dc.contributor.advisor |
Pesenti, Raffaele |
it_IT |
dc.contributor.author |
Urbani, Federico <1998> |
it_IT |
dc.date.accessioned |
2022-10-03 |
it_IT |
dc.date.accessioned |
2023-02-22T10:57:56Z |
|
dc.date.issued |
2022-10-27 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/22493 |
|
dc.description.abstract |
Thesis aims at developing a Fiancial Trading System to tackle the Porfolio Management Problem. The developed models use Reinforcement Learning techniques to analyse the current environement and to give daily advice to the agent on how to manage each financial position. |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Federico Urbani, 2022 |
it_IT |
dc.title |
Reinforcement Learning Applications for the Portfolio Management |
it_IT |
dc.title.alternative |
Reinforcement Learning Applications for the Portfolio Management |
it_IT |
dc.type |
Master's Degree Thesis |
it_IT |
dc.degree.name |
Data analytics for business and society |
it_IT |
dc.degree.level |
Laurea magistrale |
it_IT |
dc.degree.grantor |
Dipartimento di Economia |
it_IT |
dc.description.academicyear |
2021-2022_appello_171022 |
it_IT |
dc.rights.accessrights |
closedAccess |
it_IT |
dc.thesis.matricno |
885949 |
it_IT |
dc.subject.miur |
SECS-S/03 STATISTICA ECONOMICA |
it_IT |
dc.description.note |
Nessuna nota |
it_IT |
dc.degree.discipline |
|
it_IT |
dc.contributor.co-advisor |
|
it_IT |
dc.date.embargoend |
10000-01-01 |
|
dc.provenance.upload |
Federico Urbani (885949@stud.unive.it), 2022-10-03 |
it_IT |
dc.provenance.plagiarycheck |
Raffaele Pesenti (pesenti@unive.it), 2022-10-17 |
it_IT |