Enhancing web search user experience : from document retrieval to task recommendation

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Orlando, Salvatore it_IT
dc.contributor.author Tolomei, Gabriele <1980> it_IT
dc.date.accessioned 2012-07-07T08:13:20Z it_IT
dc.date.accessioned 2012-07-30T16:05:45Z
dc.date.available 2012-07-07T08:13:20Z it_IT
dc.date.available 2012-07-30T16:05:45Z
dc.date.issued 2011-11-17 it_IT
dc.identifier.uri http://hdl.handle.net/10579/1231 it_IT
dc.description.abstract Il World Wide Web è la più grande sorgente dati mai realizzata dall’uomo. Ciò ha fatto sì che il Web divenisse sempre più il “luogo” di riferimento per accedere a qualsiasi tipo di informazione, attraverso l’uso dei motori di ricerca. Infatti, gli utenti tendono a rivolgersi ai motori di ricerca non solo per consultare pagine Web ma per eseguire vere e proprie attività (ad es., per organizzare vacanze, ottenere un visto, organizzare una festa, etc.). In questa tesi di dottorato, si descrivono e affrontano due sfide fondamentali tese a migliorare l’esperienza di ricerca sul Web offerta dagli attuali motori di ricerca, ovvero la scoperta e la raccomandazione di cosiddetti “Web tasks”. Entrambe queste sfide si basano su una reale comprensione dei comportamenti di ricerca degli utenti, che può essere raggiunta mediante l’applicazione di tecniche di query log mining. I processi di ricerca degli utenti sono analizzati ad un più alto livello di astrazione, ovvero da una prospettiva “task-by-task” anziché “query-by-query”. In questo modo è possible realizzare un modello di attività di ricerca che fornisca adeguato supporto alla “vita sul Web” degli utenti. it_IT
dc.description.abstract The World Wide Web is the biggest and most heterogeneous database that humans have ever built, making it the place of choice where people search for any sort of information through Web search engines. Indeed, users are increasingly asking Web search engines for performing their daily tasks (e.g., "planning holidays", "obtaining a visa", "organizing a birthday party", etc.), instead of simply looking for Web pages. In this Ph.D. dissertation, we sketch and address two core research challenges that we claim next-generation Web search engines should tackle for enhancing user search experience, i.e., Web task discovery and Web task recommendation. Both these challenges rely on the actual understanding of user search behaviors, which can be achieved by mining knowledge from query logs. Search processes of many users are analyzed at a higher level of abstraction, namely from a "task-by-task" instead of a "query-by-query" perspective, thereby producing a model of user search tasks, which in turn can be used to support people during their daily "Web lives". it_IT
dc.format.medium Tesi cartacea it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Gabriele Tolomei, 2011 it_IT
dc.subject Web search it_IT
dc.subject Web mining it_IT
dc.subject Query log mining it_IT
dc.subject Task recommendation it_IT
dc.title Enhancing web search user experience : from document retrieval to task recommendation it_IT
dc.type Doctoral Thesis it_IT
dc.degree.name Informatica it_IT
dc.degree.level Dottorato di ricerca it_IT
dc.degree.grantor Scuola di dottorato in Scienze e tecnologie (SDST) it_IT
dc.description.academicyear 2009/2010 it_IT
dc.description.cycle 23 it_IT
dc.degree.coordinator Salibra, Antonino it_IT
dc.location.shelfmark D001161 it_IT
dc.location Venezia, Archivio Università Ca' Foscari, Tesi Dottorato it_IT
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 955515 it_IT
dc.format.pagenumber [10], VI, 148 p. it_IT
dc.subject.miur INF/01 INFORMATICA it_IT
dc.description.tableofcontent 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Web Search Engines . . . . . . . . . . . . . . . . . . . . . . 7 2.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 The Crawling Algorithm . . . . . . . . . . . . . . . . . 11 2.2.2 The Crawl Frontier . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Web Page Fetching . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Web Page Parsing . . . . . . . . . . . . . . . . . . . . . . 14 2.2.5 Web Page Storing . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Text-based Indexing . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Link-based Indexing . . . . . . . . . . . . . . . . . . . . 18 2.4 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Text-based Ranking . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Link-based Ranking . . . . . . . . . . . . . . . . . . . . 22 3 Query Log Mining . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 What is a Query Log? . . . . . . . . . . . . . . . . . . . . . 28 3.2 A Characterization of Web Search Queries . . . . . 30 3.3 Time Analysis of Query Logs . . . . . . . . . . . . . . . 35 3.4 Time-series Analysis of Query Logs . . . . . . . . . . 41 3.5 Privacy Issues in Query Logs . . . . . . . . . . . . . . . . 44 3.6 Applications of Query Log Mining . . . . . . . . . . . . 45 3.6.1 Search Session Discovery . . . . . . . . . . . . . . . . . 46 3.6.2 Query Suggestion . . . . . . . . . . . . . . . . . . . . . . 49 4 Search Task Discovery . . . . . . . . . . . . . . . . . . . . . . 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3 Query Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Session Size Distribution . . . . . . . . . . . . . . . . . . 65 4.3.2 Query Time-Gap Distribution . . . . . . . . . . . . . . . 66 4.4 Task Discovery Problem . . . . . . . . . . . . . . . . . . . . . 67 4.4.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 67 4.5 Ground-truth: De nition and Analysis . . . . . . . . . . . 69 4.6 Task-based Query Similarity . . . . . . . . . . . . . . . . . 74 4.6.1 Time-based Approach . . . . . . . . . . . . . . . . . . . . 75 4.6.2 Unsupervised Approach . . . . . . . . . . . . . . . . . . . 75 4.6.3 Supervised Approach . . . . . . . . . . . . . . . . . . . . . 78 4.7 Task Discovery Methods . . . . . . . . . . . . . . . . . . . . 83 4.7.1 TimeSplitting-t . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.7.2 QueryClustering-m . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.8.1 Validity Measures . . . . . . . . . . . . . . . . . . . . . . . 88 4.8.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Search Task Recommendation . . . . . . . . . . . . . . . . 101 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Anatomy of a Task Recommender System . . . . . . 106 5.4 Task Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4.1 Basic Task Representation . . . . . . . . . . . . . . . . . 109 5.4.2 Task Document Clustering . . . . . . . . . . . . . . . . 109 5.5 Task Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.5.1 Random-based (baseline) . . . . . . . . . . . . . . . . . 110 5.5.2 Sequence-based . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.3 Association-Rule based . . . . . . . . . . . . . . . . . . . 111 5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 112 5.6.2 Evaluating Recommendation Precision . . . . . . . . 121 5.6.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.6.4 Anecdotal Evidences . . . . . . . . . . . . . . . . . . . . . 127 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 it_IT
dc.identifier.bibliographiccitation Tolomei, Gabriele. "Enhancing web search user experience : from document retrieval to task recommendation", Università Ca' Foscari Venezia, Tesi di Dottorato, XXIII Ciclo, 2011 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record