Bayesian Multivariate Autoregressive Gamma Processes: An Application to Realized Volatility

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Casarin, Roberto it_IT
dc.contributor.author Bianchin, Daniele <1990> it_IT
dc.date.accessioned 2017-06-21 it_IT
dc.date.accessioned 2017-09-29T12:59:23Z
dc.date.issued 2017-07-10 it_IT
dc.identifier.uri http://hdl.handle.net/10579/10626
dc.description.abstract In this thesis I present the multivariate Autoregressive Gamma process introduced by Le, Singleton and Dai (2010), a model founded on the univariate ARG first introduced in Gourieroux and Jasiak (2006). I discuss its mathematical properties and provide a MCMC algorithm for the Bayesian estimation of the parameters. The gamma process has been used due to its desirable properties in modelling realized volatility, for this reason I evaluate its performance on a panel of realized volatilities for multiple assets. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Daniele Bianchin, 2017 it_IT
dc.title Bayesian Multivariate Autoregressive Gamma Processes: An Application to Realized Volatility it_IT
dc.title.alternative Bayesian Multivariate Autoregressive Gamma Processes: An Application to Realized Volatility it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Economia e finanza - economics and finance it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Economia it_IT
dc.description.academicyear 2016/2017 sessione estiva it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 842036 it_IT
dc.subject.miur SECS-P/05 ECONOMETRIA it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Daniele Bianchin (842036@stud.unive.it), 2017-06-21 it_IT
dc.provenance.plagiarycheck Roberto Casarin (r.casarin@unive.it), 2017-07-03 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record