Classification by pairwise coupling

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Varin, Cristiano it_IT
dc.contributor.author Duong, Minh Duc <1992> it_IT
dc.date.accessioned 2020-02-17 it_IT
dc.date.accessioned 2020-06-16T06:30:48Z
dc.date.issued 2020-03-13 it_IT
dc.identifier.uri http://hdl.handle.net/10579/16806
dc.description.abstract Pairwise Coupling is a statistical procedure designed to solve multi-class classification problems thought a combination of binary classifications. This thesis considers three different methods for pairwise coupling namely the Hastie and Tibshirani (1998) algorithm, the PKPD algorithm (Price et al., 1995) and voting rule (Knerr 1990; Friedman 1996). For each method, both linear discriminant analysis and logistic regression are considered to compute the pairwise probabilities. The three pairwise coupling methods are studied in detail and compared through simulations. Finally, real data are used to illustrate the methods." it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Minh Duc Duong, 2020 it_IT
dc.title Classification by pairwise coupling it_IT
dc.title.alternative Classification by Pairwise Coupling it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Informatica - computer science it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Scienze Ambientali, Informatica e Statistica it_IT
dc.description.academicyear 2018/2019, sessione straordinaria it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 871492 it_IT
dc.subject.miur MAT/05 ANALISI MATEMATICA it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Minh Duc Duong (871492@stud.unive.it), 2020-02-17 it_IT
dc.provenance.plagiarycheck Cristiano Varin (cristiano.varin@unive.it), 2020-03-02 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record