
—

Ca’ Foscari
Dorsoduro 3246
30123 Venezia

Università
Ca’Foscari
Venezia Master’s Degree programme — Second Cycle

(D.M. 270/2004)
in Informatica — Computer Science

Final �esis

Revealing Structure in Graphs Using
Regular Partitions

Supervisor
Ch. Prof. Marcello Pelillo

Candidate
Ismail Elezi
Matriculation number 848027

Academic Year
2014/2015

Ca’ Foscari, University of Venice

Revealing Structure in Graphs Using

Regular Partitions

by

Ismail Elezi, 848027

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Department of Environmental Sciences, Informatics and Statistics

Computer Science

February 2016

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

“No one knows what the right algorithm is, but it gives us hope that if we can discover

some crude approximation of whatever this algorithm is and implement it on a computer,

that can help us make a lot of progress.”

Andrew Ng

Ca’ Foscari, University of Venice

Abstract

Department of Environmental Sciences, Informatics and Statistics

Computer Science

Master of Science

by Ismail Elezi, 848027

While originally introduced as a tool in proving a long-standing conjecture on arithmetic

progressions, Szemeredi’s regularity lemma has emerged over time as a fundamental tool

in different branches of discrete mathematics and theoretical computer science. Roughly,

it states that every graph can be approximated by the union of a small number of

random-like bipartite graphs called regular pairs. In other words, the result provides us

a way to obtain a good description of a large graph using a small amount of data, and

can be regarded as a manifestation of the all-pervading dichotomy between structure

and randomness.

However, the non-constructive nature of the lemma made its usefulness limited only in

theoretical mathematics and computer science for around two decades. In the nineties,

things changed when two different algorithmic versions of the lemma were developed,

and by the end of last decade, the lemma was finally used in practice.

This thesis is a tentative to study the regularity lemma in context of structural pattern

recognition. We will use the regularity lemma to compress some graph, and then study

the reduced graph, knowing that it inherits the main properties of the original graph.

By doing so, we will save both computer memory and CPU time.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

I would like to express my deepest gratitude to my supervisor, professor Marcello Pelillo

who guided my work from the very beginning, who was happy to meet me every time

I was getting stuck in my work, and with whom we had many fruitful discussion which

generated ideas that made their way into the thesis. Furthermore, his awesome lectures

in the field of Artificial Intelligence and Information Theory is a reason why I am plan-

ning to get heavily involved in the field of Artificial Intelligence in general, and Machine

Learning in particular.

I would like to mention my friends from the university who had some contribution on

the work done in the thesis or during the entire course of the studies. Andrea Lazzarotto

for answering my logistics questions about the deadlines and forms we had to fill, and

with whom we had many discussions during our studies, especially in Machine Learning

and Computer Vision courses (the coffee machine was a good mutual friend); Marco

Fiorucci is doing his PhD in a closely related topic, and with him we had discussions on

the high level ideas of the lemma; Eyasu Zemene Mequanint has used dominant sets and

replicator dynamics in the past, and he helped me initiate with the replicator dynamics

algorithm.

Last but certainly not least, I would like to thank my family for their unconditional moral

and financial support during the studies, and for accommodating my weird study-sleep

needs during the time I worked on the thesis. This work is as much their contribute, as

it is mine. I hope that with this thesis I have made them a little bit proud! . . .

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 2

1.2 Structure of the Thesis . 4

2 Szemerédi’s Regularity Lemma 6

2.1 Extremal Graph Theory . 6

2.2 Szemerédi’s Theorem . 7

2.3 The Regularity Lemma . 8

2.3.1 Some definitions . 9

2.3.2 The Lemma . 11

2.3.3 Discussion . 12

3 Constructive Versions of the Regularity Lemma 13

3.1 Alon-Duke-Lefmann-Rodl-Yuster Algorithm 13

3.1.1 Finding a Regular Partition in Polynomial Time 14

3.1.2 Alon algorithm . 18

3.2 Frieze-Kannan Algorithm . 19

3.2.1 Building the algorithm . 20

3.2.2 Frieze-Kannan Algorithm . 21

3.3 Heuristics . 21

3.4 Using the Regularity Lemma . 24

3.5 Weighted Version . 26

4 Graph Isomorphism 28

4.1 The Problem of Graph Isomorphism . 28

4.1.1 The Association Graph . 29

4.1.2 Continuous Formulation of the Maximum Clique Problem 31

4.1.3 A quadratic program for graph isomorphism 32

4.2 Replicator Equations and Graph Isomorphism 33

iv

Contents v

4.3 The Algorithm . 35

4.4 Faster Replicator Dynamics . 36

4.5 Weighted Version . 39

5 Experimental Results 40

5.1 Testing the Regularity Lemma . 41

5.1.1 Case Study 1: Ionosphere Dataset 41

5.1.2 Case Study 2: Randomly Generated Datasets 44

5.1.3 Case Study 3: Social Networks . 46

5.2 Testing the Isomorphism Algorithm . 48

5.2.1 Case Study 1: Matching Random Graphs While the Density Changes 49

5.2.2 Case Study 2: Matching Random Graphs While the Size Changes 49

5.2.3 Case Study 3: Matching Non-Random Graphs 50

5.3 Testing the Combined Algorithm . 54

5.3.1 Testing the Algorithm on the UCI Machine Learning Repository
Datasets . 57

5.3.1.1 Ionosphere Dataset . 57

5.3.1.2 Haberman Dataset . 59

5.3.1.3 Red Wine Dataset . 61

5.3.2 Testing the Algorithm on Randomly Generated Datasets 62

5.3.3 Testing the Algorithm on SNAP Datasets 64

5.4 Discussion . 66

6 Conclusions and Future Work 68

6.1 Review . 68

6.2 Conclusions . 70

6.3 Future Work . 71

Bibliography 73

List of Figures

2.1 While proving the Erdos-Turan conjecture (T in the middle), Szemerédi
needed to build the infrastructure for it. The regularity lemma, is called
L1 and is circled on red [45]. 8

3.1 Example of using the regularity lemma. (a) The original graph; (b) The
reduced graph . 24

3.2 Reduction strategy to find substructures in a graph 26

4.1 A pair of isomorphic graphs . 29

4.2 The evolution of replicator dynamics . 37

4.3 The evolution of replicator dynamics when K = 3 38

4.4 The evolution of replicator dynamics when K = 4 38

4.5 The evolution of replicator dynamics when K = 5 38

5.1 A small graph . 44

5.2 Mean of the number of matches in a random graph 49

5.3 Standard deviation of the number of matches in a random graph 50

5.4 Coxeter graphs . 51

5.5 Matching Coxeter Graphs . 51

5.6 Weisfeiler graphs . 52

5.7 Matching Weisfeiler Graphs . 52

5.8 Petersen graphs . 53

5.9 Matching Petersen Graphs . 53

5.10 The evolution of replicator dynamics in Petersen graphs 54

vi

List of Tables

4.1 Adjacency Matrix of the association graph created by the graphs in Figure
(4.1) . 30

5.1 Ionosphere: Mean value of response variables, affected by the change of
parameter ε. 42

5.2 Ionosphere: Standard deviation of response variables, affected by the
change of parameter ε. 43

5.3 Ionosphere: The increase of index depending on ε. 43

5.4 Randomly Generated Dataset: Mean value of response variables, affected
by the change of parameter ε. 45

5.5 Randomly Generated Dataset: Standard deviation of response variables,
affected by the change of parameter ε. 45

5.6 SNAP Dataset: Mean value of response variables, affected by the change
of parameter ε. 47

5.7 SNAP Dataset: Standard deviation of response variables, affected by the
change of parameter ε. 47

5.8 Random Graphs: Mean and Standard deviation of the number of matched
vertices ε. 50

5.9 Ratio of matches in Ionosphere dataset ε. 58

5.10 Time analysis for the Ionosphere dataset 59

5.11 Ratio of matches in Haberman dataset ε. 59

5.12 Time analysis for the Haberman dataset 60

5.13 Ratio of matches in Red Wine dataset ε. 61

5.14 Time analysis for the Red Wine dataset 61

5.15 Ratio of matches in a random dataset for l = 2 62

5.16 Ratio of matches in a random dataset for l = 3 63

5.17 Ratio of matches in a random dataset . 63

5.18 Time analysis for a random dataset . 64

5.19 Ratio of matches in a SNAP dataset ε. 65

5.20 Time analysis for a SNAP dataset . 65

vii

Chapter 1

Introduction

The twenty-first century, can be easily called as the century of the big data. In an

interview in 2010, the CEO of Google, Eric Schmidt said [41]: ”There was 5 exabytes

of information created between the dawn of civilization through 2003, but that much

information is now created every 2 days, and the pace is increasing...People aren’t ready

for the technology revolution that’s going to happen to them.” 1 Data has been routinely

called, ’the new oil’.

Saying that, the big data came with a problem: ’how to interpret them’. Because

the data have become now so cheap, and because there is a lot of data right there, it

has become very difficult and expensive to proceed and mine the collected data. New

algorithms that can work with big data, and get results in acceptable times, are more

needed than ever.

Graph theoretic approaches usage has been increased during the last two decades. In

particular, the notion of similarity - which is closely related to graphs - has started

gaining territory compared with the traditional feature based algorithms. However,

there are still graph problems which have high complexity, and so are unable to work

with the big data.

This thesis has two main points. The first one being the regularity lemma of Endre

Szemerédi, a mathematical tool used in the field of extremal graph theory. The second

one is the notion of graph isomorphism. The ultimate goal of the thesis is to provide a

1While Schmidt’s numbers have been debated, and it looks that the real numbers have been slightly
different, the quotes illustrate well his point, and the implication of the very big data.

1

platform of using the regularity lemma in order to make the process of graph matching

more feasible.

1.1 Motivation

The regularity lemma of Szemerédi is one of the most important results in the field of

extremal graph theory. It was initially built as a tool in order to prove the now-called

Szemerédi’s theorem, but soon after, it was understood that its implications are bigger,

and so it can be widely used. However, the original version provided by Szemerédi was

non-constructive, which limited its usage outside theoretical mathematics and graph

theory. But because of its power, many researchers worked on it, and at least two

constructive versions of the lemma were provided, while also the lemma was extended

to work for weighted graphs, and ultimately for hypergraphs.

The lemma roughly states that every graph can be well-approximated as a union of

bipartite graphs, such that: 1) most edges run between different parts; 2) those edges

behave as if generated at random. Central to the lemma is the notion of regularity,

which is closely related to the notion of randomness.

An important aspect of the lemma is that if we consider the new ’bipartite’ graphs, as

vertexes of a new graph, and the density (number of edges) between those graphs as

edges, the new graph seems to inherit most of the properties of the original graph. In

literature, this new graph is called as essence or substance of the original graph. For

many problems, this reduced graph can be studied and then the acquired knowledge can

be expanded back to the original ’much larger’ graph.

It needs to be said that despite the fact that constructive versions of the lemma now

exist, they are extremely expensive in memory and time. In fact, in order to get the

guaranteed solution from those algorithms, graphs need to be astronomically large, larger

than what can be currently stored even in supercomputers. This is a reason why the

lemma is not widely used in applied computer science. But it can be seen that relaxed

versions of the lemma - which work for most, but not all graphs - exist. Saying that,

even in the original versions, the lemma isn’t understand well, so changing it would make

our theoretical knowledge about it even smaller. Still this seems to be the only way of

working with the lemma. While the original heuristics were developed by Sperotto and

2

Pelillo [44], here at Ca’ Foscari, we looked at some new heuristics which can improve

the results of the lemma.

The graph isomorphism problem is the problem of determining whether two graphs are

isomorphic or not, and if so, to provide an isomorphism between them. At first look,

it might be seen that the problem is interesting only on pure mathematics, but graph

isomorphism is extensively used in applied sciences. Some examples of usage of graph

isomorphism are:

- In cryptography, more precisely, in zero-knowledge proofs.

- In chemiinformatics and computational chemistry, graph isomorphism testing is used

to identify a chemical compound within a chemical database.

- In automata theory, the graph isomorphism can be used to show that two languages

are equal.

- In analysis of social structure (including social networks).

- In fingerprint matching.

- In electronic design automation, graph isomorphism is the basis of the verification

whether the electric circuits represented by a circuit schematic and an integrated circuit

layout are the same [4], etc.

Despite it is widely used in very different fields, no polynomial algorithm has been found.

In fact, this problem is one of those rare problems for which no polynomial algorithm

has been found, while also there doesn’t exist any proof which shows that the problem

is NP-complete. At the moment, most researchers believe that the problem lies strictly

between the P and NP-complete classes.

Of course, this hasn’t stopped investigators working on the problem. There are some

precise algorithms (completely useless for large graphs), but more importantly, there

exist approximate algorithms which can solve the problem significantly faster than those

precise algorithm. One of the possible ways of doing it is to transform the problem of

graph isomorphism into the problem of maximal clique and solving that problem, and it

has been shown that the corresponding maximal clique can be seen as an isomorphism

between the graphs. Maximal clique problem is even harder to be solved in precise

manner (proven to be NP-hard), so to solve it we need to use some heuristics, which

3

solve the problem in an inexact way. A possible way of doing so, is by using replicator

dynamics, a class of equation developed in evolutionary game theory.

The described algorithm (and other similar algorithms) don’t perform well if the graphs

are very large. The results might not be great, while also the time needed to solve the

problem is quite long. We thought that a way of making the problem easier is to use

the regularity lemma in order to reduce the graphs, then match the reduced graphs, and

then finally expand those graphs and match the big graphs. This seems that not only

solves the problem faster, but also makes possible to get an approximate matching on the

big graphs, which isn’t possible to be done in personal computers if we use directly the

matching algorithm (without the compression part provided by the regularity lemma).

1.2 Structure of the Thesis

The structure of the thesis is as follows:

- Chapter 2 starts by briefly describing the field of extremal graph theory, and Sze-

merédi’s theorem in particular. Then, we have given some definitions, like the edge

density, regularity and equitability. In the end of the chapter, we show the regularity

lemma and give a proof of it.

- Chapter 3 builds from the previous chapter and gives constructive versions of the

lemma. We first mention the Alon algorithm (which is based on the notion of neighbor-

hood deviation) and Frieze-Kannan algorithm (which is based on the notion of singular

value decomposition). The algorithms are very similar to each other, despite that they

have completely different central ideas.

Because both algorithms require astronomically large graphs, we have tried to make a

new heuristic algorithm which works for ’normal-sized’ graphs. The caveat is that there

is no theoretical guarantee that the algorithm will converge or that the reduced graphs

actually inherit the properties of the original graphs. However, the empirical evidence

shows that for most graphs, the heuristic algorithm seems to work.

Finally, we end the chapter by extending the idea to weighted graphs.

4

- Chapter 4 starts by describing the problem of graph isomorphism. It continues by

transforming it in the problem of finding a maximal clique in the association graph, by

using the replicator dynamics. We show how the process works in a toy case.

We conclude the chapter by extending the results to the weighted graphs. This basically

means, generalizing the maximal clique problem into the problem of finding dominant

sets.

- Chapter 5 is the chapter when we put everything together, and combine the two

algorithms. We show how the regularity lemma performs, and we show how the graph

matching algorithm perform. Then, we give some results in how well the combined

algorithm (reduce the graphs - match the small graphs - expend the results to the large

graphs) performs. We use both real and synthetic datasets.

- Chapter 6 is the final chapter on the thesis. We review the work done in the previous

chapters, make some conclusions and mention what can be done in future work.

We hope that by the end of the thesis, at least we have got a better idea on the usefulness

of the regularity lemma in the process of graph isomorphism and graph matching.

5

Chapter 2

Szemerédi’s Regularity Lemma

2.1 Extremal Graph Theory

Extremal graph theory is a branch of the mathematical field of graph theory, which

originated in the middle of twentieth century from the work of Pal Turan and Paul

Erdos and was studied later by a lot of researchers, with probably the most famous ones

being Bela Bollobas, Endre Szemerédi, Arthur Stone and Reinhard Deistel.

As written in Diestel book [16] extremal graph theory deals with questions like: How

many edges, for instance, do we have to give a graph on n vertices to be sure that, no

matter how these edges happen to be arranged, the graph will contain a Kr subgraph for

some given r? Or at least a Kr minor? Or a topological Kr minor? Will some sufficiently

high average degree or chromatic number ensure that one of these substructures occurs?

In essence, it can be said that extremal graph theory studies the graph invariants and

studies how the structure of graphs ensures certain properties of graphs (e.g. cliques,

coloring) under specific conditions (e.g., edge density and minimum degree).

A graph invariant is a function which takes graphs as inputs and assigns equal values to

isomorphic graphs. The graph invariants can range from simple ones (like the number of

edges, the number of vertices) to more complex ones (like minimum/maximum degree,

chromatic number or diameter).

In Diestel book [16] , extremal problems are divided into two categories:

6

- Looking for ways to ensure by global assumptions that a graph G contains some given

graph H as a minor.

- In the second category there are all the problems in which we are asking what global

assumptions might imply the existence of a given graph H as subgraph.

The regularity lemma of Szemerédi, is one of the most important tools to demonstrate

most of the extremal existence theorems. Not surprisingly, for the majority of its exis-

tence, it had been used purely for these type of problems.

2.2 Szemerédi’s Theorem

The regularity lemma of Szemerédi [46] is perhaps the most central result in extremal

graph theory. Before introducing the reader to the lemma, I would like to quote professor

Luca Trevisan from his blog [49] : ”Szemerédi’s theorem on arithmetic progressions

is one of the great triumphs of the ’Hungarian approach’ to mathematics: pose very

difficult problems, and let deep results, connections between different areas of math, and

applications, come out as byproducts of the search for a solution”.

In some way in order to deeply understand the power of it, you have to go back to Erdos

and Turan conjecture [17] on Ramsey’s properties of arithmetic progression.

Theorem 2.1 (Erdos and Stone 1946) - For all integers r ≥ 2 and s ≥ 1, and every

ε > 0, there exists a n0 such that every graph with n ≥ n0 vertices and at least

tr−1(n) + εn2 (2.1)

edges contains Kr
s as a subgraph.

While the proof of the theorem is beyond the scope of this thesis, it needs to be said

that Szemerédi was the first one to prove it in [45] , and while doing it, the regularity

lemma served as a powerful tool on proving the main theorem. Furthermore, Szemerédi

got awarded the Abel Price in Mathematics (2012) partially for the work done in the

theorem, while two field medals (Timothy Gowers, 1998 and Terence Tao, 2006) were

7

awarded at least partially for their results on the regularity lemma, and using it to prove

fundamental results in arithmetic progressions.

On this section we are going to introduce the reader to the regularity lemma and its

proof. It needs to be said that the lemma on its original form is non-constructive, so

in the following chapter we are going to build on the idea and provide two constructive

versions of the lemma.

Figure 2.1: While proving the Erdos-Turan conjecture (T in the middle), Szemerédi
needed to build the infrastructure for it. The regularity lemma, is called L1 and is

circled on red [45].

2.3 The Regularity Lemma

Before we will give the lemma, we are going to provide a few definitions as given in [46],

[14], [44], [1], [18] [40].

8

2.3.1 Some definitions

Definition 2.2 - A simple graph is a pair G = (V,E), where V is a finite set, called the

vertices of G, and E is a subset of the set of two-element subsets of V, called the edges

of V.

Definition 2.3 - Let G = (V,E) be an undirected graph with no self-loops, where V is

the set of vertices and E is the set of edges, and let X,Y ⊆ V be two disjoint subsets of

vertices of G. We define the edge density of the pair (X,Y) as:

d(X,Y) =
e(X,Y)

|X| |Y |
(2.2)

where e(X,Y) denotes the number of edges of G with an endpoint in X and an endpoint

in Y, and |·| denotes the cardinality of a set. The edge densities are real numbers between

0 and 1.

Definition 2.4 - Given a positive constant ε > 0 , we say that the pair (A,B) of disjoint

vertex sets A,B ⊆ V is ε-regular if for every X ⊆ A and Y ⊆ B satisfying

|X| > ε |A| and |Y | > ε |B|

we have

|d(X,Y)− d(A,B)| < ε (2.3)

Informally, this means that in an ε-regular bipartite graph, the edge density between

any two sufficiently (depending on ε) large subsets is about the same as the original

density. This implies that all the edges are distributed almost uniformly, giving the

perception that the edges are random. It can be easily seen, that in order to satisfy the

above equation for every ε, the graph should be a complete bipartite graph.

Definition 2.5 - A partition P of the vertex set V = V0 ∪ V1 ∪ ... ∪ Vk of a graph

G = (V,E) is called an equitable partition if all the classes Vi, 1 ≤ i ≤ k have the same

cardinality. V0 is called the exceptional class. The exceptional class V0 (which may be

empty) serves only a technical purpose: it makes possible that all the other classes have

exactly the same number of vertices.

9

Definition 2.6 - An equitable partition P of the vertex set V = V0 ∪ V1 ∪ ... ∪ Vk of

a graph G = (V,E) is called ε-regular if |V0| < ε |V | and all but ε
(
k
2

)
of the pairs (Vi, Vj)

are ε-regular where 1 ≤ i < j ≤ k.

Definition 2.7 - For an equitable partition P of the vertex set V = V0 ∪ V1 ∪ ... ∪ Vk of

G = (V,E), we associate a measure called the index (or potential) of P which is defined

by:

ind(P) =
1

k2

k∑
s=1

k∑
t=s+1

d(Cs, Ct)
2 (2.4)

The index will measure the progress towards an ε-regular partition. Clearly, it is a

number bounded from 0 and 0.5. In fact

lim
k→∞

ind(P) =
1

2
(2.5)

if and only if, the graph is the union of complete bipartite graphs.

The last quantity comes directly from the density of a pair being bounded by 1 (a

complete bipartite graph has the highest density from all possible graphs, and that

density is 1 and comes from the definition). If the density is being bounded by 1, then

so it is the square of density.

Assuming that the graph G is the union of complete bipartite graphs, we get:

ind(P) =
1

k2

k∑
s=1

k∑
t=s+1

1 (2.6)

Solving the double sum we get:

ind(P) =
k(k − 1)

2k2
=
k2 − k

2k2
(2.7)

and whose limit is 1/2.

10

2.3.2 The Lemma

Before we give the regularity lemma, we need an another lemma. The lemma was given

and proven by Szemerédi himself [46].

Lemma 2.8 - Let G = (V,E) be a graph with n vertices. Let P be an equitable partition

of V into classes C0, C1, ..., Ck, the exceptional class being C0. Let ε be a positive integer

such that

4k > 600ε−5

If more than εk2 pairs (Cs, Ct) in 1 ≤ s < t ≤ k are s-irregular then there is an equitable

partition Q of V into 1 + k44 classes, the cardinality of the exceptional class being at

most

|C0|+
n

4k

and such that

ind(Q) > ind(P) +
ε5

20
(2.8)

Now, we are in a position to give the regularity lemma of Szemerédi. We are giving it

as it was originally given in [46].

The Regularity Lemma 2.9 - For every positive real ε and for every integer m there

are positive integers N and M with the following property: for every graph G with at least

N vertices there is an ε-regular partition of G into k+1 classes such that m ≤ k ≤M

Proof - Let s be the smallest integer such that

4s > 600ε−5, s > m, s ≥ 2

ε
(2.9)

Define a sequence f(0), f(1), f(2),... by setting f(0) = s and

f(t+ 1) = f(t)4f(t) (2.10)

11

for every t. Let t be the largest non-negative integer for which there exists an equitable

partition P of V into 1 + f(t) classes, such that

ind(P) ≥ tε5

20
(2.11)

and the size of exceptional class does not exceed

εn(1− 1

2t+1
) (2.12)

Such a partition certainly exists for t = 0. Since ind(P) ≤ 1
2 for every partition P, the

integer t is well defined. By our lemma, and by the maximality of t, the partition P is

ε-regular. Hence, we may set M = f(b10ε−5c.

2.3.3 Discussion

Stripping the mathematics, what the lemma basically says is: Given an ε > 0, the nodes

of any graph can be partitioned into a relatively small number (depended on ε) of equal

parts (bar the exceptional class V0), so that most bipartite graphs between two parts

are essentially random (with different densities).

The lemma is non-constructive. Neither it, nor its proof give an algorithm how to

build this regular partitions. In fact, in extremal graph theory (and other mathematics

sub-disciplines, like Information Theory) many of the central results are given in some

non-constructive format. For around two decades - while the lemma was important in

graph theory - it wasn’t considered in computer science. However, in the nineties there

were some good developments, which gave rise to constructive versions of the lemma,

and finally they resulted with algorithms which can be used in practice.

To conclude this section, we need to say that while the lemma originally was built to

work for dense graphs, Kohayakawa gave a version of it which works for sparse graphs in

[25]. Later, he worked on a version of regularity lemma for hyper-graphs. The readers

are referred to papers [26] and [39].

12

Chapter 3

Constructive Versions of the

Regularity Lemma

In the previous chapter, we gave an overview of Szemerédi’s theorem, and then we intro-

duced the regularity lemma. However, we mentioned that the lemma is non-constructive,

so for around two decades the lemma was used only in pure mathematics. This changed

in the nineties, when two different constructive versions of the lemma were made.

3.1 Alon-Duke-Lefmann-Rodl-Yuster Algorithm

The Szemerédi’s paper on regularity lemma [46] ended with the author rising the follow-

ing question: does the lemma hold if we change the maximum number of irregular pairs

from ε
(
k
2

)
to 0. However, this was proven false by the work of L. Lovasz, P. Seymour,

T. Trotter and the work presented in Alon et al. [1]. A simple way of showing that

irregular pairs are necessary for the regularity lemma to work can be shown by taking

a bipartite graph with classes A = {a1, ..., an} and B = {b1, ..., bn} in which each aibj is

an edge if and only if i ≤ j.

The problem of checking if a given partition is ε-regular is quite interesting from the

complexity point of view. As proven from [1], constructing an ε-regular partition is

easier than checking if a given one is ε-regular or not.

13

Theorem 3.1 [1] - The following decision is co-NP-complete. Given an input graph G,

an integer k ≥ 1 and a parameter ε > 0, and a partition of the set of vertices of V into

k + 1 parts. Decide if the given partition is ε-regular.

The proof of the theorem actually gives that the problem remains co-NP-complete even

for ε = 1/2 and for k = 2.

Theorem 3.2 (A constructive version of the Regularity Lemma [1]) - For every

ε > 0 and every positive integer t there is an integer Q = Q(ε, t) such that every graph

with n > Q vertices has an ε-regular partition into k + 1 classes, where t ≤ k ≤ Q. For

every fixed ε > 0 and t ≥ 1 such a partition can be found in O(M(n)) sequential time,

where M(n) is the time for multiplying two n by n matrices with 0,1 entries over the

integers. It can also be found in time O(logn) on an EREW PRAM with a polynomial

number of parallel processors.

3.1.1 Finding a Regular Partition in Polynomial Time

This entire subsection will be devoted to proving the previous theorem. The reason for

doing so, is that the algorithm is contained inside the proof, and by understanding the

proof, the reader will understand the algorithm too.

The brief idea of the algorithm is that given some graph G and ε > 0, it computes some

ε′ < ε (ε′ being a function of ε). In case G is not ε-regular, the algorithm correctly

reports this and provides the evidence that the graph G is not ε′ (< ε)-regular. In case

G is ε′-regular, the algorithm decides that the graph is ε-regular too. In all the other

cases, the algorithm behaves to one of the above two possibilities and the user has no

control on the possibility it chooses.

The proof of the previous theorem is quite lengthy, so it has to be seperated within a

few theorems as in [1]. Before that we need a few definitions.

Definition 3.3 - Let H be a bipartite graph with equal color classes |A| = |B| = n. We

define the average degree of H as

d =
1

2n

∑
i∈A∪B

deg(i) (3.1)

14

Definition 3.4 - Let H be a bipartite graph with equal color classes |A| = |B| = n. Let d

be the average degree of H. For two distinct vertices y1, y2 ∈ B define the neighbourhood

deviation of y1 and y2 by

σ(y1, y2) = |N(y1) ∩N(y2)| −
d2

n
(3.2)

For a subset Y ⊂ B the deviation of Y is defined

σ(Y) =

∑
y1,y2∈Y σ(y1, y2)

|Y |2
(3.3)

Lemma 3.5 [1] - Let H be a bipartite graph with equal classes |A| = |B| = n, and let

d denote the average degree of H. Let 0 < ε < 1
16 . If there exists Y ⊂ B, |Y | ≥ εn such

that σ(Y) ≥ ε3

2 n then at least one of the following occurs.

1. d < ε3n.

2. There exists in B a set of more than 1
8ε

4n vertices whose degree deviate from d

by at least ε4n.

3. There are subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

4 n, |B′| ≥ ε4

4 n and

|d(A′, B′)− d(A,B)| ≥ ε4.

Furthermore, there is an algorithm whose input is a graph H with a set Y ⊂ B as above

that outputs either:

(i) The fact that (1) holds, or

(ii) The fact that (2) holds and a subset of more than 1
8ε

4n members of B demonstrating

this fact, or

(iii) The fact that (3) holds and two subsets A′ and B′ as in (3) demonstrating this fact.

The algorithm runs in sequential time O(M(n)), where M(n) = O(n2.376) 1 2 is the

1It needs to be said that the asymptotic time O(n2.376) comes from the Coppersmith-Winograd
algorithm which at the time when the paper was published, was the algorithm with the best asymptotic
time. Since then, there have been a few improvements of the algorithm, with the current fastest algorithm
having asymptotic time of O(n2.373).

2Despite that the algorithms mentioned in the previous footnore have great asymptotic time, they
aren’t used in practice. The reason for that is because they work better than the standard algorithms,

15

time needed to multiply two n by n 0,1 matrices over the integers, and can be parallelized

and implemented in time (O(logn) on an EREW PRAM with a polynomial number of

processors.

Proof [1] - We assume that cases (1) and (2) don’t happen, and in that case we prove

than (3) must happen. Denote Y ′ = {y ∈ Y | |deg(y)− d| < ε4n}. Y ′ cannot be empty

because case (2) does not happen. Choose an y0 ∈ Y that maximizes
∑

y∈Y σ(y0, y).

Estimating this quantity:

∑
y′∈Y ′

∑
y∈Y,y 6=y′

σ(y′, y) = σ(Y) |Y |2 −
∑

y′∈Y \Y ′

∑
y∈Y,y 6=y′

σ(y′, y) ≥ ε3

2
n |Y |2 − ε4

8
n2 |Y |

(3.4)

|Y ′| ≤ |Y | so:

∑
y∈Y

σ(y0, y) ≥ ε3

2
n |Y | − ε4

8
n2 ≥ 3

8
ε3n |Y | (3.5)

There are at least ε4

4 n vertices y ∈ Y whose neighbourhood deviation is greater than

2ε4n. If there were less - using the fact that the neighbourhood deviation is upper

bounded from n - we would get:

∑
y∈Y

σ(y0, y) ≤ ε4

4
n2 + |Y | 2ε4n ≤ ε3

4
n |Y |+ 2ε4n |Y | < ε3

8
ε3n |Y | (3.6)

which contradicts equation (3.5)

Set B′ ∪ Y, |B′| ≥ ε4

4 n
2, y0 /∈ B′ and for every vertex b ∈ B′ we have |N(b) ∩N(y0)| >

d2

n + 2ε4n. Define A′ = N(y0). Then, |A′| ≥ d − ε4n ≥ ε3n − ε4n ≥ 15ε4n > ε4

4 n. Show

that |d(A′, B′)− d(A,B)| ≥ ε4:

only for large matrixes, matrixes which cannot be processed by modern hardware. In practice, the most
used matrix multiplication algorithms are Strassen Algorithm, which has asymptotic time O(n2.8) and
BLAS subroutines which are used in different programming libraries. On the implementation, we used
numpy.dot function to do the matrix multiplication. The asymptotic time is worse than the promised
asymptotic time from the lemma.

16

e(A′, B′) =
∑
b∈B′

|N(b) ∩N(y0)| > |B′|d2
n + 2ε4n |B′| (3.7)

Finally,

d(A′, B′)− d(A,B) >
d2

n |A′|
+

2ε4n

|A′|
− d

n
≥ d2

n(d+ ε4n)
+ 2ε4 − d

n
= 2ε4 − dε4

d+ ε4n
≥ ε4.

(3.8)

This completes the proof of the non-algorithmic part of the lemma. The algorithmic

part comes directly from the lemma:

1a) Check if (1) holds. That can be easily done in O(n2) time. If d < ε3n then that

partition can be declared regular and you are done.

2a) Check if (2) holds. In order to do so, count the number of vertices in B whose degree

deviate from d by at least ε4n. If there are more than ε4

8 n such vertices, then at least

half of them deviate in the same direction. Call the set of those vertices (deviating in

the same direction) as B′. Clearly, |B′| ≥ ε4n
16 . If this condition holds, then save B′

as certificate (witness) and B \ B′ as the complement (needed later when we do the

partition step). The certificate for A is A itself (complement being the empty set).

If neither of these two conditions hold, then proceed to the following step.

3a) For each y0 ∈ B with |deg(y0)− d| < ε4n we find the set of vertices By0 = {y ∈

B|σ(y0, y) ≥ 2ε4n}. The non-algorithmic part of the proof guarantees the existence of

at least a y0 for which |By0| ≥ ε4n
4 . The subsets B′ = By0 and A′ = Ny0 are the required

certificates. The quantities σ(y, y′) for y, y′ ∈ B can be done by squaring the adjacency

matrix of the pair (more precisely, multiplying the adjacency matrix with the transposed

adjacency matrix).

Now we need a few other lemmas to completely proof the new version of the regularity

lemma.

Lemma 3.6 [1] - Let H be a bipartite graph with equal classes |A| = |B| = n. Let

2n−
1
4 < ε < 1

16 .. Assume that at most ε4n
8 vertices of B deviate from the average degree

17

of H by at least ε4n. Then, if H is not ε-regular there exists Y ∪ B, |Y | ≥ εn such that

σ(Y) ≥ ε3n
2 .

The lemma is just making the link between lemma (3.5) and definition (3.4). In, other

words it is saying that if condition (2a) is satisfied, then the partition cannot be declared

ε-regular.

Lemma 3.7 [1] - Fix k and γ and let G = (V,E) be a graph with n vertices. Let P be an

equitable partition of V into classes C0, C1, ..., Ck.. Assume |C1| > 42k and 4k > 600γ−5.

Given proofs that more than γk2 pairs (Cr, Cs) are not γ-regular, then one can find in

O(n) time a partition P’ (which is a refinement of P) into 1 + k4k classes, with the

exceptional class of cardinality at most |C0|+ n
4k

and such that

ind(P ′) ≥ ind(P) +
γ5

20
. (3.9)

What the lemma is basically saying is: look for each pairs in the partition. If they are

regular then it is okay, otherwise refine the partition into a new partition which has

better index (the index of the new partition is at least γ5

20 greater than the index of

the previous partition. The proofs (or certificates) that some pair is not ε-regular are

provided by Lemma (3.5).

3.1.2 Alon algorithm

Now, the algorithm is a trivial matter of arranging the above lemmas and the construc-

tive version of the regularity lemma [1].

Given any ε > 0 and a positive integer t, we define the constants N = N(ε, t), T = T (ε, t)

as follows; let b be the least positive integer such that

4b > 600(
ε4

16
)−5, b ≥ t. (3.10)

Let f be the integer valued function defined inductively as

18

f(0) = b, f(i+ 1) = f(i)4f(i). (3.11)

Put T = f(d10(ε
4

16)−5e) and put N = max{T42T , 32T
ε5
}. The algorithm for a graph

G = (V,E) (with n vertices), is as following:

1) Randomly divide the vertices of G into an equitable partition P1 with classes C0, C1, ..., Cb

where |C1| = bnb c and hence |C0| < b. Denote k1 = b.

2) For every pair (Cr, Cs) of Pi, verify if it is ε-regular or find X ∈ Cr, Y ∈ Cs,

|X| ≥ ε4

16 |C1|, |Y | ≥ ε4

16 |C1|, such that |d(X,Y)− d(Cs, Ct| ≥ ε4.

3) If there are at most ε
(
ki
2

)
pairs that are not verified as ε-regular, then halt. Pi is an

ε-regular partition.

4) Apply the refinement algorithm (Lemma 3.7) where P = Pi, k = ki, γ = ε4

16 and

obtain a partition P ′ with 1 + ki4
ki classes.

5) Let ki+1 = ki4ki, Pi+1 = P ′, i = i+ 1, and go to step (2).

What the algorithm is essentially saying is: divide the vertices of G into an arbitrary

number of classes, check if each pair is regular or not (if not, save the certificates and

complements), then if the number of non-regular pairs is greater than some threshold

(depended on ε), refine the algorithm (for each pair separate the certificate from the

complement). Repeat this procedure, until the partition becomes regular. With each

iteration the index is guaranteed to increase for at least some constant ε4

16 .

3.2 Frieze-Kannan Algorithm

Alon algorithm isn’t the only constructive version of the Regularity Lemma. In 1999,

Alan Frieze and Ravi Kannan, gave an another version of the lemma which is based on

the singular value decomposition [18]. In essence, the difference between algorithms is

on step (2) when the algorithms are completely different.

19

3.2.1 Building the algorithm

A m x n matrix A has a Singular Value Decomposition into the sum of rank one matrices

[21].

Definition 3.8 - The first singular value σ1 is defined as

σ1(A) = max|x|=|y|=1

∣∣xTAy
∣∣ (3.12)

This value can be computed in polynomial time and it is the square root of the largest

eigenvalue of ATA.

Definition 3.9 - Let A be the adjacency matrix of G. Suppose we now have a partition

of V into V1, V2, ... and we wish to check whether (Vr, Vs) form a γ-regular pair for some

γ. Set R = Vr, C = Vs and let Ar,s be the R x C submatrix of A corresponding to these

rows and columns. Let

d =
1

|Vr| |Vs|
∑
i∈Vr

∑
j∈Vs

A(i, j) (3.13)

be the average of the entries in Ar,s. Let D be the R x C matrix with all the entries

equal to d. Let W = Wr,s = Ar,s −D. (Vr, Vs) is an ε-regular pair iff

|W(S, T | ≤ ε |S| |T | (3.14)

for all S ⊆ R, |S| ≥ ε |R|, T ⊆ C, |T | ≥ ε |C| .

The following lemma links the previous two definitions to each other.

Lemma 3.10 [18] - Let W be an R x C matrix with |R| = p, |C| = q and ||W||∞ ≤ 1,

and γ be a positive real.

20

(a) If there exist S ⊆ R, T ⊆ C such that |S| ≥ γp, |T | ≥ γp and |W(S, T)| ≥ γ |S| |T |

then σ1(W) ≥ γ3√pq.

(b) If σ1(W) ≥ γ√pq then there exist S ⊆ R, T ⊆ C such that |S| ≥ γ′p, |T | ≥ γ′q and

|W(S, T) ≥ γ′ |S| |T | where γ′ = γ3

108 . Furthermore S, T can be constructed in polynomial

time

3.2.2 Frieze-Kannan Algorithm

Having given the relation between the singular values and the regularity pairs, the

algorithm now is straightforward.

1) Randomly divide the vertices of G into an equitable partition P1 with classes C0, C1, ..., Cb

where |C1| = bnb c and hence |C0| < b. Denote k1 = b.

2) For every pair (Vr, Vs) of P1, compute σ1(Wr,s). If the pair (Vr, Vs) are not ε-regular

then by Lemma (3.10) we obtain a proof that they are not γ = ε8

108 -regular.

3) If there are at most ε
(
ki
2

)
pairs that are not verified as ε-regular, then halt. Pi is an

ε-regular partition.

4) Apply Lemma (3.7) where P = Pi, k = ki, γ = ε9

108 and obtain a partition P ′ with

1 + ki4
ki .

5) Let ki+1 = ki4
ki , Pi+1 = P ′, i = i+ 1 and go to step (2).

The algorithm finishes in t most O(ε−45) steps with an ε-regular partition, since

ind ≤ 1/2 and each non-terminating step increases the index by γ5/20. For a relatively

small ε, like ε = 0.06 then the number of steps we need in order to get guaranteed a

regular partition is 1.53 x 1054.

3.3 Heuristics

We saw in the previous section that the number of steps for which the algorithm guar-

antees a regular partition, is very large, far larger than something we can compute even

in a supercomputer. Furthermore, considering that in each step the graph gets divided

into 1+ki4
ki classes (when i is upper bounded by the number 1.53∗1054 means that the

21

algorithm needs a graph which is astronomically large. While, innocently it looks that

the algorithm has a good complexity O(n2.376), the suppressed constant in the big-Oh

is an exponential tower. While the researchers were looking for ways to address the

issue, Gowers proved that the tower is necessary for the algorithm to work [22]. This

has deep consequences because it shows that an exact algorithm must have very high

complexity in order to work, and for some time made the lemma completely impractical

for computational usage.

Perhaps the first time the regularity lemma was used in practical Computer Science was

here at Ca’ Foscari, in a thesis of Anna Sperotto, which later resulted in a paper by

Sperotto and Pelillo [44]. They used the regularity lemma as a pre-processing step to

make the process of clustering (dominant set based clustering) better and more efficient.

A few years later, as a result of a thesis of Trivedi at Worcester Polytechnic Institute,

there was a paper published by Sarkozy, Song, Szemerédi and Trivedi when they used the

regularity lemma in the same way to make the process of spectral clustering better and

more efficient [40]. Both papers use almost identical heuristics. Here, we will combine

the heuristics used in those papers, while completely changing one of the heuristics, and

also creating a new heuristic.

Heuristic 1: On the original algorithm, we find all possible ε-regular pairs in the

graph, and then we divide the pairs into complements and certificates. As consequence,

each class may be involved with up to (k−1) ε-regular pairs. In our implementation, we

will decrease the cardinality of atoms in each iteration by considering at most a single

ε-irregular pairs that involves the given class. Basically, if a class forms ε-regular pairs

with every other class, we leave it as it is. Otherwise, we randomly choose a single

ε-irregular pair that involves that class, and work for it. We note that a random choice

likely isn’t the best model, but further investigation is needed to get better strategies

on choosing the pair.

Heuristic 2: On the original algorithm, in each step the cardinality of a class is

divided by 4k (k is the number of classes in the previous iteration) which means that in

order for the algorithm to work, the graph should be extremely large, and so it limits

the algorithm. Here, we decide a parameter l (typically 2, 3 or 4) and the cardinality of

the new classes is depended on l. Specifically, the cardinality of the new classes will be

|Vi|
l , while the number of classes on each iteration will be the number of classes in the

22

previous iteration times l. This achieves control in the number of classes, while also it

ensures that the cardinality of classes doesn’t become too small very fast.

Heuristic 3: While the previous heuristic fixes some problems, on the other side, it

might potentially fast increase the size of the exceptional class. Because the cardinality

of the exceptional class must be at most the same as the number of classes, we need

to deal with this problem. In the two papers we mentioned, the vertices were recycled

by putting them in the other classes. While this fixes the problem of a large excep-

tional class, it might make the other classes even more irregular than in the previous

iteration. Specifically, if the vertexes recycled are more ε-irregular to the classes they

got appointed compared with the vertexes which were removed from those classes, this

makes the process worse and in fact, it decreases the index of the entire partition. In this

implementation, we used a new approach. Instead of recycling the vertexes randomly to

the other classes, we created new classes from those vertexes. While these new classes

are highly irregular (and so they make the number of irregular pairs higher), we know

that in the next iteration they will be refined. It needs to be said that both approaches

have pros and cons, and at the moment we can’t say which approach performs better.

Furthermore, it looks likely that by intelligently deciding in what classes to put the

specific vertexes (if we use the first approach), or what vertexes to join together in the

new classes (if we use the second approach), we might get better results. An idea might

be computing the density of classes and then on that class recycling the vertexes who

have the closest degree to that density (first approach), or putting the vertexes with

close degree in the same class (second approach). While at this stage we cannot say it

with confidence, it is worth further investigating this.

Heuristic 4: Even with the above modification, it is possible that the algorithm

doesn’t converge to a regular partition. We use a parameter h = 2 ∗ l and we decide

that if the cardinality of classes is smaller than h, we halt. Then we compute the ratio

between number of allowed irregular pairs, and the number of actual irregular pairs. The

ratio of a regular partition is lower bounded by 0 (only if there is no irregular pair in

the partition) and 1 (if the number of irregular pairs is exactly the same as the number

of allowed irregular pairs). In the case when we cannot find a regular partition, we look

at the result of this ratio. If the ratio is very close to 1, we still count the partition

as regular and continue working on the other stage. If not, then we decide that the

algorithm has failed. The rationalization behind this is that a hard coding threshold

23

makes sense in theory, but a partition which has 0.99 as ratio (and so is counted as

regular) has pretty much the same quality as a partition which has 1.01 as ratio (and

so is counted as irregular). Despite that the second partition isn’t technically regular, it

can be considered as ’quasi-regular’ and so might be useful to use it.

Finally, we need to say that even with these heuristics, the algorithm doesn’t work for

all graphs. However, from empirical evidence we can say that it works for most graphs.

We will show in Chapter 5 how you can get a regular partition (or almost regular) from

different types of graphs.

3.4 Using the Regularity Lemma

We talked so far for the Regularity Lemma and its algorithm. Now, we will explain how

we can actually use the lemma.

Definition 3.11 - Given an ε-regular partition of a graph G = (V,E), the reduced graph

R is the graph which as vertexes have the classes of G, while as edges has ε-regular

partitions on G with density above some threshold d. The reduced graph R is considered

as the essence of graph G, and it inherits its main properties.

A picture of the previous definition, as given in [44] can be seen:

Figure 3.1: Example of using the regularity lemma. (a) The original graph; (b) The
reduced graph

So, by just simply considering the classes of the original graph as vertexes in the reduced

graph, and regular pairs with considerable density of the original graph as edges in the

reduced graph, we obtain a small graph (compared to the original graph) which inherits

the main properties of the original graph (for example every clique in the R is also

contained in G).

24

Because the adjacency matrix of the reduced graph is very sparse, we have decided

to relax the constraints, and to consider an edge any pair whose density is above some

threshold d (we don’t require the pair to be regular anymore). The rationalization behind

it is as following: by using the lemma, similar vertexes are already grouped together in

classes. That means that we already have a good knowledge of the regularity structure

on the graph, so we don’t need to see if the pairs between classes are regular or not.

Again, this is almost a heuristic measure (it deviates from the definition) so further

investigation might be needed. However, [40] showed empirical evidence that the results

are better this way, by forcing some edges between classes.

While the regularity lemma shows how to reduce the graph, it doesn’t show how to

expand it. This can be done by so-called Key Lemma [28], [29] and [27].

Theorem 3.12 (Key Lemma) - Given the reduced graph R, d > ε > 0, a positive

integer m, construct graph G∗ which is an approximation of graph G by performing

these two steps:

1. replace every vertex of R by m vertices.

2. replace the edges of R with regular pairs of density at least d.

The lemma is just the inverse of definition (3.11). It shows how we can expand the

reduced graph R into an approximation of the original graph G. The procedure is quite

simple: for every class on R create m vertexes on G (m is the cardinality of classes)

and put edges between those vertexes only if classes form regular pairs with density

above some threshold d. Of course, if we use the relaxed version of the definition (3.11)

when we don’t look for regular pairs, we should relax the key lemma too and put edges

between classes which form pairs with density d, regardless if the pair is regular or not.

Now that we gave the key lemma, we have all the tools to provide how we can use those

theorems:

1) For a graph G = (V,E) perform the regularity lemma and so find a regular partition.

2) Using the definition (3.11) construct the reduced graph R.

3) Study the reduced graph R, knowing that it inherits the properties of the original

graph G (specifically in this thesis, by study we mean perform graph and subgraph

isomorphism, in general it means to analyze the properties of R and its subgraphs).

25

4) Expand the graph R into graph G∗ which is an approximation of graph G, knowing

that it has the same properties of R (every small subgraph of R is also a subgraph of

G).

We conclude this section by showing a picture which shows the above procedure [44]:

Figure 3.2: Reduction strategy to find substructures in a graph

3.5 Weighted Version

Czygrinow and Rodl [13] introduced an algorithmic version of the lemma for the weighted

graphs. The main change is that the density between a pair of graphs, now needs to

deal also with the weights.

Equation (2.2) for the unweighted version of the lemma is replaced with the following

equation:

d = dw(A,B) =

∑|A|
i=1

∑|B|
j=1w(ai, bj)

|A| |B|
(3.15)

The equations are very similar. The only difference is that equation (2.2) takes into

account only the presence or absence of an edge, while equation (3.15) takes into account

also the weight of an edge.

26

Sperotto and Pelillo [44] extended the idea into taking in account also the intra-class

similarities. Remember that the regularity lemma considers only the similarity between

the classes (it is formulated in that way, that the graph becomes the union of bipartite

graphs, something that doesn’t happen with the relaxed version). To consider the sim-

ilarity between the vertexes of the same class, we need a new rule (this could be easily

called Heuristic 5).

What we do, is consider the average weighted degree:

degS(i) =
1

|S|
∑
j∈S

w(i, j), S ⊂ V. (3.16)

Then we sort the vertexes of S in decreasing order. The idea is that when the subset

gets repartitioned in the following iteration, the vertexes which have around the same

intra-class similarity, will be grouped together. We choose the decreasing order, because

this ensures that only the vertexes which are weakly connected join the exceptional class

(if we did the other way around, then vertexes which are strongly connected would have

joined the exceptional class).

27

Chapter 4

Graph Isomorphism

The graph isomorphism is one of those problems for which we don’t know yet in what

class of computational complexity they belong. Since the inception of the problem, there

was a belief that the problem lies between the P and NP-complete classes. However,

during the time of writing this thesis (November 2015), Lezlo Babai claimed that he has

solved the problem in quasi-polynomial time. There is yet to be published a paper on

it, but an interesting lecture can be found at [3].

4.1 The Problem of Graph Isomorphism

Definition 4.1 - For an undirected graph G = (V,E) the order of it is the numbers of

vertices, while the size of it is the number of edges. Two vertices i, j ∈ V are said to be

adjacent if there is an edge between them. The adjacency matrix of the graph G is an n

by n symmetric matrix, is defined as usual [9] :

aij =

 1, if (i,j) in E,

0, otherwise.

Definition 4.2 - Given two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′), an isomorphism

between them is any bijection φ : V ′ → V ′′ such that (i, j) ∈ E′ ⇔ (φ(i), φ(j)) ∈ E′′,

for all i, j ∈ V ′ [36]. The graph isomorphism problem is the problem of deciding if two

graphs are isomorphic, and if they are, to find an isomorphism between them.

28

As mentioned in the introduction of this chapter, so far there are no algorithms which

can solve the problem in polynomial times, and even analyzing the complexity of the

problem hasn’t been possible.

Definition 4.3 - A clique of an undirected graph G = (V,E) is a subset of vertexes

V ′ ⊂ V where each edge i ∈ V ′ is adjacent with any edge j ∈ V ′. A clique is said to be

maximal, if it isn’t contained in any other clique. A clique is said to be maximum if it

is the biggest maximal clique in the graph. The clique number is the number of vertexes

in the clique

While we don’t know the complexity of graph isomorphism, we know that the maximal

clique problem is NP-hard [19]. Furthermore, just finding the clique number has been

proven to be intractable for large graphs.

4.1.1 The Association Graph

The idea of the approach used here (and also in [36], [6]) is to transform the problem of

graph isomorphism into the problem of finding the maximal clique in a graph. Despite

that it might look strange to transform a problem into a significantly more complex and

difficult problem, we will show that this works in practice because there are efficient

algorithms which can solve the maximal clique problem in reasonable time.

Figure 4.1: A pair of isomorphic graphs

Barrow and Burstall [5] and Kozen [30] introduced the notion of an association graph

in order to be able to solve the graph and subgraph isomorphism problem.

29

Definition 4.4 - The association graph derived from graphs G′ = (V ′, E′) and G′′ =

(V ′′, E′′) is the undirected graph G = (V,E) where V = V ′xV ′′ and

E = {((i, h), (j, k)) ∈ V xV : i 6= j, h 6= k and (i, j) ∈ E′ ⇔ (h, k) ∈ E′′}.

The adjacency matrix A = (aij,jk) of the association graph can be defined as:

aih,jk =

 1− (a′ij − a′′hk)2, if i 6= j and h 6= k,

0, otherwise.

The adjacency matrix of the association graph created by the two graphs in Figure (4.1)

is:

Table 4.1: Adjacency Matrix of the association graph created by the graphs in Figure
(4.1)

A =

0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0
0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0

Theorem 4.5 [36] - Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two graphs of order n,

and A be their corresponding association graph. G’ and G” are isomorphic only if the

clique number ω(A) = n. In this case, any maximum clique of A induces an isomorphism

between the two graphs G’ and G”, and vice versa. In general there is an one-to-one cor-

respondence between maximal/maximum cliques in A with maximal/maximum common

subgraph isomorphism between G’ and G”.

The theorem just establishes the relation between the maximum clique in the association

graph, with the isomorphism of the two graphs. The clique number must be the same

as the order of the graphs in order for those graphs to be considered isomorphic. If

30

the clique number is lower, then the graphs aren’t isomorphic but they have a common

subgraph. For our graphs in Figure (4.1), the clique number must be 4.

As mentioned in the beginning of the section, the maximum clique problem is NP-hard.

Precise solutions like the Bron-Kerbosch [7] algorithm have a high complexity O(3n/3)

and cannot be used in practice for even relatively small graphs. The rest of this chapter

is dedicated to finding a heuristic algorithm which can give an approximate solution in

efficient time.

4.1.2 Continuous Formulation of the Maximum Clique Problem

For an undirected, unweighted graph G = (V,E) of order n, we denote the standard

simplex Snas :

Sn = {x ∈ Rn : xi ≥ 0 for all i = 1, ..., n, and

n∑
i=1

xi = 1}.

Given a subset of vertices C of G we denote by xc its characteristic vector, which is a

point in Sn defined as

aih,jk =

 1/|C| , if i ∈ C

0, otherwise

Now, consider the following quadratic function,

f(x) = xTAx =
n∑
i=1

n∑
j=1

aijxixj (4.1)

where A = (aij) is the adjacency matrix of G. A point x∗ ∈ Sn is called a global

maximizer of f in Sn if f(x∗) ≥ f(x), for all x ∈ Sn, while it is called a local maximizer

if there exists an ε > 0 such that f(x∗) ≥ f(x) for all x ∈ Sn whose distance from x* is

less than ε.

The Motzkin-Straus theorem [33] establishes a connection between global (local) max-

imizers of the function f in Sn and maximum (maximal) cliques of G. In particular, it

31

says that that C is a maximum clique in G, if and only if its characteristic vector xc is

a global maximiser of f in Sn. This result was extended by Pelillo and Jagota [37] and

Gibbons [20] which shows a similar relation between strict local maximizers and maxi-

mal cliques. The theorem is very important because it allows us to change from district

to continuous domain, in effect, transforming the problem from clique finding (NP-hard)

to the problem of finding a maximizer for the function f in Sn. As consequence, for a

long time it has served as the basis for many clique finding procedures.

However, the theorem comes with a problem. As observed in [34] and later formalized

by Pelillo and Jagota in [37], the theorem in the original form allows the existence of

spurious solutions. While spurious solutions are global maximizers they represent a

problem because they do not allow to extract the clique from them. Saying that, there

is a direct solution to this problem presented by Bomze in [6]. The solution is the

regularized version of f,

f(x) =

n∑
i=1

n∑
j=1

aijxixj +
1

2

n∑
i=1

x2i (4.2)

which can be obtained from equation 4.1 by simply adding 1/2 in the diagonal of the

adjacency matrix A.

4.1.3 A quadratic program for graph isomorphism

Having two graphs G’ and G” of order n, and building from them the association graph G

with adjacency matrix A, the graph isomorphism problem becomes equivalent of solving

the following program:

maximizef(x) = xT (A+
1

2
IN)x subject to x ∈ SN (4.3)

Theorem 4.6 [36] - Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two graphs of order n.

Let x∗ be a global solution of program (4.3). G’ and G” are isomorphic if and only if

32

f(x∗) = 1− 1
2n . In this case, any global solution of the equation (4.3) corresponds to an

isomorphism between G’ and G” (with vice versa holding true).

After this formulation, then the Motzkin-Straus function f becomes:

f(x) =
∑
i,h

∑
j 6=i

∑
k 6=h

a′ija
′′
hkxihxjk +

∑
i,h

∑
j 6=i

∑
k 6=h

(1− a′ij)(1− a′′hk)xihxjk +
1

2

∑
i,h

x2ih.

(4.4)

4.2 Replicator Equations and Graph Isomorphism

Replicator equations have been developed and studied in the field of evolutionary game

theory by Maynard Smith [43], while later were intensively studied by Weibull [50]. In

essence, they try to model the evolution of animal behavior using the tools of game

theory. The idea is to consider a large population of individuals as players belonging

to the same specie and competing for a limited resource, such as food or territory.

Compared to classical game theory, here players do not act rationally, but act according

to their genetically pre-programmed behavior pattern, or pure strategies.

At time t, the average payoff of strategy i is given by:

πi(t) =

n∑
j=1

wijxj(t)

where wij represents the payoff of an individual playing strategy i against an another

player who is playing strategy j.

The mean over the entire population is simply:

n∑
i=1

wijxj(t).

33

The assumption is that the game is played repeatedly, and that natural selection will

result in the evolution of the best strategy. This can be described by the following

differential equations [47]:

dxi(t)

dt
= xi(t)(πi(t)−

n∑
j=1

xj(t)πj(t)), i = 1, ..., n (4.5)

The idea behind the model is that the average rate of increase dxi(t)
xi(t)

equals the difference

between the average fitness of strategy i and the mean fitness over the entire population.

The discrete version of the previous equation is as follows:

xi(t+ 1) =
xi(t)πi(t)∑n
j=1 xj(t)πj(t)

, i = 1, ..., n (4.6)

The equation (4.6) is the central equation of this chapter, and in essence, the entire idea

of the algorithm is performing this equation until it converges into a stable solution.

That is guaranteed by the following theorem.

Theorem 4.7 - The fundamental theorem of natural selection [50], [12] - Given

a non-negative symmetric payoff matrix W, the quadratic polynomial F defined as

F (x) =
n∑
i=1

n∑
j=1

wijxixj (4.7)

is strictly increasing along any consistent trajectory of both continuous-time (equation

4.5) and discrete-time (equation 4.6) replicator dynamics. Its derivative with respect to

time is positive:

d

dt
F (x(t)) > 0

34

for the continuous case, and

F (x(t+ 1)) > F (x(t))

for the discrete case, unless x(t) is a stationary point. Furthermore, any such trajectory

converges to a unique stationary point.

4.3 The Algorithm

On this sub-chapter, we will put all the results we gained in the previous parts of this

chapter together, and in doing so, we will gain an efficient algorithm which finds an

isomorphism between graphs in polynomial time.

Having two graphs, G′ = (V ′, E′) and G′ = (V ′′, E′′) with order n, we denote the

adjacency matrix A of the association graph and by letting:

W = A+
1

2
IN

where I is the identity matrix, we know that the replicator dynamics, starting from an

initial vector, will maximize the function f(x) = XT (A+ 1
2IN)x in the standard simplex

SN and will eventually converge to a strict maximizer. Theorem (4.5) tells that the

maximum clique extracted from the characteristic vector is in one-to-one relation with

an isomorphism between the two graphs G’ and G”. While, in theory it isn’t guaranteed

that the dynamics will ever converge, the experimental results in [36], [6] has shown that

there are many global maximizers, and that the algorithm frequently converges to one

of them.

All that remains to do, is to decide how to initialize the characteristic vector, and a plau-

sible solution is the vector (1
N , ...

1
N)T , which represents the barycenter of the simplex.

While this ensures that no solution if favored, on the other side it creates a symmetry

35

problems and the algorithm might get stuck in the beginning. A straightforward solution

is to add a little perturbation in order to break the symmetry.

Now, we can put the pieces together and give the following algorithm (in order to get

an isomorphism between graphs).

For two undirected, unweighted graphs, G′ = (V ′, E′) and G′′ = (V ′′, E′′) an isomor-

phism between them can be gained by performing the following actions:

1) Compute the adjacency matrix of their association graph as shows in section (4.1.1).

Add 1
2 in the diagonal.

2) Initialize the characteristic vector, near the barycenter of the simplex.

3) Perform iteratively equation (4.6), which should converge to a global maximizer.

4) A maximal clique can be extracted by the final characteristic vector (gained from

step 3).

5) Check if the extracted clique is really a clique (not a saddle point). If it is a saddle

point, perturb a bit, and go back to step (3)

6) There is an one-to-one correspondence between the maximum clique and an isomor-

phism between graphs G’ and G”. If the clique number is the same as the order of the

graphs, we have a graph isomorphism, otherwise we have a sub-graph isomorphism.

We conclude this section by showing how the replicator dynamics evolve (Figure 4.2),

using the graphs in Figure 4.1 (on the x-axis we have the number of iterations, while

on y-axis, we have the components of the state vector). We see that only 50 iterations

were needed, and so the entire algorithm in a modern computer takes around a second.

4.4 Faster Replicator Dynamics

The idea of replicator dynamics was extended in a publication by Hofbauer and Weibull

[24], and they built a new version of replicator dynamics which work faster than the

previous one. The continuous version is given in equation (4.8)

36

Figure 4.2: The evolution of replicator dynamics

xi(t+ 1) =
xi(t)e

Kπi(t)∑n
j=1 xj(t)e

Kπj(t)
, i = 1, ..., n (4.8)

The dynamics are payoff monotonic:

xi(t+ 1)− xi(t)
xi(t)

>
xj(t+ 1)− xj(t)

xj(t)
⇔ πi(t) > πj(t). (4.9)

K is just a number, which change the way how replicator dynamics behave. For the graph

given in Figure 4.1, we see how the dynamics differ while we change the parameter K.

37

Figure 4.3: The evolution of replicator dynamics when K = 3

Figure 4.4: The evolution of replicator dynamics when K = 4

Figure 4.5: The evolution of replicator dynamics when K = 5

We see how differing parameter K differs the number of iterations. While generally

for K < 3 and for a big K, the exponential replicator dynamics perform worse than

the normal replicator dynamics, for the values in between, they seem to completely

outperform normal replicator dynamics. The caveat is that the programmer needs to

play a bit with the parameter in order to find which K gives the best results.

38

The algorithm is completely the same as the algorithm in the previous section. For the

purpose of this implementation, we are using the new replicator dynamics because of

their efficiency.

4.5 Weighted Version

The weighted version of the graph isomorphism is very similar to the unweighted version.

The basic idea is to transform the problem of isomorphism into the problem of finding

a dominant set in the weighted association graph.

Definition 4.8 - A non-empty subset of vertices S ⊆ V such that W (T) > 0 for any

non-empty T ⊆ S, is said to be a dominant set if:

1. wS(i) > 0, for all i ∈ S (internal homogeneity).

2. wS∪i(i) < 0, for all i /∈ S (external homogeneity) [35].

The following theorem generalizes the Motzkin-Strauss theorem from graph theory:

Theorem 4.9 [48]- Evolutionary stable strategies of the clustering game with affinity

matrix A are in an one-to-one correspondence with the dominant sets.

In some way, we can consider dominant sets as generalization of the maximal clique for

weighted graphs. We will use replicator dynamics to find dominant sets, with the biggest

change being that we won’t need to add 1
2 in the diagonal of the association graph. The

equation (4.4) becomes:

f(x) =
∑
i,h

∑
j 6=i

∑
k 6=h

a′ija
′′
hkxihxjk +

∑
i,h

∑
j 6=i

∑
k 6=h

(1− a′ij)(1− a′′hk)xihxjk. (4.10)

The other parts of the algorithm stay roughly the same as before.

39

Chapter 5

Experimental Results

In this chapter, we are going to put the algorithms together and to make detailed

experiments on different sets of databases. We will use three types of datasets. The

first type of datasets are taken from ’UCI Machine Learning Repository’, the second

type of datasets are randomly generated, while the third type of datasets are taken from

’Stanford Large Network Dataset Collection’ website, which contains graphs of social

networks. Those graphs, are by far the largest graphs we are going to use in this thesis.

An interesting property of them, are that the graphs are incredibly sparse, and so we

will be able to see how the algorithm works in sparse graphs.

First, we will start by performing the regularity lemma of Szemerédi in isolation and

see how different responses vary while we change parameter ε. Then we will perform

the matching algorithm in isolation in order to get convinced that it works, and finally

we will put together both algorithms and see the results of matching after we have

performed the regularity lemma.

On all three types of datasets, the approach is the same. We get the first graph from the

dataset, and then we will do a number of random permutations in the adjacency matrix

of the graph in order to get the second graph. In this way, we are sure that the graphs are

isomorphic. After we do that, the final step is to find an isomorphism/sub-isomorphism

on the graphs, and count the number of matched vertices.

40

5.1 Testing the Regularity Lemma

On this section we are going to test the regularity lemma on isolation, looking how index

progresses on each iteration, and how the number of classes and size of class changes

while we change the parameter ε. We will also measure the time and the number of

iterations needed for the algorithm.

5.1.1 Case Study 1: Ionosphere Dataset

UCI Machine Learning Repository [2] is a collection of databases that are used by the

machine learning community and students. Most of the datasets are feature-based and

donated from various researchers.

Because the datasets are feature-based, we need a way of turning them into graphs. Our

approach is using some similarity measure between vectors, and then based on some

parameter δ, thresholding them into ones and zeros. For similarity measure we used the

Euclidean distance w(i, j) = exp(
−||vi−vj ||2

σ2)
) between corresponding attribute vectors.

For this section, we’re going to use the Ionosphere Dataset [42], which is a feature-based

dataset containing 351 instances, each one of them having 34 continuous attributes in

addition to response attribute, which is a discrete attribute being either ’good’ or ’bad’.

There are no missing attributes in the dataset. It is one of the most commonly used

datasets in machine learning, as can be seen by the number of papers which have cited

it.

On the following tables we are going to give the final index, number of classes, size

of class, size of exceptional class, number of iterations, time needed to perform the

algorithm, number of times we managed to find a regular partition (a number between 0

and 1, 0 means never while 1 means always) and how close we were on finding a regular

partition which is the ratio between number of irregular pairs and the maximum number

of allowed irregular pairs 1.

1The regularity lemma allows some irregular pairs based on parameter ε. If the ratio between number
of irregular pairs and the maximum number of allowed irregular pairs is less or equal to 1, it means
that we have got a regular pairs, while if the ratio is greater than 1, then it means that the partition
is irregular. We measure this because while theoretically, if we don’t manage to get a regular partition
it means that the experiment has failed, in reality it is is possible to get some information from them.
A concrete example would be finding a partition with ratio 1, and an another partition with ratio 1.01.
While the second partition is irregular, the difference in quality between it and the first partition (which
is regular) is completely negligible

41

Table 5.1: Ionosphere: Mean value of response variables, affected by the change of
parameter ε.

mean / ε 0.2 0.3 0.4 0.5 0.6

Final Index 0.2 0.2 0.19 0.17 0.13

Number of classes 175 175 112 31.2 8

Size of class 2 2 3.8 12.2 43

Size of Exceptional Class 1 1 1 3.8 7

Number of iterations 7 7 6.4 4.8 3

CPU time (sec) 4.42 4.18 4.76 1.12 0.4

Successful 1 1 1 1 1

Ratio 0.9 0.6 0.76 0.88 0.76

We did ten Monte Carlo simulations (each based on random initial partitioning) for

every ε, in order to get the results (mean and standard deviation for each of the variables

mentioned). We see that the final index is inversely proportional with ε (index decreases

as epsilon increases). This completely makes sense, because we know that the smaller ε

is, the better partition is. Directly, this leads us to the number of iterations, and we see

that for small ε, we need more iterations than for a big ε (the same goes for the time).

The number of classes for small ε is 175, which means that we have got 2:1 compression

rate. While we increase the ε, we see that the number of classes decreases, and for a

large ε = 0.6, the number of classes is only 8 (compression rate is 44:1). On the other

hand, the size of class goes the other way around, small ε gives small size of classes,

while large ε gives a large number of classes. In all cases, the size of exceptional class

is very small (because of heuristic 3, mentioned in the third chapter). Finally, we see

that in all experiments we have succeeded each time on gaining a regular partition, with

the ratio between number of irregular pairs and the allowed number of irregular pairs

typically being larger for small ε than for large ε (this can be seen as when we have a

small ε, there are many irregular pairs, while when we have a large ε, there are just a

few irregular pairs).

On the table below, we explored the same variables, but now measuring standard devi-

ation. We find that the results are quite robust for small and large ε, but when ε = 0.4

and ε = 0.5 the results between simulations may vary a lot. In particular, for ε = 0.4,

we see that the standard deviation of number of classes might be extremely large. We

justify it by saying that for small ε the algorithm needs to purify the graph until the

end, while for a large ε, it usually takes only a few iterations, and so the graph isn’t

42

Table 5.2: Ionosphere: Standard deviation of response variables, affected by the
change of parameter ε.

standard deviation /ε 0.2 0.3 0.4 0.5 0.6

Final Index 0 0 0 0 0

Number of classes 0 0 51.43 7.6 0

Size of class 0 0 1.47 4.4 0

Size of Exceptional Class 0 0 0 5.6 0

Number of iterations 0 0 0.5 0.4 0

CPU time (sec) 0.18 0.2 2.64 0.26 0.06

Successful 0 0 0 0 0

Ratio 0.03 0.02 0.25 0.06 0.14

partitioned well. But, when the ε isn’t too small or too large, then based on the initial

partitioning, the graph might end with different number of classes.

The final variable we’re going to measure, is how the index of the partition varies between

each iteration. We expect the initial index to be small, and then with each iteration to

increase until it reaches the final value.

Table 5.3: Ionosphere: The increase of index depending on ε.

ε / ind(P) ind(P1) ind(P2) ind(P3) ind(P4) ind(P5) ind(P6) ind(P7)

0.2 0.05 0.08 0.12 0.16 0.17 0.18 0.2

0.3 0.05 0.08 0.12 0.16 0.17 0.18 0.2

0.4 0.05 0.08 0.12 0.16 0.17 0.18 -

0.5 0.05 0.08 0.12 0.16 0.17 - -

0.6 0.05 0.08 0.12 - - - -

Clearly, the index on each iteration is completely depended on the ε parameter. ’-’

means that the partition has finished by finding a regular partition, so the algorithm

doesn’t continue in the other iterations.

An interesting thing that we found is that the biggest increase happens in the first four

iterations. After those iterations, the index still continues to increase but on a much

lower scale. Concretely, we found that the index in the first iteration is just 25% of

the final index, after the second iteration it is 40% of the final index, after the third

iteration it is 60 % of the final index, and after the fourth iteration it is 80% of the final

index. This might be important in cases when compression rate is more important than

43

the quality of the partition, and in those cases we can decide to stop the partitioning

algorithm after a few iterations regardless if the graph is regular or not. Clearly, the

largest partitioning happens in the first few iterations.

5.1.2 Case Study 2: Randomly Generated Datasets

On this section, we are going to repeat the previous experiments, but this time with

’randomly’ generated datasets.

Using completely randomly generated graphs obviously will not work, because the reg-

ularity lemma finds the hidden structure in a graph, and so if graphs are random, then

there is no such structure (unless the graphs are extremely large, in that case by random

chance, there will be some meaningful structures there). Instead, we will use a variation

of Condon and Karp graphs [8]. Initially, we will start with a small graph (only a few

vertices) and we will decide on the probability between vertices. Then, we will expand

the graph into a much larger graph, when each vertex of the original graph will be re-

placed by a number of vertices, and so, those vertices will now be considered a class.

We will connect the classes with edges based on the given probability. Given the graph

below:

Figure 5.1: A small graph

44

we want to expand it in that way that each vertex will become a class of 200 vertexes.

Classes will be connected with edges based on the densities given on the graph. In

addition, we are going to add some noise, by allowing some edges (5% chance of each

vertex in a class getting connected with a vertex in some class) between classes which

shouldn’t be connected (on other words, classes 2 and 3, 3 and 4, 1 and 4 will have

density 0.05). The graph is relatively sparse, with the number of edges being around

0.12 ∗ n2 (n being the number of vertices).

The tables for mean and standard deviation (same approach as in Case Study 1) look:

Table 5.4: Randomly Generated Dataset: Mean value of response variables, affected
by the change of parameter ε.

mean / ε 0.2 0.3 0.4 0.5 0.6

Final Index 0.08 0.08 0.08 0.06 0.02

Number of classes 266 266 266 28.2 2.6

Size of class 3 3 3 61.2 370

Size of Exceptional Class 2 2 2 0.8 0

Number of iterations 8 8 8 4.4 1.4

CPU time (sec) 22.03 27.27 35.19 8.2 1.98

Successful 0 0 1 1 1

Ratio 1.73 1.18 0.89 0.94 0.05

Table 5.5: Randomly Generated Dataset: Standard deviation of response variables,
affected by the change of parameter ε.

standard deviation /ε 0.2 0.3 0.4 0.5 0.6

Final Index 0 0 0 0 0

Number of classes 0 0 0 16.83 1.8

Size of class 0 0 0 69.96 90

Size of Exceptional Class 0 0 0 2.4 0

Number of iterations 0 0 0 1.28 0.6

CPU time (sec) 1.81 4.14 0.09 2.81 1.19

Successful 0 0 0 0 0

Ratio 0.02 0.02 0.01 0.04 0.16

Clearly, the algorithm does a worse job than in case study 1, and is quite affected

from the randomness of the data. We see that it for ε = 0.2 the number of irregular

pairs is significantly than the number of allowed irregular pairs, and so the partition

is unacceptable. For ε = 0.3 things are a bit better, but still we cannot say that we

have a regular partition. For ε = 0.4 and for ε = 054 we have a regular partition, as we

45

have for bigger ε. However, we should be careful and see that for ε = 0.6, the algorithm

practically does nothing but just separate the graph into two random parts, and because

ε is large, it declares the graph regular.

So, the only useful ε in our example are 0.4 and 0.5, and indeed we can use only ε

which are around those numbers. We see that for ε = 0.4 we have 266 classes, and

so a compression ratio of 3:1. Each class has 3 elements in average, while the size of

exceptional class is completely negligible. The entire algorithms runs in around half a

minute. On the other side, for ε = 0.5 we have just 28.2 classes in average, and so a

compression ratio of 28.36:1, each class having 70 elements, with the exceptional class

being negligible. The algorithm runs for 8 seconds. If we want a better partition, we

should choose ε = 0.4, however if the compression ratio is the most important thing,

then we should choose ε = 0.5

We see that the results are quite robust for all epsilons bar ε = 0.5.

5.1.3 Case Study 3: Social Networks

With social networks becoming a big part of people’s lives, the social network graphs

have generated a lot of interest in the community of researchers. The reasons for that is

because social networks graphs come from real data, are significantly larger than most of

the other types of graphs, and are quite sparse which makes their study quite interesting.

For this evaluation, we are going to use Arxiv HEP-TH (High Energy Physics - Theory)

which is a collaboration network from the e-print arXiv which covers the scientific col-

laboration between authors who have submitted papers to High Energy Physics, in the

Theory category [31], taken from the SNAP Dataset Collections [32].

The graph has been collected and studied by Jure Leskovec in the paper cited above.

The graph has 9877 nodes and 25998 edges (a node is connected with around 3 other

nodes), and so it is a very sparse graph (its density is just 1.46 ∗ 10−5). Graph is given

as an adjacency list. Some of the other characteristics of the graph are:

- the number of nodes in the largest strongly connected components is 8638, while the

number of edges in the largest strongly connected component is 24827 (the 1:3 ratio of

nodes/edges is inherited here too).

46

- the average clustering coefficient is 0.47.

- the total number of triangles is 28339.

- the longest shortest path (called also the diameter of the graph) is 17.

Our experiments on this graph are similar to the experiments in the previous two graphs.

The main difference is that because of the graph’s sparsity, we will need to use signifi-

cantly smaller ε.

Table 5.6: SNAP Dataset: Mean value of response variables, affected by the change
of parameter ε.

mean / ε 0.03 0.05 0.07 0.09

Final Index 2.15e-05 7.5e-06 5.2e-06 6.8e-07

Number of classes 284.8 128 76.8 14.4

Size of class 42 77 138.6 3981.2

Size of Exceptional Class 28.4 21 21 5

Number of iterations 8 7 6.2 2

CPU time (sec) 534.87 397.49 446.45 160.47

Successful 1 1 1 1

Ratio 0.68 0.83 0.8 0.13

Table 5.7: SNAP Dataset: Standard deviation of response variables, affected by the
change of parameter ε.

standard deviation / ε 0.03 0.05 0.07 0.09

Final Index 0 0 0 0

Number of classes 127.62 0 25.6 24.8

Size of class 18.98 0 30.8 1913.6

Size of Exceptional Class 8.24 0 0 8

Number of iterations 0.63 0 0.4 2

CPU time (sec) 133.09 1.4 119.95 236.08

Successful 0 0 0 0

Ratio 0.21 0.1 0.11 0.27

In all cases, the index is extremely small. That is to be expected considering that index

is related with the density of the graph. We see that the algorithm has done a good

job for every epsilon, finding always a regular partition, and actually being quite deep

into the safe zone (the ratio between the number of actual irregular partitions and the

maximum number of allowed irregular partition isn’t ever greater than 0.83). Depending

on the choice of epsilon, we can see how the number of classes (and so the size of class)

47

vary, with the average maximum number of classes being 284.8 for the smallest ε = 0.03,

while the average minimum of the number of classes being 14.4 for the choice of ε = 0.09.

The size of class varies from 42 (when ε = 0.03, up to 3981, when ε = 0.09. The size of

exceptional class is typically bigger than in the previous experiments, but still negligible

compared with the size of the graph (0.28 % of the size of the graph). The number of

iterations seems to vary from 2 to 8, while the time needed to perform the algorithm

(tested in a laptop with core-i7 processor) varies from 2.5 up to 9 minutes.

One thing to note is that the standard deviation of the results is quite higher than in

the previous experiments, and in fact the results aren’t as robust as we would have liked

(bar in the case when ε = 0.05, which is the only case where the standard deviation is

very small for each of the response variables).

5.2 Testing the Isomorphism Algorithm

On this section, we are going to test in details the isomorphism algorithm - using repli-

cator dynamics - explained in Chapter 4. One problem on using this technique is the

creation of the association graph. If we want to match two graphs, each of them having

m vertices, then the association graph will have m2 vertices. The adjacency matrix of it

will have m4 entries. For graphs with moderate size, m = 300, creating the association

graph will be challenging for a personal computer, because of the memory constraints.

Of course, a possible way of dealing with this problem is building the association part

by part, but while that removes the problem of space constraints, on the other side it

makes the algorithm run slower.

On this section, we are going to start by matching random graphs, and then continue

by matching real graphs.

For the experiments on random graphs, we are going to generate the first graph and

then do a number of random permutation on its adjacency matrix, in order to get the

second graph.

48

5.2.1 Case Study 1: Matching Random Graphs While the Density

Changes

On this section, we are going to match random graphs. In order to perform the experi-

ments faster, we are going to test on graphs with small size (number of vertices = 50).

We are going to use different densities on the graph (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.95, 0.99). For each density we’re going to do 10 experiments, and

then give the results (as always, we’re going to give the mean and standard deviation).

Figure 5.2: Mean of the number of matches in a random graph

We see quite clearly, that we get perfect graph isomorphism when the density of the

graph isn’t on extreme range. So, if the graphs aren’t very sparse, or near completely

connected, then we get the maximum of matches. However, for graphs that have density

less than 10% or more than 90% the results aren’t that good, and at times can be very

low. This observation completely agrees with [36], where the experiment found similar

results (although there were used graphs with 100 vertices).

5.2.2 Case Study 2: Matching Random Graphs While the Size Changes

While matching graphs and changing the density is quite interesting, we also want to

know if the size of the graph has any role in the results. In this case study, we are going

to match random graphs whose density is constant (we choose the density to be 0.5)

49

Figure 5.3: Standard deviation of the number of matches in a random graph

while we change the number of vertices in the graph. We will use graphs of size: 10, 20,

30, 40, 50, 60, 70, 80, 90, 100.

Table 5.8: Random Graphs: Mean and Standard deviation of the number of matched
vertices ε.

Number of vertices 10 20 30 40 50 60 70 80 90 100

µ of the number of matched vertices 10 20 30 40 50 60 70 80 90 100

σ of the number of matched vertices 0 0 0 0 0 0 0 0 0 0

We see that in each case, we got a perfect isomorphism and so the standard deviation

is always 0. In fact, the random graphs have this property that finding an isomorphism

there is more easier than in general. In the next subsection, we are going to investigate

into non-random graphs and see what results we get there.

5.2.3 Case Study 3: Matching Non-Random Graphs

On this section, we are going to test the matching algorithm in real graphs (non-random).

All the graphs used in this section have been taken from [15]. In all graphs, it is extremely

difficult to find an isomorphism, and the graphs have been chosen exactly for this reason.

On each of the pair of graphs, we are going to do 25 Monte Carlo simulations and then

50

see the results (as always, mean and standard deviation) on the number of matches we

have found.

We are going to start by testing it on Coxeter graphs [11]. Coxeter graphs are relatively

sparse graphs which contain 30 vertices and only 90 edges (density being 0.1). A picture

of the graphs can be seen below:

Figure 5.4: Coxeter graphs

After we perform the process of graph matching 25 times, we show the results in Figure

5.5.

Figure 5.5: Matching Coxeter Graphs

51

We see that the results - while robust - are quite poor, and in 23 cases we have got just

15 matches (only half of the vertices), while in two cases we got 16 vertices. The mean

of the number of matches is 15.08, while the standard deviation is 0.27.

Next, we are going to test the algorithm on similar, but not isomorphic graphs. We have

chosen the Weisfeiler graphs [51], graphs that have 25 vertices and 300 edges (density is

0.48). The graphs can be seen in the figure below:

Figure 5.6: Weisfeiler graphs

We run the algorithm 25 times and we get the following results:

Figure 5.7: Matching Weisfeiler Graphs

52

We see that the number of matches varies from 8 to 11, with the mean being 9.4, and

standard deviation being 1.01. The results are better than in the previous graph, which

is to be expected considering that replicator dynamics don’t work well on sparse graphs.

On the other hand, we observed that the algorithm works significantly better for smaller

graphs. For example, taking the Petersen graphs [38] shown below (10 vertices, 30 edges,

density being 0.3):

Figure 5.8: Petersen graphs

We test the matching algorithm by doing 25 simulations, and we get the following results:

Figure 5.9: Matching Petersen Graphs

We see that in 24 out of 25 cases, we got a perfect isomorphism, while in one case we

failed. The mean of the matches is 9.89, while the standard deviation is 0.78.

53

Because of this, and other similar results, when we will do the graph matching (after

applying the Szemerédi lemma), we will try to perform the Szemerédi algorithm in that

way that the graphs that are going to be matches, to not be that big.

We conclude this section by showing the evolution of the replicator dynamics in the last

pair of graphs.

Figure 5.10: The evolution of replicator dynamics in Petersen graphs

We see how only after 10 iterations (we are using the exponential replicator dynamics

with K = 5), half of the strategies have already converged, while after 25 iterations all

10 winning strategies have converged near the value 0.1, while the other 90 strategies

have ’died’, near the value 0.

5.3 Testing the Combined Algorithm

On this section, we are going to look at the bigger picture, and see how good the

combined algorithm of regularity lemma - graph matching, performs in the context of

matching large graphs. We will start by giving a review of the combined algorithm:

1) Having two graphs G1 and G2, apply the regularity lemma of Szemerédi, and so get

two reduced graphs R1 and R2 - whom in theory - inherit the main properties of the

54

two original graphs. If possible, tune the parameters in that way which will produce

reduced graphs of the same size.

2) The regularity lemma algorithm returns as output a list which shows in what class

each element belongs, and a density matrix which shows the density between classes.

There are a few possible approaches on how to match the reduced graphs. One way

would be to threshold these two density matrices into ones and zeros, and then consider

the matrices as unweighted graphs. We know that we can match the unweighted graphs

by creating the association graph of them, and then finding a maximal clique on that

graph (explained in details in Chapter 4). An another approach would be to skip the

thresholding phase, and consider density matrices as weighted graphs. From chapter

4, we know that we can match weighted graphs by creating the association graph, and

then finding a dominant set on it.

From empirical evidence, we prefer the second approach.

3) Now that we have matched the reduced graphs, we expand them into the original

graphs, and then match the elements within the classes, considering only the intra-

similarity.

Matching a lot of small graphs is more time/memory efficient, then matching just a

pair of large graphs. In fact because of space constraints, matching a pair of large

graphs might well be impossible (building the association graph would be impossible;

of course, each entry of the association graph can be computed in isolation, which will

solve the memory problems, but on the other side make the process of graph matching

significantly slower because in that case we are going to call the function for a very high

number of times).

While this combined algorithm makes possible matching larger graphs than before (and

that at the fraction of needed time), there are some problems here. Mainly, the re-

duced graph is matched considering only the similarity between classes, while classes

are matched based only on the intra-similarity between elements of the class. While

theoretically speaking this is fine (reduced graph is the essence of the original graph,

and so it inherits its properties), a lot depends on the quality of the partition. For ε

too large, the quality of the partition might not be that good. Similarly, it is possible

that on the partition there are a lot of irregular pairs. The second problem is that the

55

regularity lemma tends to make the pairs be bipartite graphs (in fact, the algorithm

considers the pairs to be bipartite) and that means that in many cases the elements in

the class would be completely disconnected (no edges between them). We know that

matching two bunches of vertices is trivial, which might mean that the final matching

will suffer in the process.

So, we have to say that there is no theoretical guarantee that the matching is exact.

In fact, we know that it is just ’an approximate matching’. For critical systems, or for

graphs where we must have an exact matching, the algorithm (in the present stage)

should not be used. On the other hand, where we need just an approximate matching

(and there are many cases when we do, like in bioinformatics or graph indexing), or in

cases where an exact matching is impossible (be it because of time or memory costs,

then the algorithm might be used. Furthermore, the graph can be used when we need

to do a simple coarse matching (match just regions of the graphs) or graph indexing,

but if we need to do a precise fine matching, then the algorithm (in its current format)

cannot be used.

In this section, we are going to test the combined algorithm on many datasets. We will

start by testing it on UCI datasets, then test it on synthetic datasets, and finally test it

on SNAP datasets. Then, we are going to do a detailed evaluation of the time needed

for the algorithm, and in what parts of the algorithm the time is spent. That should give

us a good view on the efficiency of the algorithm, and what are the trade-offs (if any) of

having a small number of classes but with each class having a large number of vertices,

or having a large number of classes with each class having a small number of vertices.

Or maybe meeting somewhere in the middle where neither the number of classes, nor

the number of vertices per each class is that high.

We have done the experiments in a laptop which has a core i7 processor, and 8GB of

RAM memory. We will consider these results:

- the total time spent to perform the algorithm,

- the time spent to perform the regularity lemma (in both graphs),

- the time spent to create the association graph of the reduced graphs,

- the time spent to match the reduced graphs,

56

- the time spent to match the vertices in each class.

Obviously, the total time should equal the four other measures. On the tables below,

we will give the results in the total number of seconds (in most cases, rounded), and as

percentage of the total time.

For all the datasets (unless said otherwise), we did 10 Monte Carlo simulations.

5.3.1 Testing the Algorithm on the UCI Machine Learning Repository

Datasets

We will start by testing the algorithm on a few databases taken by the UCI Machine

Learning Repository. Because the data are given on feature-based format, we are going

to use the kernel mentioned in section 5.1.1, with σ = 1. We will start by testing the

algorithm on the Ionosphere dataset.

5.3.1.1 Ionosphere Dataset

Starting with the ionosphere dataset would be a natural choice, considering that we

spent a lot of time working on this dataset, and in addition, in the previous few sections

we tested both the regularity lemma and the graph isomorphism algorithm on it. The

experiments done here would be quite simple. We will perform the combined algorithm,

and then measure the number of matches (or more exactly the ratio of matches, which

is a number between 0 - where we didn’t manage to match any vertices - and 1 - where

we managed to match all the vertices on the graphs), while also observing the number

of classes, size of the class, and size of the exceptional size, and see if/what effect those

variables have on the matching ration. As a general rule the ratio of matches cannot

extend number of vertices − size of the exceptional class
number of vertices . Every vertex in the exceptional class,

is a lost vertex, and we won’t consider them (we know that while the classes can be

considered as meaningful structures, the exceptional class doesn’t represent a cohesive

structure, and so cannot be used in the process of matching). This is the reason why we

completely changed Heuristic 3, and with the change, now the size of the exceptional

class is typically lower than using the previous heuristic (built by Sperotto and Pelillo

[44] and Sarkozy et al [40]).

57

We give the results on the table below, for four values of epsilon. The values might look

arbitrary, but in fact we tested the algorithm with different values of epsilon, and here

we show just some of the results, acting as representatives.

Table 5.9: Ratio of matches in Ionosphere dataset ε.

ε 0.42 0.5 0.53 0.58

Number of classes 70 35 16 8

Size of class 5 10 21 43

Size of exceptional class 1 1 15 7

µ of ratio of matches 0.793 0.82 0.769 0.68

σ of ratio of matches 0.025 0.01 0.007 0.01

First observation is that the results are very robust (standard deviation is quite small).

A more important observation though, is that it seems that a smaller ε typically gives

better results. This is something that we were expecting and which makes perfect sense

(smaller ε means a better partition). However, this doesn’t happen always. As we see

from the table, we got better results for ε = 0.5 than for ε = 0.42. While this might

look strange, it makes sense from the results of the previous section (when we tested the

matching algorithm). Where the datasets aren’t random, the matching algorithm seems

to work better for smaller graphs than for larger ones. Because for ε = 0.42 we have

twice as many classes as in the case of ε = 0.5, the matching algorithm works better

in the second case. Obviously, missing matches in the reduced graphs is more costly

than missing matches in the original graph (each match we miss on the reduced graph

is equivalent of missing 5 matches from the reduced graph, when ε = 0.42). We also see

that typically, the size of exceptional class increases with the increase of ε, although for

all cases it stays relatively low (less than 4% of the size of the graph).

We will continue with the CPU time analysis. The table below gives those results we

mentioned. As always we call the original graphs as G, while the reduced graphs as R.

We call time t, and the association graph as W. We give the measurements as the total

numbers of seconds, while in brackets we put as percentage levels.

We see that the best results are when neither the number of classes, nor the size of class

isn’t that large. In those cases, most of the time was spent on matching the reduced

graphs, and then matching the nodes within classes. On the other side, when the number

of classes was too large (and so the size of class being too small) most of the time was

58

Table 5.10: Time analysis for the Ionosphere dataset

ε 0.42 0.5 0.53 0.58

of classes 70 35 16 8

Size of class 5 10 21 43

t spent regularity 22s (9.6%) 6s (5.88%) 2s (2.02%) 3.84s (0.85%)

t spent on W 96s (31.79%) 10s (9.8%) 1s (1.01%) 0.02s (0.0004%)

t spent matching R 182s (60.26%) 69s (67.65%) 41s (41.41%) 1.14s (0.25%)

t spent matching G 2s (0.66%) 17s (16.67%) 54 (54.54%) 445s (98.88%)

Total t spent 302s 102s 99s 450s

spent on creating the association graph W and then matching the reduced graphs. In the

other hand, when the number of classes was small, but the size of class was large, almost

the entire time was spent on matching the elements within classes. In all cases, the

regularity lemma algorithm took less than 10% of the total time, while being completely

negligible when the number of classes was small.

If we combine this information with the matching ratio, we see that the best ε for this

dataset was ε = 0.5 because not only it gave the best matching ratio, but also the entire

algorithm run quite fast (in less than 2 minutes).

5.3.1.2 Haberman Dataset

We continue our experiments with the Haberman Dataset [23] from the UCI Machine

Learning Repository. The dataset has 306 observations, each of them having 3 features

which are given as integers. All observations belong in two distinct classes.

We will study the same response variables as in the previous dataset, and so the tables

might look quite similar to each other.

Table 5.11: Ratio of matches in Haberman dataset ε.

ε 0.45 0.5 0.55 0.6

Number of classes 76 76 34 8

Size of class 4 4 9 38

Size of exceptional class 2 2 0 2

µ of ratio of matches 0.72 0.75 0.76 0.7

σ of ratio of matches 0.019 0.05 0.03 0.012

59

The results are very surprising. While we got the worst results for the largest ε, which

we were expecting, in the other had we got worse results for ε = 0.45 than for ε = 0.5,

despite the fact that both epsilons give the same number of classes. We would have

expected that when different ε give the same number of classes, also the results to be

similar to each other.

The best results we got were for ε = 0.55, which is the second largest ε.

The table 5.12 for the time analysis, is given in the same format as before.

Table 5.12: Time analysis for the Haberman dataset

ε 0.45 0.5 0.55 0.6

of classes 76 76 34 8

Size of class 4 4 9 38

t spent regularity 6s (1.4%) 7s (1.08%) 1.7s (4.47%) 0.7s (0.29%)

t spent on W 142s (33.18%) 337s (51.93%) 0.1s (0.26%) 0.1s (0.004%)

t spent matching R 278s (64.95%) 302s (46.53%) 11.2s (29.47%) 0.2s (0.08%)

t spent matching G 2s (0.47%) 3s (0.46%) 25 (65.79%) 244s (99.59%)

Total t spent 428s 649s 38s 245s

The same pattern as before can be seen here. Best performance is on the case when

neither the number of classes, nor the size of class is that large. Unlike in the previous

dataset, we have to choose here if we want time efficiency or having a good matching

rate. The best matching rate happened when ε = 0.5, and that was around 6% higher

than when ε = 0.55%. However, there is needed approximately 20 times more time to

perform the algorithm for that parameter.

Like in the previous example, when the number of classes was large, most of the time

was spent on building the association graph and matching the reduced graphs, while

when the size of classes was large, most of the time was spent on matching elements of

the classes. In all cases, the regularity lemma was performed very fast, never needing

more than 5% of the total time, which was actually an outlier considering that in the

other 3 cases it needed just around 1% of the time spent on the entire algorithm.

60

Table 5.13: Ratio of matches in Red Wine dataset ε.

ε 0.35 0.4 0.43 0.46

Number of classes 133 84 66 66

Size of class 12 19 24 24

Size of exceptional class 3 3 15 15

µ of ratio of matches 0.79 0.81 0.78 0.77

σ of ratio of matches 0.019 0.025 0.027 0.008

5.3.1.3 Red Wine Dataset

On this section, we are going to repeat the experiment on the Red Wine Dataset. Red

Wine Dataset is part of the Wine Quality Dataset [10] from UCI Machine Learning

Repository. It contains 1599 observations, each of them having 12 attributes (features).

It is by far the largest UCI dataset we have used for our experiments, and because of

the time constraints, we have done 5 instead of 10 simulations.

The table 5.13 shows the results of the response variables:

We see that the results are extremely robust. Not only that the standard deviation is

very small for each of the epsilons, but it looks like that even the changes in ε don’t

change much the final results. Saying that, the pattern is as before, with small ε typically

giving better results than large ε, though the difference isn’t that big.

Using the same approach in the Red Wine dataset, we get the following CPU time

results:

Table 5.14: Time analysis for the Red Wine dataset

ε 0.35 0.4 0.45

of classes 133 66 66

Size of class 12 24 24

t spent regularity 356s (8.77%) 177s (20.49%) 205s (22.6%)

t spent on W 3702s (91.23%) 129s (14.93%) 138s (15.21%)

t spent matching R 68s (1.68%) 212 (24.54%) 213s (23.48%)

t spent matching G 75s (1.85%) 346s (40.05%) 351s (38.7%)

Total t spent 4058s 864s 907s

We see that we got best results for ε = 0.4 which also gives the best results when it

comes to matching ratio. In this case, most of the time is spent on doing the matching

61

of elements within a class, while the other three measures take around 1/3 of the time.

For ε = 0.35 we see that the algorithm took a very long time to perform (more than an

hour), with the vast majority of this time (more than 90%) was needed to create the

association graph. That is because the number of elements in the association graph is

O(n4) compared with the number of vertices. So, with 133 classes, the adjacency matrix

of the association graph has 312900721 entries. For ε = 0.45, the time spent on the

algorithm is around the same as for ε = 0.4.

It needs to be said that this time, the Szemerédi Regularity Lemma algorithm took more

time in average than in the previous experiments, in two cases taking more than 20% of

the total time spent on the combined algorithm.

Considering that ε = 0.4 seems to give the best results both in efficiency and in the

isomorphism rate, this might be the recommended ε for this dataset.

With this experiment, we conclude our testing in quality for the UCI Machine Learning

Repository Datasets.

5.3.2 Testing the Algorithm on Randomly Generated Datasets

On this section, we are going to test the algorithm on randomly generated datasets. We

will use the same platform as in section 5.1.2 (expand the graph in Figure 5.1). The

graph is more sparse than the graphs we used in the previous section, having density

only around 10%.

Like always we will give the results of mean and standard deviation, and see how the

precision of the algorithm is affected from the other variables. However, this time we

will also use different values for parameter l (the parameter which defines in how many

classes each class will get separated).

Table 5.15: Ratio of matches in a random dataset for l = 2

Number of classes 16 38 80

Size of class 50 21 10

Size of exceptional class 0 2 0

µ of ratio of matches 0.81 0.918 0.952

σ of ratio of matches 0.008 0.008 0.011

62

The results seem significantly better than in UCI datasets, and the results are as ex-

pected. The more classes we get, the better seem to be the results of the matching.

Indeed, this is what should normally happen as we can see from the results, we get

excellent matching when we have 80 classes (10:1 compression ratio), but not that good

matching when we have only 16 classes (50:1 compression ratio). For 38 classes (21:1

compression ratio) the results are on the middle. This is the first time we see that in all

cases the results seem to follow the line of thought, that more classes (less compression)

means better matching ratio.

Now, we will look at the results if we have l = 3.

Table 5.16: Ratio of matches in a random dataset for l = 3

Number of classes 20 61

Size of class 39 13

Size of exceptional class 20 7

µ of ratio of matches 0.789 0.87

σ of ratio of matches 0.023 0.185

We see immediately that the same thing as in the previous experiment has happened,

more classes means a better matching ration. However, we also see that the results are

slightly worse than when we did the experiment with l = 2. One reason for that might

be because the size of the exceptional size is slightly larger than before.

In fact, if we combine the tables and sort them in increasing order, we see:

Table 5.17: Ratio of matches in a random dataset

Number of classes 16 20 38 61 80

Size of class 50 39 21 13 10

Size of exceptional class 0 20 2 7 0

µ of ratio of matches 0.81 0.789 0.918 0.87 0.952

σ of ratio of matches 0.008 0.023 0.008 0.185 0.011

The bold ones are those when l = 3.

We see that even in cases when the number of classes (for l = 3) is ’slightly’ higher than

the number of classes (for l = 2), we get better results for l = 2. For example, the results

are for around 3% worse when we have 20 classes - but l = 3 - than when we have 16

classes, but l = 2. Similarly, the results are 4% worse when we have 61 classes (and

63

l = 3) than when we have 38 classes (and l = 2). We can only suppose that the same

pattern would have continued if we did an experiment for l = 3 which resulted with a

higher number of classes than 80.

We can conclude that at least for this graph, parameter l has an important role for the

graph matching.

Looking at the time performance.

Table 5.18: Time analysis for a random dataset

of classes 16 38 80

Size of class 50 21 10

t spent regularity 114s (6.76%) 23s (6.15%) 28s (8.3%)

t spent on W 1s (0.06%) 2s (0.53%) 104s (30.86%)

t spent matching R 24s (1.42%) 39s (10.43%) 160s (47.48%)

t spent matching G 1649s (97.75%) 310s (82.88%) 45s (13.35%)

Total t spent 1687s 374s 337s

We got the best results, when the number of classes was the largest, which goes against

other results (generally, we expect the algorithm to run fastest when neither the size,

nor the number of classes is that big). On the other side, we got the best results when

the number of classes was low, but the size of a class was quite high. We see that the

Szemerédi algorithm didn’t need much time to be performed in any of the cases, while

bar in the last case (when the number of classes was very high), the absolute majority

of time was spent on matching the original graphs (fine matching).

Combining all things, we see that the best case is when the number of classes is large,

because not only it gives the best results, but also the algorithm runs faster than in any

other case.

5.3.3 Testing the Algorithm on SNAP Datasets

The final experiment in this part, would be on a SNAP graph. We won’t use the

same graph as in section 5.1.3 because it would have been hard to process that graph.

Instead, we will use a similar graph which is around half its size and which we took

from the same dataset [31]. The graph describes General Relativity and Quantum

Cosmology collaboration network from the e-print arXiv. The graph has 5242 nodes

64

with 14496 vertices (3 vertices per node), so the density of the graph is just 0.5%,

making it extremely sparse. Some interesting facts about the graph are that the largest

strongly connected component has 4158 nodes and 13428 edges, making the graph a well

connected graph. The diameter of the graph is 17.

Because the graph is very large (in comparison with the other graphs we studied), we

needed to do some manual tuning in the algorithm, and in the end we are going to give

the results only for a single value of parameter ε.

We did 5 experiments, and in the table 5.19, we give the results of them.

Table 5.19: Ratio of matches in a SNAP dataset ε.

ε 0.07

Number of classes 131

Size of class 40

Size of exceptional class 2

µ of ratio of matches 0.952

σ of ratio of matches 0.006

The results are fantastic, which was kind of surprising. Matching the original graph

would have been extremely difficult, not only because of its size, but also because repli-

cator dynamics do a terrible job in sparse graph. However, the combined algorithm seem

to have overcome that problem quite well.

For the time analysis, we get the results in Table 5.20.

Table 5.20: Time analysis for a SNAP dataset

of classes 131

Size of class 40

t spent regularity 1409s (7.79%)

t spent on W 1862s (10.31%)

t spent matching R 4556s (25.2%)

t spent matching G 10250s (56.7%)

Total t spent 18077s

We don’t have much data for this experiment (we gave the results in only one ε), but

we see that the algorithm of the regularity lemma was performed quite fast (the usual

less than 10% of the total time), with the majority of time spent on fine matching, while

also a significant portion of time being spent on matching the reduced graph (which

65

has 130 vertices). The total time for the algorithm needed to be performed was around

5 hours, which isn’t that much considering that matching two uncompressed graphs of

those sizes, is virtually impossible for a normal computer, and challenging even for a

cluster of computers.

With this experiment, we finish this evaluation of the algorithm.

5.4 Discussion

This chapter is arguably the most important work on this thesis, and here we combined

all things that we discussed in the previous chapters. We did some experiments, starting

from evaluating the regularity lemma, evaluating the matching algorithm, and finally

evaluating the combined algorithm.

We saw that the regularity lemma is generally performed very fast, and it gives quality

results. On the other hand, we saw that for some types of graphs, the matching algo-

rithm might struggle to give good results, and at times even fail. More importantly, we

observed that in all types of datasets, the matching algorithm did a very good job when

we did the coarse matching (matching just regions of graphs, regions defined by the

regularity lemma), but the results on the fine matching (matching the entire graphs),

are more difficult to interpret. While the results looks good (around 80% on UCI Ma-

chine Learning Repository Datasets), and around 95% on the random graphs and SNAP

datasets, the possibility for false positives is quite high. In particular, false positives are

present when the small graphs are bipartite graphs, in which case, the isomorphism on

those graphs becomes trivial. Considering that matching the reduced graphs (coarse

matching) takes into account only the regular partition, but matching the classes takes

into account only the intra-similarity, it is difficult to know - at this stage - how good

the results really are.

We did a ’CPU time analysis’, and we saw that the algorithm - for most part - gives

best results when neither the size of the classes, nor the number of classes is too high.

Considering that when the number of classes is too low, the size of the class becomes

too high (and vice versa), then the road to go is to have both those quantities in an

acceptable range. This would mean to have parameter ε not too high (because in that

case, the size of classes would be quite high) and not too low (because in that case

66

the number of classes will grow large). In all cases, the Szemerédi’s Regularity Lemma

Algorithm was performed relatively fast compared with the time spent on the entire

algorithm.

We also saw that in most cases (SNAP dataset being an exception), we got the best

matching when neither the number of classes, nor the size of classes is high, which

coincides with the time analysis results. So, we are lucky in that aspect considering that

we are getting best matching results while we spent less time in the algorithm.

The recommendation from this chapter is that we need to find ε parameters that give

a moderate number of classes, and a moderate size of classes, to get the best results in

both time and performance. The results were quite robust, and weren’t affected that

much from the structure of the graphs (graphs being sparse or not).

67

Chapter 6

Conclusions and Future Work

As the final chapter of this thesis, here we are going to review the work done in the

previous chapters, make conclusions, and finish the thesis by mentioning possible ideas

that can improve and extend the algorithm.

6.1 Review

The goal of the thesis was to study the application of the regularity lemma of Endre

Szemerédi, especially in the context of graph matching and graph isomorphism. We

started the thesis by giving the story behind the regularity lemma, and mentioning how

what was originally just a tool on proving the now-called Szemerédi’s theorem, eventually

managed to become the central result on the extremal graph theory. Szemerédi himself

won the most prestigious price in mathematics, the Abel price, while Timothy Gowers

and Terence Tao won field medals, partially for the work done in the Szemerédi’s theorem

and Szemerédi’s lemma.

However, the lemma being non-constructive in nature meant that its usefulness was very

limited outside of pure mathematics. For more than 15 years, there was no algorithm

that showed how the lemma can be used in practice. Things changed a bit when a com-

bined group of Israeli, American and German researchers lead by Noga Alon (winner

of Erdos prize and Godel prize), eventually managed to develop an algorithm. Despite

that the algorithm has a sub-cubic complexity, its usefulness in practice (in pure form)

is nonexistent because the suppressed constants in the big-Oh notations are incredibly

68

big. In fact, in literature often it has been said that the algorithm has astronomical

complexity. Furthermore, Timothy Gowers has mathematically proven that this com-

plexity is necessary. Other algorithms were developed (like the Frieze-Kannan one) in

the later years, but the problem remained.

The first documented application of the regularity lemma (that we know of) was done

in a thesis of Anna Sperotto, here at Ca’ Foscari. That work later resulted in a pa-

per from Sperotto and Pelillo, where they successfully used the regularity lemma as a

pre-processing step in graph clustering (using the dominant set algorithm). Something

similar was done in a thesis of Shubhendu Trivedi (Worcester Polytechnic Institute),

which eventually resulted in a paper from Sarkozy, Song, Szemerédi and Trivedi, where

they used the algorithm almost in the same way, but this time using the spectral clus-

tering algorithm. Both teams developed heuristics which made possible for the lemma

to be used in practice, but on the other side removed the guarantee that the graph will

eventually converge to a regular partition.

The second central topic of this thesis is that of graph isomorphism and graph matching.

While the problem of graph isomorphism is still open, no-one has managed to find a

polynomial algorithm for it. During the time we were working on this thesis, Laszlo

Babai claimed that he has developed an algorithm that does graph isomorphism on

quasi-polynomial time. There is no paper yet which gives the procedure, but professor

Babai has put online a lecture where he shows the procedure. Still, the algorithm

in practice won’t be more efficient than many heuristic algorithms which have been

developed over the years. One such algorithm, is the one which transforms the problem

of graph isomorphism into the problem of finding the maximal clique in the association

graph. While the maximal clique problem is NP-hard, there are heuristic algorithms

which solve the problem reasonably fast. One such algorithm is the replicator dynamics

one, which is a game theoretical approach. The algorithm gets easily generalized by

using dominant sets instead of maximal cliques.

The idea of the thesis was to combine these two algorithms, in order to find an efficient

algorithm which does graph matching. We had set two goals:

1) Develop an efficient algorithm which does coarse graph matching (matches regions of

the graph).

69

2) Develop an efficient algorithm which does approximate fine matching.

The coarse matching part was relatively straightforward. We used the regularity lemma

to compress the graphs, knowing that each vertex in the compressed (reduced) graphs,

represent a class (or region) of the original graphs. By matching the compressed graphs,

we are matching regions of the original graphs.

For the second problem, we continued matching the elements in classes of graphs based

on the class structure. We admit that this is just an approximate matching, because this

doesn’t consider the edges which go to other classes. While that part of the problem has

been covered by the regularity algorithm, that doesn’t prevent false positives, especially

in cases where the classes are just a bunch of vertices (without any edge between them),

or fully connected graphs.

6.2 Conclusions

We implemented the work mentioned in the thesis using Python 2.7 and a few external

libraries (numpy, pandas, networkx). Because we need the class of the exceptional class

to be very small, we needed to completely change one of the heuristics developed from

previous works.

We needed to make some decisions on how to match the reduced graphs. Considering

that the result from the regularity lemma is a weighted graph (edges being the density

between classes of the graph) we had to decide on either using some threshold in edges,

and then use maximal clique algorithm, or use dominant sets in the weighted graphs.

In addition, we needed to decide if we were going to consider also the non-regular pairs.

We saw that the best results were when we used dominant sets approach in addition to

considering non-regular pairs.

The results are partially satisfactory. We think that we have successfully solved the

problem of coarse graph matching which was the first goal of the thesis. And while

we have managed to do approximate fine matching, we aren’t sure on the correctness

of the results. At this moment, the algorithm cannot be used to do precise matching

on graphs, but can be used if we need only an approximate matching in addition to

matching classes of the graphs.

70

We did experiments in three types of datasets. The first type of datasets were taken

from UCI Machine Learning Repository, and were feature-based datasets. We used a

similarity kernel to transform those datasets into similarity-based datasets, and then

using some threshold, we defined the edges between the vertices. The second type

were randomly generated datasets, while the third type were real word datasets taken

from Stanford Large Network Dataset Collection. UCI datasets generated dense graphs,

while the randomly generated datasets were relatively sparse graphs. SNAP datasets

were extremely sparse graphs.

In all three types of datasets we got very good results on matching regions, while on

approximate matching, the results for UCI datasets were slightly higher than eighty

pertcen, while for the other two types of datasets were around ninety-five percent. We

aren’t sure if this is because of the nature of datasets, or because the algorithm performs

better in sparse graphs.

6.3 Future Work

Obviously, the big elephant in the room is going from coarse matching to fine matching,

while reducing the number of false positives. The idea of using intra structure of the

classes is a nice start, but we need a more intelligent way of doing it. Ideally, we need

an algorithm that considers at the same time both class matching and intra structure of

the classes. While we implemented a heuristic in regularity lemma that considers also

the intra-similarity, that doesn’t solve the cases where in classes we have just a bunch

of vertices without any edge, or where the classes are completely connected.

We are also interested on improving the regularity lemma algorithm. We are going to

investigate on the quality of certificates (witnesses) when we partition classes. Similarly

to other existing algorithms, we randomly choose certificates to do the partition. We

feel that there are more intelligent ways of doing so, like taking into account the measure

of irregularity the certificates have, or the size of certificates.

We are planning to see how the algorithm will work if we change the isomorphism/-

matching part of the algorithm. Especially is Babai’s claim results with an efficient

result algorithm, which can run in around the same time as the heuristic algorithms,

71

we would be very interested to see how much that would improve the combined algo-

rithm. In any case, we plan to use different types of heuristic algorithms used for graph

matching and see the results.

An another thing we would like to address in the future, is to see in what other fields

we can use the regularity lemma. As far as we know, in the past it has been used only

in graph clustering, and now we’re using it on graph matching, but we feel that it can

be used for many other topics. Considering that the reduced graphs have the same

properties as the original graphs, the lemma has great potential to be used in all types

of graph problems.

Finally, the theoretical knowledge on the lemma (or the lack of it), has always been

problematic, and by using heuristics, the lack of information on the nature of the lemma

increases. We hope that one day, this problem will be addressed and so we would have

a better understanding on the nature of this powerful tool.

72

Bibliography

[1] Alon, N., Duke, R. A., Lefmann, H., Rodl, V., and Yuster, R. (1994). The Algorith-

mic Aspects of the Regularity Lemma. J. Alg., 16.

[2] Asuncion, A. and Newman, D. (2007). UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml/index.html.

[3] Babai, L. (2015). A Quasipolynomial Time Algorithm for Graph Isomorphism: The

Details. http://people.cs.uchicago.edu/ laci/2015-11-10talk.mp4.

[4] Baird, H. S. and Cho, Y. E. (1975). An artwork design verification system. Proceed-

ings of the 12th Design Automation Conference.

[5] Barrow, H. G. and Burstall, R. M. (1976). Subgraph isomorphism, matching rela-

tional structures and maximal cliques. Inform. Process. Lett.

[6] Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum

clique problem. Handbook of combinatorial optimization.

[7] Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected

graph. Communications of the ACM.

[8] Condon, A. and Karp, R. M. (2001). Algorithms for graph partitioning on the planted

partition model. Random Structures & Algorithms.

[9] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms. MIT Press.

[10] Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling

wine preferences by data mining from physicochemical properties. In Decision Support

Systems, Elsevier, 47(4):547-553.

73

[11] Coxeter, H. and Tutte, W. (1958). The Chords of the Non-Ruled Quadratic.

PG(3,3), Canad. J. Math.

[12] Crow, J. F. and Kimura, M. (1970). An introduction to population genetics theory.

New York: Harper Row.

[13] Czygrinow, A. and Rodl, V. (2000). An algorithmic regularity lemma for hyper-

graphs. SIAM J. Comput.

[14] Deskus, C. (2011). An Introduction to the Regularity Lemma.

[15] Dharwadker, A. and Tevet, J.-T. (2009). The Graph Isomorphism Algorithm. Pro-

cedings of the Institute of Mathematics and the Structure Semiotics Research Group.

[16] Diestel, R. (2010). Graph Theory. Graduate Texts in Mathematics, Volume 173,

Springer-Verlag, Heidelber.

[17] Erdos, P. and Turan, P. (1936). On Some Sequences of Integers. J. London Math,

Soc, 11.

[18] Frieze, A. and Kannan, R. (1999). A Simple Algorithm for Constructing Szemerédi’s

Regularity Partition. Electrong. J. Comb, 6 (1).

[19] Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: A guide to

the theory of NP-completeness. San Francisco: W. H. Freeman.

[20] Gibbons, L. E., Hearn, D. W., Pardalos, P. M., and Ramana, M. V. (1997). Con-

tinuous characterization of the maximum clique problem. Math. Oper. Res.

[21] Golub, G. and Loan, C. V. (1989). Matrix Computations. John Hopkins University

Press, London.

[22] Gowers, W. T. (1997). Lower bounds of tower type for Szemeredis uniformly lemma.

Geom. Funct. Anal.

[23] Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models. Proceedings

of the 9th International Biometrics Conference, Boston.

[24] Hofbauer, J. and Weibull, J. W. (1996). Evolutionary selection against dominated

strategies. J. Econ. Theory.

74

[25] Kohayakawa, Y. (1997). Szemerdi’s regularity lemma for sparse graphs. Springer-

Verlag.

[26] Kohayakawa, Y., Rodl, V., and Thoma, L. (2003). An optimal algorithm for check-

ing regularity. SIAM J. Comput.

[27] Komlos, J., Shokoufandeh, A., Simonovitz, M., and Szemerédi, E. (2002). The reg-

ularity lemma and its applications in graph theory. Theoretical Aspects of Computer

Science: Advanced Lectures, Springer.

[28] Komlos, J. and Simonovitz, M. (1996). Szemerédi’s Regularity Lemma and its

applications in graph theory. Combinatorics, Paul Erdos in Eighty.

[29] Komls, J., Sarkozy, G., and Szemerdi, E. (1997). Blow-up lemma. Combinatorica,

Springer.

[30] Kozen, D. (1978). A clique problem equivalent to graph isomorphism. SIGACT

News.

[31] Leskovec, J., Kleinberg, J., and Faloutsos, C. (2007). Graph Evolution: Densifi-

cation and Shrinking Diameters. ACM Transactions on Knowledge Discovery from

Data (ACM TKDD).

[32] Leskovec, J. and Krevl, A. (2011). SNAP Datasets: Stanford Large Network Dataset

Collection.

[33] Motzkin, T. S. and Straus, E. G. (1965). Maxima for graphs and a new proof of a

theorem of Turan. Canad. J. Math.

[34] Pardalos, P. M. and Phillips, A. T. (1990). A global optimization approach for

solving the maximum clique problem. Int. J. Comptuter Math.

[35] Pavan, M. and Pelillo, M. (2003). A new graph-theoretic approach to clustering and

segmentation. CVPR.

[36] Pelillo, M. (1999). Replicator Equations, Maximal Cliques, and Graph Isomorphism.

Neural Computation.

[37] Pelillo, M. and Jagota, A. (1995). Feasible and infeasible maxima in a quadratic

program for maximum clique. J. Artif. Neural Networks.

75

[38] Petersen, J. (1891). Die Theorie der regularen Graphen. Acta Math.

[39] Rodl, V., Nagle, B., Skokan, J., Schacht, M., and Kohayakawa, Y. (2005). The

hypergraph regularity method and its applications. PNAS.

[40] Sarkozy, G., Song, F., Szemerédi, E., and Trivedi, S. (2012). A Practical Reg-

ularity Partitioning Algorithm and its Applications in Clustering. arXiv preprint

arXiv:1209.6540.

[41] Schmidt, E. (2010). Techonomy Conference.

[42] Sigillito, V. (1989). UCI Machine Learning Repository, Ionosphere Dataset.

https://archive.ics.uci.edu/ml/datasets/Ionosphere, Johns Hopkins University.

[43] Smith, J. M. (1982). Evolution and the theory of games. Cambridge University

Press.

[44] Sperotto, A. and Pelillo, M. (2007). Szemerédi’s Regularity Lemma and its Applica-

tions to Pairwise Clustering and Segmentation. EMMCVPR, LNCS 4679., Springer.

[45] Szemerédi, E. (1975). On Sets of Integers Containing no k Elements in Arithmetic

Progression. Acta Arithmetica 27.

[46] Szemerédi, E. (1978). Regular Partitions of Graph. Proc. Colloque Inter.

[47] Taylor, P. and Jonker, L. (1978). Evolutionary stable strategies and game dynamics.

Math. Biosci.

[48] Torsello, A., Bulo, S. R., and Pelillo, M. (2006). Grouping with asymmetric affini-

ties: A game-theoretic perspective. Proc. CVPR.

[49] Trevisan, L. (2006). Szemerédi’s Theorem. Blog of professor Trevisan in ’In Theory’.

[50] Weibull, J. W. (1995). Evolutionary game theory. Cambridge MA, MIT Press.

[51] Weisfeiler, B. (1976). On Construction and Identification of Graphs. Springer

Lecture Notes Math.

76

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis

	2 Szemerédi's Regularity Lemma
	2.1 Extremal Graph Theory
	2.2 Szemerédi's Theorem
	2.3 The Regularity Lemma
	2.3.1 Some definitions
	2.3.2 The Lemma
	2.3.3 Discussion

	3 Constructive Versions of the Regularity Lemma
	3.1 Alon-Duke-Lefmann-Rodl-Yuster Algorithm
	3.1.1 Finding a Regular Partition in Polynomial Time
	3.1.2 Alon algorithm

	3.2 Frieze-Kannan Algorithm
	3.2.1 Building the algorithm
	3.2.2 Frieze-Kannan Algorithm

	3.3 Heuristics
	3.4 Using the Regularity Lemma
	3.5 Weighted Version

	4 Graph Isomorphism
	4.1 The Problem of Graph Isomorphism
	4.1.1 The Association Graph
	4.1.2 Continuous Formulation of the Maximum Clique Problem
	4.1.3 A quadratic program for graph isomorphism

	4.2 Replicator Equations and Graph Isomorphism
	4.3 The Algorithm
	4.4 Faster Replicator Dynamics
	4.5 Weighted Version

	5 Experimental Results
	5.1 Testing the Regularity Lemma
	5.1.1 Case Study 1: Ionosphere Dataset
	5.1.2 Case Study 2: Randomly Generated Datasets
	5.1.3 Case Study 3: Social Networks

	5.2 Testing the Isomorphism Algorithm
	5.2.1 Case Study 1: Matching Random Graphs While the Density Changes
	5.2.2 Case Study 2: Matching Random Graphs While the Size Changes
	5.2.3 Case Study 3: Matching Non-Random Graphs

	5.3 Testing the Combined Algorithm
	5.3.1 Testing the Algorithm on the UCI Machine Learning Repository Datasets
	5.3.1.1 Ionosphere Dataset
	5.3.1.2 Haberman Dataset
	5.3.1.3 Red Wine Dataset

	5.3.2 Testing the Algorithm on Randomly Generated Datasets
	5.3.3 Testing the Algorithm on SNAP Datasets

	5.4 Discussion

	6 Conclusions and Future Work
	6.1 Review
	6.2 Conclusions
	6.3 Future Work

	Bibliography

