
on the obtained refined structures.
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4. Cross comparison of the obtained RINs by the means of graph
kernel methods.

5. Supervised learning of the obtained Gram-matrix in point 4 by
the use of support vector machine (SVM).

6. Clustering of the Gram-matrix by the use of Dominant Set (DS)
[37].

SWISS-
MODEL FG-MD RING 2.0

Graph 
comparison,
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85 optimized
models

Clustering
(Dominant 

Set)
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KILVHSLFSMLIM
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.
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1 2 3
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Figure 4.1: Flowchart of the old implementation. Boxes in red refers to web-tools, boxes
in black refers to in-house scripts and in green the user inputs.

The aim of the workflow depicted in Fig. 4.1 is to discern pathogenic
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or non-pathogenic mutation. This task is done by feeding the SVM
and the Dominant Set Clustering algorithm with the results from the
graph kernels applied on graphs, which is the Gram-matrix (See Eq.
(2.7)). What is expected to find in this matrix is a number of clusters
grouping similar topology from mutants with the same label. The pre-
known labels for the mutations allows to assess if the pipeline is able
to discriminate between pathogenic or non-pathogenic. The passage
from refined structures to the topology reflects the crucial assumption
of the whole process: the input refined structures must represent a
geometry where the mutation on the starting structure has achieved
its effect, this means to assume that a point mutation have an effect on
the overall topology, especially for globular and membrane proteins[1].

4.2 Tools of the pipeline

In this section we illustrate the various computational tools involved
in the various steps of the pipeline.

4.2.1 Homology modelling

How it works The ultimate goal of protein modeling is to predict a
structure from its sequence with an accuracy that is comparable to the
best results achieved experimentally [7]. Homology modelling has ma-
tured into an important technique in structural biology, significantly
contributing to narrowing the gap between known protein sequences
and experimentally determined structures [54]. This technique is based
on the observations that the structure of a protein is uniquely deter-
mined by its amino acid sequence and that similar sequences adopt
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practically identical structures, and distantly related sequences still
fold into similar structures [7]. Thanks to these observation, given a
mutated sequence of a wild-type, the mutated 3D structures can be
inferred from the conserved sequence/geometry of a selected template
respect the provided mutated sequence. The engine used in this work
is SWISS-MODEL [54] and the general workflow of this method can
be described in these steps:

1. User provide a sequence in FASTA format and a related template.

2. The provided sequence in step 1 serve as a query to search for
evolutionary related protein structures

3. For the selected template, a 3D protein model is automatically
generated by transferring conserved atom coordinates as defined
by the target-template alignment

4. On the resulting structure, residue coordinates corresponding to
insertions/deletions in the alignment are generated by loop mod-
elling (ProMod3[49])

5. Side-chains are modelled on the full backbone of the resulting
structure (SCWRL4[25]).

6. The final model quality is estimated by the scoring function QMEAN
and QMEANbrane[48].

During the step 4-5, the backbone is constructed and optimized piece
by piece by Monte Carlo minimization with CHARMM22 forcefield.
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Figure 4.2: SWISS-MODEL algorithm

Two important instruments of this tool needs a description: ProMod3
and SCWRL4.

ProMod3 ProMod3 [49] is a versatile homology modelling toolbox.
The main characteristic is the highly efficient algorithm used for build-
ing backbone residues in the modelled structures. The decision on
which residue to build and at what angle (ϕ, ψ) is performed with the
auxilium of 12 scoring functions, which take in accounts local charac-
teristic (Secondary structure, solvent accessibility, clash, ecc ...) and
global characteristic (All atoms interactions, packing, ecc..)[3, 10].
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SCWRL4 SCWRL4 [25] is a sidechain builder that assigns sidechain
structures to the final model, in the case are not present in the initial
template. It rely on a discrete rotamers library as data source and on a
fast graph-tree decomposition algorithm. The crucial point is that this
algorithm guarantee to find the sidechain conformation sitting and the
global minimum with respect all the possibile rotamers in the given
backbone conformation.

Molecular dynamics / Refining In this stage is important to choose
the tools according to the aim of the project:

• If the aim is to bring the structures closed to the native state, the
best strategy is to employ protocols for refining.

• If the aim is to assess the structural change given by a point-
mutation, the strategy is more focused on molecular dynamics.

Nowadays, there are a lot of refining protocols and software. The one
used in this was Zhang’s implementation of the FG-MD[56] protocol
described in 3.5.

Residue Interaction Network generation In this stage, Residue Interac-
tion Networks (See Section 2.1.2) were produced with the RING2.0[38]
web version.

Support vector machine (SVM) Support vector machine is a super-
vised learning approach used to analyze a given data set and to build
a model that separates data into a desired and distinct number of
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classes [8]. In the 2-dimensional case, from a set of (xn, yn) where xn is
the input vector and yn is the associated label, the SVM try to find the
optimal hyperplane between these points which can separate the data
according to the given labels. In the pipeline case, xn are the obtained
kernel value (k ∈ [0, 1]) and yn are the labels (PAT or NEUTRAL)
associated with the pathogenic behaviour of the mutations and from
the output is considered only the accuracy of the prediction.

Figure 4.3: Example of separation hyperplanes

Dominant Set (DS) The unsupervised partitioning of data (or clus-
tering) (See Fig. 4.3) is a problem that pervades computer vision
research[37]. In this case, the main effort of clustering algorithms
is to find similarity and discriminate between pathogenic and non-
pathogenic mutations from the Gram-matrix obtain from Kernel method
on graphs. In this work the Dominant Set [37] is used. What is ex-
pected to obtain in this final stage, is a classification of the mutations
given in the step 1 between pathogenic or not-pathogenic (PAT or
NEUTRAL) .

4.2.2 Workflow of the old pipeline

As shown in Fig. 4.1, what the input pipeline needs are:
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• A Label Dictionary as a text file where every point mutation of
the Wild-Type was reported with the following coding (Native
residue)-(Backbone position)-(Mutated res),(Label) where:

1. Native residue is the residue type found in the Backbone po-
sition on the native model

2. Backbone position is a number pointing to the Backbone po-
sition that needs to be mutated

3. Mutated residue is the residue type to mutate in the Backbone
position

4. Label is a number equal to 1 or 0 respectively if the mutation
is pathogenic or not.

• An evolutionary related template.

• The full FASTA sequences of the point-mutated Wild-Type se-
quences reported in the Label Dictionary.

Below every step of the aforementioned implementation is listed from
an operational point of view:

1. User provide to SWISS-MODEL Expasy Server the 85 query se-
quences in FASTA and an evolutionary related template. Each
provided sequence represents the point-mutated Wild-Type se-
quence according to the Label Dictionary.

2. The obtained 85 models from point 1 are evaluated by QMEAN-
brane (See Section 4.2.1) and manually uploaded (one by one) to
the FG-MD server through the graphical interface.

3. Refined model obtained at point 2 are uploaded (one by one) to
the RING2.0 web server through the graphical interface.
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4. The obtained Residue Interaction Networks at the point 2 are
evaluated by the Kernel scripts.

5. The Gram-matrix from point 4 (See Eq.(2.7)) and Label Dictio-
nary are fed to the Support Vector Machine script.

6. The Gram-matrix from point 4 and the Label Dictionary are fed to
the Dominant Set Clustering script. The output is a classification
of predicted labels from Gram-matrix compared with the known
labels.

Although the described implementation has shown remarkable results
when applied to refined structures derived from homology modelling,
the composition as a sequence of disconnected web-tools makes it diffi-
cult, if not impossible, to automate the process for future application in
a big-data context. Moreover, the Zhang’s FG-MD web-version shown
a response latency of 24-48 hours for every structure in addition to the
poor control which a user has on this tool. The RING2.0[38] Residue
Interaction Networks generator also has also shown poor performances
in terms of computational time, since the elaboration of one of the con-
sidered structures in this work requires between 15-20 min; moreover,
even the latter tool has, in our opinion, a crude description of the pa-
rameters (energy, donor-acceptor angles, etc.) related to non-covalent
interactions. These observations prompted the search for a new, faster
and more flexible architecture, as described in the following chapter.
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Chapter 5

New Computational Pipeline

5.1 New implementation
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Figure 5.1: Flowchart of the new implementation; dotted line indicates incorporation
into a single tool.
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In Fig. 5.1 the new implementation is presented. Most of the tools
explained in Section 4.1 are now embedded in a local and flexible archi-
tecture described in Fig. 5.2. Specifically, the two major improvements
respect the previous implementation are:

• Substitution of the FG-MD web version with a local in-house im-
plementation GPU accelerated (See Section 3.5).

• Substitution of RING2.0 web server with the in-house implemented
tool RINmaker.

The Pipeline is coded in Python 3. The architecture can be regarded
as a state machine. Every step of the pipeline modify the global state
and update the various data structure.
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Figure 5.2: Architecture of the pipeline script
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The architecture depicted in Fig.5.2 was chosen in order to give max-
imum flexibility to the modification of the pipeline. A description of
each step i given below:

1. PDBfix It’s a series of functions comprising Reduce, structures
checker and a renumbering function for the residues, in order to
achieve a secure uniqueness for every residues in the chain.

2. RINmaker: In this step RINmaker is called for generating the
graphs from the Fixed model folder. The user can decide the pa-
rameters for generate the RINs. The generated graphs are loaded
into memory with the LoadGraphs() function.

3. Kernel: At this stage the user can choose between a set of ker-
nels, and can compute one as many as needed. The supported
kernels are Vertex-Histogram, Edge-Histogram, Subgraph Match-
ing, Pyramid Match, Shortest-Path and Neighborhood Hash. The
output from this step is stored in the global context.

4. SVM: From the stored Gram-matrices the SVM try to separate
clusters and gives in output the obtained accuracy.

5. Dominant Set: Dominant Set takes in input the stored Gram-
Matrices and produce the clustering. After every step the output
is stored in a folder where it contains the Graphs and subfolders
which belong to every kernels; they contains Gram-matrices,SVM
accuracy and the classification.

As depicted in the flowchart of the pipeline (See Fig. 5.3), the ob-
tained graphs from RINmaker are compared by the use of graph ker-
nels, described in Section 2.2.2. Before the production use of the afore-
mentioned pipeline, the FG-MD in house version and the RINmaker
software were tested as described in the following sections.
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5.1.1 RINmaker

RINmaker is the tool used in this pipeline for generating residue inter-
action networks (RIN), it has been developed by Ca’ Foscari Computer
Science team. It takes the full atom structure in .PDB format as input
and returns a RIN in the .GraphML format, the wokflow is shown in
5.3. This software is based on a data structure called k-dimensional
tree, which allows to organize atoms in the inserted topology in a bi-
nary tree where every node is a k-dimensional point. The power of
this data-structure resides on the performance achieved when the tree
is queried for finding the nearest neighbours of a given point with re-
spect to a specific distance treshold (cutoff ).

Figure 5.3: RINmaker workfow

The non-covalent interactions are selected according to a set of rules
involving geometric factor respect the quality of atoms involved in
supposed bonds[18] . Every nodes of the obtained RIN is labelled with
the position on the backbone and the type of residue in this form:
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(Chain):(Position) (Residue). Since in the RIN there is at most one node
for each amino-acid, it follows that each node has a different label.

If there exists an interaction between two nodes, an edge is created,
with the following informations:

• First node in (Chain):(Position) (Residue) form

• Second node in (Chain):(Position) (Residue) form

• Kind of interaction in the form (Interaction):(Chain or Side) where
Chain or Side account for MC MC for Main-Chain interactions or
SC SC for Side-Chain interactions. Also MC-SC and SC-MC is
marked.

The edge representing bonds are also enriched with attributes (energy,
atoms involved, distance, ecc.).

Like other generators of Residue Interaction Networks [38], RINmaker
allows the user to customize the cutoff parameter for each type of
interaction and to return the graph with interactions respecting a given
global rule in the input parameter interaction-type= SELECTION.
With respect to the latter:

• all: The edges ensemble is formed by all the interactions found
among the candidates.

• multiple: For each type of interaction only the best one is selected
from each pair of residues.

• one: For each pair of residues only the best interaction is selected.
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• hbond-realistic (optional): For each pairs of residues only the best
HBOND:MC-MC interaction is selected.

Interaction type Cutoff
H-Bond 3.5 Å
VdW 0.5 Å
Ion-ion 4 Å
π-cation 5 Å
π-π 6.5 Å

Table 5.1: Default cutoff parameters

5.1.2 Test for the RINmaker software

At the beginning of this thesis, RINmaker was already completed. Only
the test phase was missing. An ad-hoc environment was created for
this specific work from the Ca’ Foscari Computer Science Department
[46].

Test-cases

Most of the tests where built with PyMol with the auxilium of some
Python script. For every test the input parameter and the expected
output must be strictly in accordance. Every input parameter was
checked, labeled and evaluated manually before the test run.

Example test case fully explained (test no°1) In this test the ionic bond
formed by two residues of type Histidine and Asparagine is assessed.
The two residues were bring in close promixity, with center of mass
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d = 1.22 Å that is less than the threshold value of 4 Å. The charged
atom of Histidine and Asparagine are respectively, in PDB code, OD2(-
) and NE2(+), so they are candidates for a ion-ion bond. Since the two
rules are respected this test is positive and a ionic bond is effectively
added to the graph.

(a) Node1 tag (b) Node2 tag (c) Edge tag

Figure 5.4: Reported tags in the .GraphML output

At present since the number of tests designed for all types of bonds
is very high, it is not possible to show them here. A partial list of
the tests performed is presented in Table C.3. Although this, we can
guarantee the proper functioning of the RINmaker software, by virtue
of the fact that the results of new implemented pipeline are strictly
in accordance when providing as input the structures obtained from
FG-MD web server for the previous pipeline, as we will see in Section
6.2.

5.2 An in-house version of the FG-MD protocol

In this section we present the in-house implementation of the FG-MD
protocol. From now on it will be referred as in-house FG-MD.

Fig. 5.5 shows the workflow of the in-house FG-MD. Notice that the
difference with respect to the Zhang FG-MD workflow (See Fig.3.5)
is the software used for the secondary structure prediction. More
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precisely we use STRIDE[17] where the Zhang software is unknown.
Moreover the toolkit for the in-house FG-MD molecular simulation is
OpenMM[12] while in the Zhang FG-MD it is LAMMPS[50].

TM-Align
Initial model vs. 

PDBDB

STRIDE

Define Secondary Structure of Proteins 

Split the full 
structure 

every 3 SSE

…..

TM-Align
Fragment vs. 

PDBDB

Distance
-map
Global 

template

Distance
-map

Initial 
template

Distance
-map

Fragmental 
templates

Fragment 
collections

 A690.pdb -2
   3RVY.pdb -1

    …..        -3

Global template  
max{TM-score}

F
O

R
C

E
F

IE
L

D
S

im
u

la
te

d
 A

n
n

e
a

li
n

g

PDBDB

Figure 5.5: FG-MD protocol with detailed description of distance-map sampling routine

This version of FG-MD was coded in Python3, and use the above-
mentioned OpenMM as engine for the simulation and OpenStructure[5]
package for protein modelling and manipulation. Is fully automated.
Regarding the effiency OpenMM[12] is GPU accelerated, so it’s more
faster than the CPU version of LAMMPS. Anyway, the real bottle-
neck of the process is the querying routine by TM-Align on the PDB
database: empirically the query time for the 1eqm (200 residues) is
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about 20 minutes on a 8-core Intel i7 and increase to 90 minutes
for the NaV1.7 Wild-Type full structure (1650 residues). This also
highlights the urgency of find a more efficient organization of the
database. The first version is public available at GitHub repository
https://github.com/jacopomoi/FGMD.git.

5.2.1 Calibration test for the in-house FG-MD implementa-
tion

For the refinement tests the MOESM3 refined Wild-Type and two
structures provided by Zhang were selected. The results were strictly
monitored during the simulated annealing by the use of scoring func-
tions both introduced in the original paper and newly defined. Since
the authors gave just little hints regard the simulation parameters, the
protocol was tested many times with different parameters (bath tem-
perature, integration time, H-Bond contraints ecc..). The best simula-
tions were chosen for evaluation. When the capability on refining was
assessed, the protocol was also tested against the MOESM3 and 6a90
variants.

Methods

All of the simulation where carried in explicit solvent TIP3P water
model with Langevin integrator whose timestep was set to 2 ps. The
system was set to be periodic with a cell size manually set respect
the dimension of the target potein and the long-range interaction were
taken in account with the particle mesh Ewald method. The force-
fields used were AMBER99 for the gorund-truth simulation and the
modified-AMBER99 (See Eq. (3.43)) for testing the in-house FG-MD
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implementation. The database used for conformation sampling was
constructed with PISCES [53] server, and includes all of the known
structure with Rfactor ≤ 2.5. The simulation were performed on the
Ca’ Foscari Turing cluster, using the embedded GPUs as accelerators.

The authors of the original study[56] gave me some hints on what
parameters are used in their protocol. Such parameters are listed in
Table 5.2 together with the parameters of the in-house version.

Parameter Zhang (LAMMPS) In-house (OpenMM)
Integrator Verlet Verlet
Thermostat Nose-Hoover Andersen

Cutoff 1.0 nm 1.0 nm
Periodic yes yes
Solvent unknown TIP3P
Tmax 100K 100K (can be set)
Tmin 1K 1K
Tstep 1K 1K

Tot. Steps 104 105

Table 5.2: Comparison between parameters of Zhang and in-house implementation

In the original paper, the goodness of refining eas evaluated by mea-
suring the difference in structural scores (TM-Score, HB-Score,etc.)
between the initial model and the final refined. The same approach
was followed in these tests, moreover by also evaluating them at each
step of the simulation.

Scoring functions

Four scores where taken in account during the simulations: the RMSD
of common Cα carbon, GDT-HA, TM-Score and Kernel-Similarity of
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the Subgraph Matching Kernel applied to the H-Bond network (with-
out the MC-MC edges, that are taken in account in the HB-Score).
Each of this scores has values between [0,1].

H-Bond score Given two graphs Gnat and Gk where Gnat refers to the
RIN of the native model and Gk to the k-th RIN graph obtained at
every steps of the simulation, the HB-Score is calculated as it follows:

First, the H-Bond main-chain (HBOND:MC-MC in RIN) subgraph is
extracted with a cutoff of d < 3.5 Å, in order to select only the H-
Bond belonging to the secondary structures. In this case the subgraph
is an undirected vertex labeled graph and the edge can be considered
unlabeled since they refers to the same interaction type.

After this step:

HBscore =
|E(SGnat) ∩ E(SGk)|

|E(SGnat)|
(5.1)

Where SG refers to the correspnding H-Bond main-chain subgraph.

Or in matrices notation where aij refers to the adjacency matrix (See
Eq.(2.1.2)):

HBScore =

∑
ij(aij · a(k)ij)∑

ij a
(nat)
ij

(5.2)

Where · represent the pairwise multiplication. In other words, the
edges of the Gnat ∩Gk are counted and compared with the Gnat edges
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number.

Kernel Similarity on side-chain network For assessing the similarity
of the H-Bond networks involving interaction of the type MC-SC and
SC-SC, kernels between graphs were deployed, especially the Subgraph
Matching Kernel. Note that this score is not present in the original
publication, but seems necessary because the HB-Score does not take
in account the whole network, but only the specific H-Bond that passes
between two residues. For assessing the Kernel Similarity (See Section
3.4.2) of the H-Bond network, first a graph at every step of the simu-
lation was generated by RINmaker. After this, subgraphs comprising
only SC-SC and SC-MC interactions were extracted from every graph.
The nodes of the subgraphs were labeled by the position number along
the backbone while the edges where labeled according to the type of
interaction.

Summarizing the used scores functions respect structures in PDB no-
tation:

• TM-Score compares the folds measuring CA locally.

• GDT-HA compares the folds measuring CA globally.

• HB-Score compare edges pairwise of H-Bond MC-MC networks
formed by C and N.

• Kernel Similarity compares SC-SC and MC-SC bonds networks.
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Simulations without FG-MD forcefield

As a preliminary result, we first run simulations in the absence of the
FG-MD constraints. This simulations were produced for obtaining a
ground truth in order to subsequently test the effectiveness of the FG-
MD protocol in-house version. The values obtained from the collective
variables were used for comparing the relative refined structures.

1eqmA and 1ewl bacterial enzymes

The models chosen for the assessment were two small bacterial enzymes
PDB 1eqmA and 1ewl, made of 158 and 215 residues respectively.
These non-refined structures and the corresponding native structures
were provided by Zhang’s team in the standard test package for their
FG-MD web-based version, and were chosen in this test because the
results and scores obtained in the original publication[56] were deeply
analyzed by the authors.

Score 1eqmA 1ewl

TM-Score 0.791 0.885
GDT-HA 0.573 0.686
Similarity 0.37 0.701
HBScore 0.39 0.46

Table 5.3: Scores values
between initial models vs.
native structures.

Figure 5.6: 1eqmA

Figure 5.7: 1ewl
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(a) 1eqmA at T = 273K (b) 1ewl at T = 273K

Figure 5.8: Simulation in the new implemented framework only with AMBER99 (i.e. no
FG-MD forcefield)

From this analysis is clear that AMBER99 forcefield alone cannot refine
a near-native protein. All of the scores got worse during the anneal:
The TM-Score rapidly decreased during the first steps of the simulation
and got worse during the annealing. The final TM-Score (0.766 and
0.87) are smaller respect the starting one (0.791 and 0.88). In the case
of 1eqmA RMSD and GDT-HA worse during all of the process while in
the 1ewl returned near the initial value at the end of the process. This
because the protein probably does not unfold but also does not return
to its native state either. It should be stressed that since GDT-HA is
a very hard score, a slight change on it remark a great change on the
Cα structure, so a even small decrease (−0.1) of its value translate in a
quality worsening of the model. The HB-Score dramatically decreased
for 1eqmA while returned to the initial value for the 1ewl. The Kernel
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similarity of 1eqmA remained stable around 0.50, indicating probably
a non complete unfolding, while for 1ewl increased of a slight amount
(from 0.4 to 0.48).

Score (no FG-MD) 1eqmA 1ewl

∆TM-Score -0.25 -0.01
∆GDT-HA -0.1 -0.01
∆K.-Similarity 0.0 +0.08
∆HB-Score -0.18 0

Table 5.4: Difference between the reported initial scores in Table 5.3 values between
initial models and those obtained at the end of the simulation without FG-MD forcefield.

Simulations with FG-MD forcefield

The two selected models in the previous section are now studied with
the FG-MD forcefield.
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1eqmA

Figure 5.9: 1eqmA Tbath = 330K

As reported in Fig. 5.9 of 1eqmA, the scores dramatically increased
during the first steps of the simulations. The restraints added for Cα,
the Cα clash force and the H-Bond potential drew the simulation to-
ward the native state. This is in accordance with the observation of
Zhang with respect to the landscape of near native models: the energy
landscape in this case is more close to a funnel type and the added
potentials make the simulation to converge very fast to the global min-
imum.
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1ewl

(a) 1ewl Tbath = 273K (b) 1ewl Tbath = 330K

Figure 5.10: Simulated annealing at different temperature for PDB 1ewl

As can be seen from Fig. 5.10 the improvement was most on the HB-
Score: in the (a) case the HB-Score passed from 0.46 to 0.512 and in the
case (b) from 0.46 to 0.553. The Kernel Similarity passed from 0.701 to
0.749 in the second case (b) while remained 0.701 for the case (a). The
TM-Score clearly had a little improvement from the initial (0.885) to
0.888 for the second case while interestingly a little worsening for the
first case (0.883). The RMSD remained substantially unchanged while
GDT-HA had a good improvement in the second case (0.722 vs 0.685
of the initial model). Interestingly the highest TM-score where not
obtained in the cooling stage but earlier. The GDT-HA and HB-score
reported are in accordance with the ones reported by Zhang except for
the TM-Score, which they report an higher one (0.891 vs 0.888). This
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analysis also suggests a dependence of 1ewl global minimum from the
temperature.

In-house Zhang
Score (with FG-MD) 1eqmA 1ewl 1eqmA 1ewl

∆TM-Score +0.04 -0.003 +0.04 -0.01
∆GDT-HA +0.05 +0.04 +0.03 +0.04
∆HB-Score +0.05 +0.12 +0.04 +0.04
∆Kernel-Similarity +0.3 +0.05 - -

Table 5.5: Difference between the reported initial scores in Table 5.3 values between
initial models and those obtained at the end of the simulation with FG-MD forcefield in
the original publication (Zhang) and in the in-house version..

NaV1.7 from MOESM3 template

In this simulation the FGMD forcefield was tested against the core part
of the MOESM3-NaV wildtype obtained from the SWISS-MODEL
pipeline. In this case the core was directly taken from the WildType
after removing the coils.

Score value

TM-Score 0.998
GDT-HA 0.263
Similarity 0.815
HBScore 1

For these simulations few remarks are in order:

• Since this is a membrane protein, it lives on three different ambi-
ent: the coil live in the intracellular phase, the hydrophobic core
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in the lipid membrane and the coil upward the core lives in the ex-
tracellular phase. This setup is not simple to achieve, also because
the lipid membrane simulation are very computational demand-
ing, and these coils seems have a marginal function respect the
core. So in this setup the coil pointing inward the intracellular
phase were removed while these pointing outward where left since
they are short.

• Here the native states is intended as the output from the FGMD
Server, so the TM-Score are calculated against not a known native
state but against the refined protein.

Figure 5.11: MOESM3 Wild-Type without intracellular-coil

As seen by the scoring functions in Fig. 5.11, the TM-Score of the
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core part is very high (0.998), meaning a quasi-perfect match between
the two structures, so here the FG-MD terms do only a little job on
refining and act most as constraint for the structure instead as a driving
force. This arise from the fact that homology modeling structures are
obtained from experimental data, so in the big database comprising
all of the known resolved proteins obviously the fragment-searching
routine select the one with the highest TM-Score, that in this case is
the 6A90. The HB-score is 1, indicating a perfect H-Bond main-chain
network match between the two structures. The GDT-HA is very low,
probably because of the upward coil. The HB-Score had a drastic
worsening during the simulation, so this justify the long time response
of the server-based version, since it gives an answer on 20 try, selecting
the annealing with all of the scores (TM-Score, GDT-HA, HBscore)
improved. Here the Kernel Similarity shown some difference. As an
hypothesis, the fact that Kernel Similarity don’t improve but worsen
indicates two different conformations of the sidechains network between
the assessed model and the native structure. Since the native Wild-
Type used here is the FG-MD Wild-Type to which, before the score
assisted comparation, the intracellular coils were removed, it is highly
probable that this score indicates an influence of the intracellular-coil
on the sidechain network of the native model, while in the assessed
model this effect is not achieved since it is refined without. As will
be shown in Section 6.4, this fact will become prominent on cluster
analysis of point-mutated models.

A complete comparation of TM-Score between FG-MD in-house and
FG-MD web version of the refined model is depicted in Table C.1 for
6a90 based models and Table C.2 for MOESM3 based models.
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Chapter 6

Application of the new Pipeline to
the NaV1.7 sodium channel

6.1 Expected results from the Pipeline

As reported in Fig. 6.1, the results of the algorithm can be monitored
in human-readable way, by visually assessing the presence of clusters on
the Gram-matrix, valuating the Support Vector Machine accuracy and
comparing the output of the Mutations classification. In the golden
case, Gram-matrix, SVM accuracy and classification have to appear as
follows:
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Gram-matrix

Dominant
Set

SVM score: 1

Mutations
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Figure 6.1: Results from pipeline in the golden case; in yellow 0-30 pathogenic mutations
(PAT), in darkblue 31-85 non-pathogenic mutations (NEUTRAL)

6.1.1 RINmaker parameters

The parameters chosen for the RINmaker were Default (See Table 5.1)
and interaction-type=multiple, h-bond-realistic (See Section 2.1.2).
from now on these parameters will be the ones used in every anal-
ysis from this chapter onward inclusive.

6.2 Results after Zhang FG-MD refinement

In this section, a comparison of the results between the new and old
implementation is presented, consequently results from the pipeline
in full-production are discussed. The purpose of this first analysis is
to use the results previously obtained from the old Pipeline[51] with
Zhang FG-MD refined structures as test-case for the new Pipeline.
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6.2.1 Pipeline test from Zhang FG-MD refined structures

Here results from the new Pipeline are compared with results of the
previous implementation (See Section 5.1), where the inputs are refined
structures obtained for the previous work [51]. Specifically, the struc-
tures refers to the FG-MD web refined 85 point-mutated structures
in .PDB obtained from homology-modelling on MOESM3 and 6a90
templates. These structures were injected in the step 2 of the afore-
mentioned new Pipeline. Gram-matrices, SVM accuracies and classi-
fication are compared with those obtained from the old Pipeline[51].
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Figure 6.2: Gram-matrices results from the new Pipeline of Vertex-Histogram kernel applied on
networks from 6a90 and MOESM3 based models obtained in the previous work.
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Figure 6.3: Gram-matrices results from the new Pipeline of Weisfeiler-Lehman kernel applied
on networks 6a90 and MOESM3 based models obtained in the previous work.
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As reported in the previous work [51] there is a clear differentiation in
both Vertex-Histogram and Weisfeiler-Lehman Gram-matrices, where
clusters appear in two different areas grouping mutations according
to the pathogenicity. From the results shown in Fig. 6.2,6.3 it is
possible to identify both the same reported clusters, grouping the 31
PAT mutations in the upper-left corner and the 54 NEUTRAL in the
lower-right corner. The dissimilarity of the mutation n°54 (L1267V)
mutation turned out to be caused by an incorrect residue numbering
within the starting PDB, which prompted the insertion of a routine for
fixing PDBs before entering in the step 2 of the Pipeline (See Section
5.1).

(a) 6a90

(b) MOESM3

Figure 6.4: Comparison of Mutations classification between previous obtained (violet)
[51] and the one obtained with the new pipeline (red) on Weisfeiler-Lehman kernel.

The classification shown in the Fig. 6.4 for the WL-Kernel accentuates
a perfect match between the results, with a slight improvement for the
MOESM3 in 6.4(b), where a previously erroneous classification of the
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mutation 29 became correctly predicted by the new pipeline. It should
be noted from the value scale in Fig. 6.2, 6.3 that in the Gram matrices
the difference between the clustering and non-clustering zone is on the
order of 10−2, which indicates, respect the clustering zone, a not too
pronounced differentiation. This fact will be analyzed in Section 6.4.
As can be seen from Table 6.1, SVM accuracy of the kernels applied
to interaction subgraphs are close to 1 and that indicates a good linear
separation of cluster, in accordance with what reported in the previous
work [51].

Interaction 6a90 MOESM3
ALL 0.953 0.923
IONIC 0.953 0.989

PICATION 0.883 0.776
PIPISTACK 0.789 0.647
HBOND 0.952 0.929

Table 6.1: Summary of the obtained SVM accuracy on Gram-matrices from subgraphs
correspnding to the listed interactions.

6.2.2 More results from the structures

Because the new pipeline allows multiple kernels to be applied in the
same run, the same dataset used in Subsection 6.2.1 was analyzed
with the auxilium of Subgraph Matching Kernel (See Definition 2.1.5),
Pyramid Match Kernel[19] and Edge Histogram Kernel (See Definition
2.3c). In these results, every edges belonging to the input graphs were
labeled as (Node1):(Node2) (Interaction type):(MC-MC or MC-SC or
SC-SC) where Source and Target refers to the endpoints of the edge
and the remaining to the type of interaction involved.
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(a) 6a90 as ground truth

(b) Pyramid Match

(c) Subgraph Matching

(d) Edge Histogram

Figure 6.5

(a) MOESM3 as ground truth

(b) Pyramid Match

(c) Subgraph Matching

(d) Edge Histogram

Figure 6.6

Comparison of Mutations classification between previous obtained for 6a90 and MOESM3
(violet)[51] and those obtained with the new pipeline (red) on different kernels.
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Kernel 6a90 MOESM3
Pyramid Match 0 0

Subgraph Matching -1 -6
Edge Histogram 0 -2

Table 6.2: Net difference in misclassified(-) / improved(+) mutations respect the ground
truth according to the kernel used.

As can be seen from Table 6.2, the use of finer kernels and a more
expressive edge labeling does not seem to improve mutations classifi-
cation; in the case of the 6a90, the kernel choice does not seem to affect
classification, unlike the MOESM3 where, on the other hand, Subgraph
Matching failed 6 classification. Among all the assessed Kernels, both
Weisfeiler-Lehman and Vertex/Edge-Histogram outperforms all others
tested, even in terms of computational cost. It can also be noted from
Fig. 6.5,6.6 that some classifications are ”weak,” and the Dominant Set
does not always classify them in the same way using different kernels.

6.3 Results after in-house FG-MD refinement

In this sections the full in-house pipeline is fully applied to models
derived from the homology-modelling step. At this stage, results and
some critical issues that emerged will be explained.

6.3.1 Pipeline input and parameters

At each run of the pipeline the input structures matched the 85 mu-
tated structures obtained by SWISS-MODEL on one of the two MOESM3
or 6a90 templates. The FG-MD simulations were carried in TIP3P
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solvent or with Reaction Field approximation when specified with the
modified-AMBER99 forcefield.

6.3.2 Results from full-models in TIP3P solvent

(a) All (b) H-Bonds

(c) ion-ion (d) π-π

(e) VdW (f) π-cation

Figure 6.7: 6a90

(a) All (b) H-Bonds

(c) ion-ion (d) π-π

(e) VdW (f) π-cation

Figure 6.8: MOESM3

Gram-matrices of subgraphs respect all interactions (a), H-Bonds (b), ion-ion (c), π-π (d),
VdW (e) and π-cation (f) in MOESM3 and 6a90 derived full-models
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Interaction 6a90 MOESM3
ALL 0.625 0.635
IONIC 0.625 0.635

PICATION 0.532 0.426
PIPISTACK 0.789 0.561
HBOND 0.625 0.635

Table 6.3

(a) 6a90

(b) MOESM3

Figure 6.9

Summary of the obtained SVM scores on Gram-matrices from subgraphs correspnding to
the listed interactions (Table 6.1); Mutation classification-Dominant Set (Fig. 6.9)

As can be seen from the Fig. 6.7,6.8, Pipeline did not produce cluster
differentiation. The SVM Scores reported in Table 6.3 are considerably
lower than those reported in Table 6.1 when the input were structures
previously FG-MD refined; interestingly ALL, IONIC, and HBOND
SVM accuracy are in perfect agreement, indicating non-differentiation
of the clusters from the interaction subgraphs. From the Dominant Set
output reported in Fig. 6.9, is clear an incorrect classification of the
mutations with an error rate of 50% for 6a90 and 41% for MOESM3.
Although this problem may at first glance deflect its true nature, as
explained in the Section 6.4 it is traced to a particular characteristic
of the analyzed structures .

6.3.3 Results from the hydrophobic-core part of the models

In an attempt to improve the results obtained in Section 6.3.1, the
Pipeline was applied only to the hydrophobic core of each structure.
To this, it was assumed that probably not the entire structure of the
proteins, and thus the resulting Residue Interaction Network, is physi-
cally relevant for the purpose of detecting the pathogenicity of a point-
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mutation.

Method

The geometry of a structure considered in this work can be split into
3 parts: the core, which is the most conserved region, the intracellular
and extracellular coils. According to the subdivision shown in Table
6.3.3, from each of the 85 models was extracted the core extended
with the extracellular coil. Each obtained submodel was fed into the
Pipeline. The resulting Gram-matrices are shown in Fig. 6.11,6.12 and
SVM results are shown in Table 6.6.

MOESM3 N° residues

Extracellular 50
Core 782

Intracellular 545
6a90 N° residues

Extracellular 72
Core 782

Intracellular 505

Table 6.4: Subdivisions

CORE

Extracellular
     COILS

+

Intracellular
     COILS

Figure 6.10: Subdivision shown on a struc-
ture
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(a) ALL (b) H-Bonds

(c) ion-ion (d) VdW

Figure 6.11: 6a90

(a) ALL (b) H-Bonds

(c) ion-ion (d) VdW

Figure 6.12: MOESM3

Selection of Gram-matrices of subgraphs respect all interactions (a), H-Bonds (b), ion-ion
(c), VdW (d) in refined 6a90 (Fig. 6.11) and MOESM3 (Fig. 6.12) based models after
refining them with the in-house FG-MD implementation with TIP3P as solvent.

91



6a90 and MOESM3 with TIP3P solvent

(a) Weisfeirer-Lehman Kernel

(b) Pyramid Match Kernel

(c) Edge-Histogram Kernel

Figure 6.13: 6a90 based models

(a) Weisfeirer-Lehman Kernel

(b) Pyramid Match Kernel

(c) Edge-Histogram Kernel

Figure 6.14: MOESM3 based models

Mutations classification from the considered models

Interaction 6a90 MOESM3
ALL 0.625 0.635
IONIC 0.625 0.635

PICATION 0.532 0.594
PIPISTACK 0.789 0.610
HBOND 0.625 0.635

Table 6.5: SVM Scores for Weisfeirer-
Lehman Kernel

Kernel 6a90 MOESM3
Weisfeirer-Lehman 41% 44%
Pyramid Match 48% 37%
Edge Histogram 52% 27%

Table 6.6: Percentage of failed classifica-
tions

As observed for the full-model run in Section 6.3.1, the classification of
mutations fails for more than one third of the total number of models.
It should be noted, however, that the percentage in Table 6.6 is rela-
tively lower for the models derived from MOESM3, especially via the
Edge-Histogram kernel; in these analyzed cases, a solvent effect cannot
be ruled out. In any case, the worse performance of the full-models in
Section 6.3.1 than those considered in this analysis can be attributed
to an effect due to the presence of intracellular-coils, which will be
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hypothesized in Section 6.4.

6a90 and MOESM3 based models in vacuo (Reaction Field approxima-
tion)

(a) Weisfeirer-Lehman Kernel on 6a90

(b) Weisfeirer-Lehman Kernel on MOESM3

Figure 6.17: Classifications of mutations on 6a90(a) and MOESM3(b) based models in
vacuo

Interaction 6a90 MOESM3
ALL 0.625 0.635
IONIC 0.625 0.635

PICATION 0.532 0.594
PIPISTACK 0.789 0.610
HBOND 0.625 0.635

Table 6.7: SVM Accuracy

Contrary to expectation, in the runs in which the solvent was replaced
with the Reaction Field approximation (See Section 3.3.5) a weak but
clear appearance of clusters can be seen from Fig. 6.15 relative to the
6a90 models: in this case there is an improvement in SVM accuracy
and failed predictions drop to 21%, which is considerably lower than
previous cases. With regard to the models derived from MOESM3 the
results obtained are, on the other hand, considerably lower than those
obtained in explicit solvent.
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(a) ALL (b) H-Bonds

(c) ion-ion (d) π-π

(e) VdW (f) π-cation

Figure 6.15: 6a90

(a) ALL (b) H-Bonds

(c) ion-ion (d) π-π

(e) VdW (f) π-cation

Figure 6.16: MOESM3

Gram-matrices from Vertex-Histogram kernel of subgraphs respect all interactions (a), H-
Bonds (b), ion-ion (c), π-π (d), VdW (e) and π-cation (f) in refined 6a90 (Fig. 6.11)
and MOESM3 (Fig. 6.12) based models after refining them with the in-house FG-MD
implementation with Reaction Field approximation.
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6.4 Insight from the discrepancy on the results

To investigate the reasons for the discrepancy in the results reported
from the in-house Pipeline in Section 6.3.3, the models used for the
Pipeline test are analyzed in detail in this section, moreover a partial
solution is proposed.

6.4.1 Method

At the beginning the same subdivision used in Section 6.3.3 was per-
formed to the models used for the Pipeline test, according to Table
6.3.3. Each of the two obtained set of submodel was cross compared
by TM-Align (See Section 3.5.5) for assessing the folding score, and the
results were organized in a matrix where every entry it’s the TM-Score
between two submodel; after this was done, each set is analyzed with
the Pipeline from the RIN generation stage.

6.4.2 Observations and discussion

As a start, the procedure described above is applied to each Zhang
FG-MD web structure used for new Pipeline test in Section 6.2.
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(a)

(b)

Figure 6.18: TM-Score matrices

(a) π-cation ALL

(b)

Figure 6.19: Gram-matrices

TM-Score (Fig. 6.18) and Gram-matrices from Vertex-Histogram kernel from different
subgraphs (Fig. 6.19) of core (a) and coils (b) substructures of 6a90 based models after
Zhang FG-MD refinement.

Recalling that the TM-Score is a measure of similarity between the
3D backbones of two proteins while the kernel is a measure of sim-
ilarity between networks, the analysis can be based on the following
observations:

1. TM-Score matrix of core From Fig. 6.18(a) does not show any
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remarkable structural differentiation.

2. Generally, the difference between clustered and unclustered zones
in Gram-matrices, as observed in Subsection 6.2.1, is in the order
of 10−2.

3. From a visual analysis,the TM-Score matrix of coils in Fig. 6.18(b)
closely resemble the coils Gram-matrix in Fig. 6.19(b) with two
clear clusters.

4. The Gram-matrix in Fig. 6.19(a) of the π-cation subgraph high-
light a well-defined clustering with a difference between clustered
and non-clustered zone of about 0.4.

Point 1 can be explained as a consequence of the concerted action of
SWISS-MODEL[54] and FG-MD algorithm (See Fig. 3.5): since the
amino acids sequence of a point-mutation differs for only a residue from
the Wild-Type sequence, and given that the hydrophobic core is the
most conserved part, models obtained from SWISS-MODEL will share
the same equal geometry for the hydrophobic core. Bearing this fact
in mind, when the obtained models will be subjected to the FG-MD
stage, the querying routine will sample same contact-maps for every
hydrophobic-core, which will be applied during the FG-MD refining
as identical Cα restraints for every model. Moreover, since the hy-
drophobic core is constructed from experimentally resolved structure,
the contact-maps will be sampled exactly from the same experimen-
tally resolved found in the reference database (notably the 3RVY which
is the building block of MOESM3 and 6a90), since there is obviously
the highest degree of folding between them. Because of this, the re-
straints won’t add new information to the backbone during the refining
and they will constrain the ϕ and ψ angles (See Section B.3) of the
hydrophobic core toward same values, leaving the remaining degrees
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of freedom to refer only to possible rotamers conformations respect
the Xi angles of the sidechains ensemble. In other words, Cα back-
bone geometry of the hydrophobic core will be the same at both the
beginning and end of refining (See Fig. 6.18(a)), with the exception
of sidechains rotamers. Having said this, it can be stated that the
clusters obtained in the Gram-matrices will refer only to final rear-
rangements of the sidechains networks which, at the beginning of the
refining, will initially be very similar to each other since every sampled
contact-maps won’t rearrange the backbone of the hydrophobic-core.
A proof of what has just been said can be reported from the distribu-
tion of torsional angles difference (See Appendix B.1) in Fig. 6.20 of
the core part, where is possible to see a narrow distribution centered
in 0° (and 360°) for the ϕ and θ angles while little and wider peaks
centered around 110° and 250° for the sidechain angles distributions;
it’s highly probable that these weak re-arrangement of the sidechains
indicates the formation of interactions, thus justifying the observation
in point 2 and validating kernels as a method sensitive and able to
highlight small variations in a reduced size dataset.
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Figure 6.20: Core
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Figure 6.21: Intracellular coil

Distribution of torsional angles difference (See Appendix B.2 for method) between the
Wild-Type 6a90 and the investigated substructures.
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Concerning point 3, to explain the clustering in both TM-Score matrix
in Fig. 6.18(b) and Gram-matrix in Fig. 6.19(b), one must consider
how SWISS-MODEL generates the coils in the less conserved parts of
the protein (See Section 4.2.1): it relies on a pre-computed rotamers
library, which is used to predict backbone and sidechain conformations
during the score-assisted backbone building. Probably one of the em-
ployed scores used is sensitive to the hydrophobicity of the mutated
residue and since the pathogenicity of a mutation is strongly correlated
to the hydrophobicity, it could be that this latter influence the back-
bone construction algorithm toward a set of preferred conformations
(See Fig. A.1) according to the pathogenicity, instead of the expected
random behaviour. When these models are obtained in this way and
they enter in the FG-MD querying routine, the coils are matched with
some available fragments in an unpredictable way, according to the
Secondary Structure Elements which the algorithm finds on this part
of the backbone. This behaviour indicates a grey area in this proto-
col: since coils have random structures they cannot have fragments
which fold is similar and so a matched fragment is more a random fact
than a physical one, moreover, this behavior is not reproducible in the
in-house version due to the lack of detailed information regarding the
original implementation. To close the circle, observation 4 summarises
all the other points discussed by providing a direct evidence and point-
ing a way forward to a future improvement which will be discussed in
the next section.

6.4.3 Extracting important interactions

Since π−cation interactions are generally rare and the subgraph in Fig.
6.19(a) is well clustered, the test Dataset was analyzed by means of an
histogram showing the relative frequency of appearance of the edges
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related to this type of interaction. The purpose of this analysis was
to understand if the clusters, and in which grade, are consequences
of the presence or absence of specific edges (i.e. if they are due to
a structural rearrangement of the sidechains net). First, all of the
edges of every subgraphs were collected in a list; then, the frequency
of appearance of every listed edge was obtained and the data organized
in two different histograms according to the pathogenic label for each
considered mutation (See Section B.2 for a more formal explanation).
The most interesting of these histogram is the one referring to the
frequency of the edges appearing commonly in both pathogenic and
non-pathogenic graphs in fig 6.22:

Figure 6.22: Relative Frequency of π-
cation edges appearing in both pathogenic
and non-pathogenic π−cations subgraphs
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Figure 6.23: X1 angle distributions of
residues Tyr82 (a) and Lys121 (b)
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From Fig.6.22 it is clear that the edge between Tyr62 and Lys121 ap-
pears with different frequencies among pathogenic and non-pathogenic
graphs, indicating a stable bond in the case of non-pathogenic while
a more instable one for pathogenic. Moreover, the histograms in Fig.
6.23 show how Lys121, which is a charged residue, reaches two dif-
ferent conformations according to the pathogenicity behavior of the
mutations involved, probably rearranging the charged group toward
the ring of the Tyr82, as shown in the following figure.

(a) (b)

Figure 6.24: Detail of the π−cation bond 62:121 (a) for M1532I pathogenic in blue and A766T
non-pathogenic in pink (b)

From Fig.6.24(b) it can be noticed that the two different rotamers have
different conformations in the pathogenic and non-pathogenic cases, in
fact the A766T related (pink) has the angle characteristic of a π−cation
bond that M1532I (blue) has not. Notice moreover in Fig.6.24(a) no-
tice that the two residues reside in a peripheral position of these with
respect to the core. Recalling the discussion in Section 6.4.2, this bond
is clearly influenced by the specific coil conformation sampled from
FG-MD, that it is influencing the sidechain network according to the
pathogenicity. This fact also enforce the observation on the similarity
of Gram-matrix and TM-Score matrix regarding the intracellular coil
struture. Taking advantage of this fact, the sensibility of the method
can be enhanced by applying the aforementioned procedure as a fil-
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ter stage before the kernel computation (See Method B.2). This stage
improve Gram-matrices clustering beacuse of two main reason:

• It allows to remove noise that comes from fictitious bonds seen by
RIN after Molecular Dynamics

• It allows to compare feature vectors projected on a sort of ”princi-
pal components” basis, where the components are selected accord-
ing to the common edges ensemble whose difference in frequency
between pathogenic and non-pathogenic is above a fixed treshold.

How can be seen from Fig. 6.25, applying this further step to the
weak clustered matrix from the hydrophobic core (See Fig. 6.19(a))
allows for highlighting clusters that are also presents in the ion-ion and
VdW subgraphs both from MOESM and 6a90 based models, with an
improved difference between clustered and non-clustered zone:

(a) (b)

(c) (d)

Figure 6.25: Gram-matrix of subgraphs respect ion-ion (a), VdW (b) interactions in 6a90 based
models and ion-ion (c) and VdW (d) interactions in the MOESM3 based models
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Here the extracted interactions in 6.25 are highlighted into the respec-
tive structures:

(a) (b)

Figure 6.26: Ion-ion principal interactions in 6a90 (a) and MOESM3 (b)

From Fig. 6.26 it is possible to see that in 6a90 (a) these important
bonds are distributed between residues in the core and in the ”voltage
sensor” where most of the point-mutations analyzed in this work are
placed, while in the MOESM (b) are mostly in the activation gate.
As a little confirmation, it is clear that MOESM clusters are given
by interactions of the coils with the activation-gate, since they are
spatially very close, while in the 6a90 probably the mechanism is more
complex.
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6.5 Results from the application of the filter stage

In this Section, the selection procedure described in B.2 is now ap-
plied to the Pipeline in when inputs are homology-modelling struc-
tures. This results in an improvement of the classification and predic-
tion analyses.

Method

The filter described in B.2 was coded and added to the Pipeline be-
tween the Graph comparison and Classification stage. The Tdif thresh-
old was manually optimized during the run. The intracellular-coils be-
longing to the full structures were cleaved out before the analysis be-
cause the unpredictable way in which FG-MD protocol sample them,
as explained in Section 6.4.

6.5.1 6a90 based models

Recalling the analysis in Fig.6.11 where there was any clear cluster
separating pathogenic and non-pathogenic mutations, the same models
subjected to the Pipeline with the filtering stage produced an improved
clustering, as can be seen from the following selected matrices in fig
6.27:
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(a) Core-TIP3P (b) Core-Vacuo (c) Full models

Figure 6.27: Selected Gram-matrix of filtered subgraphs respect VdW interactions on
6a90 models

(a) Prev. classification on WL Kernel

(b) Weisfeirer-Lehman

(c) Edge-Histogram

Figure 6.28: 6a90core-TIP3P

(a) Prev. classification on WL Kernel

(b) Weisferher-Lehman

Figure 6.29: 6a90full-models - TIP3P

(a) Prev. classification on WL Kernel

(b) Edge-Histogram

Figure 6.30: 6a90core-vacuo

Dominant-set clustering applied to VdW Gram-matrix from Weisfeirer-Lehman (a) and
Edge-Histogram (b) Kernels from 6a90 hydophobic core.

Apart for π-cation, π-π and ion-ion interactions, cluster appearance
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was more pronounced in the H-Bonds and VdW matrix, the latter
with a better accuracy. Starting from the classification respect the
solvated core in Fig. 6.29, is possible to note a drastic improvement
with a precentage of failed classifications both equal to 2% for the
Weisfherer-Lehman and Edge-Histogram kernels, which represents the
lowest errors obtained in this work, with a gap of 30% respect previ-
ously obtained (See Section 6.3.3). Notably, Dominant Set Algorithm
was able to classify the whole set of pathogenic mutation when applied
to Edge-Histogram kernel. The classification of the cores in vacuo in
Fig. 6.30, shown a little improvement respect the previous classifica-
tion (a) when performed on Edge-Histogram kernel, failing for 22% of
the mutation vs. 26% of the previous and thus indicating an already
good structure differentiation achieved after refining stage. Regarding
the full structures the classification was performed only on H-Bonds
matrix in Fig. 6.27(c) because was the best clustered, failing in fact
for 29% of the mutations compared to the previous of 50% (See Table
6.6). Notably, the Gram-matrix in Fig. 6.7 resemble very closely the
related TM-Score matrix in Fig. A.2 indeed remarking what observed
in Section 6.4 about the cluttering behavior of the intracellular-coils
on this type of analysis.

6.5.2 MOESM3 based models

In this set of results, the inputs provided to the Pipeline were models
refined with reaction field approximation (See Section 3.3.5).
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(a) Core-in vacuo (b) Full model- TIP3P

Figure 6.31: Selected Gram-matrix of filtered subgraphs respect VdW interactions of
MOESM3 based models

As seen for previous cases, Kernels on VdW and H-Bonds interactions
subgraphs gives the best output in terms of clustering and classifica-
tion:

(a) Prev. classification from WL Kernel

(b) WL-Kernel

Figure 6.32: Core-vacuo

(a) Prev. classification from WL Kernel

(b) WL-Kernel

Figure 6.33: Core-TIP3P

Dominant-set clustering applied to VdW Gram-matrix from Weisfeirer-Lehman (a) and
Edge-Histogram (b) Kernels on MOESM3 hydrophobic core.

in Fig. 6.32,6.33 are presented the improved classifications with the
filter for the core in vacuo and solvated. About the core models, is
possible to see a slight improvement in classification over the previous,
with a percentage of misclassification equal to 35% vs. 45%. Solvated
cores, on the other hand, were better ranked on Weisfehrer-Lehman
kernel with an improvement of 31 vs. 44%. The full model is not
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presented because the classification did not improve and the variation
between kernels was too high, confirming once again the difficulty of
discerning the structure from the effect that coils have on the Residue
Interaction Network.
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Chapter 7

Molecular dynamical study

In the previous work [51], one aspect that urgently needed to be inves-
tigated was to obtain information about the point-mutated models in
order to assay the differences between pathogenic and non-pathogenic
behavior. Prior to this, the method used was applied to the Trp-Cage
system because it is well known, and therefore useful for testing the
use of collective variables (See Section 3.4.2) both canonical and non-
canonical.

7.1 Trp-Cage as test for method validation

In order to understand the typical form of a Free Energy Landscape,
simulation and consecutive construction of the free energy surface
were carried out of a small protein, the Trp-Cage structure. Trp-cage
(1L2Y.pdb) is a 20-residue miniprotein, which is believed to be the
fastest folder known so far. It contains a short α-helix in residues 2–9,
a 310-helix in residues 11–14, and a C-terminal polyproline II helix to
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pack against the central tryptophan (Trp-6) [59]. The latter residue
seems to be involved in the formation/breaking of side-chain bonds
during the various folding-unfolding processes, because of its preferen-
tial position in the core region[27]. The important aspect of this protein
is that, when solvated, it exhibits a well-defined transition structure
at specific temperatures. Normally the folding temperature is found
around 400K [33], but this value depends on the used forcefield in the
molecular dynamics simulation. For example with CHARMM36[21]
the folding is seen at temperature 400K, higher than in other force-
fields [36]. Previous studies of this protein were carried out with replica
exchange method [59], because allows to explore more conformations
at different temperatures. Here unrestrained Molecular Dynamics were
chosen as our aim was the analysis of the local minima, and this tool
is sufficient to this aim. The analysis was performed using the method
described in 3.4, by histogramming two reaction coordinates at differ-
ent temperatures.

Figure 7.1: Native state of Trp-Cage miniprotein with a Cl− as counter ion, Model 1 of
the 1L2Y.pdb

7.1.1 Simulation Method

The simulation were carried out in explicit water TIP3P (See Sec-
tion 3.3) with CHARMM36[21] forcefield. The integrator chosen was
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Langevin Integrator with timestep set to 2 ps. The production runs
were performed in NVT for a time length of 45 ns at different temper-
atures equal to 330K,400K,450K, 460K,470K,480K,490K,500K; the
selected temperature was kept constant with the Langevin Thermostat
(See Section 3.3.3). This set of temperatures were chosen in agree-
ment with a study conducted on the same protein in TIP3P [36] where
T = 450K was identified to be the melting temperature for this protein
when common forcefields, as CHARMM36, are used. Before every pro-
duction run the system was equilibrated for 5 ns in NPT ensemble with
pressure equal to 1 atm, which was kept constant with a Monte Carlo
Barostat (See Section 3.3.4). All of the simulations were performed
with OpenMM[12] python package on CINECA GALILEO100.

7.1.2 Data Analysis Method

Trajectories from molecular dynamics were used to obtain the Free
Energy Surface (See Section 3.4) at each of the selected temperatures.
Mainly Radius of Gyration, Fraction of native contact and Kernel Sim-
ilarity (See Section 3.4.2) were used as reaction coordinates for this
purpose. The Kernel-Similarity (See Eq.3.4.2 ) was obtained by the
use of the Vertex-Histogram Kernel, after obtaining the Residue Inter-
action Network for every frame in the trajectory. Radius of Gyration
and Fraction of native contact were performed with MDTraj[32] python
package while Kernel-Similarity was calculated by an in-house script
based on GraKel[44] package.
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7.1.3 Results

Figure 7.2: Free energy landscape of Trp-Cage at different temperature.
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(a) Native state A (b) Denaturated state B

Figure 7.3: 3D models of Trp-Cage at the two identified minima with the three important
residues Gly11, Arg16, Trp6 highlighted (pink); in (b) is possible to note the denaturated
α-Helix (yellow)

The selected pair of reaction coordinates (Radius of Gyration, Fraction
of native contact) is the most used in literature thanks to the recip-
rocal low correlation. As reported in previous studies[36], the system
is trapped in a local minimum A with Rg=7 Å for temperature below
400K. At 450K the structure pass from the first native minimum A to
a second minimum B, as depicted in 7.2, which refers to a partially
unfolded state of the protein (See Fig. 7.3(b)). At 500K the equilib-
rium is mainly focused on this latter point B. Note that in this small
protein the number of native contacts is tipically small and the fast
nature of the process involving the formation of bonds can be difficult
to capture only by counting. For this reason, the Kernel-Similarity
was also studied as coordinate instead of number of native contact
(See Fig. 7.4). the Free Energy Surfaces were obtained with Radius
of Gyration and Kernel Similarity in order to study the goodness of
graph comparison as reaction coordinate.
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Figure 7.4: Free energy surface of Trp-Cage in function of Radius of Gyration and Kernel
similarity.

While these new results agree with previous ones, they are more trans-
parent. This can probably be ascribed to the fact that networks en-
code much more information than the number of native sites, and the
comparison with kernel function gives continuous rather than discrete
coordinate. This also improves the bin size in the 2D-histogram when
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constructing the free energy landscape and allows to have more overlap
between a large number of bins (150 from Kernel-Similarity compared
to the 11 bins of the fraction of native contact). To get further insight,
the betweenness centrality of the Trp6 residue (i.e. TRP:6 node) from
trajectory at different temperatures was analyzed. This residue ap-
pears to be involved in the formation/breaking of side-chain bonds
during the various folding-unfolding processes, probably because its
preferential position in the core region of the Trp-Cage protein [59].
This is reported in Fig. 7.5.

Figure 7.5: Betweenness centrality for Trp6 residue node in Trp-Cage graph series, at
different temperature.

At 330K the centrality of the node remains stable, indicating, in agree-
ment with the energy landscape analysis, an equilibrium localized in
the first minimum A. At 400K, as depicted in Fig. 7.2, the equilib-
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rium is shared between two conformations and a shift in centrality can
be seen from the initial stage of the process (0-350) to the last stage
(1750-2500). This can be ascribed to the salt-bridges and side-chain
H-Bonds that this residue forms/breaks with the neighbour side-chains
which shift the protein conformation between A and B [59]. At 500K
the conformation is stable in the B state and the centrality is low,
indicating a weakly-bonding Trp6. The various spike that can be seen
in the process refers mostly on the solvent noise, so to apparent bonds
found by RINmaker (See Section 5.1) when building the Residue In-
teraction Network.

Extending this analysis to all residues (See Fig.7.6, it’s possible to
identify the most important with respect to the minima depicted in
Fig. 7.4:
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(a) T=330K

(b) T=480K

Figure 7.6: Betweenness centrality of all the residues of Trp-Cage at different temperature

From Fig. 7.6(a) there is a clear dominance of the Trp6 residue, so the
system remains in the identified minimum A during the simulation. At
480K, after the first 150 steps, The importance of Arg16 and Gly11 kick
in. In agreement with previous studies[27], at a certain simulation time
the distances between these residues starts to drop, indicating break-
ing and reforming of bonds and a shift to another minimum. In Fig.
7.6 (b) this process is partially captured, as the increase of between-
ness centrality for these set of residues, clearly indicates the formation
of new interactions among them. While constructive, the present en-
ergy landscape analysis on Trp-Cage cannot clearly guarantee a similar
scenario for other, more complex, protein such as the MOESM.
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7.2 Free Energy Landscape from Molecular Dy-

namics on variants derived from MOESM3

In order to gain preliminary insights on the MOESM3 structural changes
given by point mutation, a set of unbiased Molecular Dynamics simula-
tions were obtained and analyzed by appropriate reaction coordinates.

7.2.1 Simulation

For this simulations, 5 point-mutated models previously obtained with
SWISS-MODEL were selected according to the pathogenic or non-
pathogenic behaviour. In the corresponding structures the intra-cellular
coils were removes and the obtained structure simuated with unbiased
Molecular Dynamics for 50 ns at different temperatures in a range
from 270K-330K. The simulations were carried out in explicit sol-
vent TIP3P (See Section 3.3) with a ionic force of 0.150mM(NaCl)
and CHARMM36[21] forcefield. Verlet integration were coupled with
an Andersen thermostat set to the desired temperature. The non-
bonded interactions cutoff was 1 nm for both direct and long-range
interactions, the latter accounted with Particle Mesh Ewald method.
Production runs were performed in NVT for a time length of 45 ns and
before a run the system was equilibrated for 5 ns in NPT ensemble
with a pressure equal to 1 atm, which was kept constant by a Monte
Carlo Barostat (See Section 3.3.4). The choice of this ionic force was
made in agreement with previous studies on the Sodium flow through
the channel pore[45], where the Na+ ions appear to interact with the
selectivity filter.

All simulations were performed with OpenMM[12] python package on
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CINECA GALILEO100, with the GPUs as accelerators.

Mutation Label

I136V PAT

R185H PAT

I228M PAT

I1399D NEUTRAL

V795I NEUTRAL

Wild-Type NEUTRAL

Table 7.1: Selected mutations

Figure 7.7: Wildtype with highlighted mu-
tated pathogenic (red) and non-pathogenic
(blue) residues

7.2.2 Data Analysis Method

The obtained trajectories at different temperatures were analyzed us-
ing some reaction coordinates, the Kernel-Similarity, the Radius of
Gyration Rg, the Fraction of native contacts ρ (See Sec.3.4.2). The
Kernel-Similarity (See Eq.(3.4.2)) was obtained by the use of the Vertex-
Histogram Kernel, after obtaining the Residue Interaction Network
for every frame in the trajectory. Radius of Gyration and Fraction
of native contact were performed with MDTraj[32] python package
while Kernel-Similarity was calculated by an in-house script based on
GraKel[44] package. All data analysis was performed on CINECA
GALILEO100. Interestingly, both kernels similarity and density of
native contacts decreased with time, indicating a system moving far-
ther from equilibrium.
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Figure 7.8: Trajectory (a) and histogram (b) of the selected reaction coordinates at
different temperatures for the MOESM3 Wild-Type.
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7.2.3 Free Energy Landscape of MOESM3 Wild-Type

A

A
A

A A
A

B
B

B
B B

C C

C
B

A

Figure 7.9: Free Energy Landscape E
KbT of MOESM3-Wild Type core part (Rg vs Fraction

of native contact); A,B,C refer to the three identified minima.

In the Fig. 7.9 the Free Energy Landscape E
kBT

respect Radius of
Gyration and Fraction of native contact is presented. From this anal-
ysis is possible in the first instance to notice a complex mechanism,
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involving different minima at different temperatures. Generally, the
system is trapped in the minimum A at T = 270K. At T = 300K
and T = 320K, which are close to the physiological temperature,
the protein jump to another conformation C, which become clear at
T = 330K. Since the transition between B and C appears around
the physiological temperature it can be assumed that it is indicative
of some kind of characteristic process of the moesm core. Below are
highlighted the respective structures at these two found minima:

(a) State B (b) State B

Figure 7.10: Structures corresponding to minima obtained from the FEL marked as B(a)
and C(b) of the Wild-Type

In Fig. 7.10 is possible to see a clear rearrangement of the Voltage-
Gain of Domain IV. The state B also carry a partial unfolded α−helix
belonging to the selectivity filter. The state C instead has a more or-
derly structure, with the upward-coil bending toward the core. The
partial unfolded state B and the bending in state C suggest a proba-
ble interactions of the selectivity filter with the Na+ cation in solution,
which is better expressed as temperature increases. These observations
on the structural rearrangement of the backbone, especially for the IV
Domain, shows a marked sensitivity of this backbone part for varia-
tions involving solvent (since its real environment is a lipid-bilayer) and
temperature. Given the improved accuracy showed for Trp-Cage (See
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Section 7.1), the Free Energy Surfaces were also obtained with Radius
of Gyration vs. Kernel Similarity as in Fig. 7.11, where is possible to
see the same minimum found for the Fraction of native contact:

B
C

C
B

Figure 7.11: Details of B and C minima obtained from FEL of Kernel-Similarity vs Rg.

As for the Trp-Cage case, the Kernel Similarity as collective variable
with the Radius of gyrations provided a more precise and differenti-
ated representation of the FEL, especially the characterization of those
minima which belong to a rearrangement of the side-chain net: In Fig.
7.11 the found minimums A and B are much more definite with re-
spect Fraction of native contact counterparts. From the figure is clear
a dominance of the minimum C at T = 320K, while at T = 310K the
minimum B is dominant. Interestingly, at T = 330K both minima
B and C are visible, indicating that conformations are in equilibrium,
and the energy gap between them is on the order of kBT . As 330K is
slightly above the physiological temperature, they can be explored by
a biological process.

124



7.2.4 Results from mutants

The same approach was also applied to the mutants of the Wild-Type.
From the previous analysis seems that T = 310K and T = 320K are
key temperatures where the structures converges to the two identified
minima.

Rg vs Fraction of native contacts

Figure 7.12: FES from mutants at T = 320K
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Figure 7.13: Histogram of fraction of native contact as collective variable for mutants at
T = 320K

Apart for the pathogenic I136V mutation, this set of collective variables
seems unable to capture the different minima belonging to pathogenic
and non-pathogenic mutations. Probably the description of Fraction of
native contact based on distances between Cα is too rough for describ-
ing minimum and it is too much dependent on the position coordinate
of the Cα ensemble. So is is clear that if the backbone is not heavily
affected by the mutations, the rearrangement of the sidechain net is
not captured.

FEL described with Rg vs. Kernel-Similarity

Free Energy Surface described with Radius of Gyration and Kernel-
Similairty is shown:
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Figure 7.14: FES from mutants at T = 320K

From Fig. 7.14 is possible to note two dominant minimus in V795I and
I1399D neutral mutations while there are not dominant minimums in
R185H and I136V pathogenic mutations. These are encouraging re-
sults that clearly show the effect of pathogenic mutations. The his-
togram graph shows a differentiation between pathogenic and non-
pathogenic:
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Figure 7.15: Histogram of Kernel similarity values for selected pathogenic and non-
pathogenic mutations

Figure 7.16: Free Energy vs Kernel similarity histogram in Fig. 7.15, divided according
to pathogenic (red) and non-pathogenic (green) behavior.
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The corresponding minimum depicted in Fig. 7.16 is clearly identi-
fied from Kernel-Similarity and it shows a preferential minimum as
0.5 for the non-pathogenic, while the landscape is more complex for
pathogenic mutation. This results that in the pipeline essentially com-
pared the minima, since every RIN correspond to a unique arrangement
of the non-covalent interactions, and the minimum of the free energy
is the result of the simulated-annealing. The appearance of clusters in
cross-comparison with Graph-kernel in Fig. 7.17 is a consequence of
the fact that RIN correspond to a ”snapshot” of the protein.

I136V R185H I228M WT V795I I1399D
T=0 (After L-BFGS)

I136V

R185H

I228M

WT

V795I

I1399D

T=15 ns T=30 ns T=45 ns

Figure 7.17: Gram-matrices of Vertex histogram kernel applied to graphs of all interac-
tions taken at different simulation time. The Node and Edges are not filtered.

Note that this analysis is to be carried out at different times for a full
picture.

Insights into structural changes along the backbone

In the following are depicted the backbone unfolding relative to pathogenic
mutation, where the structure correspond to C minimum at T = 320K.
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(a) I136V (b) R185H (c) I228M

(d) I1399D

Figure 7.18: Local misfolding due to point mutation

7.2.5 Solvent-Accessible Surface Area of MOESM3 based
model

Further support to this scenario is provided by the analysis of SASA
of every residues during the trajectory of the simulation. This anal-
ysis was limited to T = 320K. In this case the SASA is calculated
in ”residue” mode, where the Shake-Rupley algorithm construct the
probing ball from the Cα as center.
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Figure 7.19: Relative hydrophobicity of the 20 aminoacids, accordin to the Kyte-Doolittle
scale [26].
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Figure 7.20: Comparison of SASA between the mutated residue on pathogenic mutants
(red) and non-pathogenic (orange) on the respective Wild-Type backbone position.

In Fig. 7.20 the time evolution of mutated-residue (SASA) respect
time is reported. Is clear that the he relative hydrophobicity or hy-
drophilicity of residues plays a prominent role in this analysis. For the
I136V mutation, SASA clearly show the similar behavior between the
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mutated residue and the corresponding one in the Wild-Type: since
both isoleucine and valine are both hydrophobic residues, the mutation
shares a low and constant SASA, both cases indicating that this residue
remains mostly buried during the process and achieves a conformation
that minimizes interactions with water. From R185H instead the situ-
ation is much more complicated because both Arginine and Histidine
are negative charged residue and a strong interaction with the solvent is
expected; indeed Wild-Type Arginine, which is believed to be the most
hydrophilic residue in membrane proteins[20], shows marked instabil-
ity compared to the histidine in the mutant, indicating that arginine
in the Wild-Type switches from one rotamer to another and lives in
an unstable situation, in which the balance between interactions with
the solvent and between neighboring residues does not allow it to find
a stable conformation. In reverse Histidine SASA remains stable for
most of the process, with a negative peak near 35 ns, for sure referring
to an overall change in the backbone. In I228M mutation, Isoleucine
is the most hydrophobic residue according to Table in Fig. 7.19 while
Methionine in Wild-Type is more neutral; the overall behavior is a
stable conformation for Methionine in the Wild-Type, while Isoleucine
pass different conformations during the process; another time the ex-
planation could be that Isoleucine find a buried conformation during
the equilibration of the protein while Methionine suffer a concerted
effects involving interactions with solvent and chain residues. For non-
pathogenic V795I the same consideration apply for pathogenic I136V,
this also shows that SASA of a single residue is not able to capture
different minima, and so the key of pathogenic unfolding is an over-
all analysis. Interestingly, in the non-pathogenic I1399D, Isoleucine
shows a buried conformation at the beginning of the process with a
steadily increasing SASA starting at 5 ns, while Aspartic Acid from
the Wild-Type, which is a highly hydrophilic residue, shows a buried
conformation. Both residues are located in the selectivity filter of the
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core region. This counterintuitive trend is likely to be due to the in-
teraction of this region with Na+ cations. This also reflects a probable
local unfolding, because Isoleucine, for steric reasons, is constrained to
assume conformation more accessible to the solvent. This means that
this mutation, although non-pathogenic, has an effect on the backbone
structure when solvated in water, as seen from Fig. 7.21.

Total SASA from structures The total SASA of some structures were
also taken and the FES constructed vs Kernel Similarity. Since it is
a heavy computational task, this parameter was taken only for some
key mutations (See Fig 7.21.
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(c) R185H

Figure 7.21: Total SASA for Wild-Type, non-pathogenic V795I and pathogenic R185H

In this case the Wild-Type shows an enhanced stability, with a well
defined minima. With the Non-pathogenic mutation V795I show-
ing a similar trend albeit with different shape by contrast. R185H
pathogenic mutation instead displays a different minimum respect the
non-pathogenic mutation, indicating an overall change due to residue-
solvent interactions.
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Chapter 8

Conclusion

The objectives of this thesis were threefold. Firstly, we aimed at im-
proving a pipeline previously proposed within our group [51] that was
devised for addressing a specific problem and hence not easily extend-
able to other systems. In this case, particular attention has been de-
voted to implement a well defined input and output protocol, thus
avoiding useless time consuming passages from one part to another of
the pipeline. The second aim of the thesis was to avoid the use of two
web tools that were present in the original pipeline, and replace them
with in-house counterparts. This included two major endeavors. In the
first one, we have replaced the Fragment-Guided refining tool [56] with
a fully internally coded tool on which we have total control. At the
present time, this tool uses state-of-the-art algorithms and is 10 times
faster than the original one thanks to the possibility to use GPUs in-
stead of CPU, while still providing identical results. The second major
improvement stems from the implementation of a in-house RIN gener-
ator (RINmaker) that is also replacing the on-line tool RING2.0 web
server. In this case too, a brand new coding allows an improvement
of a factor 105 in terms of computation time required for generating
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the network of a model (approximately 1ms as opposed 15 min for a
1650 residues). RINmaker was already implemented at the beginning
of this thesis, but an extensive test phase was missing and the contri-
bution has been the development of a suitable set of molecules forming
the groundtruth needed to put it in full production. In general, the
new pipeline now allows to have an extremely fast flow of data and the
modular architecture which is built allows to further interchange steps,
implements and insert new script without altering the main code.

Thanks to this new instrument it was possible a full independent vali-
dation of the previous obtained results, that was the third aim of the
present thesis. This led us to unveil a subtle shortcoming of the origi-
nal interpretation, in the following sense. In the original investigation,
the coils which are a significant part of the analyzed proteins, when
generated by SWISS-MODEL and refined by web-based FGMD, were
binary separated in two conformations according to the pathogenic-
ity, giving the well defined clusters on the Gram-matrices obtained
by graph comparison. This effect largely dominated the analysis and
masked the effective contribution from the rest of the protein. To give
a partial solution to this problem, the intra-cellular coils were removed
from the mutated structures and a raw filter on the graphs was imple-
mented, with improved clustering and label prediction. On the other
hand, the structural effect that a specific mutation induces to the struc-
tures shows clear distinct energy landscape, especially when described
with the usage of Kernel similarity as collective variable. This results
is of prominent interest because it validates Kernel methods on RINs
as valid and sensible tool for explore mutated landscape and subse-
quently select the conformation which the effective structural change
took place, as well as it reinforces the results obtained from Dimos et
al.[24] supporting the independence of the unfolding pathway from the
biological function of the NaV1.7 sodium channel.
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8.1 Future perspective

Although there is an effective improvement with respect to the original
pipeline in both the methodology and the workflow, several shortcom-
ings still persist. First and foremost, the difficulty in a consistent
interpretation of the binary pathogenic/non-pathogenic decision that
is masked by irrelevant contributions that are inserted by the only web-
tool (Swiss-model) still included in the pipeline. The detailed analysis
of the free energy landscape (FEL) presented in this thesis was indeed
devoted to the understanding of this point. The main question to ad-
dress is how to manage data scaling in number with the size of the
system and what kind of collective variables are suitable for extracting
only the ”essential” information, thus minimizing the presence of noise
and unnecessary information in the graphs, especially when obtained
from Molecular Dynamics trajectories. As shown by FEL analysis,
this problem is mitigated by the use of Kernel similarity as collective
variable, that is by the comparison of trajectory graphs with the graph
at t = 0. The solution adopted in this thesis is to try to isolate only
the subset of edges and nodes (as subgraphs) whose interactions are
important. An appropriate score function is however needed, where
all of the data encoded in the RIN (physical and abstract) might be
rearranged in a linear combination able to identify the biological ”im-
portance” of edge and nodes. Once this score function is defined,
the coefficient of the combination could be computed, for instance,
via machine learning techniques and used for extract important sub-
graphs, which can then be contrasted by Kernel functions. In general,
what is needed is to force the correspondence between the physical
and topological representation, in order to automatize the identifica-
tion of difference between pathogenic and non-pathogenic mutation.
Another future perspective for fully validate the set of mutations, is
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to perform all-atoms Molecular Dynamics on the ”real” environment,
with membrane lipid layer and an external electric field. The solution
of this class of problems needs tools from different disciplines as com-
puter science and statistical mechanics, tracing a clear path toward an
interdisciplinary approach.
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Appendix A

Images

(a) (b)

(c) (d)

Figure A.1: TM-score matrix of SWISS-MODEL models. MOESM3: (a) intra-cellular coil, (b)
core+extracellular coil, 6A90: (c) intra-cellular coil (b) core+extracellular coil
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Figure A.2: TM-Score matrix of 6a90 full-models after the in-house FG-MD refining
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Appendix B

Methods

B.1 Angles difference distribution

Given a Wild-Type structure and a set of point-mutated structures:

1. Retrieve values relative to angles ϕ,ψ,X1,X2,X3,X4 for every residue
in the Wild-Type

2. Apply the same procedure in step 1 for every point-mutated struc-
ture

3. Subtract residue by residue the values obtained from a mutated
structure to the respective values obtained for the Wild-Type and
store the values obtained in a Ldiff list.

4. Repeat the step 3 for each mutation and store the value in the
same list L.

5. Obtain the histogram of the Ldiff .
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B.2 Filter stage

Let GNET and GPAT be the set of graphs related respectively to non-
pathogenic and pathogenic mutations and fGk

rel(i) the relative frequency
of appearance of an observed edge i in a given set of graph Gk:

1. Retrieve the whole set of edges: Ecommon = {E(G1) ∩ E(G2) ∩
E(G3) ∩ ....E(G85)}

2. Construct the set as: Edif = {i ∈ Ecommon :| fGNET

rel (i)− fGPAT

rel (i) |≥
Tdif}. The threshold Tdif in this work is manually set.

3. For every G ∈ GNET,G ∈ GPAT remove edges which not belongs to
Edif

4. For everyG ∈ GNET,G ∈ GPAT remove edges which the fGNET∪GPAT

rel (i) <
Tnoise where Tnoise is manually set usually to 0.2.

5. For each graph G ∈ GNET,G ∈ GPAT remove the isolated vertexes.

B.3 Brief recap of important backbone and sidechains

parameters

Taken a set of residues in a given protein, most of the energy confor-
mations can be uniquely binded to the angles defining the backbone
and the sidechains. In particular, two sets of these angles are the most
important:

• Backbone angles (ϕ, ψ), respectively the phi dihedral angle be-
tween Cα and N carbons and psi dihedral angle between Cα and
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C carbons.

• Sidechains dihedral angles (X1,X2), where X1 is the dihedral an-
gles between Cα and Cβ, where the latter belong to the sidechain
carbon chain. The X2 angle is introduced in the case the sidechain
contain a Cγ eventually binded to the Cβ. A particular combina-
tion of these two angles is called rotamer.

Figure B.1: 3D cartoon depicting ϕ, ψ,X1, X2, X3, X4 angles

This set of angles (ϕ,ψ,X1,X2) fully describe the backbone and sidechains
conformation of a given protein. Phi and theta angles are strongly
binded to the quality and conformation of a model, in fact not all of
the angles are ”allowed” or ”favourable”; this aspect can be carried
out by a Ramachandran plot.
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Appendix C

Tables

Mutation SW vs FG-inhouse SW vs FG-web SW vs no-FG

V194I.pdb 0.984 0.987 0.848
A1746G.pdb 0.985 0.988 0.862
M1627K.pdb 0.983 0.985 0.884
A766V.pdb 0.985 0.989 0.855
T1548S.pdb 0.984 0.985 0.816
A815S.pdb 0.984 0.988 0.803
I1577L.pdb 0.984 0.985 0.848
V795I.pdb 0.985 0.983 0.869

T1398M.pdb 0.985 0.984 0.827
T773S.pdb 0.985 0.988 0.844
D1662A.pdb 0.982 0.986 0.825
M1532I.pdb 0.984 0.986 0.847
D1586E.pdb 0.985 0.986 0.816
V1299F.pdb 0.984 0.985 0.898
H1531Y.pdb 0.985 0.988 0.861
E1534D.pdb 0.985 0.985 0.822
S1419N.pdb 0.985 0.986 0.813
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I848T.pdb 0.985 0.983 0.816
T370M.pdb 0.983 0.988 0.805
I1399D.pdb 0.985 0.985 0.806
V1428I.pdb 0.983 0.987 0.829
N395K.pdb 0.985 0.984 0.808
T1210N.pdb 0.983 0.989 0.834
T1596I.pdb 0.984 0.985 0.855
V1298D.pdb 0.984 0.989 0.845
V1298F.pdb 0.981 0.984 0.825
Q1530D.pdb 0.983 0.991 0.834
D890V.pdb 0.984 0.983 0.828
Q1530P.pdb 0.982 0.984 0.846
V1565I.pdb 0.983 0.989 0.819
I228M.pdb 0.984 0.985 0.818
G1674A.pdb 0.984 0.987 0.812
S126A.pdb 0.984 0.985 0.801
T1590R.pdb 0.984 0.983 0.867
E759D.pdb 0.985 0.989 0.833
F1449V.pdb 0.985 0.984 0.836
L823R.pdb 0.984 0.987 0.829
L858F.pdb 0.984 0.986 0.833
T1590K.pdb 0.986 0.985 0.826
K1700A.pdb 0.982 0.989 0.839
V872G.pdb 0.983 0.984 0.828
K1415I.pdb 0.983 0.985 0.817
L1267V.pdb 0.984 0.983 0.834
Y1537N.pdb 0.985 0.984 0.828
S1509T.pdb 0.983 0.983 0.842
A766T.pdb 0.984 0.981 0.834
S241T.pdb 0.985 0.988 0.826
M145L.pdb 0.985 0.987 0.864
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L858H.pdb 0.983 0.986 0.828
R1207K.pdb 0.983 0.980 0.835
I1235V.pdb 0.985 0.980 0.814
A1632E.pdb 0.985 0.988 0.817
V400M.pdb 0.984 0.986 0.825
L127A.pdb 0.982 0.988 0.836
G856D.pdb 0.983 0.986 0.859
W1538R.pdb 0.985 0.984 0.838
A1505V.pdb 0.985 0.989 0.831
G1607R.pdb 0.984 0.989 0.804
K1412E.pdb 0.984 0.989 0.808
N146S.pdb 0.984 0.986 0.805
R185H.pdb 0.981 0.987 0.826
I767V.pdb 0.985 0.984 0.808
A863P.pdb 0.982 0.988 0.826
M932L.pdb 0.985 0.986 0.809
I739V.pdb 0.983 0.983 0.828
L201V.pdb 0.985 0.989 0.808
V1613I.pdb 0.986 0.986 0.828
P1308L.pdb 0.985 0.984 0.793
T920N.pdb 0.984 0.986 0.810
S1509A.pdb 0.983 0.989 0.812
K1412I.pdb 0.981 0.984 0.810
D1411N.pdb 0.984 0.982 0.815
H1560C.pdb 0.982 0.983 0.838
F216S.pdb 0.985 0.982 0.804
D890E.pdb 0.984 0.986 0.822
Q1530K.pdb 0.981 0.985 0.804
M1532V.pdb 0.985 0.988 0.828
N1245S.pdb 0.981 0.989 0.837
K1176R.pdb 0.983 0.989 0.839
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H1560Y.pdb 0.985 0.985 0.816

Table C.1: Comparison of TM-score between 6a90 obtained from SWISS-MODEL vs
FGMD-web and FGMD-inhouse

Mutation SW vs FG-inhouse SW vs FG-web SW vs no-FG

V194I.pdb 0.990 0.987 0.808
A1746G.pdb 0.988 0.988 0.822
M1627K.pdb 0.983 0.988 0.804
A766V.pdb 0.984 0.988 0.815
T1548S.pdb 0.987 0.988 0.836
A815S.pdb 0.985 0.983 0.823
I1577L.pdb 0.981 0.986 0.848
V795I.pdb 0.982 0.983 0.849

T1398M.pdb 0.988 0.984 0.857
T773S.pdb 0.986 0.988 0.864
D1662A.pdb 0.984 0.986 0.875
M1532I.pdb 0.989 0.986 0.847
D1586E.pdb 0.982 0.986 0.886
V1299F.pdb 0.985 0.985 0.858
H1531Y.pdb 0.983 0.988 0.891
E1534D.pdb 0.989 0.985 0.842
S1419N.pdb 0.985 0.986 0.883
I848T.pdb 0.985 0.983 0.856
T370M.pdb 0.983 0.988 0.835
I1399D.pdb 0.988 0.985 0.876
V1428I.pdb 0.980 0.987 0.889
N395K.pdb 0.982 0.984 0.898
T1210N.pdb 0.982 0.989 0.864
T1596I.pdb 0.984 0.985 0.855
V1298D.pdb 0.985 0.989 0.845
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V1298F.pdb 0.986 0.987 0.835
Q1530D.pdb 0.980 0.991 0.884
D890V.pdb 0.981 0.983 0.818
Q1530P.pdb 0.982 0.984 0.826
V1565I.pdb 0.985 0.984 0.839
I228M.pdb 0.984 0.985 0.848
G1674A.pdb 0.987 0.989 0.872
S126A.pdb 0.984 0.985 0.861
T1590R.pdb 0.984 0.985 0.887
E759D.pdb 0.985 0.989 0.843
F1449V.pdb 0.985 0.988 0.856
L823R.pdb 0.984 0.987 0.879
L858F.pdb 0.984 0.983 0.843
T1590K.pdb 0.986 0.985 0.886
K1700A.pdb 0.982 0.985 0.859
V872G.pdb 0.983 0.989 0.838
K1415I.pdb 0.988 0.985 0.837
L1267V.pdb 0.983 0.984 0.834
Y1537N.pdb 0.989 0.988 0.858
S1509T.pdb 0.983 0.983 0.842
A766T.pdb 0.984 0.982 0.874
S241T.pdb 0.985 0.988 0.846
M145L.pdb 0.985 0.988 0.894
L858H.pdb 0.983 0.983 0.838
R1207K.pdb 0.983 0.984 0.835
I1235V.pdb 0.985 0.985 0.814
A1632E.pdb 0.985 0.984 0.797
V400M.pdb 0.984 0.984 0.825
L127A.pdb 0.982 0.983 0.816
G856D.pdb 0.983 0.986 0.829
W1538R.pdb 0.985 0.984 0.818
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A1505V.pdb 0.985 0.989 0.821
G1607R.pdb 0.984 0.989 0.864
K1412E.pdb 0.984 0.987 0.868
N146S.pdb 0.984 0.986 0.845
R185H.pdb 0.986 0.987 0.886
I767V.pdb 0.985 0.984 0.848
A863P.pdb 0.980 0.988 0.836
M932L.pdb 0.987 0.986 0.889
I739V.pdb 0.983 0.983 0.828
L201V.pdb 0.985 0.987 0.808
V1613I.pdb 0.986 0.982 0.868
P1308L.pdb 0.985 0.982 0.733
T920N.pdb 0.984 0.981 0.860
S1509A.pdb 0.983 0.989 0.812
K1412I.pdb 0.981 0.984 0.820
D1411N.pdb 0.984 0.985 0.825
H1560C.pdb 0.982 0.986 0.858
F216S.pdb 0.985 0.982 0.804
D890E.pdb 0.987 0.986 0.862
Q1530K.pdb 0.988 0.985 0.814
M1532V.pdb 0.989 0.988 0.828
N1245S.pdb 0.983 0.993 0.877
K1176R.pdb 0.985 0.982 0.839
H1560Y.pdb 0.982 0.981 0.816

Table C.2: Comparison of TM-score between MOESM3 based model obtained from
SWISS-MODEL vs FGMD-web and FGMD-inhouse
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Test N° Image Type Description Param Expected bonds

1 NEG Test on an ensemble of 4 residues.
The C.o.M rules is fulfilled only
for residues with the same charge

Default -

2 POS Two residues fulfilling ion-ion
bond rules

Default One IONIC edge

3 POS Three residues fulfilling ion-ion
bond rules

Default 3 IONIC edges

4 POS Two ionic groups (NZ, OE1) ful-
filling ion-ion bond rules

Default One IONIC edge

5 POS Three ionic groups (NH2,OE,NZ)
fulfilling ion-ion bond rules

Default Two IONIC edges

6 NEG Two ionic groups (NZ,OE1) not
fulfilling C.of.M rule

Default -

7 NEG Three ionic groups (NH2,OE,NZ)
not fulfillinf ion-ion bond rules

Default -

8 POS Two residues (LYS-ASP) fulfill-
ing ion-ion bond rules

Default One IONIC edges

9 NEG Two residues (LYS-ASP) not ful-
filling C.o.M rule

Default -

Table C.3: Caption
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