Reinforcement Learning: a Q-Learning Algorithm for High Frequency Trading

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Corazza, Marco it_IT
dc.contributor.author Del Ben, Enrico <1997> it_IT
dc.date.accessioned 2021-10-04 it_IT
dc.date.accessioned 2022-01-11T09:26:31Z
dc.date.issued 2021-10-22 it_IT
dc.identifier.uri http://hdl.handle.net/10579/20411
dc.description.abstract The scope of this work is to test the implementation of an automated trading system based on Reinforcement Learning: a machine learning algorithm in which an intelligent agent acts to maximize its rewards given the environment around it. Indeed, given the environmental inputs and the environmental responses to the actions taken, the agent will learn how to behave in best way possible. In particular, in this work, a Q-Learning algorithm has been used to produce trading signals on the basis of high frequency data of the Limit Order Book for some selected stocks. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Enrico Del Ben, 2021 it_IT
dc.title Reinforcement Learning: a Q-Learning Algorithm for High Frequency Trading it_IT
dc.title.alternative Reinforcement Learning: A Q-Learning Algorithm For High Frequency Trading it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Economia e finanza it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Economia it_IT
dc.description.academicyear 2020/2021_sessione autunnale_181021 it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 863721 it_IT
dc.subject.miur SECS-S/06 METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Enrico Del Ben (863721@stud.unive.it), 2021-10-04 it_IT
dc.provenance.plagiarycheck Marco Corazza (corazza@unive.it), 2021-10-18 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record