dc.contributor.advisor |
Ugo, Paolo |
it_IT |
dc.contributor.author |
Silvestrini, Morena <1982> |
it_IT |
dc.date.accessioned |
2012-03-27T11:30:49Z |
it_IT |
dc.date.accessioned |
2012-07-30T16:05:10Z |
|
dc.date.available |
2012-03-27T11:30:49Z |
it_IT |
dc.date.available |
2012-07-30T16:05:10Z |
|
dc.date.issued |
2012-03-19 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/1142 |
it_IT |
dc.description.abstract |
Ensemble di Nanoelettrodi (NEE) sono dispositivi elettrochimici nanostrutturati, fabbricati tramite deposizione template di nanoelementi all’interno dei pori di membrane porose. I NEE mostrano notevoli vantaggi rispetto ad elettrodi convenzionali, grazie alla loro particolare geometria.
Questi elettrodi sono stati prima di tutto utilizzati per la rivelazione elettrochimica diretta di ioduro in tracce presente in campioni di acqua. Sfruttando il principale vantaggio dei NEE, che è l’elevato rapporto segnale-rumore, è stato possibile raggiungere, tramite voltammetria diretta, limiti di rivelabilità a livello submicromolare.
I NEE sono anche stati usati come piattaforma per la fabbricazione di biosensori per la rivelazione di DNA, dove la membrana che circonda i nanoelettrodi o i nanoelettrodi stessi, sono stati sfruttati per l’immobilizzazione dello strato di rivelazione biologico.
Inoltre, è stato studiato un metodo per proteggere la superficie metallica dei nanoelettrodi dall’adsorbimento aspecifico di macromolecole biologiche. |
it_IT |
dc.description.abstract |
Nanoelectrode ensembles (NEEs) are nanostructured electrochemical devices fabricated by template deposition of gold nanoelements within the pores of a porous membrane. NEEs show remarkable advantages in comparison with conventional electrodes, thanks to their particular geometry.
These devices have been firstly used for the direct electrochemical determination of trace iodide in water samples. By exploiting the main advantage of NEEs, that is the high signal-to-background current ratio, it has been possible to reach by direct voltammetry detection limits (DLs) at the submicromolar range.
NEEs have been also used as platforms suitable for the fabrication of biosensors for DNA detection where either, the template membrane which surrounds the nanoelectrodes or the nanoelectrodes themselves, are exploited for the immobilization of a biorecognition layer.
Moreover, an useful method to protect the gold surface of the nanoelectrodes from the unwanted adsorption of macromolecules has been studied. |
it_IT |
dc.format.medium |
Tesi cartacea |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Morena Silvestrini, 2012 |
it_IT |
dc.subject |
Nanoelectrode ensembles |
it_IT |
dc.title |
Advances in the use of nanoelectrode ensembles in analytical chemistry and molecular diagnostics |
it_IT |
dc.type |
Doctoral Thesis |
it_IT |
dc.degree.name |
Scienze chimiche |
it_IT |
dc.degree.level |
Dottorato di ricerca |
it_IT |
dc.degree.grantor |
Scuola di dottorato in Scienze e tecnologie (SDST) |
it_IT |
dc.description.academicyear |
2010/2011 |
it_IT |
dc.description.cycle |
24 |
it_IT |
dc.degree.coordinator |
Ugo, Paolo |
it_IT |
dc.location.shelfmark |
D001072 |
it_IT |
dc.location |
Venezia, Archivio Università Ca' Foscari, Tesi Dottorato |
it_IT |
dc.rights.accessrights |
openAccess |
it_IT |
dc.thesis.matricno |
955682 |
it_IT |
dc.format.pagenumber |
X, 98 p. : ill. |
it_IT |
dc.subject.miur |
CHIM/01 CHIMICA ANALITICA |
it_IT |
dc.description.tableofcontent |
List of abbreviations iv
Sommario viii
Goal of the thesis 1
Introduction
1 Nanoelectrode Ensembles 3
1.1. Electroless deposition of metals
1.2. Electrochemical properties of NEEs
2 Electrochemical Biosensors 11
2.1. Introduction
2.2. DNA-based biosensors
2.2.1. Electrochemical DNA biosensors
2.2.2. Electrochemical DNA biosensors based on NEEs
References
3 Nanoelectrode Ensembles for the Direct Voltammetric
Determination of Trace Iodide in Water 29
1. Introduction
2. Experimental
2.1. Materials
2.2. Electrochemical measurements and instrumentation
2.3. Electrode preparation
2.4. Lagoon water samples
3. Results and discussion
3.1 Preliminary considerations
3.2 Cyclic voltammetry of iodide in tap water
3.3 Lagoon water
4. Conclusions
References
4 Modification of Nanoelectrode Ensembles by Thiols and
Disulfides to Prevent non Specific Adsorption of Proteins 45
1. Introduction
2. Experimental
2.1. Electrochemical apparatus
2.2. FTIR-ATR (attenuated total reflection)
2.3. AFM (atomic force microscopy)
2.4. Materials
2.5. Template fabrication of NEEs
2.6. NEEs modification
3. Results and discussion
3.1. Redox probes at SAM modified NEEs
3.2. Voltammetry at protein treated NEEs
3.3. AFM characterization of NEEs
4. Conclusions
References
5 Electrochemical DNA Biosensors Based on Ensembles
of Polycarbonate Embedded Nanoelectrodes 60
1. Introduction
2. Experimental
2.1. Apparatus
2.2. Chemicals
2.3. Synthesis of ssDNA conjugated with GOx (D1-GOx)
2.4. Fabrication, activation and functionalization of NEEs
2.4.1. Template fabrication of NEEs
2.4.2. Characterization and activation of PC membrane of NEEs
2.4.3. Functionalization of NEEs
3. Results and Discussion
3.1. Characterization and functionalization of NEEs
3.2. Characterization and functionalization of activated NEEs
4. Conclusions
References
6 Biosensors Based on the Modification of Ensembles
of Nanoelectrodes with Gold Nanoparticles 79
1. Introduction
2. Experimental
2.1. Materials
2.2. Electrochemical apparatus
2.3. Synthesis of gold nanoparticles (AuNPs)
2.4. Electrode preparation and functionalization
2.4.1. Fabrication of NEEs and modification with AuNPs
2.4.2. Functionalization of AuNPs-NEEs with oligonucleotides
3. Results and Discussion
3.1. Characterization of the colloidal solution
3.2. Electrochemical characterization of AuNPs-NEEs
3.3. Preliminary results on the use of AuNPs-NEEs as biosensors
4. Conclusions
References
Concluding remarks 95
Appendix 97 |
it_IT |
dc.identifier.bibliographiccitation |
Silvestrini, Morena. "Advances in the use of nanoelectrode ensembles in analytical chemistry and molecular diagnostics", Università Ca' Foscari Venezia, tesi di dottorato, 24 ciclo, 2012 |
it_IT |
dc.degree.discipline |
Scienze chimiche |
it_IT |