Corso di Laurea magistrale (*ordinamento ex D.M. 270/2004*)
in Scienze e Tecnologie dei Bio e Nanomateriali

Tesi di Laurea

Sintesi e caratterizzazione di nanoparticelle idrofiliche di solfuri metallici del tipo Cu$_{2-x}$S

Relatore
Prof. Patrizia Canton

Laureando
Marco Cavallini
Matricola 820726

Anno Accademico
2015 / 2016
Abstract

In questo lavoro di tesi è stato sviluppato un nuovo tipo di sintesi acquosa per la sintesi di nanoparticelle di quantum-dots semiconduttori del sistema Cu$_{2-x}$S.

Per ottimizzare questa sintesi si andranno a modificare vari parametri. Questi parametri sono: il rapporto stechiometrico dello zolfo, la quantità di H$_2$N–PEG–NH$_2$ utilizzato, il volume di H$_2$O in cui la sintesi è stata condotta, il tipo di glicole utilizzato, il valore di pH e la temperatura di sintesi.

Il PEG diammino è stato aggiunto per migliorare la stabilità in soluzione delle nanoparticelle. Il tipo di glicole viene modificato per studiarne il ruolo nella sintesi. Il pH viene fatto variare per studiare come varia la sintesi, e in secondo luogo come influenza la capacità del PEG diammino di funzionalizzare la superficie. La temperatura viene modificata per studiare come l’effetto della temperatura influenza la sintesi delle nanoparticelle.

Per analizzare se le variazioni applicate migliorano o meno la sintesi le nanoparticelle vengono analizzate con diverse tecniche. Per la caratterizzazione ottica viene utilizzato l’assorbimento UV-vis. Per la caratterizzazione strutturale la diffrazione da polveri. Per la caratterizzazione morfologica il SEM. Inoltre è stato condotto uno studio su una corsa su gel di agarosio per studiare la carica superficiale delle nanoparticelle. Per determinare il band gap delle nanoparticelle viene utilizzato il Tauc Plot.
Indice

1 Introduzione 5
 chapter.1
 1.1 Sistema Cu$_{2-x}$S
 section.1.1
 1.2 Quantum Dots
 section.1.2
 1.3 Plasmoni di risonanza superficiale Localizzato (LSPR)
 section.1.3

2 Preparazione dei campioni e metodologie sperimentali 9
 chapter.2
 2.1 Preparativa dei Campioni
 section.2.1
 2.2 Caratterizzazioni
 section.2.2
 2.2.1 Spettroscopia UV-vis
 subsection.2.2.1
 2.2.2 Diffrazione da polveri XRD
 subsection.2.2.2
 2.2.3 Microscopio elettronico a scansione (SEM)
 subsection.2.2.3
 2.2.4 Elettroforesi su gel di agarosio
 subsection.2.2.4
 2.3 Scopo della Tesi
 section.2.3

3 Parte sperimentale 17
 chapter.3
 3.1 Variazione di [S]
 section.3.1
 3.1.1 Caratterizzazione Ottica
 subsection.3.1.1
 3.2 Variazione di [2HN⁻−PEG−NH$_2$⁻]
 section.3.2
 3.2.1 Caratterizzazione Ottica
 subsection.3.2.1
 3.3 Variazione di [H$_2$O]
 section.3.3
 3.3.1 Caratterizzazione Ottica
 subsection.3.3.1
 3.4 Variazione del Glicole
 section.3.4
 3.4.1 Caratterizzazione Ottica
 subsection.3.4.1
 3.5 Variazione di pH
 section.3.5
 3.5.1 Caratterizzazione Strutturale
 subsection.3.5.1
 3.5.2 Caratterizzazione Ottica
 subsection.3.5.2

3
subsection.3.5.2
 3.5.3 Caratterizzazione Morfologica .. 26
subsection.3.5.3

3.6 Variazione di Temperatura ... 28
section.3.6
 3.6.1 Caratterizzazione Strutturale ... 28
subsection.3.6.1
 3.6.2 Caratterizzazione Ottica ... 28
subsection.3.6.2
 3.6.3 Caratterizzazione Morfologica ... 29
subsection.3.6.3

3.7 Tauc plot ... 30
section.3.7

3.8 Studio della carica .. 32
section.3.8

4 Risultati e Discussioni .. 35
chapter.4
 4.1 Variazione di $[S]$.. 35
section.4.1
 4.2 Variazione di $[^2\text{HN}−\text{PEG}−\text{NH}_2]$.. 35
section.4.2
 4.3 Variazione di $[\text{H}_2\text{O}]$... 35
section.4.3
 4.4 Variazione di Glicole ... 35
section.4.4
 4.5 Variazione di pH .. 36
section.4.5
 4.6 Variazione di Temperature ... 36
section.4.6
 4.7 Studio della carica .. 36
section.4.7

5 Conclusioni .. 37
chapter.5
 5.1 Sviluppi futuri ... 37
section.5.1
Capitolo 1

Introduzione

1.1 Sistema Cu$_{2-x}$S

Zolfo e rame in natura sono combinati tra loro in composti a diversa stechiometria. Questi sistemi vanno da quelli ricchi di rame Cu$_2$S a quelli ricchi di zolfo Cu$_{1.00}$S.

Le specie con diversi rapporti stechiometrici corrispondono a differenti minerali presenti in natura. La seguente lista è formata dalle specie più comuni:

- Cu$_2$S la Calcocite è un minerale naturale. Appartiene alla fase monoclinica a temperatura ambiente e cambia fase in esagonale a 104 °C.
- Cu$_{1.97}$S la Djurleite è un minerale naturale. È di fase monoclinica a temperatura ambiente.
- Cu$_{1.80}$S la Digenite è un minerale naturale. È di fase trigonale.
- Cu$_{1.75}$S l’Anilite è un minerale naturale. È di fase ortorombica.
- Cu$_{1.60}$S la Geerite è un minerale naturale. È della fase trigonale.
- Cu$_{1.46}$S la Spionkopite è un minerale naturale. È della fase trigonale.
- Cu$_{1.24}$S la Yarrowite è un minerale naturale. È della fase trigonale.
- Cu$_{1.00}$S la Covelite è un minerale naturale. È della fase esagonale.

![Figura 1.1: Strutture cristallografiche di (a) bassa calcocite (monoclinina), (b) alta calcocite (esagonale), (c) calcocite cubica (cubico), (d) djurleite, (e) digenite, e (f) anilite.][1]
Ogni fase è caratterizzata da un diverso livello di impaccamento dello zolfo all’interno del reticolo. Le differenze nell’impaccamento cambiano le proprietà sia chimiche che fisiche del materiale. Il cambiamento di fase può avvenire anche mediante la temperatura, è stato osservato, per esempio, che la calcocite Cu$_2$S esibisce una fase monoclina (bassa calcocite) al di sotto di 104°C, che cambia in fase esagonale (detta alta calcocite) tra i 104 e 436°C e si trasforma in fase cubica (detta calcocite cubica) al di sopra dei 436°C.[?] Un esempio di queste strutture cristalline è mostrato in figura Fig.??

Il rame solfuro è un importante semiconduttore di tipo p. In natura è versatile, ha una bassa tossicità ed è facilmente disponibile. La grande variabilità delle proprietà elettroniche ed ottiche permette future applicazioni in diversi campi che vanno dall’optoelettronica, fotocatalisi, celle solari, sensoristica, come elettrodi e nel campo biomedicale.

La sintesi chimica del sistema di rame e zolfo può essere fatta con diversi metodi, questi possono essere: sintesi idrotermale, solvotermica, con iniezione a caldo, irradiamento con microonde, termolisi o elettrodeposito. Questi diversi metodi permettono di controllare la morfologia, la dimensione e la stechiometria del composto finale. Per quanto riguarda la morfologia questa può variare tra: nanotubi, nanodischi, nanofili, nano barre, superstrutture a forma di fiore. Le dimensioni sono fortemente influenzate dal metodo di preparazione utilizzato, in genere sono attorno ai 2nm per le nanoparticelle ma possono anche arrivare ad alcuni micrometri di lunghezza per i nanofili.[?]

1.2 Quantum Dots

I quantum dots (QDs) sono una classe di particelle di dimensione nanometriche, le cui applicazioni variano tra diversi campi. Questa varietà è possibile grazie alla possibilità di controllare finemente le proprietà dei QDs, che vanno da quelle elettroniche a quelle ottiche.

Queste proprietà sono dovute al confinamento quantico. Questo è paragonabile al caso di una particella in una scatola dove il confinamento è dovuto alle dimensioni nanometriche delle particella. In questo modo gli elettroni sono confinati all’interno della superficie della nanoparticella. Questa caratteristica permette ai QDs di avere delle proprietà diverse rispetto ai corrispettivi materiali bulk.

Quindi le proprietà dei QDs sono dovute alle dimensioni e alla forma delle nanoparticelle. Le caratteristiche di queste nanoparticelle si quantificano mediante la grandezza del band gap.

Il band gap è la quantità di energia che separa la banda di conduzione e la banda di valenza. Dove la banda di valenza è la banda elettronica occupata a più alta energia dagli elettroni. Mentre la banda di conduzione è la banda di energia più bassa libera dagli elettroni.

La distanza tra queste bande è la discriminante per descrivere le proprietà di conduzione nei materiali. Nei metalli le 2 bande si sovrappongono, grazie a questo gli elettroni sono liberi di migrare da una banda all’altra. Questo permette di classificare i metalli come un materiale conduttore. Se la distanza tra le 2 bande è elevata essa non permette agli elettroni di migrare, rendendo il materiale isolante come ad esempio la gomma. Se la distanza tra le 2 bande non è troppo elevata basta una piccola eccitazione per far migrare gli elettroni dalla banda di valenza a quella di conduzione, i materiali che godono di questa proprietà sono detti semiconduttori.

La struttura a bande cosi descritta è mostrata nello schema seguente fig.??

![Figura 1.2: Schema delle differenze tra bande nei metalli, semiconduttori e isolanti.](image)

Il livello di energia detto Energia di Fermi presente nella Fig.?? identifica il più alto livello di energia occupato da particelle a T=0 K quindi allo zero assoluto.
Esistono diversi tipi di semiconduttori. Ma la maniera più semplice per differenziarli è in diretti e indiretti. Questa differenza si basa sul fatto che i limiti dei livelli energetici delle bande non sono lineari ma sono rappresentati da delle curve. Se il massimo della banda di valenza ed il minimo della banda di conduzione sono allineati il processo di ricombinazione dell’ellettrone eccitato produrrà un fotone con una certa energia. Mentre se il minimo della banda di conduzione è sfalsato rispetto al massimo della banda di valenza, il processo di ricombinazione sarà più lento producendo un fotone ad una energia inferiore. Questo concetto è espresso schematicamente nella figura Fig.??

Come detto in precedenza il solfuro rameico è un semiconduttore. Il tipo di semiconduttore, diretto o indiretto, è determinato dall’entità della deficienza di rame. Cu$_2$S è un semiconduttore di tipo indiretto mentre con l’aumento della deficienza di rame diventa indiretto [?].

1.3 Plasmone di risonanza superficiale Localizzato (LSPR)

Quando delle particelle metalliche, con dimensioni paragonabili alla radiazione incidente, interagiscono con la luce il campo oscillante della radiazione incidente eccita i portatori di carica del materiale facendoli oscillare, con un moto coerente rispetto alla radiazione incidente

La posizione del picco del LSPR è legato alle dimensioni delle nanoparticelle. Infatti uno dei parametri che regolano la posizione del picco è la dimensione delle nanoparticelle, oltre alla geometria e alle specie atomiche. Inoltre il picco è controllato dalla densità degli elettroni liberi del materiale, modulati dalla costante dielettrica del mezzo.

La maggior parte dei metalli plasmonici, come oro argento e rame hanno una densità di elettroni liberi di $10^{22} - 10^{23} cm^{-3}$ che corrisponde ad un picco di LSPR nel visibile. Tuttavia il plasmone non si manifesta solo nei metalli ma è presente anche negli ossidi metallici come nei semiconduttori poiché abbiamo un apprezzabile densità di portatori di carica liberi.[?]

In linea di principio ci si aspetta che nei semiconduttori nanostrutturati ci sia una variabilità nella dimensione e forma del picco di LSPR come nei metalli. Il vantaggio di usare i semiconduttori nella nanoplasmonica è che la densità di portatori di carica liberi può essere modificata mediante drogaggio, cambio di temperatura,
transizione di fase. Questo permette non solo di ingegnerizzare il plasmone, ma da la possibilità anche di controllarlo attivamente decidendo quando spegnerlo o no. Mentre nelle nanoparticelle metalliche la risposta viene ingegnerizzata attraverso i parametri nanostrutturali, come forma, dimensione, il tipo di metallo ma questi, una volta sintetizzata la nanoparticella, sono bloccati e non possono essere modificati dinamicamente.

Figura 1.5: Dipendenza del Plasmone di risonanza localizzato (LSPR) rispetto alla densità dei portatori di carica e loro drogaggi[?].

Nella Fig.?? viene mostrata la dipendenza del plasmone rispetto al drogaggio del semiconduttore. Una concentrazione di portatori di carica di $10^{21}cm^{-3}$ produce un plasmone di risonanza attorno al vicino-medio infrarosso, e permette un vasto range di applicazioni.
Capitolo 2
Preparazione dei campioni e metodologie sperimentali

2.1 Preparativa dei Campioni

Nella maggior parte dei lavori presenti in letteratura, il solfuro rameico QDs è stato preparando usando solventi organici \[\text{?}\][?][?]. In questi lavori viene utilizzato un sistema basato sul metodo dell’iniezione a caldo, dove una miscela contenente i precursori Cu e S viene miscelata in solventi organici come 1-octadecene e oleylamina. Queste metodiche vengono condotte in atmosfera inerte e ad alte temperature 180-220°C.

Un altro metodo di sintesi viene effettuato usando l’acqua come solvente e l’esperimento viene condotto a temperatura ambiente per tutta notte\[?\]. Le nanoparticelle di dimensione minore sono ottenute con i solventi organici mentre con altri solventi come l’acqua si ottengono nanoparticelle di dimensione maggiore.

In questa tesi le nanoparticelle di solfuro rameoso sono ottenute usando l’H\(_2\)O come solvente il PEG(Me) come complessante e cappante. Inoltre per migliorare la stabilità delle nanoparticelle in ambiente acqueo la superficie della nanoparticelle è stata funzionalizzata con un PEG ammino di formula \(\text{HN-PEG-NH}_2\). La presenza dei gruppo amminico agli estremi delle nanoparticelle permetteranno in un secondo momento di funzionalizzare le nanoparticelle con altri composti organici o inorganici.

La sintesi delle nanoparticelle è stata condotta all’interno di un pallone a tre colli con colonna refrigerante. Acqua, PEG(Me) e cloruro rameoso CuCl\(_2\) sono posti all’interno del pallone. Alla completa dissoluzione dei reagenti in acqua la soluzione vira all’azzurro chiaro. Il sistema viene posto su una piastra riscaldante a 90°C. Raggiunta la temperatura viene aggiunto nella soluzione solfuro di sodio Na\(_2\)S. Subito dopo l’aggiunta dello zolfo la soluzione vira al marrone scuro. Questo è un indicatore della formazione delle nanoparticelle. Il sistema viene mantenuto a 90°C sotto agitazione per 10 min. Alla fine di questo tempo le nanoparticelle vengono fatte precipitare con 10 mL di H\(_2\)O e 20 mL di EtOH e vengono posti in centrifuga a 9000 giri/min per 20 min, il prodotto viene poi lavato con la stessa procedura. Infine il prodotto viene stoccato in una Falcon e ridisoluto in 15 mL di H\(_2\)O.

Questa sintesi è stata sviluppata variando i parametri seguenti

- rapporto stechiometrico dello [S]. sezione ??
- la quantità di \(\text{HN-PEG-NH}_2\). sezione ??
- la quantità di H\(_2\)O. sezione ??
- il tipo di glicole. sezione ??
- il pH di sintesi. sezione ??
- la temperatura di sintesi. sezione ??

2.2 Caratterizzazioni

La caratterizzazione dei campioni segue diverse strade, queste cambiano a seconda del tipo di analisi. La differenza principale si basa sul grado di purezza necessario per effettuare quella misura.
La spettroscopia di assorbimento UV-vis non richiede un elevato grado di purezza quindi bastano la precipitazione ed il lavaggio.
Mentre per lo studio morfologico e strutturale i campioni necessitano di un grado di purezza maggiore. Per fare ciò i campioni fanno altri 2 cicli di lavaggio con 5 mL di H$_2$O e 10 mL di EtOH e poi vengono posti in centrifuga a 9000 giri/min. Questi ulteriori passaggi servono ad eliminare i residui delle catene di PEG non attaccate sulla superficie delle nanoparticelle. Infatti le catene che non aderiscono alla superficie sono incastrate tra le catene che aderiscono alla superficie.

2.2.1 Spettroscopia UV-vis

L’assorbimento della radiazione visibile ed ultravioletta (UV) è associata all’eccitazione degli elettroni da un livello energetico inferiore ad uno superiore, sia negli atomi che nelle molecole. I livelli energetici nella materia sono quantizzati, e soltanto una luce con un preciso ammontare di energia può provocare la transizione da un livello ad un altro per essere assorbito. Questo preciso ammontare di energia è dettato dalle regole di selezione, che descrivono quali sono le transizioni elettroetniche permessi, e di conseguenza la quantità di energia per effettuare la transizione.
Le transizioni elettroetniche possibili che la luce può causare sono illustrate nella figura seguente Fig. ??

![Figura 2.1: Transizioni tra i livelli energetici permessi nelle molecole.](image)

In ogni caso, un elettrone è eccitato da un orbitale pieno (con bassa energia allo stato fondamentale) ad un livello vuoto di un orbitale di anti-legame (ad alta energia allo stato eccitato). Ogni lunghezza d’onda della luce è associata ad una particolare energia. Se questa particolare quantità di energia è sufficiente per permettere la transizione di un elettrone questa verrà assorbita.
Più è grande il gap di energia tra i livelli, maggiore sarà l’energia richiesta per promuovere l’elettrone ad un livello energetico più alto.
Tutte le molecole sono sottoposte all’eccitazione elettroetnica dopo l’assorbimento della luce, ma per la maggior parte delle molecole è richiesta una radiazione ad una energia davvero elevata (la radiazione ultravioletta nel vuoto (200nm). Di conseguenza, l’assorbimento della luce nell’UV-is sarà il risultato delle seguenti transizioni.

![Figura 2.2: Transizioni elettroetniche permessi dopo l’assorbimento.](image)

Quindi per assorbire la luce nella zona 200-800 nm le molecole devono contenere almeno 3 legami o atomi con orbitali di non legame. Un orbitale di non-legame è un doppietto spaiato per l’ossigeno, azoto o per un alogenio.
2.2. CARATTERIZZAZIONI

Uno spettrometro UV-vis può essere usato per misurare l’assorbanza nell’ultra violetto o nella luce visibile di un campione, in cui viene scansionato un range dello spettro. La regione dell’UV va da 190 nm a 400 nm. La regione del visibile va da 400 a 800 nm e la regione del vicino infrarosso da 800 a 1100 nm. Questa tecnica può essere usata sia quantitativamente che qualitativamente. Uno schema di come è fatto un spettrofotometro è mostrato in Fig. ??.

La sorgente di luce è solitamente composta da una lampada o da un sistema di lampade che coprono il range che va dall’UV-vis fino al vicino infrarosso. La luce prodotta dalla lampada viene focalizzata in un reticolo di diffrazione che permette di selezionare la lunghezza d’onda desiderata.

Se i campioni sono liquidi vengono caricati in una cuvetta di quarzo, trasparente alla radiazione incidente. La cuvetta è un contenitore in quarzo di lunghezza 1 cm.

Il detector converte la luce incidente in corrente, e più grande è la corrente più grande è l’intensità. Il registratore grafico di solito traccia l’assorbanza rispetto alla lunghezza d’onda (nm) nella sezione UV e visibile dello spettro elettromagnetico.

Lo strumento utilizzato ha solo una cuvetta, quindi è possibile fare solo analisi qualitative. Il sistema di misura lavora nello stesso modo. La differenza sta nel fatto che la cuvetta col riferimento e il campione è la stessa. Quindi prima si misura lo spettro del solvente 3mL di H$_2$O facendo il backgroung(I_0) e poi si inseriscono aliquote di 100 µL del campione (I).

In questo lavoro lo spettro di assorbimento viene usato per quantificare il plasmon di risonanza dei campioni.

2.2.2 Diffrazione da polveri XRD

Fare uno spettro XRD comporta monitorare la diffrazione dei raggi X dopo che hanno interagito con il campione. Si tratta di una tecnica cristalografica usata per identificare e quantificare varie fasi cristalline presenti in materiali solidi e polveri. Grazie agli XRD può essere determinata la struttura cristallina nonché le dimensioni dei grani e delle nanoparticelle. Quando i raggi X sono diretti a un campione cristallino regolare, una parte di essi viene diffratta per produrre uno spettro. Dallo spettro si possono ricavare le fasi cristalline in modo tale da identificare, per confronto, dei piccoli presenti nei database internazionalmente riconosciuti (come Centro Internazionale di diffrazione dati - ICDD) che contengono i modelli di riferimento. In applicazioni di rilevamento, gli XRD sono generalmente utilizzati per correlare le proprietà di un materiale con le prestazioni misurate con...
La tecnica di diffrazione dei XRD è una delle tecniche più utilizzate per determinare la struttura dei materiali inorganici ed organici. È anche ampiamente utilizzato per lo studio di film sottili e nanoparticelle nanostrutturate. Tuttavia, i materiali devono avere la struttura ordinata, e non può essere utilizzato direttamente per studiare materiali amorfi. Un'altra limitazione intrinseca degli XRD è che miscele di fasi che hanno una bassa simmetria sono difficili da distinguere a causa del maggior numero di picchi di diffrazione. Inoltre, i materiali organici come polimeri non sono mai totalmente cristallini, pertanto XRD è principalmente usato per determinare la loro cristallinità.

La legge di Bragg afferma che i picchi di diffrazione derivanti da cristalli sono perfettamente ordinati. I picchi di diffrazione reali hanno una larghezza finita risultante da imperfezioni, dovute sia alla sorgente di irradiazione che al campione. È noto che le larghezze dei picchi di diffrazione consentono la determinazione delle dimensioni medie dei cristalliti. In pratica, la dimensione dei cristalliti può essere determinata utilizzando varianti dell’equazione Scherrer:

$$ t = \frac{K \lambda}{B \cos \theta} $$

dove t è lo spessore del cristallo, K è una costante che dipende dalla forma dei cristalliti, e B è la larghezza a metà altezza del picco ampliato. Se una funzione gaussiana viene utilizzato per descrivere il picco ampliato, quindi la costante K è pari a 0,89. L’equazione Scherrer deriva dalla legge di Bragg e può essere utilizzata per determinare le dimensioni dei cristalliti se i cristalliti di dimensioni inferiori a 1000 Å.

I raggi XRD hanno molti usi pratici per le applicazioni nanotecnologiche. Non solo consente di identificare diverse fasi, può anche essere utilizzato per monitorare la crescita e la formazione di cristalliti di dimensioni nanometriche esaminando l’allargamento dei picchi nel modello XRD. Ciò è particolarmente importante per lo studio dei materiali per sensori la cui performance dipende dalle dimensioni delle particelle nanocristalli. E’ anche importante per determinare la distribuzione di nanocristalli sulla superficie di uno strato di rilevamento.

Le tecniche XRD sono classificate in cristallo mono, in cui l’analisi è fatta con un singolo cristallo ed i dati raccolti sono stati costituito da alcuni punti corrispondenti con vettori di reticolo reciproco, nella diffrazione da polveri in cui i dati sono raccolte dalla polvere di campione. Con la polvere i singoli cristalli hanno un orientamento statisticamente diverso. I parametri strutturali dei campioni sono inclusi negli spettri:

- la posizione dei picchi: parametri cella unitaria,
2.2. CARATTERIZZAZIONI

- intensità del picco: parametri atomici,
- La forma del picco: cristallinità, disordine e difetti.

In questo lavoro la diffrazione da polveri viene utilizzata per raccogliere spettri di diffrazione. I campioni sono dispersi in EtOH, per effettuare una misura basta qualche goccia, che sono messe su un porta campioni chiamato a fondo zero. E’ utilizzato perché la posizione del picco di questo materiale è oltre l’intervallo di misura.

2.2.3 Microscopio elettronico a scansione (SEM)

Il SEM è forse lo strumento più utilizzato per la caratterizzazione dei nanomateriali. Grazie al SEM è possibile ottenere immagini da elettroni secondari di materiali organici ed inorganici con risoluzione di decine di nanometri, consentendo studi topografici e morfologici. Questi vengono effettuati scannerizzando il campione con una sonda di elettroni e l’immagine viene prodotta dagli elettroni secondari emessi. L’analisi della composizione di un materiale può essere ottenuta controllando raggi X prodotti dalla interazione elettrone-campione. Così mappe dettagliate della distribuzione degli elementi possono essere prodotti. Nella tecnologia dei sensori, questa è prevalentemente utilizzato per studiare le superfici di film sottili e strati di rilevamento.[?] Un diagramma schematico di un SEM è mostrato in Fig. 2.6.

![Diagramma della struttura SEM](immagine.png)

Figura 2.6: diagramma della struttura SEM.

Il fascio di elettroni viene emesso da un filamento riscaldato, costituito comunemente di tungsteno oppure da esaboruro di lantanio LaB$_6$. Il filamento è riscaldato mediante l’applicazione di una tensione, questo per effetto termo-ioni-co induce gli elettroni a lasciare la superficie del filamento. In alternativa, gli elettroni possono essere emessi tramite emissione di campo (FE). [?]

Gli elettroni sono accelerati verso il campione applicando una differenza di potenziale. Questo fascio di elettroni risultante viene focalizzato da una lente condensatrice, che proietta l’immagine della sorgente sull’apertura del condensatore. Questa viene poi focalizzata da una lente obiettivo che scannerizza la superficie del campione. Quando gli elettroni primari colpiscono il campione, danno parte della loro energia agli elettroni del campione, con conseguente emissione di elettroni secondari. Questi elettroni secondari danno energia inferiori (circa di 20 eV) rispetto alle energie degli elettroni incidenti. Questi elettroni secondari vengono raccolti da un rivelatore specifico, convertiti in una tensione, amplificata per costruire l’immagine. La loro intensità viene visualizzata rispetto alla posizione del fascio primario sul campione. I campioni posti nel SEM devono essere conduttori o essere ricoperti con uno strato sottile di metallo al fine di rendere conduttore il campione. La scansione avviene ad alto vuoto, in modo tale che gli elettroni non vengano dispersi dalle molecole di gas all’interno della camera. [?]

Gli elettroni secondari sono molto sensibili alla natura del campione. Quando i primi elettroni sono sparati sul campione a seconda dell’atomo interagente perde un po di energia. Questi se hanno un angolo sufficiente entrano più in profondità nel campione. Così il volume di interazione e la profondità di penetrazione sono una funzione dell’energia incidente E_0 dell’elettrone incidente, e del numero atomico Z. Questo rapporto si spiega più facilmente vedendo l’immagine seguente.
2.2.4 Elettroforesi su gel di agarosio

L'elettroforesi su gel di Agarosio è una tecnica utilizzata in biologia molecolare per separare frammenti di DNA o RNA di diverse lunghezze. Può essere utilizzato anche per proteine o miscele di acidi nucleici e proteine separate. I campioni vengono caricati nel gel di agarosio e sono separati per l'applicazione di un campo elettrico. La separazione avviene per dimensione (effetto setaccio della matrice di agarosio) e per la carica.

L'Agarosio è un polisaccaride purificato dalle alghe rosse. L'agarosio molecolare è una lunga catena polimera in cui l'unità ripetitiva è un disaccaride \((1,3) - \beta - D - galactopyranose - (1,4) - 3; 6 - anhydro - \alpha - L - galactopyranose\). Figura ??.

La porosità del gel, e quindi le proprietà di separazione, possono essere altamente controllate durante la preparazione del gel, inoltre dipende dalle proprietà chimiche dell'agar. Le molecole lineari formano fibre elicoidali, che, a loro volta, formano una rete di eliche supercoiled, stabilizzate da legami idrogeno. Le porosità variano da 50 a 200 nm, in funzione della concentrazione di agarosio. Aumentandola, le dimensioni dei pori diminuiscono e viceversa. Così la concentrazione di agar definisce la potenza di risoluzione del gel.

Dal momento che le NP hanno dimensioni paragonabili a grandi molecole di DNA, è possibile utilizzare questa tecnica per valutare le loro dimensioni relative e la loro carica di superficie netta relativa.
La superficie delle NP sviluppate in questo lavoro sono state funzionalizzate con PEG (Me) e $2\text{HN} \text{PEG} \text{NH}_2$. La PEGilazione non è rilevabile con tecniche normali utilizzate per studiare la morfologia delle nanoparticelle come SEM o TEM, ma l'elettroforesi su gel di agarosio potrebbe essere una tecnica valida e rapida per l'analisi qualitativa delle NP così funzionalizzate. Questa tecnica permette di valutare la carica relativo di NP funzionalizzate, o l'estensione e il grado di funzionalizzazione.

2.3 Scopo della Tesi

L'obiettivo di questa tesi è quello di sviluppare una semplice e nuova sintesi in acqua per il rame solfuro Quantum Dots. Le proprietà di queste NP sono state studiate mediante UV-vis, XRD, SEM e gel di agarosio.
Capitolo 3

Parte sperimentale

Per sviluppare il miglior protocollo di sintesi si andrà a variare un parametro alla volta. Il primo parametro da modificare è il rapporto stechiometrico tra Cu e S.

3.1 Variazione di [S]

Il primo parametro da modificare è la concentrazione di ione solfato, quindi gli altri componenti non vengono modificati.

In un pallone a tre colli si pongono 1 ml di H$_2$O MilliQ, 5 g di PEG (Me), 34 mg di CuCl$_2$$\cdot$3H$_2$O. Il sistema viene messo in un bagno con una colonna di raffreddamento a 90 °C sotto agitazione. Quando i reagenti sono completamente sciolti, la soluzione diventa blu pallido. Dopo di che una soluzione di Na$_2$S 1M viene aggiunta nel pallone, quando si aggiunge Na$_2$S la soluzione vira immediatamente in marrone scuro. La soluzione quindi viene lasciata reagire per 10 min.

La quantità di Na$_2$S aggiunta alla soluzione è mostrata nella tabella 3.1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Na$_2$S1M</th>
<th>[S] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100</td>
<td>0.0625</td>
</tr>
<tr>
<td>02</td>
<td>200</td>
<td>0.1250</td>
</tr>
<tr>
<td>03</td>
<td>400</td>
<td>0.2500</td>
</tr>
<tr>
<td>04</td>
<td>800</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

Tabella 3.1: Variazione di [S].

3.1.1 Caratterizzazione Ottica

La caratterizzazione ottica con l’assorbimento UV-vis ha dato i seguenti risultati:

Figura 3.1: Variazione di [S].
Come prevedibile la posizione degli spettri cambia con la modifica della concentrazione di zolfo. Per la sintesi successiva si è sempre usato 200 μL.

3.2 Variazione di $[\text{HN-PEG-NH}_2]$

Per migliorare la capacità di stare in sospensione delle nanoparticelle si aggiunge 2HN-PEG-NH_2 alle NPs. La quantità aggiunta alla soluzione è mostrata nella seguente tabella.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$[\text{HN-PEG-NH}_2]$ (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>15</td>
</tr>
<tr>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>03</td>
<td>75</td>
</tr>
<tr>
<td>04</td>
<td>150</td>
</tr>
<tr>
<td>05</td>
<td>300</td>
</tr>
<tr>
<td>06</td>
<td>600</td>
</tr>
</tbody>
</table>

Tabella 3.2: Variazione di $[\text{HN-PEG-NH}_2]$.

3.2.1 Caratterizzazione Ottica

La Caratterizzazione Ottica dei campioni è la seguente.

![Caratterizzazione Ottica](image)

Figura 3.2: Variazione di $[\text{HN-PEG-NH}_2]$.

La forma e la posizione degli spettri non cambia. Questo effetto è prevedibile perché la presenza del PEG non influenza le proprietà ottiche delle nanoparticelle.

Nella seguenti sintesi si utilizzerà solo 75 mg di HN-PEG-NH_2.

3.3 Variazione di [H₂O]

In questa sezione viene studiato l'effetto del volume di H₂O MilliQ sulla sintesi. I volumi utilizzati sono riportati nella tabella seguente.

<table>
<thead>
<tr>
<th>Sample</th>
<th>[H₂O] (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>2</td>
</tr>
<tr>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>05</td>
<td>8</td>
</tr>
<tr>
<td>06</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabella 3.3: Variazione di H₂O.

3.3.1 Caratterizzazione Ottica

Il risultato dello studio ottico è mostrato nel grafico seguente.

Il cambiamento del volume d'acqua non fa emergere differenze notevoli tra gli spettri. Si è scelto di utilizzare 8 mL H₂O per le prossime sintesi.

3.4 Variazione del Glicole

Nella fase successiva si è studiato come i diversi tipi di glicole e la sua mancanza influenzano le nanoparticelle. Si è usato Tetraethylene glycol, PEG-Me 550, Ethylene glycol e in un campione non c'è nessun tipo di glicole.

<table>
<thead>
<tr>
<th>Sample</th>
<th>[glycol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Tetraethylene glycol</td>
</tr>
<tr>
<td>02</td>
<td>PEG-Me 550</td>
</tr>
<tr>
<td>03</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>04</td>
<td>no PEG</td>
</tr>
</tbody>
</table>

Tabella 3.4: Variazione di glicole.

3.4.1 Caratterizzazione Ottica

I risultati della caratterizzazione ottica sono mostrati nel seguente grafico.
CAPITOLO 3. PARTE SPERIMENTALE

Ogni spettro ha forma e dimensioni comparabili. Quindi, per le proprietà ottica non ci sono grandi differenze tra i vari glicoli ed il campione con semplice PEG-Me.
Il campione senza PEG ha una forma del picco completamente diversa rispetto al resto dei campioni.
Quindi la scelta migliore è quella di lavorare con PEG(Me) 5000.

3.5 Variazione di pH

Un altro parametro importante per lo studio è il pH. Per prima cosa si è misurato il pH della soluzione prima della aggiunta di Na$_2$S.

<table>
<thead>
<tr>
<th>reagente</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG-Me+H$_2$O</td>
<td>6.1</td>
</tr>
<tr>
<td>CuCl$_2$</td>
<td>4.4</td>
</tr>
<tr>
<td>$2HN - PEG - NH_2$</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Tabella 3.5: Variazione di pH all’aggiunta dei reagenti.

Quindi in questo caso la reazione lavora, di norma, a $pH = 4.6$. Per modificare il pH si aggiunge NaOH [1M] al fine di rendere la soluzione basica e si aggiunge HCl [1M] per rendere la soluzione acida.
Il seguente grafico mostra la variazione di pH basico. Fig.??

Mentre il seguente grafico mostra come la soluzione vira a pH acidi Fig.??
Si è studiato come variano le nanoparticelle sia a pH acidi che basici. I pH scelti sono mostrati nella tabella ??.

<table>
<thead>
<tr>
<th>campione</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>6</td>
</tr>
<tr>
<td>05</td>
<td>7</td>
</tr>
<tr>
<td>06</td>
<td>8</td>
</tr>
<tr>
<td>07</td>
<td>9</td>
</tr>
<tr>
<td>08</td>
<td>10</td>
</tr>
<tr>
<td>09</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabella 3.6: pH utilizzati.

Quando la soluzione raggiunge il pH giusto, questa viene messa in un normale pallone a tre colli con una colonna di raffreddamento.

Quando la soluzione va a pH acido, il colore della soluzione da blu pallido diventa di un colore ancora più pallido fino a diventare quasi trasparente. D’altra parte, se la soluzione va al pH basico la soluzione da blu pallido diventa di colore blu opaco. Questa soluzione diventa più viscosa diventando più basica.
3.5.1 Caratterizzazione Strutturale

La caratterizzazione strutturale di questo insieme di campione è mostrato nel grafico Fig.??

![Spettro di diffrazione per differenti pH.](image1)

Figura 3.7: Spettro di diffrazione per differenti pH.

Ci sono grandi differenze tra gli spettri. Ma è possibile vedere dei fattori comuni. Per esempio ci sono due ampi picchi poco intensi tra i 27 e i 35 θ.

Per vedere meglio il trend, spettri sono divisi in acido?? e basico??

![Spettro di diffrazione per differenti pH basici.](image2)

Figura 3.8: Spettro di diffrazione per differenti pH basici.

A proposito di spettri di diffrazione ci sono vari picchi in comune, due picchi tra i 25 2 θ ci sono in tutti gli spettri se non a pH 10. Ci sono due piccoli ampi picchi visibili tra 26-34 2 θ salvo pH 11. In pH7 e pH9 questi picchi sono comunque visibili anche se sono poco intensi.

Gli spettri di diffrazione sono stati confrontati al database cristallografico. Il risultato di questa analisi è mostrato nella figura successiva Fig.??
3.5. VARIAZIONE DI PH

Figura 3.9: Analisi dello spettro di diffrazione per differenti pH basici.

Dove la covelite deriva PDF 01-075-2233 e la posnjakite dal PDF 01-083-1410. Gli spettri a pH acidi vengono analizzati allo stesso modo di quelli basici. I risultati sono illustrati nella Fig. ??

Per quanto riguarda gli spettri di diffrazione dei pH acidi, ci sono pochi picchi in comune. C’è un picco a $2\theta = 26.5$ questo non è presente solo a pH6. Ma anche a pH6 e pH4.6 due picchi tra i 26 e i 34 2θ sono visibili come nel grafico degli spettri di base Fig. ??.

L’analisi degli spettri di diffrazione è riportata nella successiva Fig. ??
CAPITOLO 3. PARTE SPERIMENTALE

Figura 3.11: Analisi dello spettro di diffrazione per differenti pH acidi.

Dove la covelite deriva sempre dallo PDF dalla covelite in Fig. ?? e la calcocite viene dal PDF 01-073-6087.

3.5.2 Caratterizzazione Ottica

I risultati della caratterizzazione ottica sono mostrati in grafico ??

Figura 3.12: Spettro fatto a diversi pH.

Questo grafico non ci permette di capire bene la tendenza degli spettri per cui sono stati divisi in due: l’acido ?? e la base ??.
3.5. VARIAZIONE DI PH

Ogni spettro ha la stessa forma, tranne che per pH4.6 e pH1. Solo la seconda parte degli spettri compresa tra 700 e 1100 nm è profondamente diversa. Questi risultati sono confermati dagli spettri di diffrazione Fig. ??

Ogni spettro ha la stessa forma, tranne a pH 10 e pH11. Questi risultati sono confermati dagli spettri di diffrazione Fig. ??.

3.5.3 Caratterizzazione Morfologica

La morfologia delle NP sintetizzate a pH diversi sono state analizzate con il SEM. Le immagini ottenute sono riportate di seguito:
CAPITOLO 3. PARTE SPERIMENTALE

(a) pH1
(b) pH4.6
(c) pH6
(d) pH9
(e) pH10
(f) pH11

Figura 3.15:
Ci sono molte differenze tra le immagini. Per esempio le nanoparticelle nell’immagine di pH 11 Fig. ?? hanno una forma completamente diversa rispetto alle altre nanoparticelle. Le nanoparticelle di pH 11 hanno forma simile al riso. Mentre tutte le altre nanoparticelle hanno una forma sferica.

3.6 Variazione di Temperatura

L’effetto della temperatura di sintesi è studiato in questa sezione.

Le nanoparticelle sono state sintetizzate con temperature diverse. Le temperature utilizzate sono riportate nella tabella ??

<table>
<thead>
<tr>
<th>sample</th>
<th>Temp(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>25</td>
</tr>
<tr>
<td>02</td>
<td>40</td>
</tr>
<tr>
<td>03</td>
<td>60</td>
</tr>
<tr>
<td>04</td>
<td>80</td>
</tr>
<tr>
<td>05</td>
<td>100</td>
</tr>
<tr>
<td>06</td>
<td>120</td>
</tr>
</tbody>
</table>

Tabella 3.7: Temperature utilizzate.

3.6.1 Caratterizzazione Strutturale

La caratterizzazione strutturale di nanoparticelle sintetizzate a diversa temperatura è mostrato nella seguente Fig. ??

![Spettri di diffrazioni delle NPs fatte a diverse Temperature.](image)

Con questi diffrattogrammi è possibile notare l’effetto della temperatura sulla formazione delle nanoparticelle di solfuro. Con una temperatura di 40-60 °C non si ha formazione di NP, perché la temperatura è troppo bassa per permettere la formazione di NP.

L’analisi degli spettri di diffrazione sono mostrati nella successiva Fig. ??
CAPITOLO 3. PARTE SPERIMENTALE

3.6.2 Caratterizzazione Ottica

La caratterizzazione ottica delle NPs fatte a diverse temperature. Le temperature scelte sono mostrate in Fig. ??

Ogni spettro UV-vis ha una forma diversa. Solo le NP sintetizzate a 100 e 120 °C hanno la stessa forma. Lo spettro a 25 °C è completamente diverso e non è neanche presente la forma del picco di solfuro di rame. Gli spettri a 40 e 60 °C hanno la stessa forma, ma l'intensità è troppo piccola ed è possibile ipotizzare la formazione incompleta di NP. Questa teoria è confermata dai risultati di diffrazione Fig. ??

3.6.3 Caratterizzazione Morfologica

La morfologia delle NP sintetizzate a temperature diverse è stata studiata con il SEM. Le immagini ottenute sono riportate di seguito:
Con la crescita della temperatura di sintesi non vi è un miglioramento dei contorni delle NP. In Fig. ?? sembra che ci sia una sola particella, ma in realtà vi è una sorta di un fondo di nanoparticelle di dimensione molto piccole. Questo fondo è identificato dai diversi toni di grigio.

3.7 Tauc plot

Per determinare il band gap si usa il Tauc plot. Dove lo spettro UV-vis viene utilizzato per ricavare il band gap. Questo plot è costruito con $alpha(h\nu)^n$ vs $(h\nu)$ (eV) dove n è il parametro per specificare se il semi-conduttore è diretto ($n = 2$) o indiretto ($n = 1/2$) Fig. ??.

L'energy gap E_g è ottenuto mediante l'intersezione dell'estensione del fit lineare della curva di assorbimento con la linea di fondo. Questo fit lineare è costituito dalla parte lineare degli spettri UV-vis. [?] Detto questo il plot per gli spettri a pH differenti risulta:
Figura 3.20: Plot con l’analisi Tauc a pH diversi.

I risultati del Tauc plot per il band gap:

Figura 3.21: Risultati del Tauc plot per il pH.

Il plot, a differenti temperature, da i seguenti grafici:
3.8 Studio della carica

Al fine di determinare la qualità della funzionalizzazione del PEG ammino si è usato l'elettroforesi su gel d'agarosio. Per eseguire la corsa elettroforetica è necessario un tampone TBE. Il TBE è una soluzione tampone usata per separare piccoli frammenti di DNA, questo TBE ha un elevata capacità tamponante ed è in grado di inibire la DNA ligasi.

Il TBE è preparato in acqua MilliQ usando 54 g di (Tris (idrossimetil) amminometano) chiamato Tris base, 27,5 g di acido borico e 20 ml di 0,5 M EDTA in soluzione, infine il pH è regolato a 8,3 con HCl.

Il gel viene preparato in forno a microonde, sciogliendo 0,2 g di agar in 100 mL di tampone TBE. Il gel viene poi colato in un supporto appropriato ed un pettine, utilizzato per preparare i pozzetti di caricamento, è disposto nel mezzo di supporto stesso. Questo ci permette di seguire le nanoparticelle cariche sia negative che positive. I campioni sono preparati aggiungendo 30 % v/v di glicerolo (di concentrazione finale). Alcuni campioni sono
sonicati al fine di rompere eventuali aggregati. La corsa elettroforetica è realizzata in una soluzione tampone TBE, applicando un campo elettrico costante di 120V per 30 minuti.

I campioni caricati nel gel sono: 06 PEG amino sonicato, un campione senza PEG, T = 120° diluiti 1/3 con H$_2$O, T120° sonicato, pH = 8 diluito 1/3 con H$_2$O e pH = 8 sonicato.

Il risultato è mostrato nella seguente figura Fig. 3.24.

Figura 3.24: Risultati della corsa su agarosio. a)PEG amino sonicato, b) campione senza PEG, c) T=120° 1/3, d) T=120° sonicato, e) pH=8 1/3, f) pH=8 sonicato.
Capitolo 4

Risultati e Discussioni

4.1 Variazione di [S]

La modifica dei rapporti stechiometrici di [S], modifica le proprietà ottiche, come è possibile vedere nella Fig. ??.
Nello spettro del campione con il tasso massimo di [S] sembra non essere avvenuta la formazione di solfuro rameoso, questo accade perché l’alto rapporto stechiometrico di zolfo inibisce la corretta formazione del reticolo cristallino.
Con diversi rapporti stechiometrici avviene la formazione reticolare corretta. Lo spettro di tutti i campioni ha una forma simile ma la posizione del picco è spostata. Ciò è causato dal rapporto stechiometrico tra zolfo e rame.
Se c’è il doppio della quantità di rame, il picco va a destra e l’efficienza LSPR diminuisce. Se vi è il doppio della quantità di zolfo il picco va a sinistra ed il picco LSPR esce fuori dal range strumentale.

4.2 Variazione di [\(2\text{HN−PEG−NH}_2\)]

Le nanoparticelle con solo PEG(Me) precipitano molto facilmente. Per evitare la precipitazione, viene aggiunto un altro glicole, il \(2\text{HN−PEG−NH}_2\), questo ha alle sue estremità gruppo amminico. Questo aumenta la stabilità delle nanoparticelle in sospensione.

La stabilità delle nanoparticelle si osserva nell’immagine seguente

Figura 4.1: Prova di stabilità delle nanoparticelle.

Come si vede dall’immagine ?? i campioni a destra funzionalizzati con PEG diammino rimangono in soluzione mentre le nanoparticelle a sinistra, senza PEG diammino, sono precipitate.
La possibilità di rimanere in sospensione dipende dal numero di catene di PEG diammino legate alla superficie delle NP. Con l’aumento del numero di catene di PEG la stabilità dovrebbe essere migliorata.

Le proprietà ottiche in teoria non dovrebbero cambiare. Infatti la Fig. ?? mostra la stessa forma per tutte le curve. Quindi, questo conferma la teoria che l’aggiunta di \(2\text{HN−PEG−NH}_2\) non modifica le proprietà ottiche delle nanoparticelle.

4.3 Variazione di [\(\text{H}_2\text{O}\)]

La quantità d’acqua in soluzione dovrebbe modificare il reticolo delle NP. Questi cambiamento dovrebbe essere visto negli spettri UV-vis con diverse quantità d’acqua Fig. ?? . Questi spettri hanno una forma e posizione
diversa.
Solo a 0 e 1 mL c’è una differenza visibile con altri spettri. Nel frattempo gli altri spettri hanno una forma e posizione più o meno simile.
Quindi si è dimostrato che l’inalzamento del volume di H₂O, per la sintesi, non cambia la proprietà ottica delle nanoparticelle.

4.4 Variazione di Glicole

I diversi glicole sono stati studiati per analizzare come il tipo di glicole condizione la solubilità della soluzione Fig.??

Tutti i campioni rimangono in soluzione.
Nella Fig.?? c’è la caratterizzazione ottica di campioni. Ogni spettro ha la stessa forma tranne PEG (Me) 5000. Questo accade perché PEG (Me) 5000 regola in un altro modo la formazione delle nanoparticelle.
La mancanza di glicole produce delle nanoparticelle con delle caratteristiche ottiche completamente differenti.

4.5 Variazione di pH

Un potente parametro che influenza la sintesi è il pH. Il potere del pH è di regolare la disponibilità degli ioni a reagire in soluzione. Questo è molto importante per tutte le reazioni chimiche.

Questa teoria è confermata dall’analisi delle nanoparticelle sintetizzate con differenti Fig.??.. Ci sono un sacco di differenze tra i singoli spettri, ma è possibile vedere una tendenza.

Se si guardano in dettaglio i pH basici i loro spettri di diffrazione sono mostrati in Fig.??.. C’è un picco molto intenso a 25,6 2θ. Questo picco appartiene alla posnjakite. Si tratta di un idrossido di zolfo e rame e la sua formula chimica è Cu₄(OH)₆(SO₄)(H₂O)₂. Questa fase si forma quando il pH va a valori basici. Quindi suppongo che questo sia il motivo per cui la soluzione diventa blu opaca e corrisponde alla formazione di un precipitato nella soluzione.
Nel frattempo ci sono altri due picchi caratteristici di questa serie di campioni. Ci sono due picchi tra i 26 ed i 34 2θ e queste sono caratteristiche della covelite CuS. La Covelite è una fase esagonale dal sistema Cu_{2-x}S ed è responsabile per la presenza del picco nello spettro UV-vis Fig.??.. Il fluttuare dell’altezza dei picchi è dovuta alla presenza o meno della covelite.
La variazione di pH e di conseguenza di tutte le proprietà influenzano anche la morfologia delle nanoparticelle. Così, nelle immagini SEM, vi è una grande variazione di forma e dimensione Fig. ??-??-??.. Le nanoparticelle con pH acido Fig.?? dimostrano una certa tendenza. In un forte ambiente acido vi è la presenza di calcocite. Mentre a pH 4,6-6 la calcocite scompare e si manifesta la covelite. Questa tendenza è confermata dagli spettri UV-vis Fig.??..
Dall’analisi morfologica a pH1 è presente una struttura molto impaccata e la forma delle nanoparticelle è difficilmente decifrabile. A pH6 c’è un gran numero di aggregati.
4.6 Variazione di Temperature

La temperatura è un altro parametro molto importante per controllare le sintesi chimiche. In Fig. ?? vi è un esempio di questa affermazione.

Le nanoparticelle sintetizzate a bassa temperatura come 25-40-60 °C, non presentano la formazione completa delle nanoparticelle. Ciò è confermato dall’analisi morfologica in Fig. ??, dove è presente un fondo di piccolissime nanoparticelle identificato dalla diversa tonalità di grigio dell’immagine. L’analisi all’UV-vis conferma la teoria Fig. ?? perché gli spettri a 25-40-60 °C hanno una forma completamente diversa.

Mentre, a temperatura elevata, vi è il miglioramento delle proprietà ottiche. Infatti i campioni sintetizzati a 100-120 °C hanno il picco più alto. Ciò è confermato dalla presenza, negli spettri di diffrazione in Fig. ??, di due picchi alti corrispondenti alla covelite.

L’analisi morfologica mostra come l’aumento della temperatura modifica l’aspetto del bordo e la forma delle nanoparticelle rendendole più nitide. Fig. ????

La variazione di temperatura non influenza la capacità di rimanere in sospensione.

4.7 Studio della carica

I campioni corrono in direzione dell’anodo Fig. ??, quindi è possibile supporre che le nanoparticelle siano cariche positivamente come si potrebbe aspettare dalla presenza dei gruppi amminici alla fine del PEG.

Il campione senza PEG non può nemmeno entrare nel gel. Questo risultato può essere spiegato perché le nanoparticelle sono cresciute senza complessante a tenerle separate, e quindi le nanoparticelle sono totalmente aggregate.

I campioni diluiti non sono visibili, perché non ci sono abbastanza nanoparticelle da essere rilevate.

Tutti i campioni sonicati corrono nel gel perché non sono aggregati. Il campione sintetizzato a 120°C funziona meglio, perché la sintesi ad alte temperature non influenza la capacità del PEG diammino di funzionalizzare la superficie delle nanoparticelle e quindi di tenerle separate e in sospensione.
CAPITOLO 4. RISULTATI E DISCUSSIONI
Capitolo 5

Conclusioni

La sintesi proposta porta all’effettiva formazione di nanoparticelle di solfato rameoso. Il rapporto stechiometrico tra zolfo e rame più performante e controllabile è quello di 1 a 1. Fig. ??

La composizione chimica del prodotto è quella che ci si poteva aspettare considerando i reagenti utilizzati ed i loro rispettivi numeri di ossidazione.

L’aggiunta del \(2\text{HN--PEG--NH}_2\) porta ad un effettivo aumento della stabilità in sospensione come si vede in Fig. ??

Il volume di \(\text{H}_2\text{O}\) non influisce sulle proprietà ottiche del materiale come si vede in Fig. ??

Il glicole utilizzato è un elemento molto importante per la sintesi delle nanoparticelle. Infatti in questo caso il glicole agisce da cappante, ed inoltre permette alle nanoparticelle di rimanere separate.

La variazione del pH porta ad una grande variabilità delle caratteristiche delle nanoparticelle sintetizzate. Questa variazione si ha sia sul piano strutturale Fig. ??, sulle proprietà ottiche Fig. ??, sulle proprietà morfologiche e sulla solubilità Fig. ??.

In dettaglio analizzando i campioni a pH acidi si ha un incremento del picco di assorbimento fino a pH1, come si vede in Fig. ??, con uno spostamento della posizione del picco verso destra in una zona non detecata dallo strumento a disposizione. Questa varietà si riscontra anche nello spettro di diffrazione Fig. ?? dove a pH molto acidi è presente la calcocite mentre a pH più neutri è presente la covelite.

La stessa varietà è presente anche a pH basici dove dal punto di vista strutturale Fig. ?? si vede la presenza di una nuova fase la posnjakite, un idrossido di rame e zolfo. Dal punto di vista ottico si lo stesso una grande variabilità come si vede in Fig. ?? i campioni a pH 10 e 11 sono quelli che differiscono maggiormente.

Dal punto di vista morfologico si ripresenta una grande variabilità, come a pH11 in cui le NPs non sono più di forma sferica ma a forma di riso Fig. ??.

Le sintesi a diverse temperature seguono un andamento più regolare. Dal punto di vista ottico Fig. ?? si ha una crescita del picco fino a \(T=100\ ^\circ\text{C}\) mentre per basse temperature non si ha nemmeno la formazione delle nanoparticelle. Come confermato sia dalle analisi strutturali Fig. ?? che morfologiche Fig. ??.

Le nanoparticelle sintetizzate con il PEG diammino sono dotate di carica superficiale positiva visto che migrano verso l’anodo Fig. ?? Anche da questo punto di vista il campione sintetizzato a \(T=120\ ^\circ\text{C}\) è il migliore mentre il peggiore è quello sintetizzato senza PEG visto che non è neanche entrato nel gel.

Per lo studio del Band Gap il Tauc plot riporta un andamento simile a quanto verificato fino ad adesso. Ciò una grande variabilità per quanto riguarda il pH Fig. ??, mentre per quanto riguarda la temperatura i campioni più efficienti sono quelli sintetizzati ad alta temperatura Fig. ??.

5.1 Sviluppi futuri

Per proseguire il lavoro fatto dal punto di vista della sintesi si potrebbe provare ad utilizzare PEG diversi da quelli utilizzati, inoltre si potrebbero utilizzare fonti diverse di ioni [S] come l’urea o composti simili per vedere se le proprietà delle nanoparticelle cambiano.

Mentre per determinare l’efficacia della sintesi si potrebbe fare una prova di citotossicità; in un secondo momento,
si potrebbe provare se utilizzando un laser, per eccitare le nanoparticelle in una regione vicino al picco del plasmone, si incrementa la tossicità delle nanoparticelle.
Bibliografia

