MLPG solution of elliptic PDE

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Sartoretto, Flavio it_IT
dc.contributor.author Bolzonella, Nicolo' <1989> it_IT
dc.date.accessioned 2017-06-21 it_IT
dc.date.accessioned 2017-09-29T12:57:59Z
dc.date.issued 2017-07-06 it_IT
dc.identifier.uri http://hdl.handle.net/10579/10509
dc.description.abstract Meshless methods for the numerical solution of Partial Differential Equations (PDE) are emerging techniques. Nowadays their efficiency is not comparable to Finite Element methods. Among the ample literature on meshless methods, we focus on Meshless Petrov--Galerkin (MLPG) methods.In many variants they pervade the Research on meshless methods for solving PDE. This thesis aims at implementing a MATLAB code allowing for the numerical approximation of Poisson problems. The accuracy and efficiency of the code is tested. Moreover, strategies for using GPU devices are analyzed, developed and implemented. A discussion of the their efficiency is conducted on test problems. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Nicolo' Bolzonella, 2017 it_IT
dc.title MLPG solution of elliptic PDE it_IT
dc.title.alternative MLPG solution of elliptic PDE it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Informatica - computer science it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Scienze Ambientali, Informatica e Statistica it_IT
dc.description.academicyear 2016/2017 sessione estiva it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 834569 it_IT
dc.subject.miur MAT/08 ANALISI NUMERICA it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Nicolo' Bolzonella (834569@stud.unive.it), 2017-06-21 it_IT
dc.provenance.plagiarycheck Flavio Sartoretto (sartoret@unive.it), 2017-07-03 it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record