Q-Learning. An intelligent technique for financial trading systems implementation

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Corazza, Marco it_IT
dc.contributor.author Popa, Veronica <1992> it_IT
dc.date.accessioned 2019-02-17 it_IT
dc.date.accessioned 2019-06-11T08:40:35Z
dc.date.available 2019-06-11T08:40:35Z
dc.date.issued 2019-03-20 it_IT
dc.identifier.uri http://hdl.handle.net/10579/14103
dc.description.abstract In this thesis I consider a Reinforcement Learning (RL) approach for policy evaluation, in particular the Q-Learning algorithm (QLa). The QLa is able to dynamically optimize, in real time, its behaviour on the basis of the feedbacks it receives from the surrounding environment. First, I introduce the theory of Adaptive Market Hypothesis (AMH), on which an active portfolio management is based, as an evolution of the Efficient Market Hypothesis (EMH). Then, the essential aspects of the RL method are explained. Different parameters and values for Financial Trading Systems (FTSs) are presented in order to configure different QLas. Finally, the application and the results of such FTSs on stock price time series are presented. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Veronica Popa, 2019 it_IT
dc.title Q-Learning. An intelligent technique for financial trading systems implementation it_IT
dc.title.alternative Q-Learning. An intelligent technique for financial trading systems implementation it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Economia e finanza it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Economia it_IT
dc.description.academicyear 2017/2018, sessione straordinaria it_IT
dc.rights.accessrights openAccess it_IT
dc.thesis.matricno 843207 it_IT
dc.subject.miur SECS-S/06 METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend it_IT
dc.provenance.upload Veronica Popa (843207@stud.unive.it), 2019-02-17 it_IT
dc.provenance.plagiarycheck Marco Corazza (corazza@unive.it), 2019-03-04 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record