dc.contributor.advisor |
Pelillo, Marcello |
it_IT |
dc.contributor.author |
Nguyen, Minh Phu <1988> |
it_IT |
dc.date.accessioned |
2016-02-10 |
it_IT |
dc.date.accessioned |
2016-05-04T11:46:46Z |
|
dc.date.available |
2016-05-04T11:46:46Z |
|
dc.date.issued |
2016-03-09 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/8058 |
|
dc.description.abstract |
Feature selection techniques are essentially used in the data analysis tasks, one is frequently dealt with many features. It is computationally expensive to optimize these features that are either redundant and irrelevant. A ton of methods approach to this technique, however, they exist their own limited. In this thesis, dominant-set clustering and multidimensional interaction information method is considered. |
it_IT |
dc.language.iso |
|
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Minh Phu Nguyen, 2016 |
it_IT |
dc.title |
Feature Selection using Dominant-Set Clustering |
it_IT |
dc.title.alternative |
|
it_IT |
dc.type |
Master's Degree Thesis |
it_IT |
dc.degree.name |
Informatica - computer science |
it_IT |
dc.degree.level |
Laurea magistrale |
it_IT |
dc.degree.grantor |
Dipartimento di Scienze Ambientali, Informatica e Statistica |
it_IT |
dc.description.academicyear |
2014/2015, sessione straordinaria |
it_IT |
dc.rights.accessrights |
openAccess |
it_IT |
dc.thesis.matricno |
849289 |
it_IT |
dc.subject.miur |
|
it_IT |
dc.description.note |
|
it_IT |
dc.degree.discipline |
|
it_IT |
dc.contributor.co-advisor |
|
it_IT |
dc.date.embargoend |
|
it_IT |
dc.provenance.upload |
Minh Phu Nguyen (849289@stud.unive.it), 2016-02-10 |
it_IT |
dc.provenance.plagiarycheck |
Marcello Pelillo (pelillo@unive.it), 2016-02-22 |
it_IT |