Organometallic catalysis within self-assembled supramolecular structures

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Strukul, Giorgio it_IT
dc.contributor.author Cavarzan, Alessandra <1983> it_IT
dc.date.accessioned 2011-06-18T11:47:37Z it_IT
dc.date.accessioned 2012-07-30T16:04:15Z
dc.date.available 2011-06-18T11:47:37Z it_IT
dc.date.available 2012-07-30T16:04:15Z
dc.date.issued 2011-03-11 it_IT
dc.identifier.uri http://hdl.handle.net/10579/1090 it_IT
dc.description.abstract The initial aim of this thesis was to substitute traditional solvents characterized by high environmental impact, with more environmentally friendly and health compatible aqueous media. This approach is relevant to recent trends in green chemistry, especially when considering industrial scale productions. The transfer in water of processes normally performed in organic solvents is accomplished by means of solubilizing agents such as surfactants, that are cheap and extensively used in several industrial processes, first of all in the formulation of detergents. The use of surfactants is of great interest in terms of “greening up” chemical processes especially because the general current method to run aqueous homogeneous and biphasic catalytic reactions is to modify catalysts with water soluble tags to make them soluble in water. This involves energy, money and time consuming synthetic procedures. Moreover the modified catalyst can display different sterics and electronics compared to the original one that may not be favorable for its performance. The use of surfactant-based nano-aggregates (micelles) falls also within an innovative research field concerning not only the possibility of switching from organic to aqueous phase, but also the tuning of the chemical reaction selectivity exploiting the tridimensional scaffold built by micelles around hydrophobic catalysts and substrates. The initial objective was then widened including a comprehensive study on the effect of supramolecular self-assembled hosts, such as micelles, in reactions mediated by organometallic catalysts. The inclusion of organometallic complexes within nanometric supramolecular aggregates would allow a fine tuning of the selectivity on the basis of shape, dimensions and affinity of substrates with the host, similarly to the interaction between a substrate and the complex peptide backbone of an enzyme. At the beginning the attention was focused on the hydration of nitriles, in order to use the aqueous medium also as reactant and avoid the co-solvent approach. The catalysts used were a series of RuII complexes and the major goal was the development of a highly active system without modifying the catalyst structure and using milder conditions than the traditional ones. Subsequently the work continued with the application of micellar systems to the Baeyer-Villiger oxidation of cyclic ketones, extensively studied in the past in our lab in common organic solvents, but poorly studied in aqueous medium, except in its enzymatic version. This oxidation reaction presents both activity and selectivity issues: high activities are difficult to achieve especially for intrinsically less reactive cyclic six-members ring ketones, while selectivity is a general problem to overcome in oxidation. Micellar systems were tested in order to solve both challenges by virtue of the confinement of catalyst and substrates inside the supramolecular structure. The idea was expanded to supramolecular hosts combined with organometallic complexes. The use of a self-assembling capsule was evaluated during a six-months stage in the research group of prof. Joost N.H. Reek at the Van’t Hoff Institute of Molecular Sciences, University of Amsterdam. The capsule of choice was the C-undecylcalix[4]resorcinarene hexamer, for which no examples of organometallic catalyst encapsulation has been reported so far. The objective of this part of the work was to mimic enzyme behavior developing new catalytic entities capable to address general issues like product and substrate selectivity. The initial interest focused on the formation of a supramolecular catalyst, exploiting the large cavity of this capsule in which a metal complex could be encapsulated, followed by the extension of this new system to the hydration of alkynes as a model reaction. Water is vital for the formation of the nano-capsule and this drove the attention again to hydration reactions. Compatibility with the catalytic nature of the encapsulated organometallic complex was solved. Albeit further studies are required to optimize this unusual catalytic system and to eventually scale up the micellar processes, there are some fundamental concepts that have been proven not only to comply with environmental issues, but also towards the creation of high-performance catalysts with a new catalysis concept. it_IT
dc.description.abstract L'utilizzo di nano-aggregati a base di tensioattivi (micelle) implica non soltanto la possibilità di passare da mezzo organico a mezzo acquoso, ma anche la modulazione della selettività di una reazione sfruttando la struttura tridimensionale costruita dalla micella stessa attorno a catalizzatori e substrati idrofobi. Questa tesi include uno studio completo sull'effetto di 'hosts' supramolecolari auto-assemblanti, come le micelle, in reazioni mediate da catalizzatori organometallici. L'inclusione di complessi organometallici all'interno di sistemi micellari ha permesso di variare l'attività e la selettività (sulla base di forma, dimensione e affinità del substrato con l'host supramolecolare) di reazioni com el'idratazione di nitrili e l'ossidazione di Baeyer-Villiger di chetoni ciclici. L'idea è stata poi estesa ad una capsula supramolecolare per la quale non era mai stata riportata l'inclusione di complessi organometallici. E' stato così sviluppato un nuovo catalizzatore supramolecolare, incapsulando un complesso di oro all'interno di questo host. Successivamente questo sistema è stato testato nell'idratazione di alchini come reazione modello, osservando un'insolita selettività sia di prodotto sia di substrato. Nonostante siano richiesti ulteriori studi per ottimizzare questi sistemi catalitici innovativi, in questa tesi sono stati dimostrati alcuni concetti fondamentali che riguardano non soltanto la realizzazione di processi ecocompatibili, ma anche la creazione di catalizzatori altamente performanti nell'ottica di sviluppare una nuova visione della catalisi. it_IT
dc.format.medium Tesi cartacea it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Alessandra Cavarzan, 2011 it_IT
dc.subject Supramolecular catalysis it_IT
dc.subject Organometallic complexes it_IT
dc.subject Water it_IT
dc.subject Capsules it_IT
dc.subject Substrate selectivity it_IT
dc.title Organometallic catalysis within self-assembled supramolecular structures it_IT
dc.title.alternative Catalisi organometallica all'interno di strutture supramolecolari auto-assemblanti it_IT
dc.type Doctoral Thesis it_IT
dc.degree.name Scienze chimiche it_IT
dc.degree.level Dottorato di ricerca it_IT
dc.degree.grantor Scuola di dottorato in Scienze e tecnologie (SDST) it_IT
dc.description.academicyear 2009/2010 it_IT
dc.description.cycle 23 it_IT
dc.degree.coordinator Ugo, Paolo it_IT
dc.location.shelfmark D001020 it_IT
dc.location Venezia, Archivio Università Ca' Foscari, Tesi Dottorato it_IT
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 955479 it_IT
dc.format.pagenumber IV, 137 p. it_IT
dc.subject.miur CHIM/04 CHIMICA INDUSTRIALE it_IT
dc.degree.discipline Catalisi it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record