Multinomial Logistic Regression with High Dimensional Data.

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Varin, Cristiano it_IT
dc.contributor.author Salaro, Rossana <1994> it_IT
dc.date.accessioned 2018-10-07 it_IT
dc.date.accessioned 2019-02-19T15:13:45Z
dc.date.available 2019-02-19T15:13:45Z
dc.date.issued 2018-10-25 it_IT
dc.identifier.uri http://hdl.handle.net/10579/13814
dc.description.abstract This thesis investigates multinomial logistic regression in presence of high-dimensional data. Multinomial logistic regression has been widely used to model categorical data in a variety of fields, including health, physical and social sciences. In this thesis we apply to multinomial logistic regression three different kind of dimensionality reduction techniques, namely ridge regression, lasso and principal components regression. These methods reduce the dimensions of the design matrix used to build the multinomial logistic regression model by selecting those explanatory variables that most affect the response variable. We carry out an extensive simulation study to compare and contrast the three reduction methods. Moreover, we illustrate the multinomial regression model on different case studies that allow to highlight benefits and limits of the different approaches. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Rossana Salaro, 2018 it_IT
dc.title Multinomial Logistic Regression with High Dimensional Data. it_IT
dc.title.alternative Multinomial Logistic Regression With High Dimensional Data it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Informatica - computer science it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Scienze Ambientali, Informatica e Statistica it_IT
dc.description.academicyear 2017/2018, lauree sessione autunnale it_IT
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 847168 it_IT
dc.subject.miur INF/01 INFORMATICA it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend it_IT
dc.provenance.upload Rossana Salaro (847168@stud.unive.it), 2018-10-07 it_IT
dc.provenance.plagiarycheck Cristiano Varin (cristiano.varin@unive.it), 2018-10-22 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record