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Abstract

This thesis investigates multinomial logistic regression in presence of high-
dimensional data. Multinomial logistic regression has been widely used to
model categorical data in a variety of �elds, including health, physical and
social sciences. In this thesis we apply to multinomial logistic regression
three di�erent kind of dimensionality reduction techniques, namely ridge re-
gression, lasso and principal components regression. These methods reduce
the dimensions of the design matrix used to build the multinomial logistic
regression model by selecting those explanatory variables that most a�ect the
response variable. We carry out an extensive simulation study to compare
and contrast the three reduction methods. Moreover, we illustrate the multi-
nomial regression model on a case study that allows to highlight bene�ts and
limits of the di�erent approaches.
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Introduction

The study of high-dimensional data has become in the last years one of the
most important �elds in computer sciences. Often the data that we are in-
terested to study are characterized by a categorical response that might be
multi-categorical. In this thesis we will study the multinomial logistic re-
gression that aims to model data that are characterized by a multi-category
response. In the study of high-dimensional data it is also useful to reduce di-
mensionality of the data. In this thesis we will describe some of the methods
that perform reduction of dimensionality which are ridge regression, lasso
and adaptive lasso, where the dimensionality reduction is done by shrink-
age of the explanatory variables coe�cients. We will also describe principal
components regression for which dimensionality reduction is performed us-
ing linear combinations of the original explanatory variables, called principal
components. Principal components are applied to the regression model as
new explanatory variables. The di�erent dimensionality reduction methods
are then tested through a data simulation and �nally applied to a real dataset
containing description of the crimes reported by the New York City police
department. The simulation considered di�erent scenarios that test the char-
acteristics and the limits of the dimensionality reduction methods applied to
the multinomial logistic regression. Our analyses include also maximum like-
lihood estimation to compare against the standard �tting method that does
not reduce the dimensionality of the problem.
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Chapter 1

Multinomial Regression Models

This chapter de�nes regression models that relate explanatory variables to
a multinomial response. This type of data arise frequently in applications.
We can, for example, being interested into the forecasting of the kind of
cancer that a certain patient su�ers, given its RNA sequence. Di�erent
types of cancer may be in�uenced by di�erent factors. Another example
may be the analysis of food choices that alligators make. Adult alligators
might have di�erent preferences from young ones. Again, entering high school
students make program choices among general program, vocational program
and academic program. Their choice might be modelled using their writing
score and their social economic status.
The rest of this chapter details logistic models for multinomial responses
based on Agresti (2003).

1.1 Generalized Linear Models

Before to de�ne what is the logistic regression model, we brie�y recall the
de�nition of generalized linear model and its main components. Generalized
linear models extend ordinary regression models to encompass non-normal
response distributions. A generalized linear model is de�ned by three com-
ponents:

1. A random component, which identi�es the response variable Y and its
probability distribution;

2. A systematic component, which speci�es the explanatory variables used
to describe the mean response E(Y );

3. A link function, which speci�es the function of E(Y ) that the model
equates to the systematic component.
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The random component consists of a response variable Y with observations
from a distribution in the natural exponential family, that has probability
density function de�ned as

f(yi, θi) = a(θi)b(yi) exp[yiQ(θi)]. (1.1)

The value of the parameter θi may vary depending on values of explanatory
variables. Quantity Q(θi) is known as natural parameter.
The systematic component, relates the linear predictor ηj to the explanatory
variables using a linear model. Let xij be the value of explanatory variable j
for subject i, with i=1,..., N and j = 1,..., p, then

ηi =
∑
j

βjxij.

The link function connects the random and the systematic components. Let
µi = E(Yi) denotes the expected response, i = 1, ..., N . The model connects
µi with ηi by ηi = g(µi), where g is a monotonic di�erentiable function,
namely we have

g(µi) =
∑
j

βjxij, i = 1, ..., N.

1.1.1 Generalized Linear Models for Binary Data

We introduce the concept of generalized linear model for binary responses.
This is the base structure of the model that we will going to construct and
explain in the next sections. Let the response variable Y be binary. The
possible outcomes of each observation are coded as 0 for failure and 1 for
success. The expected value is E(Y ) = Pr(Y = 1|x). Then, denote Pr(Y=1)
by π(x), which re�ects the dependence on the values of the explanatory
variables.
A �rst option is to consider a linear probability model de�ned as

π(x) = α + βx. (1.2)

This speci�cation correspond to a generalized linear model with binomial
random component and identity link function, ηi = µi. The linear probability
model has an important drawback; probabilities fall in the range [0, 1], but
linear functions of explanatory variables may take values over the entire real
line. The linear probability model can be valid only over a restricted range
of x values. When this is likely to happen, it is possible to interpret β as the
amount of change in π(x) for a one-unit increase in x.
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1.2 Logistic Regression Models

Non-linear relationships between π(x) and x are naturally considered with
binary data. Often, a change in x has less impact when π(x) approaches 0
or 1, rather than when this function is near to 0.5. This pattern is observed
in the logistic regression model that assumes

π(x) =
exp(α + βx)

1 + exp(α + βx)
. (1.3)

As x diverges, π(x) monotonically approaches zero or one when β < 0 or
β > 0, respectively. Figure (1.1) shows the typical S-shaped curves of the
logistic regression model.

Figure 1.1: Logistic regression function.
Source: Agresti (2003). Categorical Data Analysis. 2nd Edition. Wiley Series in

Probability and Statistics.

Logistic regression models are often expressed in terms of odds describing
how more likely is a success than a failure. In the logistic model (1.3), the
odds are de�ned as

π(x)

1− π(x)
= exp(α + βx).
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Applying the logarithm (log-odds) to the previous formula we obtain the
following linear relationship

log

[
π(x)

1− π(x)

]
= logit[π(x)] = α + βx. (1.4)

Summarizing, logistic regression is a type of generalized linear model with
binomial random component and a logit link function. For this reason logistic
regression models are also known as logit models.
While, as said before, π(x) needs to be in the range [0,1], the logit can
assume any real value. Real numbers are also the range for linear explanatory
variables that form the systematic component of a generalized linear model,
then logit models do not su�er from the structural problem described before
in the case of the linear probability model.

1.2.1 Interpretation of the Regression Parameters

The sign of β de�nes whether π(x) increases or decreases when x increases.
The rate at which the function increases or decreases depends on the size of
|β|. The response variable Y is independent from X when β = 0. Given that
the logistic density is symmetric the function π(x) approaches 1 at the same
rate that it approaches 0.
Exponentiating both sides of (1.4) we obtain (1.2).This shows that the odds
are an exponential function of x. Hence, the odds increase multiplicatively
by eβ for every 1-unit increase in x. In other terms, eβ is the odds-ratio given
by the odds at X = x+ 1 divided by the odds at X = x.

1.2.2 Multiple Logistic Regression

Like in the case of ordinary linear regression, multiple logistic regression,
extends logistic models to multiple explanatory variables. Let x = (x1, ..., xp)
denote a generic vector of p explanatory variables. The model π(x) = P (Y =
1|x) is de�ned as

logit π(x) = α + β1x1 + β2x2 + · · ·+ βpxp, (1.5)

that can be equivalently formulated as

π(x) =
exp(α + β1x1 + β2x2 + · · ·+ βpxp)

1 + exp(α + β1x1 + β2x2 + · · ·+ βpxp)
. (1.6)

The parameter βi refers to the e�ect of xi on the log odds that Y = 1,
controlling the others xj. Thus, at �xed levels of the others xj, exp(βi) is the
multiplicative e�ect on the odds of a 1-unit increase in xi while all the other
explanatory variables xj (j 6= i) are kept �xed.
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1.2.3 Likelihood-Ratio Test: Model Goodness of Fit

The Likelihood-ratio statistic −2(L0−L1) tests whether all parameters added
into the model M1 are zero with respect to the model M0. The models M1

and M0 must be nested models. The comparison is made between the log-
likelihood L1 for the �tted model M1 with L0 for the simpler model M0. We
denote this statistic with G2(M0|M1) for testing M0, given that M1 holds.
There is also a special case in which the goodness-of-�t statistic G2(M) is
de�ned with M0 = M and M1 corresponds to the saturated model. To test
if the model M is reasonable, we check if all parameters are zero within the
saturated model, while in M they are not. The asymptotic degrees of freedom
are de�ned by the di�erence of the number of parameters between the two
models.
The likelihood-ratio statistic formula for comparing models M1 and M0 is

G2(M0|M1)− 2(L0 − L1)

= −2(L0 − L1)− [−2(L1 − LS)]

= G2(M0)−G2(M1),

where LS denoted the maximized log-likelihood for the saturated model.
In other words, the test statistic comparing two models, is identical to the
di�erence of the goodness-of-�t statistics G2 for the two models.

1.2.4 Fitting Logistic Regression Models

π(xi) =
exp(

∑p
j=1 βjxij)

1 + exp(
∑p

j=1 βjxij)
. (1.7)

Thereafter, it is convenient to incorporate the intercept in the vector of the
coe�cients β and consequently add an explanatory variable equal to 1. The
standard �tting method for the logistic regression models is maximum like-
lihood. The likelihood function is

L(β) =
N∏
i=1

π(xi)
yi [1− π(xi)]

ni−yi

=

{ N∏
i=1

exp

[
log

(
π(xi)

1− π(xi)

)yi]}{ N∏
i=1

[1− π(xi)]
ni

}

=

{
exp

[∑
i

yi log
π(xi)

1− π(xi)

]}{ N∏
i=1

[1− π(xi)]
ni

}
.
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The i-th logit term is
∑

j βjxij, then we have

L(β) =

{
exp[

∑
i

yi(
∑
j

βjxij)]

}{ N∏
i=1

[1− π(xi)]
ni

}
,

that can be written as

L(β) =

{
exp[

∑
j

(
∑
i

yixij)βj]

}{ N∏
i=1

[1− π(xi)]
ni

}
.

Therefore, the log-likelihood is

l(β) =
∑
j

(∑
i

yixij
)
βj −

∑
i

ni log

[
1 + exp

(∑
j

βjxij
)]
, (1.8)

since [1− π(xi)] = [1 + exp(
∑

j βjxij)]
−1. The log-likelihood depends on the

binomial counts only through {
∑

i yixij, j = 1, ..., p}, that is the su�cient
statistic for β. The score function is

∂l(β)

∂βj
=
∑
i

yixij −
∑
i

nixij
exp(

∑
k βkxik)

1 + exp(
∑

k βkxik)
,

and hence the likelihood equations are∑
i

yixij −
∑
i

niπ̂ixij = 0, j = 1, ..., p, (1.9)

where

π̂i =
exp(

∑
k β̂kxik)

1 + exp(
∑

k β̂kxik)
,

is the maximum likelihood estimate of π(xi). The likelihood equations are
not linear in β and require an iterative solution like the Newton-Raphson
method.

1.3 The Multinomial Distribution

The multinomial distribution is the generalization of the binomial distribu-
tion to j possible outcomes. The multinomial distribution is characterized by
a vector of success probabilities p = (p1, ..., pj), where pi ≥ 0 and

∑j
i=1 pi = 1.
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Quantity pi is the probability associated to the i-th outcome. Let Xi repre-
sents the number of times that the i-th outcome appears. We assume that
m =

∑j
i=1Xi. The joint probability function of x = (x1, ..., xj) is de�ned as

Pr(X1 = x1, ..., XJ = xJ) =

(
n

x1 · · ·xJ

)
px1 · · · pxJ ,

where (
n

x1 · · ·xJ

)
=

n!

x1! · · ·xJ !
.

Notice, the marginal distribution of Xi follows a binomial distribution with
parameter p and size n.
The expected value and the variance of X are

E(X) =

np1...
npJ

 ,

Var (X) =


np1(1− p1) −np1p2 · · · −np1pJ
−np1p2 np2(1− p2) · · · −np2pJ

...
...

...
...

−np1pJ −np2pJ · · · npk(1− pJ)

 .

The maximum likelihood estimator of p is

p̂ =

p̂1...
p̂J

 =


X1

n
...
XJ

n

 =
X

n
.

The variance of the maximum likelihood estimator is

Var (p̂) = Var (X/n) = n−2Var (X),

that is

Var (p̂) =


p1(1− p1) −p1p2 · · · −p1pJ
−p1p2 p2(1− p2) · · · −p2pJ

...
...

...
...

−p1pJ −p2pJ · · · pJ(1− pJ)

 .
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1.4 Multinomial Logistic Regression

In section (1.2) we have considered the logistic regression model for binary
categorical responses. In this section we will describe the multinomial logis-
tic regression model, in which Y, the response variable, assumes J possible
outcomes. Multi-category logit models for nominal response variables simul-
taneously describe log odds for all

(
J
2

)
pairs of categories.

Let πj(x) = Pr(Y = 1|x) at x explanatory variables, where
∑

j πj(x) = 1.
We consider the joint counts of the J outcomes of Y as a multinomial random
variable with probabilities {π1(x), ..., πJ(x)}.
Logit models for multinomial responses are expressed in terms of a baseline
category. This model simultaneously describes the e�ects of x on the J - 1
logits computed with respect to the baseline category, that is

log
πj(x)

πJ(x)
= αj + β′jx, j = 1, ..., J − 1, (1.10)

assuming, without loss of generality, that the last category is the reference
one. The described e�ects vary with respect to the baseline category paired
with the response. These J - 1 equations determine the parameters for the
logits with other pairs of response categories since

log
πa(x)

πb(x)
= log

πa(x)

πJ(x)
− log

πb(x)

πJ(x)
.

Therefore, the probability of the j-th outcome is

πj(x) =
exp(αj + β′jx)

1 +
∑J−1

h=1 exp(αh + β′hx)
, j = 1, ..., J, (1.11)

where αJ = 0 and βJ = 0 for model identi�ability.

1.4.1 Fitting of Baseline-Category Logit Models

Let yi = (yi1, ..., yiJ) represents the multinomial trial for subject i, with
yij = 1 when the response is in category j and yij = 0 otherwise. Thus we
have,

∑
j Yij = 1. Moreover xi = (xi1, ..., xip)

′ is the vector of the explanatory
variables values for subject i and βj = (βj1 , ..., βjp)

′ is the parameters vector
for the j-th logit.
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The contribution to the log-likelihood by subject i is

log

[ J∏
j=1

πj(xi)
yij

]
=

J−1∑
j=1

yij log πj(xi) +

(
1−

J−1∑
j=1

yij

)
log

[
1−

J−1∑
j=1

πj(xi)

]

=
J−1∑
j=1

yij log
πj(xi)

1−
∑J−1

j=1 πj(xi)
+ log

[
1−

J−1∑
j=1

πj(xi)

]
,

since πJ = 1 − (π1 + · · · + πJ−1) and YiJ = 1 − (yi1 + · · · + yi,J−1). Assume
N independent observations, then the log likelihood is

log
n∏
i=1

[
πj(xi)

yij

]

=
n∑
i=1

{ J−1∑
j=1

yij(αj + β′jxi)− log

[
1 +

J−1∑
j=1

exp(αj + β′jxi)

]}

=
J−1∑
j=1

[
αj

( n∑
i=1

yij

)
+

p∑
k=1

βjk

( n∑
i=1

xikyij

)]
.

The su�cient statistic for βjk is
∑

i xikyij, j = 1, ..., J − 1 and k = 1, ..., p.
With respect to αj the su�cient statistic is

∑
j yij.

The likelihood equations equate the su�cient statistics to their expected val-
ues. The log likelihood equation is concave and to obtain the maximum
likelihood estimates of β we use the iterative Newton-Raphson method. The
procedure is based on an initial guess on the solution. It then obtains a
sequence of guesses that are computed as approximations of the function to
maximize in a neighbourhood of the previously obtained guess. The resulting
estimates have large-sample normal distribution and their asymptotic stan-
dard errors are the square roots of the diagonal elements of the inverse Fisher
information matrix. An alternative �tting method consists in estimating logit
models separately for the J-1 pairing of responses. A logit model �tted using
this approach is the same as a regular logit model �tted conditionally on
the classi�cation into one of the categories. The j-th baseline-category logit
assumes conditional probabilities

log
πj(x)/[πj(x) + πJ(x)]

πJ(x)/[πj(x) + πJ(x)]
= log

πj(x)

πJ(x)
.

The separate-�tting estimates di�er from the maximum likelihood estimates
based on simultaneous �tting of the J-1 logits. The separate-�tting approach
losses e�ciency because it tends to have larger standard errors. However,
the loss in e�ciency is minor if the response category having the highest
prevalence is the baseline category.
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Chapter 2

Dimensionality Reduction

Methods

In this chapter we will focus on those methods that allow us to reduce the
dimensionality of the design matrix X. Firstly we will discuss about ridge re-
gression and the lasso, which shrink the regression coe�cients using a penalty
term. The two methods act in similar ways but di�er in the nature of the
penalty term and so in the complexity of the solution. We start with the
presentation of ridge and lasso separately and after that we will compare
the two methods to understand their similarities and di�erences. We will
also describe the adaptive lasso that assigns a weighted penalization to the
estimated coe�cients.
The last technique that we will consider is the principal components regres-
sion method, which is derived from principal components analysis. This
method is quite di�erent from the �rst two because it uses the linear com-
bination of the design matrix X within the regression model. This set of
linear combinations allows for dimensionality reduction. We will discuss also
some similarities between the principal components regression method and
the ridge regression method.
The theoretical notions of the next sections came from Hastie et al. (2008)
for the ridge and the lasso regression methods, and from Hastie et al. (2008)
when we describe the principal components regression.

2.1 Ridge Regression

Before to introduce the method of ridge regression, let us recall some basic
notions of linear models and least squares. Given a a design matrix XT =

19



(X1, X2, ..., Xp), we want to predict the response Y through the linear model

Ŷ = β̂0 +

p∑
j=1

Xjβ̂j,

that can also be expressed in matrix form as

Ŷ = β̂0 +XT β̂,

where, β̂ = (β̂1, ..., β̂p). The mos popular �tting method for linear models is
least squares that selects the coe�cient β to minimize the residual sum of
squares

RSS(β) =
N∑
i=1

(yi − xTi β)2.

The residual sum of squares is a quadratic function of the parameters, its
minimum always exists, but it may not be unique. The solution to this
problem can be expressed in matrix form. Write

RSS(β) = (y −Xβ)T (y −Xβ),

where X is a N×p matrix corresponding to the explanatory variables, and y
is an N -vector of the outputs in the training set. Di�erentiating with respect
to β, we get the normal equations

XT (y −Xβ) = 0.

When XTX is non-singular, the unique solution of the problem is given by

β̂ = (XTX)−1XTy.

The �tted value of the i-th input is given by ŷi = ŷ(xi) = xTi β̂.
After this short recall about linear regression methods and least squares, we
can introduce the concept of ridge regression that is part of the shrinkage
methods. Ridge regression shrinks the coe�cient of the regression by im-
posing a penalty on their size. The ridge coe�cients minimize a penalized
residual sum of squares so that

β̂ ridge = argmin
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
, (2.1)
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where λ ≥ 0 is a complexity parameter that controls the amount of shrinkage:
the larger the value of λ the greater the shrinkage. Ridge regression can also
be expressed as

β̂ ridge = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2
,

subject to

p∑
j=1

β2
j ≤ t. (2.2)

The parameters λ and t in the formulas (2.1) and (2.2) are in one-to-one
correspondence. Formulation (2.2) makes clear the shrinking e�ect on the
parameters size.
One motivation for ridge regression arises with correlated explanatory vari-
ables. When there are many correlated variables in the linear regression
model, their coe�cients can be poorly determined and may exhibit high
variance. Indeed, a widely large positive coe�cient on one variable, can be
deleted by a similarly large negative coe�cient on its correlated cousin. This
phenomenon is alleviated imposing a size constraint on the coe�cients . It is
important to notice that ridge solutions are not equivariant under scaling of
explanatory variables, and for this reason it is advisable to standardize the
explanatory variables before computing the ridge solutions.
Another important aspect to take into account is that the intercept has been
left out of the penalty term. The reason of this choice is that including the
intercept into the penalization term will make the procedure dependent on
the origin chosen for the response variable Y. This choice will add a constant
to each of the target yi but will not result in a simple shift of the predictions
by the same amount. Therefore it is convenient to derive the solution of
(2.1) centring the explanatory variables. Proceeding in this way, each xij is

replaced by xij − x̄j. The intercept is then estimated as ȳ = 1
N

∑N
1 yi. The

penalized residual sum of squares previously expressed in (2.1) can also be
rewritten in matrix form as

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ. (2.3)

From this statement, the ridge regression solutions are

β̂ ridge = (XTX + λI)−1XTy, (2.4)

where I is the p × p identity matrix. With the quadratic penalty βTβ, the
solution of the ridge regression is a linear function of the response variable y.
The ridge solution adds a constant to the diagonal of XTX before inversion.
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This transformation makes the problem non-singular even in case in which
the matrix XTX is not of full rank.
In case of orthonormal explanatory variables, the ridge regression estimates
are just a scaled version of the least squared estimates β̂ridge = β̂/(1 + λ).
If we want to look more into the details of the ridge regression nature, we
can analyse the singular value decomposition of the centred design matrix X
of input de�ned as

X = UDVT . (2.5)

In this equation, the matrix U is the N×p orthogonal matrix that spans the
column space of X, while the matrix V is the p × p matrix that spans the
row space of X. The matrix D is diagonal with entries d1 ≥ d2 ≥ ... ≥ dp ≥ 0
called singular values of X. The design matrix is singular when at least one
dj is null. Using the single value decomposition we can express the least
squares �tted vector as

y ols = Xβ̂ ols = X(XTX)−1XTy

= UUTy. (2.6)

Accordingly, the �tted values in ridge regression are

y ridge = Xβ̂ ridge = X(XTX + λI)−1XTy

= UD(D2 + λI)−1DUTy

=

p∑
j=1

uj
d2j

d2j + λ
uTj y, (2.7)

where the uj are the columns of U. Since λ ≥ 0, we have that d2j/(d
2
j +

λ) ≤ 1. Ridge regression computes the coordinates of y with respect to the
orthonormal basis U, then it shrinks these coordinates by d2j/(d

2
j + λ). The

single value decomposition of the centred matrixX gives the expression of the
principal components of X. The sample covariance is given by S = XTX/N
and the eigen decomposition of XTX is

XTX = V D2V T .

The columns of the matrix V correspond to the eigenvectors vj and are
the principal components directions of X. For the �rst principal component
direction v1, we have that z1 = Xv1, that has the largest sample variance
amongst all normalized linear combinations of the columns of X. The sample
variance of z1 is

V ar(z1) = V ar(Xv1) =
d21
N
. (2.8)

22



The vector z1 is called the principal component of X and u1 is the normalized
�rst principal component. The last principal component has minimum vari-
ance, hence the small singular values dj correspond to the directions in the
column space of X having small variance, and then ridge regression shrinks
these directions the most. We will encounter this concept later on, analysing
the principal component regression.
The implicit assumption of ridge regression is that the response will vary
the most in the direction of high variance of the inputs. The largest princi-
pal component is the direction that maximizes the variance and the smallest
principal component is the direction that minimizes the variance. Ridge re-
gression projects y onto these components and then shrinks the coe�cients
of the low-variance components more than those with high-variance.

2.2 The Lasso

Lasso is a shrinkage method like ridge regression, but with substantial dif-
ferences. Lasso estimator is de�ned as

β̂ lasso = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

subject to

p∑
j=1

|βj| ≤ t. (2.9)

As in the case of ridge regression the intercept is not penalized. Again it
is advisable to standardize the explanatory variables in such a way that the
estimator of the intercept is ȳ.
The equivalent, Lagrangian form of lasso is given by

β̂ lasso = argmin
β

{
1

2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|
}
. (2.10)

This formula is very similar to the one of ridge regression, with the important
di�erence that the penalty term is now de�ned as

∑p
1 |βj|. The latter makes

the solution non-linear in the responses yi. The solution of lasso can be com-
puted by solving a quadratic programming problem. E�cient algorithms are
available to solve the entire path of solutions for lasso with the same com-
putational cost needed for ridge regression. The path of solution for lasso is
obtained repeating the computation β̂, changing the value assumed by the
shrinkage term λ.

23



Because of the nature of the constraint used in lasso, making t su�ciently
small will lead some of the coe�cients to be exactly equal to zero. The
parameter t should then be adaptively chosen to minimize an estimate of
expected prediction error, like in the case of the choice of the penalty term
in ridge regression.

2.3 The Adaptive Lasso

What we have seen in (2.10) as Zou (2006) says, shows that lasso penalizes
all coe�cients of the same amount independently of their size. Instead, the
weighted lasso Zou (2006) assigns distinct

βwlasso = argmin
β

∣∣∣∣∣∣∣∣y − P∑
j=1

xjβj

∣∣∣∣∣∣∣∣2 + λ

P∑
j=1

wj|βj|

where the wj are known weights. If the weights are data-dependent and
properly chosen, then the weighted lasso can have the oracle properties and
it is known as adaptive lasso. The oracle property is that the asymptotic
distribution of the estimator is the same as the asymptotic distribution of
the maximum likelihood estimator computed on only the true support, that
is the subset of x whose true coe�cients are not null. That is the estimator
adapts to knowing the true support without paying a price in terms of the
asymptotic distribution (Zou, 2006).
Adaptive lasso is a regularization method that avoids over-�tting, penalizing
coe�cients. It has the same advantage of lasso: it can shrink some of the
coe�cients exactly to zero, performing thus a selection of the attributes with
the regularization. Adaptive lasso seeks to minimize

RSS(β) + λ

P∑
j=1

ŵj|βj|,

where λ is the tuning parameter typically chosen through cross validation.
Weights ŵj perform a di�erent regularization on each coe�cient. Zou (2006)
proposes to set ŵj to

ŵj =
1(

|β̂ inij |
)γ ,

where β̂ inij is an initial estimate of the coe�cients, usually obtained through
ridge regression. Adaptive lasso ends up penalizing those coe�cients with
lower initial estimate. The parameter γ is a positive constant for adjustment
of the adaptive weights vector and can be �xed at 0.5, 1, or 2.
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2.4 Comparison between Ridge Regression and

the Lasso

In the case of orthonormal design matrix X, ridge and lasso have an explicit
solution. Each of them applies a simple transformation to the least squares
estimates β̂j that is summarized in Table 2.1. In Table 2.1, where λ is the

Estimator Formula

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(β̂j − λ)+

Table 2.1: Ridge and lasso estimator for the orthonormal design matrix.

shrinkage constant, sign denotes the sign function and x+ means the positive
part of x.

Figure 2.1: Ridge and lasso estimators (dashed red lines) compared to the or-
dinary least squares estimate (solid grey line). Source: Hastie et al. (2008).
The Elements of Statistical Learning, Data Mining, Inference, and Predic-
tion. 2nd Edition. Springer Series in Statistics.

Ridge regression does a proportional shrinkage, while lasso translates each co-
e�cient by a constant factor λ, truncating at zero: this procedure is known
as soft thresholding. The fact that lasso truncates at zero some of the coe�-
cient is illustrated in Figure 2.1.
To analyse the non-orthogonal case, we will describe ridge and lasso with the
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Figure 2.2: Estimation for the lasso (left) and ridge (right). Source: Hastie
et al. (2008). The Elements of Statistical Learning, Data Mining, Inference,
and Prediction. 2nd Edition. Springer Series in Statistics.

help of some images about two parameters.
Figure 2.2 shows the residual sum of squares that has elliptical contours, in
the �gure plotted in red, centred at the full least squares estimate. The con-
straint region for ridge regression is the disk β2

1 +β2
2 ≤ t2, while the diamond

represents lasso constraint region, that is given by |β1| + |β2| ≤ t. Both ap-
proaches �nd the �rst point where the elliptical contours hit the constraint
region. In particular, looking at the diamond, if the solution occurs at the
corner, this means that there is a parameter βj = 0. When p > 2, there are
many more chances for the estimated parameters to be equal to zero.
It is also possible to generalize ridge and lasso, considering them as maximum
a posteriori estimators of type

β̃ = argmin
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|q
}
, (2.11)

for some q ≥ 0. Thinking of |βj|q as the log-prior density for βj, the |βj|q
are also the equi-contours of the prior distribution of the parameters. In par-
ticular, we have that when q=1, |βj| correspond to the lasso estimators and
when q=2, |βj|2 are the ridge regression estimators. When q ≤ 1, the prior
is not uniform in direction, but it concentrates more mass in the coordinates
directions. For q=1 we have the smallest value such that the constraint re-
gion is convex. If we are considering a non-convex region we can face more
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di�culties is solving the optimization problem.
Ridge and lasso are derived as posterior modes, but it is more common to
use the posterior mean. Ridge estimator it is also a posterior mean, but this
is not true for lasso.
The elastic-net penalty is a compromise between the lasso and ridge regres-
sion

λ

p∑
j=1

(αβ2
j + (1− α)|βj|),

where α determines the combination of ridge and lasso penalty.

2.5 Principal Component Regression

The description of principal components regression requires some basic no-
tions of principal component analysis. Principal components are linear com-
binations of the explanatory variables, ordered by an informative criterion.
The �rst principal component extracts from data the maximum quantity of
information; the next principal components optimize the residual informa-
tion, under the constraint to be uncorrelated with the other components. In
general, if we have observed p>1 variables X1, ..., Xp we can determine the
same amount of linearly independent principal components Z1, ..., Zp. From
this set of linearly independent principal components we consider the subset
of q principal components (1 < q < p) that explains a signi�cant portion of
the information, or typically the variance, contained within the explanatory
variables.
Principal components are often used to obtain dimensionality reduction. In-
deed, the projection of the data into the space of the �rst q principal com-
ponents allow us to study the statistical properties within a smaller space,
hopefully with a limited loss of information. Principal components, as we
will se later on, are also used with regression models when the explanatory
variables are strongly correlated. In this particular case the parameters esti-
mates are unstable or they do not exist. Then, a possible approach to solve
this problem is to substitute the explanatory variables X1, ..., Xp with the
correspondent principal components Z1, ..., Zp, or a subset of them.
The main problem of principal components is their interpretation because
they are arti�cial variables, obtained as a linear combination of the original
input variables. Principal components are typically computed after stan-
dardization of the design matrix. In case of standardization, the covariance
matrix of the standardized data coincides with the correlation matrix of the
explanatory variables and for this reason the principal components will be
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based on the eigenvalues and eigenvectors of the correlation matrix. The
number of principal components is chosen imposing a threshold on the ex-
plained variability by the principal components.
In many situations we need to take into consideration a large number of ex-
planatory variables and often they are strongly correlated. Through the use
of principal component we can obtain a small number of linear combinations
of the original explanatory variables X. The Z are then used in place of the
X as input in the regression procedure.
Principal component regression is a two-step method. First it forms the
derived input columns zm = Xvm, where vm are the principal components
directions as we have seen in the case of ridge regression. The second step is
regressing y on z1, z2, ..., zM for some M ≤ p. Since the zm are orthogonal,
this regression is simply a sum of univariate regressions

ŷ(M)
pcr = ȳ1 +

M∑
m=1

θ̂mzm, (2.12)

where θ̂ = 〈zm, y〉/〈zm, zm〉 is the ratio between the scalar product of the
vector zm and y and the scalar product of zm and itself. Since the zm are
linear combinations of the original xj we can express the equation we have
de�ned in (2.12), in terms of coe�cients of the xj

β̂(M)
pcr =

M∑
m=1

θ̂mvm. (2.13)

As for ridge regression, principal components depends on the scale of the
explanatory variable, for this reason the analysis if performed after stan-
dardization. Note that if M=p, we would just get back to the usual least
squares estimates since the columns of Z=UD span the column space of X.
When M<p, we get a reduced regression. We can understand that principal
components regression is very similar to ridge regression: indeed they both
operate via the principal components of the design matrix. The di�erence
is that with ridge regression we shrink the coe�cient of the principal com-
ponents, the degree of shrinkage depending on the size of the corresponding
eigenvalue, while in principal components regression we discard the p −M
smallest eigenvalue components. Figure 2.3 illustrate the di�erence between
ridge regression and principal components regression.
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Figure 2.3: Ridge regression shrinks the regression coe�cients of the principal
components using the shrinkage factor d2j/(d

2
j +λ), while principal component

regression truncates them. Source: Hastie et al. (2008). The Elements of
Statistical Learning, Data Mining, Inference, and Prediction. 2nd Edition.
Springer Series in Statistics.
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Chapter 3

Simulation study

This chapter illustrates a simulation study that aims to outline the charac-
teristics of the methods described in Chapter 2. After the illustration of the
structure of this simulation we will provide the results with respect to the
log-score of the estimated probabilities and the prediction accuracy of each
method. Then, we will present the distributions of the estimated coe�cients
with the di�erent methods. We will also give a measure of accuracy about
the coe�cients selection performed by the two lasso methods considered. Fi-
nally, we will compare the methods in terms of root mean square error and
we will describe the principal components selected for principal components
regression.Simulations and the real data application are developed using the
R programming language (R Core Team, 2018). ). Computations are made
with the R package glmnet (Friedman et al., 2010) that �ts multinomial
regression models using their Poisson log-linear representation (Rodríguez,
2007).

3.1 Description of the Simulation

The simulation takes into account a categorical response variable with three
levels simulated from the multinomial logistic regression model described in
Chapter 1. The design matrix X is simulated from a multivariate normal dis-
tribution with zero mean, unit variance and exponential correlation between
the explanatory variables of type

Cor(xi, xj) = ρ|i−j|.

The correlation parameter ρ was set equal to 0.0, 0.3, 0.6 and 0.9 in order to
represents di�erent degrees of association between the explanatory variables.
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In the simulation study we consider a designed matrix with 20 simulated
explanatory variables. We considered four di�erent scenarios that di�er in
how much the explanatory variables of the design matrix are correlated and
where the sample dimension is n = 500. We performed an additional scenario
with n = 200 observations and correlation parameter equals to 0.6. We
choose to analyse the case with 200 observations to evaluate the behaviour
of the regression �tting methods when the amount of information available for
each coe�cient of the model is limited. All the �ve scenarios were replicated
500 times.
The coe�cients β and the intercepts α of the multinomial model are de�ned
as:

β = (3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

α = (−0.5, 0.5, 0.0).

The values of β have been chosen to re�ect an hypothetical scenario that
includes important (β = 3), moderately relevant (β = 1) and irrelevant (β =
0) explanatory variables. These two vectors are used to obtain the probability
matrix. The probabilities of the model have been computed according to
(1.11) and are used to generate the multinomial response vector Y. In this
simulation the baseline category corresponds to the last category.
Once the design matrix X and the response vector Y have been simulated we
performed the multinomial logistic regression using �ve di�erent methods:

1. Maximum likelihood;

2. Ridge regression;

3. Lasso;

4. Adaptive lasso;

5. Principal component regression.

We split the design matrix X and the response vector Y into train and test
sets. The train set consider the 80% of the data, while the test set the
remaining 20% of the data.
The penalty parameter of ridge and lasso regression was selected with ten-fold
cross-validation. The measure used for model selection with cross-validation
is the miss-classi�cation error. We computed the predictions on the test
set using the best λ obtained from the cross-validated model which is the
lambda that is at one-standard error of distance from the minimum of the
cross-validated miss-classi�cation error (Hastie et al., 2008).
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We evaluated and compared the �ve methods through the log-score de�ned
as

L = −
∑
i∈test

log
[
P̂ r(Yi = yi|xi)

]
,

where P̂ r denotes the estimated prediction probability using the information
available in the train test. We provided the prediction accuracy percentage
given by the number correct predictions.
Thereafter, we illustrate the estimated coe�cients with three representative
coe�cients, namely:

1. Coe�cient β1 = 3 that has an high e�ect on the model response;

2. Coe�cient β9 = 1 that has a moderate e�ect on the model response;

3. Coe�cient β16 = 0 that has a negligible e�ect on the model response.

The distribution of the estimated coe�cients are represented using multiple
paired-boxplots. For the two lasso methods we describe the percentage of
correctly selected explanatory variables. For the maximum likelihood, the
ridge and the two lasso methods we also report the root mean square error
de�ned as:

RMSE =

√
E(β̂j − βj)2 + V ar(β̂j).

With respect to principal components regression, we reported the number of
principal components selected in a way to reach 70% of the overall standard
deviation.

3.2 Simulations Results

3.2.1 Log-Score

Figure 3.1 refers to the scenario with the correlation parameter equal to zero.
The �gure shows that the model with the minimum log-score is the maxi-
mum likelihood, followed by adaptive lasso and lasso. Principal components
regression and ridge show the higher values of the log-score in this scenario.
Ridge regression is the method with the highest log-score. Lasso and adap-
tive lasso log-scores are more or less equivalent. The two lasso methods have
the less variable log-scores, while principal components regression, ridge and
maximum likelihood �tting methods have more variable log-scores.

Figures 3.2 and 3.3 display the log-scores when the correlation parameter
is 0.3 and 0.6, respectively. The log-scores of maximum likelihood have an
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Figure 3.1: Boxplots of the simulated log-scores for the �tting methods when
the correlation parameter is equal to 0.

high variability. Ridge is the method with the highest log-score. Lasso and
adaptive lasso seem to su�er a little bit more the variability of the predictions,
and their log-scores are quite similar. The log-score of principal components
regression improves with respect to the case of the correlation parameter
equal to zero. As the correlation between the explanatory variables increases
the number of grossly incorrect predictions in all the multinomial regres-
sion �tting methods rises. Figure 3.3 shows that maximum likelihood and
ridge have the highest variability in the log-scores. Lasso and adaptive lasso
log-scores tend to be more concentrated. They maintain, as in the case of
correlation equal to 0.3, a relatively low variability in log-scores compared
with the other three methods. Principal components regression has the best
log-score among the considered methods when the correlation parameter is
0.6.

Figure 3.4 reports the result of the scenario with correlation parameter
equal to 0.9. Maximum likelihood has an high variability in log-scores. We
observe some grossly incorrect predictions in all the regression �tting meth-
ods. Ridge maintains its log-score similar to those presented in the previous
scenarios. The variability in log-scores of ridge in this case is a little bit lower
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Figure 3.2: Boxplots of the simulated log-scores for the �tting methods when
the correlation parameter is equal to 0.3.

than lasso and adaptive lasso. Lasso and adaptive lasso log-scores increased
and also their variability. Principal components regression is the method
with the lower log-score. Principal components regression variability is more
or less similar to the one we observe in lasso and adaptive lasso.

Figure 3.5 provides the scenario with correlation parameter equal to 0.6
and n = 200 observations. Maximum likelihood su�ers the limited amount
of observations. It shows a log-score that is really high compared to those
of the other methods. Ridge, lasso and adaptive lasso do not su�er from
the change in sample dimensions. Their log-scores follows the same trend
observed when considering n = 500. Principal components regression shows
an higher variability compared to ridge lasso and adaptive lasso. Principal
components regression su�ers a little bit the reduction of the sample dimen-
sions.
With 500 observations we observe that as the correlation between the ex-
planatory variables increases the variability in maximum likelihood log-scores
tends to increase. Ridge reduces its variability as the correlation between the
explanatory variables increases. Its log-scores tend to remain similar in all
the scenarios. Lasso and adaptive lasso have quite the same log-scores re-

35



Figure 3.3: Boxplots of the simulated log-scores for the �tting methods when
the correlation parameter is equal to 0.6.

gardless of the correlation parameter value. Finally, principal components
regression tends to improve its log-score, also in terms of variability, as the
correlation parameter value increases.
The four dimensionality reduction methods provide a better control on the
variability of the data with respect to maximum likelihood, that is much
more sensible to the variability, to the correlation between the explanatory
variables and to the sample size.

3.2.2 Prediction Accuracy

Table 3.1 shows that as the correlation between the explanatory variables in-
creases all methods improve their prediction accuracy. Maximum likelihood
is the best method when the correlation parameter is equal to zero. Maximum
likelihood as the correlation raises, despite the increased prediction accuracy,
became the less accurate method. Ridge has a moderate prediction accuracy.
Its prediction accuracy overcome the one of maximum likelihood only when
the correlation parameter is equal to 0.9. Lasso always performs well and
assumes high values of prediction accuracy. When the correlation parameter
is equal to zero, the di�erence with respect to maximum likelihood is really
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Figure 3.4: Boxplots of the simulated log-scores for the �tting methods when
the correlation parameter is equal to 0.9.

Table 3.1: Prediction accuracy for all the performed scenarios.

small. The prediction accuracy of adaptive lasso is lower compared to lasso
but almost in all the scenarios adaptive lasso performs better than ridge and
maximum likelihood. Finally, principal components regression shows a really
poor prediction accuracy when the correlation parameter is equal to zero.
As the correlation raises, the prediction accuracy of principal components
regression improves and when the correlation parameter is equal or greater
than 0.6 it becomes the best regression �tting method. The increasing of
correlation between the explanatory variables improves the performances of
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Figure 3.5: Boxplots of the simulated log-scores for the �tting methods when
the correlation parameter is equal to 0.6 and the sample size is n = 200.

the dimensionality reduction methods, while in maximum likelihood causes
a decreasing of prediction accuracy. The results in Figure 3.6 are equivalent
to those reported in Table 3.1.

3.2.3 Estimated Coe�cients

The results discussed below do not include principal components regression
since its coe�cients have a di�erent meaning than those estimated by maxi-
mum likelihood, ridge regression and lasso.
The distribution of maximum likelihood estimates of β1 coe�cients is not
centred around the true value, as shown in Figures 3.7, 3.10, 3.13 and 3.16.
As the correlation between the explanatory variables increases, maximum
likelihood variance tends to increase. Maximum likelihood estimates of β9
are more centred around the true value, as shown if Figures 3.8, 3.11, 3.14
and 3.171. The variance raises as the correlation parameter value increases.
Maximum likelihood estimates of β16 are centred on the true value, but there
is an high variance.
Ridge estimates of β1 tend to be more concentrated around zero as the cor-
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Figure 3.6: Lines plot of the prediction accuracy for all regression �tting
methods as the correlation parameter value increases.

relation between the explanatory variables increases. Ridge estimates of β9
tend to approach the true value as the correlation raises. Ridge estimates of
β16 are always centred and concentrated towards the real value. The higher
is the correlation parameter value, the more ridge estimates of β16 are con-
centrated around the true value. Lasso estimates of β1, β9 and β16 are similar
to ridge. Lasso has an higher variance compared to ridge, as shown in Fig-
ures 3.11 or 3.16. Lasso estimates of β16 are more concentrated towards the
real value with respect to ridge, since lasso shrinks the estimated coe�cients
exactly to zero. The distributions of adaptive lasso estimates is similar com-
pared to ridge and lasso. However, we observe that adaptive lasso variance
is higher in particular in correspondence of the estimates of β1 and β9, as
shown in Figure 3.13. The adaptive lasso estimates of β16 are more similar
to lasso distribution. However, in some cases we observe an higher number
of outliers in adaptive lasso, as shown in Figure 3.12.
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Figure 3.7: Boxplots of the estimated coe�cients for β1 with the di�erent
�tting methods when the correlation parameter is equal to zero. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.8: Boxplots of the estimated coe�cients for β9 with the di�erent
�tting methods when the correlation parameter is equal to zero. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.9: Boxplots of the estimated coe�cients for β16 with the di�erent
�tting methods when the correlation parameter is equal to zero. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.10: Boxplots of the estimated coe�cients for β1 with the di�erent
�tting methods when the correlation parameter is equal to 0.3. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.11: Boxplots of the estimated coe�cients for β9 with the di�erent
�tting methods when the correlation parameter is equal to 0.3. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.12: Boxplots of the estimated coe�cients for β16 with the di�erent
�tting methods when the correlation parameter is equal to 0.3. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.13: Boxplots of the estimated coe�cients for β1 with the di�erent
�tting methods when the correlation parameter is equal to 0.6. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.14: Boxplots of the estimated coe�cients for β9 with the di�erent
�tting methods when the correlation parameter is equal to 0.6. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.15: Boxplots of the estimated coe�cients for β16 with the di�erent
�tting methods when the correlation parameter is equal to 0.6. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.

48



Figure 3.16: Boxplots of the estimated coe�cients for β1 with the di�erent
�tting methods when the correlation parameter is equal to 0.9. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.17: Boxplots of the estimated coe�cients for β9 with the di�erent
�tting methods when the correlation parameter is equal to 0.9. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.18: Boxplots of the estimated coe�cients for β16 with the di�erent
�tting methods when the correlation parameter is equal to 0.9. Left panel:
coe�cients for category 1. Right panel: coe�cients for category 2. The
horizontal line correspond to the true value.
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Figure 3.19: Boxplots of the estimated coe�cients for β1 with the di�erent
�tting methods when the correlation parameter is equal to 0.6 and the sample
size is equal to n = 200. Left panel: coe�cients for category 1. Right panel:
coe�cients for category 2. The horizontal line correspond to the true value.

52



Figure 3.20: Boxplots of the estimated coe�cients for β9 with the di�erent
�tting methods when the correlation parameter is equal to 0.6 and the sample
size is equal to n = 200. Left panel: coe�cients for category 1. Right panel:
coe�cients for category 2. The horizontal line correspond to the true value.
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Figure 3.21: Boxplots of the estimated coe�cients for β16 with the di�erent
�tting methods when the correlation parameter is equal to 0.6 and the sample
size is equal to n = 200. Left panel: coe�cients for category 1. Right panel:
coe�cients for category 2. The horizontal line correspond to the true value.
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3.2.4 Lasso Selection

The explanatory variables that we expect the two lasso methods will select
are those for which β = 3 and β = 1. The explanatory variables that should
be shrunk to zero are those for which β = 0. When the correlation parameter
is equal to zero as shown in Table 3.2, lasso has a very good performance
in selecting the truly non-null explanatory variables and exclude that are
really irrelevant. Adaptive lasso has a lower accuracy with respect to lasso
either in selecting the important explanatory variables and excluding the
non-important ones. This is observable in all the scenarios shown in Tables
3.3, 3.4, and 3.5. As the correlation increases the performance in selecting
the explanatory variables decreases in both methods. When the correlation
parameter value raises, lasso and adaptive lasso tend to exclude more the
explanatory variables rather than selecting them.

Method Correct selection (%) Correct exclusion (%)
Lasso 95.78 75.04
Adaptive lasso 83.24 75.50

Table 3.2: Lasso and adaptive lasso accuracy in selecting the explanatory
variables when the correlation parameter is equal to zero.

Method Correct selection (%) Correct exclusion (%)
Lasso 96.04 84.78
Adaptive lasso 83.38 81.16

Table 3.3: Lasso and adaptive lasso accuracy in selecting the explanatory
variables when the correlation parameter is equal to 0.3.

Method Correct selection (%) Correct exclusion (%)
Lasso 92.20 90.06
Adaptive lasso 80.76 90.08

Table 3.4: Lasso and adaptive lasso accuracy in selecting the explanatory
variables when the correlation parameter is equal to 0.6.

3.2.5 Root Mean Square Errors

Since the estimated coe�cients from the principal components regression
have a di�erent meaning from those of the other methods we exclude the
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Method Correct selection (%) Correct exclusion (%)
Lasso 76.72 94.68
Adaptive lasso 65.84 96.78

Table 3.5: Lasso and adaptive lasso accuracy in selecting the explanatory
variables when the correlation parameter is equal to 0.6.

principal components regression from the comparisons in terms of root mean
square error discussed below.
Maximum likelihood root mean square error is lower compared to the other
methods if we consider the �rst ten estimated coe�cients that are truly non-
zero. The other three methods that perform shrinkage on the estimated
coe�cients show an higher bias looking at the �rst ten β̂ coe�cients. On the
other hand as shown in Tables 3.6, 3.7, 3.8, and 3.9, the root mean square
error for the last ten estimated coe�cients is lower in ridge, lasso and adap-
tive lasso, compared to maximum likelihood β̂ coe�cients.
In general, as the correlation raises, we observe an increasing of root mean
square error for all the methods, for the �rst ten estimated coe�cients. Ridge,
lasso and adaptive lasso root mean square errors decreases in the last ten β̂
coe�cients as the correlation rises.

3.2.6 Selected Principal Components

We considered two scenarios to describe principal components regression.
The �rst scenario takes into account a sample with n = 200 observations,
the second a sample with n = 500 observations. In both scenarios the corre-
lation parameter value is equal to 0.6. The number of principal components
selected with n = 200 oscillates between ten and eleven. When the number
of observations is equal to n = 500 the number of selected principal compo-
nents stabilize to eleven.
We expect that principal components regression selects a number of princi-
pal components inferior to the total number of explanatory variables in the
design matrix. As we can see in Table 3.10 when the correlation parameter
value is equal to zero, the selected principal components are 14, that is a
discrete reduction in dimensionality compared to the original 20 explanatory
variables. As the correlation rises the number of selected principal compo-
nents decreases. Table 3.10 shows that when the correlation parameter is
equal to 0.9 the principal components regression selects seven principal com-
ponents, a remarkable reduction of dimensionality.
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Table 3.6: Root mean square error for the �tting methods when the correlation
parameter is equal to zero.
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Table 3.7: Root mean square error for the �tting methods when the correlation
parameter is equal to 0.3.
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Table 3.8: Root mean square error for the �tting methods when the correlation
parameter is equal to 0.6.
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Table 3.9: Root mean square error for the �tting methods when the correlation
parameter is equal to 0.9.

Correlation Principal components
0.0 14
0.3 13
0.6 11
0.9 7

Table 3.10: Number of selected principal components when the sample size is
equal to n = 500, as a function of the correlation parameter ρ.
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Chapter 4

New York Police Department

Crimes Data

The case study discussed in this chapter is based on an open dataset retrieved
from the NYC OpenData website (NYCOpenData, 2018). This archive col-
lects a huge amount of open data that the New York City authorities provide
to the public. The dataset includes the crimes that the New York Police De-
partment reported from 1972 to 2018. The objective is to build a multinomial
logistic regression model for prediction of the "crime category" classi�ed as
felony, misdemeanor or violation. The prediction is made on the basis of the
information contained in a series of explanatory variables that are the char-
acteristics of the victims and the suspects, the place in which the complaint
took place, the description of the crime and the competent jurisdiction.

4.1 Case Study De�nition

For the majority of the reported years the amount of missing data is sub-
stantial so that we do not have enough information to perform a good data
analysis. Thus we took into account only the year 2018 for which have been
provided a satisfactory crimes description. We aimed to predict the crime cat-
egories that the New York Police Department assign to the di�erent crimes.
The crime category is classi�ed in three levels:

1. Felony crimes;

2. Misdemeanor crimes;

3. Violation crimes.
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In addition to the crime category, the dataset includes various explanatory
variables:

• Complaint from date: The date of occurrence of the crime;

• Complaint time from: The time of occurrence of the crime;

• Complaint to date: The ending date of occurrence of the crime;

• Complaint to time: The ending time of occurrence of the crime;

• Reported date: The crime date reported to the police;

• Key Code: Three digits code to classify the crime;

• Key code o�ence description: Description of the crime, corresponds to
the crime code;

• Police department code: A three digits code used by the police depart-
ment to internally classify the crime;

• Police department description: The description of the crime that cor-
responds to the internal classi�cation code provided by the police de-
partment;

• Crime Complete: The indication if the crime have been completed,
attempted or prematurely interrupted;

• Jurisdiction description: The jurisdiction responsible for the reported
crime;

• Borough name: The name of the borough in which the crime occurs;

• Precinct code: The precinct code in which the crime occurs;

• Location of occurrence description: The speci�c location of occurrence
of the crime, in or around the premises;

• Premises type description: The description of the premises at which
the crime occurs;

• Parks name: If applicable, the name of the park at which the crime
occurs;

• Authority development : The name of the housing authority develop-
ment of occurrence, if applicable to the crime;
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• Suspect age group: The group of age of the suspect (for example 18-24);

• Suspect race: The ethnicity of the crime suspect;

• Suspect sex : The sex of the crime suspect;

• Victim age group: The group of age of the crime victim (for example
18-24);

• Victim race: The ethnicity of the crime victim;

• Victim sex : The sex of the crime victim;

• X-coordinate: X-coordinate for the New York State Plane Coordinate
System;

• Y-coordinate: Y-coordinate for the New York State Plane Coordinate
System;

• Latitude:The latitude coordinate for the Global Coordinate System,
decimal degrees;

• Longitude: The longitude coordinate for the Global Coordinate System,
decimal degrees.

From these explanatory variables we selected a subset used to perform the
multinomial logistic regression. We decided to use only the subset of ex-
planatory variables that are of higher interest for the problem. The selected
explanatory variables are:

• Location of occurrence;

• Borough name;

• Crime Complete;

• Jurisdiction description;

• Suspect race;

• Suspect sex;

• Victim race;

• Victim sex.
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The experiment takes into account as train set the months of Jenuary,February,
March and April 2018. We then made predictions on the test set that con-
tains the crimes reported in May and June 2018. The train set is de�ned
by 5677 observations and the test set by 2839 observations. Since some of
the levels of the explanatory variables have substantially small number of
observations, we dropped them from the analysis. The sample size is equal
to 8516 observations and 20 explanatory variables.
The frequency distribution of the response variable law category is described
in Table 4.1 and Figure 4.1. We observe that the most observed crime cat-
egory is the misdemeanor with 3884 observations. The other two categories
have quite similar frequencies, the felony crimes are 2229 and the violations
crimes are 2403.

Law category Frequency
Felony 2229
Misdemeanor 3884
Violation 2403

Table 4.1: Distribution of the response variable law category.

The distribution of Location of occurrence is described in Table 4.2. The
majority of the crimes occur inside the location. We observe that the �rst
two levels have high frequency, while Opposite of and Rear of frequencies
are substantially smaller.

Location of occurrence Frequency
Front of 1917
Inside 6406
Opposite of 105
Rear of 88

Table 4.2: Distribution of the response variable law category.

The distribution of Borough name is described in Table 4.3. We see that
the borough in which the crimes frequency is higher is Brooklyn, while the
lower frequency corresponds to Staten Island.

The distribution of Crime complete is summarized in Table 4.4, and we
observe that almost all the reported crimes have been completed.
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Figure 4.1: The response variable frequencies.

Borough Frequency
Bronx 2208
Brooklyn 2530
Manhattan 1798
Queens 1544
Staten Island 436

Table 4.3: Distribution of the explanatory variable Borough.

Crime Complete Frequency
Completed 8387
Not completed 129

Table 4.4: Distribution of the explanatory variable Crime complete.

The distribution of Jurisdiction description (Table 4.5) shows that the
most observed level is the N.Y. police department.

The distribution of Suspect race described in Table 4.6 shows the majority
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Jurisdiction description Frequency
N.Y. Housing Police 986
N.Y. Police Dept. 7530

Table 4.5: Distribution of the explanatory variable Crime complete.

of observation if the suspect ethnicity is black or unknown or white Hispanic.

Suspect race Frequency
Black 3255
Black Hispanic 534
Unknown 2144
White 906
White Hispanic 1677

Table 4.6: Distribution of the explanatory variable Suspect race.

Table 4.7 describe the distribution of Suspect sex. They show that the
majority of the crimes are committed by men, more than the double with
respect the crimes committed by women. The third level corresponds to an
unknown gender of the suspect.

Suspect sex Frequency
F 1935
M 4909
U 1672

Table 4.7: Distribution of the explanatory variable Suspect sex.

The distribution of Victim race is described in Table 4.8. It shows the
majority of observations in correspondence of the level black. From what has
been observed in the case of the suspect ethnicity we can say that there is
an high number of black people that commit crimes, but also a large portion
of the population that is victim of crimes is often a black person.

Table 4.9 shows the two levels of the explanatory variable Victim sex.
We can observe that in the most of the cases the victims of the committed
crimes are the women with 5224 observations.
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Victim race Frequency
Black 3389
Black Hispanic 525
Unknown 526
White 1753
White Hispanic 2323

Table 4.8: Distribution of the explanatory variable Victim race.

Suspect sex Frequency
F 5224
M 3292

Table 4.9: Distribution of the explanatory variable Victim sex.

It is useful to summarize the joint distribution of the response with each of
the considered explanatory variables. Table 4.10 we observe that the major-
ity of the misdemeanor crimes are committed inside the location. In general,
there is an higher frequency of felony and violation crimes committed inside
the location. There are cases in which the crime is committed in front of the
location, in particular in misdemeanor crimes.

Borough Felony Misdemeanor Violation
Front of 548 886 483
Inside 1628 2889 1889
Opposite of 65 68 16
Rear of 29 44 15

Table 4.10: Distribution of the explanatory variable Location of occurrence
with respect to the three response categories.

From Table 4.11 we can observe that the level Brooklyn has the majority
of observations for all the three levels of the response. This means that in the
Brooklyn borough there is in general an higher concentration of crimes. We
can also observe that Manhattan and Bronx levels show a high frequency, in
particular in correspondence of misdemeanor crimes.

In Table 4.12 we can observe that in case of felony crimes there is an
higher frequency of attempted crimes with respect to the other two crime
categories. The occurrence of non completed crimes with respect to the vi-
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Borough Felony Misdemeanor Violation
Bronx 509 1059 640
Brooklyn 697 1129 704
Manhattan 511 833 454
Queens 424 691 429
Staten Island 88 172 176

Table 4.11: Distribution of the explanatory variable Borough name with re-
spect to the three response categories.

olation category is almost near to zero. This means that is more common
that a violation crime is completed with respect to the other two categories.

Crime completed Felony Misdemeanor Violation
Completed 2125 3866 2396
Not completed 104 18 7

Table 4.12: Distribution of the explanatory variable Crimes completed with
respect to the three response categories.

The distribution of Jurisdiction description described in Table 4.13 shows
that the most observed level is N.Y. Police Dept. in all the three crime cat-
egories.

Jurisdiction description Felony Misdemeanor Violation
N.Y. Housing Police 258 477 251
N.Y. Police Dept. 1971 3407 2152

Table 4.13: Distribution of the explanatory variable Jurisdiction description
with respect to the three response categories.

The distribution of Suspect race with respect to the three response cat-
egories is observable in Table 4.14. We observe that is more frequent that
the suspect of a misdemeanor is a black person. The unknown level is the
second most represented in the three crime categories.

In Table 4.15 we observe that the men commit the highest number of
misdemeanor crimes and, in general, all the crime categories. There is a low
frequency of women suspected of felony crimes.
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Suspect race Felony Misdemeanor Violation
Black 864 1431 960
Black Hispanic 267 210 140
Unknown 685 1027 432
White 173 316 389
White Hispanic 380 815 482

Table 4.14: Distribution of the explanatory variable Suspect race with respect
to the three response categories.

Suspect sex Felony Misdemeanor Violation
F 372 796 767
M 1243 2259 1407
U 614 829 229

Table 4.15: Distribution of the explanatory variable Suspect sex with respect
to the three response categories.

The joint distribution of Victim race and the crime category is reported
in Table 4.16. We observe that black people are the most frequent victims
for all the crime categories followed by white Hispanic.

Victim race Felony Misdemeanor Violation
Black 865 1558 966
Black Hispanic 123 252 150
Unknown 142 239 145
White 512 712 529
White Hispanic 587 1123 613

Table 4.16: Distribution of the explanatory variable Victim race with respect
to the three response categories.

The distribution of Victim sex is described in Table 4.17 and shows that
men victims are less frequent in all crime categories with respect to the
women.

4.2 Results

The explanatory variables have been coded in a series of dummy variables
for inclusion in the multinomial logistic regression model. Thereafter, the
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Victim sex Felony Misdemeanor Violation
Female 1246 2360 1618
Male 983 1524 785

Table 4.17: Distribution of the explanatory variable Suspect sex with respect
to the three response categories.

dummy variables will be denoted in tables and �gures with the following
compact names:

• Location of occurrence:

� Inside;

� Opposite_Of;

� Rare_Of;

• Borough name:

� Brooklyn;

� Manhattan;

� Queens;

� Staten Island;

• Suspect race:

� Susp_Black_Hispanic;

� Susp_Race_Unknown;

� Susp_White;

� Susp_White_Hispanic;

• Suspect sex :

� Susp_Sex_M;

� Susp_Sex_Unknown;

• Victim race:

� Vict_Black_Hispanic;

� Vict_Race_Unknown;

� Vict_White;
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� Vict_White_Hispanic;

• Victim sex :

� Vict_Sex_M;

• Crime_Complete;

• Juris_Police_Dept;

4.2.1 Log-Scores and Prediction Accuracy

As shown in Table 4.18 adaptive lasso has the best log-score followed by max-
imum likelihood. Ridge loses slightly in terms of log-score. Lasso log-score
is better that ridge and similar to adaptive lasso and maximum likelihood.
Principal components regression tends to perform worst than lasso, adaptive
lasso and maximum likelihood, but it has a log-score better that ridge. Max-
imum likelihood low log-score value might be explained by the satisfactory
number of observations contained in the train set. This allows to appre-
ciate the asymptotic optimality of maximum likelihood estimation. Table
4.18 also contains the baseline log-score computed using the frequency of the
three output categories in the train set. In other terms, the baseline log-score
corresponds to the predictions obtained without using the information con-
tained in the explanatory variables. The amount of information provided by
the explanatory variables improve the performance of the �tting methods in
terms of log-score.

Method Log-score
Baseline log-score 3035.41
Maximum likelihood 2952.85
Ridge 2989.49
Lasso 2954.61
Adaptive Lasso 2951.17
Prin. Comp. Analysis 2975.14

Table 4.18: Log-scores for the multinomial regression methods.

Figure 4.2 reports the boxplots of the single components of the log-scores.
This �gure illustrates how maximum likelihood exposes to the risk of grossly
incorrect predictions with respect to ridge, lasso and adaptive lasso that
shrunk the predictions in this way reducing such risk. Principal components
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Figure 4.2: Log-scores distributions for the �tting methods.

regression is more exposed to the risk of incorrect predictions than ridge and
the two lasso methods.
Table 4.19 shows that prediction accuracy is substantially equivalent for all
methods, with maximum likelihood performing a little bit better than the
other four methods. The prediction accuracy of the considered methods as-
sume values between 45% and 47% and they outperform the baseline accuracy
equal to 25%. The baseline accuracy prediction is referred to the predictions
made without the information contained in the explanatory variables. The
addition of the explanatory variables results into a strong improvement of
the prediction accuracy with all the �tting methods.

The fact that methods that reduce the dimensionality perform compara-
bly to maximum likelihood is an indication that a subset of the explanatory
variables is su�cient.

4.2.2 Estimated Model Coe�cients

Coe�cients estimated with maximum likelihood, ridge, lasso and adaptive
lasso are reported in Table 4.20. As for the simulation study, since the co-
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Method Prediction accuracy %
Baseline 25.40
Maximum likelihood 47.31
Ridge 46.21
Lasso 46.43
Adaptive Lasso 46.57
Prin. Comp. Analysis 45.79

Table 4.19: Log-scores table for the multinomial regression methods.

e�cients estimated by the principal components regression have a di�erent
meaning from those computed with the other four methods, we have not
reported them in these results, but we will describe them later on.
Table 4.20 reports the values of the estimates. The sign of the estimates
denotes if the explanatory variable is positively or negatively associated to a
crime category. Maximum likelihood does not perform the shrinkage on the
coe�cients and we observe that in general its coe�cients have higher values
with respect to the other methods. Maximum likelihood estimates indicate
that it is more likely to observe a felony crime instead of a violation crime
when the suspect is a man or the sex of the suspect is unknown, rather than
a woman. Even in case of misdemeanor crimes instead of violation crimes
it is more probable that the sex of the victim is man or unknown instead of
woman. We observe also that it is less probable to observe a felony instead
of a violation crime when the suspect is white or its ethnicity is unknown,
rather than the suspect ethnicity is black. From the estimates of maximum
likelihood we observe that it is more probable that a felony instead of a vio-
lation crime is committed in the borough of Brooklyn or Manhattan rather
than in the Bronx. It is more probable that a misdemeanor crime instead of
a violation crime is committed opposite of the location rather than in front of
the location. Maximum likelihood estimates show that it is more likely that
the crime is committed rear of the location instead of in front of the location
in felony crimes instead of violation crimes. Then in felony crimes instead
of violations crimes it is more probable that the victim is a man rather than
a woman. Finally, it is more probable that the crime is not completed in
felony crimes instead of violation crimes. What we have observed for max-
imum likelihood estimates holds also in ridge regression, lasso and adaptive
lasso estimates.
Ridge assigns lower coe�cients as e�ect of the shrinkage compared to max-
imum likelihood. Looking at lasso we observe the e�ect of the shrinkage on
the coe�cients. For example the explanatory variables Rear of, Brooklyn,
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Manhattan and Queens are estimated to be exactly zero. Adaptive lasso
assigns higher absolute values to those variables that also in ridge assume
higher absolute values, and shrinks more the variables that are considered
non-important by ridge. This is because the initial estimates of the coef-
�cients in adaptive lasso are obtained through ridge regression. Adaptive
lasso excludes the explanatory variables Victim black Hispanic, Victim race
unknown, Victim white and Victim white Hispanic.

Table 4.20: Table of the estimated coe�cients. We highlighted the most im-
portant coe�cients in red.

4.2.3 Principal Components Regression Analysis

Figure 4.3 shows the portion of the cumulative standard deviation explained
by the principal components of the design matrix. We decided to consider
the principal components that cumulate the 70% of the standard deviation.
With respect to the initial 20 explanatory variables, the number of selected
principal components is twelve corresponding to a good dimensionality re-
duction. The �rst four principal components explain only the 25% of the
cumulative standard deviation of the data. Instead, if we consider the �rst
eight principal components the portion of cumulative standard deviation ex-
plained becomes 50%.
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Figure 4.3: Principal components for the principal components regression.

Table 4.21 shows the loadings of the explanatory variables. We consider
important the correlations that are above 40%. The �rst principal component
is negatively correlated to a black suspect and positively to unknown suspect
race. There is a positive correlation with a man suspect but negative when
the sex of the suspect is unknown. The second principal component is nega-
tively correlated with white suspect and to white victim. The third principal
component is negatively correlated with the borough Queens. The fourth
principal component is highly negatively correlated to the borough Brooklyn
and positively correlated with the Manhattan borough. The �fth principal
component is negatively correlated to the location inside and positively cor-
related with black Hispanic suspect and black Hispanic victim. The sixth
principal component has negative correlation with the borough Manhattan
but positive with the borough Queens. The seventh principal component is
highly positively correlated to victim ethnicity unknown. The eighth princi-
pal component has a negative correlation with the borough Manhattan and
positive to the borough Queens. It is also negatively correlated to crime com-
plete. The ninth component is strongly positively correlated to the borough
Staten Island. The tenth principal component has positive correlation with
a male victim and with the police department jurisdiction. The eleventh
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principal component is positively correlated to location opposite of, and neg-
atively to the location rear of. We observe also a strong negative correlation
with crime complete. The last principal component is negatively correlated
to black Hispanic suspects, and it is positively correlated to white Hispanic
suspects and black Hispanic victims.
From the loadings emerges that the �rst principal component denotes that
the suspect ethnicity is not unknown and the suspect sex is man and not
unknown. The second principal component denotes that the victim and the
suspect are not white and that the victim is white Hispanic. The third
principal component denotes that the borough is not Queens. The fourth
principal component denotes that the borough is Manhattan. The seventh
principal component denotes that the victim sex is unknown. The ninth
principal component denotes that the crime occurs in the borough Staten
Island. The eleventh principal components denotes that the crime occurs
opposite of the location and not rare of the location and that the crime has
not been completed. The last principal component denotes that the crime
is not committed by a black Hispanic suspect and that the suspect is white.
The last principal components denotes also that the victim is black Hispanic.

Table 4.21: Loadings of the principal components.
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Conclusions

In the real data application and in the simulation study, we applied �ve �t-
ting methods for multinomial regression that are characterized by di�erent
behaviour and performance. Maximum likelihood does not provide dimen-
sionality reduction, su�ers for asymmetry and sparsity of explanatory vari-
ables. For this reason, maximum likelihood exposes to the risk of grossly
incorrect predictions. Maximum likelihood performances decreases as the
correlation between the explanatory variables raises. As saw in the simu-
lation study, maximum likelihood provides better predictions if there is a
substantial sample dimension.
Ridge regression penalizes the explanatory variables coe�cients shrinking
them to zero. Lasso performs a selection of the explanatory variables coef-
�cients since non-important coe�cients can be estimated to be exactly zero
so that the corresponding explanatory variables are excluded from the anal-
ysis. Adaptive lasso shrinks the non-important coe�cients to zero, starting
from initial estimates obtained by ridge regression. Therefore, adaptive lasso
performs a di�erent penalization on each coe�cient with respect to lasso,
because it aims to preserve important explanatory variables. Ridge, lasso
and adaptive lasso performances are less in�uenced by the sample size with
respect to maximum likelihood as shown in the simulation study. In the real
data application ridge tends to shrinks the non-important explanatory vari-
ables towards zero, while lasso and adaptive lasso select some explanatory
variables and shrinks to zero some others. Adaptive lasso consider important
the explanatory variables that also for ridge are important and shrinks to
zero or assigns very little importance to the explanatory variables that are
also non-important in ridge.
Principal components regression reduces the dimensionality through the prin-
cipal components analysis of the original explanatory variables. These princi-
pal components are used as explanatory variables in the multinomial logistic
regression model. Principal components regression is more sensible to the
sample size compared to the other three dimensionality reduction methods.
Principal components regression performance when the correlation between
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the explanatory variables raises is somehow comparable to ridge, lasso and
adaptive lasso. We obtained a good dimensionality reduction in the New
York City crimes data.
In conclusion, dimensionality reduction methods improves �tting of multino-
mial regression methods because they provide better control of the correlation
between the explanatory variables, asymmetry and sparsity with respect to
traditional maximum likelihood estimation. These desirable properties of
dimensionality reduction methods translate in improved predictions.
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Appendix

R Code

## Libraries imports

library(Hmisc)

library(MASS)

library(ISLR)

library(glmnet)

library(pls)

library(gridExtra)

library(grid)

library(histogram)

library(ggplot2)

library(reshape2)

library(nnet)

library(RColorBrewer)

library(data.table)

library(gtools)

## APPLICATION FUNCTIONS

print.logscore.matrix <- function(res){

## Print the distributions of the log -scores for the

real data application

## Logscore matrices boxplots

ml.logscore <- -sum(res$logscore$ml$logscore)

ridge.logscore <- -sum(res$logscore$ridge$logscore)

lasso.logscore <- -sum(res$logscore$gr.lasso$logscore

)

alasso.logscore <- -sum(res$logscore$gr.alasso$

logscore)

pcr.logscore <- -sum(res$logscore$pcr.reg$logscore)

coefs <- data.table(ml = res$logscore$ml$logscore ,
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ridge = res$logscore$ridge$logscore ,

lasso = res$logscore$gr.lasso$logscore ,

alasso = res$logscore$gr.alasso$logscore ,

pcr = res$logscore$pcr.reg$logscore)

coefs[, name := c("ml", "ridge", "lasso", "alasso", "

pcr")]

to_plot = melt(coefs , id.vars = "name", variable.name

= "method", value.name = "logscore")

myplot <- ggplot(to_plot , aes(x=method , y=logscore ,

fill = method)) + geom_boxplot () + scale_fill_

brewer(palette="Pastel1") + theme_minimal ()+ xlab(

"Method") + ylab("Logscore")+ ggtitle("Log -scores

matrices for the 5 methods")

print(myplot)

}

print.tab.coefs <- function(res){

## Print regression coefficients (ml, ridge , lasso ,

adaptive lasso) as table

ml <- (round(data.frame(res$coefficients$ml$coefs),

2))

ridge <- (round(data.frame(res$coefficients$ridge$

coefs), 2))

lasso <- (round(data.frame(res$coefficients$gr.lasso$

coefs), 2))

alasso <- (round(data.frame(res$coefficients$gr.

alasso$coefs), 2))

varnames <- c("Inside", "Opposite_Of", "Rear_Of", "

Brooklyn", "Manhattan", "Queens", "Staten Island",

"Susp_Black_Hispanic", "Susp_Race_Unknown", "Susp

_White", "Susp_White_Hispanic", "Susp_Sex_M", "

Susp_Sex_Unknown", "Vict_Black_Hispanic", "Vict_

Race_Unknown", "Vict_White", "Vict_White_Hispanic"

, "Vict_Sex_M", "Crime_Complete", "Juris_Police_

Dept")

vars.coefs <- cbind(matrix(varnames , ncol = 1, nrow =

length(varnames)), ml, ridge , lasso , alasso)

png("Coefficients_regr_table.png", width = 1024,

height = 728, units = "px")

colnames(vars.coefs) <- c("Var names", "Maxmium

likelihood\ncat 1", "Maxmium likelihood\ncat 2", "
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Ridge\ncat 1", "Ridge\ncat 2", "Lasso\ncat 1", "

Lasso\ncat 2", "Adaptive Lasso\ncat 1", "Adaptive

Lasso\ncat2")

grid.table(vars.coefs , rows = NULL)

dev.off()

}

print.sdevs <- function(pc){

## Print the cumulative standard deviations of the

computed principal components

pc_sdevs <- cumsum(pc$sdev)/sum(pc$sdev)

tot_prcomp <- length(pc$sdev)

vect_n <- "PC01"

for (i in 2:tot_prcomp){

vect_n <- append(vect_n, paste("PC0", i, sep=''))

}

sdev <- data.frame(prcomp = as.factor(vect_n), sdev =

round(pc_sdevs*100, 3))

png("PCR_sdevs.png", width = 1024, height = 728,

units = "px")

myplot <- ggplot(sdev , aes(x=reorder(prcomp , sdev ,

mean), y=sdev)) + geom_point(size = 5) + ylim(c(0,

100)) + geom_hline(yintercept =70, linetype="

dashed", color = "red") + xlab("Principal

components") + ylab("Cumulative portion standard

deviation")

print(myplot)

dev.off()

}

print.loadings <- function(pc, selected.comp){

## Print the squared loadings for the principal

components regression

load <- round(data.frame(loadings(pc)[,1: selected.

comp]), 3)

varnames <- c("Inside", "Opposite_Of", "Rear_Of", "

Brooklyn", "Manhattan", "Queens", "Staten Island",

"Susp_Black_Hispanic", "Susp_Race_Unknown", "Susp

_White", "Susp_White_Hispanic", "Susp_Sex_M", "

Susp_Sex_Unknown", "Vict_Black_Hispanic", "Vict_

Race_Unknown", "Vict_White", "Vict_White_Hispanic"

, "Vict_Sex_M", "Crime_Complete", "Juris_Police_

Dept")
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load <- cbind(matrix(varnames , ncol = 1, nrow =

length(varnames)), load)

vect_n <- "Explanatory Vars"

for (i in 1: selected.comp){

vect_n <- append(vect_n, paste("PC", i, sep=''))

}

colnames(load) <- vect_n

png("loadings_pcr.png", width = 1024, height = 728,

units = "px")

grid.table(load , rows = NULL)

dev.off()

}

## SIMULATION FUNCTIONS

aggreg <- function(x, method , n.var , n.categ , trials) {

## Auxiliary function to make the coefficients easier

to handle

res <- array(NA, dim = c(n.var , n.categ , trials))

for (i in seq_len(trials))

res[,,i] <- as.numeric(x[2,][[i]][[ method ]][[1]])

res

}

print.percpred <- function(res , trials){

## Print the missclassification error for the

regression methods

vect <- matrix(as.numeric(unlist(res[4,])), byrow=T,

nrow=ncol(res))

vect <- vect[complete.cases(vect),]

miss.vect <- colSums(vect)/dim(vect)[1]

misserrors <- data.frame(method = c("ml", "ridge", "

lasso", "ad. lasso", "pcr"), misserr = round(miss.

vect ,3))

png("perc_pred.png", width = 1024, height = 728,

units = "px")

myplot <- ggplot(misserrors , aes(x=reorder(method ,

misserr , mean), y=misserr , color = method)) + geom

_text(aes(label=misserr), vjust=2, color="black",

size =6) + geom_point(size = 6) + ylim(c(0, 100))+

scale_fill_brewer(palette="Pastel1") + theme_

minimal ()+ xlab("Method") + ylab("Prediction

accuracy %")+ ggtitle("Prediction accuracy %")
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print(myplot)

dev.off()

}

print.boxplots <- function(logscores , corr){

## Print a paired -boxplot for log -score analysis

colors <- c("lightgoldenrodyellow", "lightsteelblue3"

, "mistyrose", "palegreen", "lightsalmon", "

antiquewhite1")

title <- paste("Log -score distribution\n at corr=",

corr , sep = '')

methods <- c("Maximum Likelihood", "Ridge", "Lasso",

"Adaptive Lasso", "PCR")

filename <- paste("boxplot_methods", corr , ".png",

sep='')

png(filename , width = 1024, height = 728, units = "px

")

boxplot(matrix(as.numeric(unlist(logscores [1,])),

byrow=T, nrow=ncol(logscores)), col = colors , main

= title , names = methods)

dev.off()

}

print.lasso.vars <- function(coefs , type){

## print selected and unselected variables for lasso

colnames(coefs) <- c("Method", "Categ 1\ ncorrect

selection (%)", "Categ 2\ ncorrect selection (%)")

filename <- paste("lasso_select_vars",type , ".png",

sep='')

png(filename , width = 1024, height = 728, units = "px

")

grid.table(coefs)

dev.off()

}

lasso.vars.analysis <- function(coefs , n.var , ncateg ,

trials){

## Check the selected and unselected variables by

lasso methods

coefslasso <- aggreg(coefs , "gr.lasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)

coefsalasso <- aggreg(coefs , "gr.alasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)
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imp.lasso <- cbind("Lasso", 100 * mean(coefslasso

[1:10,1,]!=0), 100 * mean(coefslasso [1:10,2,]!=0))

imp.alasso <- cbind("Ad. Lasso", 100 * mean(

coefsalasso [1:10,1,]!=0), 100 * mean(coefsalasso

[1:10,2,]!=0))

poor.lasso <- cbind("Lasso", 100 * mean(coefslasso

[11:20 ,1 ,]==0), 100 * mean(coefslasso

[11:20 ,2 ,]==0))

poor.alasso <- cbind("Ad. Lasso", 100 * mean(

coefsalasso [11:20 ,1 ,]==0), 100 * mean(coefsalasso

[11:20 ,2 ,]==0))

print.lasso.vars(rbind(imp.lasso , imp.alasso), "

Important")

print.lasso.vars(rbind(poor.lasso , poor.alasso), "

Poor")

}

print.coefs <- function(vect1 , vect2 , vect3 , vect4 , id.

coefs , cat , m1, m2, m3, m4, val){

## Print the distribution of the extracted

coefficients using a paired -boxplot

colors <- c("lightgoldenrodyellow", "lightsteelblue3"

, "mistyrose", "palegreen", "antiquewhite1")

title <- paste("Boxplot of coefficient", id.coefs , "

for cat", cat)

filename <-paste("Boxplot_coefficient_", id.coefs ,"_"

, cat ,".png", sep = '')

idx <- seq(1, length(vect1))

x.frame <- data.frame(idx , vect1 , vect2 , vect3 , vect4)

data <- melt(x.frame , id.vars = "idx")

png(filename , width = 1024, height = 728, units = "px

")

boxplot(vect1 , vect2 , vect3 , vect4 , col = colors ,

main = title , names = c(m1,m2,m3,m4))

abline(h=val)

dev.off()

}

analyse.coeffs <- function(coefs , n.var , ncateg , trials

){

## Extract the coefficients for all methods (no pcr)

coefsml <- aggreg(coefs , "ml", n.var = n.var , n.categ

= ncateg -1, trials = trials)
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coefsridge <- aggreg(coefs , "ridge", n.var = n.var , n

.categ = ncateg -1, trials = trials)

coefslasso <- aggreg(coefs , "gr.lasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)

coefsalasso <- aggreg(coefs , "gr.alasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)

categ <- c(1, 2)

id.coefs <- c(1, 9, 16)

for (j in id.coefs){

for(i in categ){

if (j<5){

val <-3

}

else{

if (j>5 && j<10)

val <-1

else val <-0

}

print.coefs(coefsml[j, i,], coefsridge[j, i,],

coefslasso[j, i,], coefsalasso[j, i,], j, i,

"ML", "Ridge", "Lasso", "Adaptive -Lasso",

val)

}

}

}

sqrt.mse <- function (val , real.val){

## Compute the squared mse of the regression methods

bias <- mean(val , na.rm = T) - real.val

sqrtmse <- sqrt(bias^2 + var(val , na.rm = T))

return(sqrtmse)

}

print.mse <- function(mse , method){

## Auxiliary function to print the root mse

colnames(mse) <- c("# variable", "Categ 1","Categ 2")

filename <- paste("sqrtmse", method , ".png", sep='')

png(filename , width = 1024, height = 728, units = "px

")

grid.table(mse)

dev.off()

}
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analyse.mse <- function(coefs , n.var , ncateg , trials ,

beta){

## Extract the coefficients and compute the root mse

for all methods

coefsml <- aggreg(coefs , "ml", n.var = n.var , n.categ

= ncateg -1, trials = trials)

coefsridge <- aggreg(coefs , "ridge", n.var = n.var , n

.categ = ncateg -1, trials = trials)

coefslasso <- aggreg(coefs , "gr.lasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)

coefsalasso <- aggreg(coefs , "gr.alasso", n.var = n.

var , n.categ = ncateg -1, trials = trials)

ml <- matrix(rep(1:n.var), n.var , ncateg)

ridge <- matrix(rep(1:n.var), n.var , ncateg)

lasso <- matrix(rep(1:n.var), n.var , ncateg)

alasso <- matrix(rep(1:n.var), n.var , ncateg)

for (j in 1:n.var){

for (i in 1:(ncateg -1)){

ml[j,i+1] <- round(sqrt.mse(coefsml[j,i,], beta[j

]) ,3)

ridge[j,i+1] <- round(sqrt.mse(coefsridge[j,i,],

beta[j]), 3)

lasso[j,i+1] <- round(sqrt.mse(coefslasso[j,i,],

beta[j]), 3)

alasso[j,i+1] <- round(sqrt.mse(coefsalasso[j,i

,], beta[j]) ,3)

}

}

print.mse(ml, "ML")

print.mse(ridge , "Ridge")

print.mse(lasso , "Lasso")

print.mse(alasso , "Adaptive -Lasso")

}

print.sel.comp <- function(pr.comp , n.var , imp.var){

## Plot the selected principal components

png("Selected_principal_components.png", width =

1024, height = 728, units = "px")

plot(as.numeric(pr.comp [3,]), type = "l", ylim = c(5,

n.var), lwd = 2, main = "Number of selected\

nprincipal components", col = "coral1", xlab = "

Trails", ylab = "Prin comp")
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dev.off()

}

red.regr <- function(X, y, method = c("ML", "Ridge", "

Lasso", "ALasso"), type = "grouped", train = NULL ,

test = NULL){

## Perform the regression for the multinomial

logistic model

method <- match.arg(method)

type <- match.arg(type)

id.lasso <- if (method == "Lasso") 1 else 0

if(is.null(train)){

##split the dataset into train (80%) and test (20%)

set

train <- sample (1: nrow(X), 0.8 * nrow(X))

test <- (-train)

}

lambda <- if (method == "ML") sqrt(. Machine$double.

eps) else NULL

mod <- glmnet(X[train , ], y[train], alpha = id.lasso ,

lambda = lambda , family = "multinomial", type.

multinomial = type)

if (method != "ML") {

mod.cv <- cv.glmnet(X[train , ], y[train], alpha =

id.lasso , lambda = lambda , family="multinomial",

type.measure = "class")

}

mod.bestlam <- if (method == "ML") sqrt(. Machine$

double.eps) else mod.cv$lambda .1se

mod.pred <- predict(mod , s = mod.bestlam , newx = X[

test , ], type = "response")

coefs <- coef(mod , s = mod.bestlam)

if(method == "ALasso"){

best.coef <- do.call(cbind , coef(mod.cv, s = mod.

bestlam))

best.weights <- 1 / abs(as.matrix(best.coef)[-1,])

model <- glmnet(X[train , ], y[train], alpha = 1,

penalty.factor = best.weights , family = "

multinomial", type.multinomial = type)

model.cv <- cv.glmnet(X[train , ], y[train], alpha =

1, penalty.factor = best.weights , family = "

multinomial", type.measure = "class", keep =
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TRUE)

model.bestlam <- model.cv$lambda .1se

mod.pred <- predict(model , s = model.bestlam , newx

= X[test , ], type = "response", parallel = T)

coefs <- coef(model , s = model.bestlam)

}

test.preds <- nrow(mod.pred)

for (i in 1:nrow(mod.pred))

test.preds[i] <- mod.pred[i, y[test][i], ]

logscore <- -sum(log(test.preds))

ok_class <- (sum(max.col(mod.pred [,1:3,1])==y[test])/

length(y[test]))*100

res <- list(logscore = logscore , coefs = matrix(

unlist(lapply(coefs , function(x) as.numeric(x))),

byrow=F, ncol =3), miss.err = ok_class)

return(res)

}

### RUN SIMULATION

simone <- function(ncateg , nobs , nvar , rho , beta , alpha

) {

## Function used to simulate once a given scenario

## Compute the correlation matrix (no equi -

correlation)

sigma <- toeplitz(rho ^ seq(from = 0, to = nvar - 1))

## Compute the design matrix X

X <- mvrnorm(nobs , mu = rep(0.0, nvar), Sigma = sigma

)

exp.terms <- probs <- matrix (0.0, nrow = nobs , ncol =

ncateg)

for (j in 1:(ncateg -1))

exp.terms[,j] <- exp(alpha[j] + X %*% beta[,j])

## Compute the probability matrix

probs <- exp.terms / (1 + rowSums(exp.terms))

probs[, ncateg] <- 1 / (1 + rowSums(exp.terms))

## Simulate the responses

y <- rMultinom(probs , m=1)

## Perform principal components analysis

pc <- prcomp(X, scale. = T)

## Select the number of principal components that

exceeded the inferior limit
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selected.comp <- min(which(cumsum ((pc$sdev)/sum(pc$

sdev)) >0.7))

X.pc <- pc$x[,seq_len(selected.comp)]

compute.coefs <- function(x) {

## Function that change the Poisson likelihood

coeffcients

## Into maximul likelihood.

## This function delete also the intercept alpha

x <- x[-1, ]

x[, (1:ncateg -1)] - x[, ncateg]

}

nonconv <- function(x) {

## Auxiliary function used in case of try -error

x <- list()

x$logscore <- NA

x$coefs <- matrix(NA, nrow = nvar , ncol = ncateg -

1)

X$miss.err <- NA

}

## Maximul likelihood

ml <- try(red.regr(X, y, "ML", "grouped"), silent =

TRUE)

if (class(ml) == "try -error") nonconv(ml)

else ml$coefs <- compute.coefs(ml$coefs)

## Ridge regression

ridge <- try(red.regr(X, y, "Ridge", "grouped"),

silent = TRUE)

if (class(ridge) == "try -error") nonconv(ridge)

else ridge$coefs <- compute.coefs(ridge$coefs)

## The lasso

gr.lasso <- try(red.regr(X, y, "Lasso", "grouped"),

silent = TRUE)

if (class(gr.lasso) == "try -error") nonconv(gr.lasso)

else gr.lasso$coefs <- compute.coefs(gr.lasso$coefs)

## The adaptive lasso

89



gr.alasso <- try(red.regr(X, y, "ALasso", "grouped"),

silent = TRUE)

if (class(gr.alasso) == "try -error") nonconv(gr.

alasso)

else gr.alasso$coefs <- compute.coefs(gr.alasso$coefs

)

## Principal components regression applied to Maximum

likelihood

pcr <- try(red.regr(X.pc, y, "ML", "grouped"), silent

= TRUE)

if (class(pcr) == "try -error") nonconv(pcr)

else pcr$coefs <- compute.coefs(pcr$coefs)

all.methods <- list(ml, ridge , gr.lasso , gr.alasso ,

pcr)

logscore <- unlist(lapply(all.methods , function(x) x[

"logscore"]))

names(logscore) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

coefs <- lapply(all.methods , function(x) x["coefs"])

names(coefs) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

all.methods <- list(ml, ridge , gr.lasso , gr.alasso ,

pcr)

misserr <- unlist(lapply(all.methods , function(x) x["

miss.err"]))

names(misserr) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

list(logscore = logscore , coefficients = coefs ,

princomp = selected.comp , misserr = misserr)

}

### RUN APPLICATION

apply.regr <- function(X, y, train , test) {

## Function that applies the regression methods on

real data

## Number of output categories

ncateg <- length(unique(y))

## Number of explanatory variables

nvar <- ncol(X)
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## Perform principal components analysis

pc <- prcomp(X, scale. = T)

## Select the number of principal components that

exceeded the inferior limit

selected.comp <- min(which(cumsum(pc$sdev)/sum(pc$

sdev) >0.7))

X.pc <- pc$x[,seq_len(selected.comp)]

## Print loadings for the computed principal

components

print.loadings(pc, selected.comp)

print.sdevs(pc)

compute.coefs <- function(x) {

## Function that change the Poisson likelihood

coeffcients

## Into maximul likelihood.

## This functiondelete also the intercept alpha

x <- x[-1, ]

x[, (1:ncateg -1)] - x[, ncateg]

}

nonconv <- function(x) {

## Auxiliary function used in case of try -error

x <- list()

x$logscore <- NA

x$coefs <- matrix(NA, nrow = nvar , ncol = ncateg -

1)

}

## Maximul likelihood

ml <- try(red.regr(X, y, "ML", "grouped", train , test

), silent = TRUE)

if (class(ml) == "try -error") nonconv(ml)

else ml$coefs <- compute.coefs(ml$coefs)

## Ridge regression

ridge <- try(red.regr(X, y, "Ridge", "grouped", train

, test), silent = TRUE)

if (class(ridge) == "try -error") nonconv(ridge)

else ridge$coefs <- compute.coefs(ridge$coefs)

91



## The lasso

gr.lasso <- try(red.regr(X, y, "Lasso", "grouped",

train , test), silent = TRUE)

if (class(gr.lasso) == "try -error") nonconv(gr.lasso)

else gr.lasso$coefs <- compute.coefs(gr.lasso$coefs)

## The adaptive lasso

gr.alasso <- try(red.regr(X, y, "ALasso", "grouped",

train , test), silent = TRUE)

if (class(gr.alasso) == "try -error") nonconv(gr.

alasso)

else gr.alasso$coefs <- compute.coefs(gr.alasso$coefs

)

## Principal components regression applied to Maximum

likelihood

pcr <- try(red.regr(X.pc, y, "ML", "grouped", train ,

test), silent = TRUE)

if (class(pcr) == "try -error") nonconv(pcr)

else pcr$coefs <- compute.coefs(pcr$coefs)

all.methods <- list(ml, ridge , gr.lasso , gr.alasso ,

pcr)

logscore <- unlist(lapply(all.methods , function(x) x[

"logscore"]))

names(logscore) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

coefs <- lapply(all.methods , function(x) x["coefs"])

names(coefs) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

all.methods <- list(ml, ridge , gr.lasso , gr.alasso ,

pcr)

misserr <- unlist(lapply(all.methods , function(x) x["

miss.err"]))

names(misserr) <- c("ml", "ridge", "gr.lasso", "gr.

alasso", "pcr.reg")

list(logscore = logscore , coefficients = coefs ,

princomp = selected.comp , misserr = misserr)

}

## Importing the R function file

source("SimulationApplicationFunctions.R")
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set.seed (1024)

## Number of explanatory variables

n.var <- 20

## Number of explanatory variables with values

different from zero

imp.var <- 10

## Number of observation of the design matrix X

n.obs <- 500

## Number of simulation repetitions

trials <- 500

## Number of output categories

ncateg <- 3

## correlation among the explanatory variables

rho <- c(0, 0.3, 0.6, 0.9)

## Coefficients vector

betas <- matrix (0.0, nrow = n.var , ncol = ncateg)

betas [1: round(imp.var/2), 1:( ncateg - 1)] <- 3

betas[(round(imp.var/2)+1):imp.var , 1:( ncateg - 1)] <-

1

## Intercept vector

alpha <- c(-.5, .5, 0)

## start simulation

sim <- replicate(trials , (simone(ncateg , n.obs , n.var ,

rho , betas , alpha)))

## Print the accuracy prediction

print.percpred(sim , trials)

## Plot the logscore distributions

print.boxplots(sim , rho)

## Print the accuracy on selecting explanatory

variables (lasso)

lasso.vars.analysis(sim , n.var , ncateg , trials)

## Analysis of the coefficients distributions (1, 9,

16)

analyse.coeffs(sim , n.var , ncateg , trials)

## Print root mse for the coefficients

analyse.mse(sim , n.var , ncateg , trials , betas)

## Print selected principal components

print.sel.comp(sim , n.var , imp.var)

## Importing the R function file

source("SimulationApplicationFunctions.R")

set.seed (2024)
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## Import the dataset

my.data <- read.csv2("pol.csv")

dat <- data.frame(my.data)

## Set the design matrix

X <- model.matrix(~LOC_OF_OCCUR_DESC + BORO_NM + SUSP_

RACE + SUSP_SEX + VIC_RACE + VIC_SEX + CRM_ATPT_CPTD

_CD + JURIS_DESC , data = dat)[,-1]

## Set the output vector

Y <- as.numeric(dat$LAW_CAT_CD)

## The train set includes February and March

observations

train <- 1:5677

## Predictions are made on April observations

test <- 5678:8516

## Compute the reference log -score

prop <- prop.table(table(Y[train]))

baseline_logscore <- -sum(log(prop[Y[test ]]))

baseline_Accuracy <- sum(max.col(prop[Y[test ]])==Y[test

])/length(Y[test])*100

## RUN APPLICATION

res <- apply.regr(X, Y, train , test)

## Save the obtained results

print.accuracy(res)

print.tab.accuracy(res)

print.logscore.matrix(res)

print.logscores(res , ref_logscore)

print.tab.coefs(res)
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