Graph Sparsification and Semi-Supervised Learning: an Experimental Study

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Vascon, Sebastiano it_IT
dc.contributor.author Machimada Machaiah, Chittiappa <1993> it_IT
dc.date.accessioned 2021-05-18 it_IT
dc.date.accessioned 2021-07-22T08:51:28Z
dc.date.issued 2021-06-09 it_IT
dc.identifier.uri http://hdl.handle.net/10579/19404
dc.description.abstract This study focuses on comparing the various graph sparsification methods that have been devised and tests the efficiency when compared to one another. And on the latter side of the project, semi-supervised learning algorithms are trained on a combination of labeled and unlabeled data. Hence, different sparsification methods are explored and the effect of such methods in Semi Supervised Graph Based Algorithms are evaluated. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Chittiappa Machimada Machaiah, 2021 it_IT
dc.title Graph Sparsification and Semi-Supervised Learning: an Experimental Study it_IT
dc.title.alternative Graph Sparsification and Semi-Supervised Learning : an Experimental Study it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Informatica - computer science it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Scienze Ambientali, Informatica e Statistica it_IT
dc.description.academicyear Sessione-straordinaria-2021_2° finestra_appello_010621 it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 860068 it_IT
dc.subject.miur INF/01 INFORMATICA it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Chittiappa Machimada Machaiah (860068@stud.unive.it), 2021-05-18 it_IT
dc.provenance.plagiarycheck Sebastiano Vascon (sebastiano.vascon@unive.it), 2021-06-01 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record