dc.contributor.advisor |
Valentino, Francesco |
it_IT |
dc.contributor.author |
Noohi Joobani, Ali <1987> |
it_IT |
dc.date.accessioned |
2022-06-27 |
it_IT |
dc.date.accessioned |
2022-10-11T08:25:51Z |
|
dc.date.issued |
2022-07-20 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/21632 |
|
dc.description.abstract |
Optimization of the dark fermentation process for the recovery of volatile fatty acids (VFA).
The work is divided into pilot-scale fermentation tests on mixtures of sewage sludge and food residues, investigating different process parameters that influence fermentation yields. A machine learning approach will be used for data management and the development of a model that will be able to correlate the process performance (s) on the basis of different inputs (operational parameters). |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Ali Noohi Joobani, 2022 |
it_IT |
dc.title |
“VFA production from urban waste through acidogenic fermentation process: a machine learning approach” |
it_IT |
dc.title.alternative |
VFAs Production from Urban Waste Through Acidogenic Fermentation Process: A Machine Learning Approach |
it_IT |
dc.type |
Master's Degree Thesis |
it_IT |
dc.degree.name |
Scienze ambientali |
it_IT |
dc.degree.level |
Laurea magistrale |
it_IT |
dc.degree.grantor |
Scuola in Sostenibilità dei sistemi ambientali e turistici |
it_IT |
dc.description.academicyear |
2021/2022_sessione estiva_110722 |
it_IT |
dc.rights.accessrights |
closedAccess |
it_IT |
dc.thesis.matricno |
882193 |
it_IT |
dc.subject.miur |
CHIM/11 CHIMICA E BIOTECNOLOGIA DELLE FERMENTAZIONI |
it_IT |
dc.description.note |
|
it_IT |
dc.degree.discipline |
|
it_IT |
dc.contributor.co-advisor |
|
it_IT |
dc.date.embargoend |
10000-01-01 |
|
dc.provenance.upload |
Ali Noohi Joobani (882193@stud.unive.it), 2022-06-27 |
it_IT |
dc.provenance.plagiarycheck |
Francesco Valentino (francesco.valentino@unive.it), 2022-07-11 |
it_IT |