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Abstract

Decision-makers often consult different experts to build a reliable forecast
on some uncertain variable of interest. Combining more opinions and cal-
ibrating them to maximise the forecast accuracy is consequently a crucial
issue in several economic problems. A Bayesian approach was applied to
derive a combined and calibrated density function using random calibration
functionals and random combination weights. In particular, it compares the
application of linear, harmonic and logarithmic pooling in the Bayesian com-
bination approach. The three combination schemes, i.e. linear, harmonic and
logarithmic, are studied in simulation examples with multimodal densities.
The simulation examples show that in a beta-mixture calibration framework
the three combination schemes are substantially equivalent.



Chapter 1

Introduction

Decision-makers often consult experts for reliable forecast about some un-
certain future outcome. Expert opinion has been used in a more or less
systematic way in many fields: weather forecast, aerospace program, mili-
tary intelligence, nuclear energy and in policy analysis. In economic field,
experts’ forecasts are often combined to produce estimates on the basis of
past performance and the observed values of some exogenous variables. The
forecast can be expressed in terms of future realisation, and in this case it
is referred to Point Forecast, or in terms of probabilities of the future values
(full distribution) of the variable, defined as Probabilistic Forecast.
Combining different experts’ forecasts or predictive cumulative distribu-
tion functions is a critical issue in order to construct a single consensus fore-
cast representing the experts’ advice. Among the first papers on forecasting
with more predictions, Barnard (1963), who consider air passenger data, and
Roberts (1965), who introduced a distribution that is essentially a weighted
average of the posterior distributions of two models which is similar to the
result of a Bayesian Model Averaging (BMA) procedure. See Hoeting et al.
(1999) for a review on BMA with an historical perspective. Nowadays, the
literature on combination of point forecasts has reached a relatively mature
state dating back to papers such as Bates and Granger (1969). Timmermann
(2006) provides an extensive summary of the literature and the success of
the forecast combinations in the economic field. However, the literature on
density forecasting and on density combinations from different experts has
emerged only recently, see Corradi and Swanson (2006), Mitchell and Hall
(2005), Hall and Mitchell (2007) and Wallis (2005) for a survey. There are
two elementary choices in combining predictive densities from many experts.
One is the method of aggregation or functional form of combining. The other
is the construction of the weights attached to the individual density forecasts.
Possibile methods of aggregation are described in an early review of Genest



and Zidek (1986). The linear pooling, proposed by Stone (1961) has been
used almost exclusively in empirical applications on density forecast gains,
see Ranjan and Gneiting (2010) and Geweke and Amisano (2011). Starting
from these pooling schemes, the traditional pools are generalised by Billio
et al. (2013) and Fawcett et al. (2013).

Moreover to evaluate the accuracy of the final experts’ advice, the experts

must be calibrated. The calibration is a measurement process to evaluate how
good is the expert assessment: an expert is well-calibrated if the subjective
probability mass function (on density function) agree with the sample distri-
bution of the realisations of the unknown variable in the long run.
Bassetti et al. (2015) introduce a Bayesian approach to predictive density cal-
ibration and combination through the use of random calibration functionals
and random weights. Extending Ranjan and Gneiting (2010) and Gneiting
and Ranjan (2011), they propose both finite beta and infinite beta mixture
for the calibration. For combination they apply a local linear pool.

Some of the most used Survey of Professional Forecasters (SPF) both
point forecast both probability forecast are: the ASA-NBER with surveys
on inflation, components of consumption, government spending, the FED
Philadelphia and the ECB mainly on GDP, unemployment rate and inflation
for different areas of interest, and other national institutions such as the Re-
serve Bank of India, the Monetary Authority of Singapore and the National
Bank of Poland, just to mention a few.

In this work, a beta mixture approach is proposed to combine and cal-
ibrate prediction functions and compare linear, harmonic and logarithmic
pooling in the application of the Bayesian approach. Relative to Bassetti
et al. (2015), the number of beta components is fixed to the family of gener-
alized linear combination schemes (i.e. harmonic and logarithmic) proposed
in DeGroot et al. (1995). The Bayesian nonparametric algorithm in Bassetti
et al. (2015) is extended to the new combination methods. The effects of the
three schemes are studied in simulation examples with multimodal densities.

The results show that three combination schemes are substantially equiv-
alent in a beta-mixture calibration framework. The remainder of the paper
is organised as follow. Section 2 introduces linear, harmonic and logarith-
mic combination models and the notion of calibration. Section 3 discusses
Bayesian inference for the calibrated combination models. In Section 4 the
results of the simulation exercises are shown.



Chapter 2

Combination and Calibration

2.1 Subjective probability distribution

The word “opinion” used in the introduction, will refer to a collection of
statements (in this case numerical) expressing the expert’s degree of belief
about the world. Most of the solutions to aggregation problems proposed that
each expert encoded his opinion as a Subjective Probability Distribution. If
Q) denoted the collection of mutually exclusive statements about the world,
a probability measure P, assigns a number 0 < P < 1 to each subset E of
), according to the degree to which this is believed to contain the fixed, but
unobserved realisation w € ). Generally, P is constructed in such a way that:

P (LNJ E) - iP(Ei) (2.1)

where the E;’s are mutually disjoint subset of {2. The condition 2.1 is referred
to as countable o-additivity. De Finetti (1970) advocated the use of finite
o-additivity (i.e., N < co) instead of countable o-additivity (i.e., N = +00)
property of probability measure P; in this work the framework is the o-
additivity, for further generalisation please refer to Casarin et al. (2015b).
Subjective probability distributions may be expresses as probability mea-
sures, densities or mass functions. In the framework of probabilistic forecast-
ing treated here, and for a real-valued outcome, a probabilistic forecast can
be represented in the form of a predictive cumulative distribution function
(hereafter predictive cdf), which might be discrete, mixed discrete-continuous
or continuous with a predictive density function (hereafter predictive pdf).



2.2 Combination Model

Probability distribution is expression of the expert’s subjective belief, which
is based on a prior experience the individual has had with the problem at
hand. Thus, their current opinions may differ because they do not collect
same information and they do not interpret data in the same way. In this case
a method to combine the different sources of information is needed. Suppose
to have K o-algebra Ay, - - , Ai representing different information sets, and
a sequence of predictive cumulative distribution functions Fi, - - - , Fg, for the
variable of interest Y, and that a summary of F}’s is required. Probability
distribution, as mentioned above, is expression of that expert’s subjective
beliefs, which is based on a prior experience the individual has had with the
problem at hand. Thus, their current opinions may differ because they do
not collect same information and they do not interpret data in the same way.
An ideal strategy to combine predictive cumulative distribution functions
may be combine information sets to issue the conditional distribution of the
observation Y given the o-algebra(Ay, - - - , Ax) generated by the information
sets (Ay, - - Ag). However information sets are not known in practice. The
solution is to model the conditional distribution of the observation Y given
the o-algebra generated by the predictive cumulative distribution functions.
This result will be appreciable later talking about calibration methods.
Following the notation Gneiting and Ranjan (2013), it’s defined a para-
metric family of combination formulas, with parameter 8, as a mapping:

H(-|0): FX = F(F,--- ,Fg)— H((Fy, -, Fg)|0)

with @ € © a parameter, F;, k = 1,--- , K, a sequence of cumulative dis-
tribution function, where F is a suitable space of distribution and © is a
parameter space.

Here, adopting approach of DeGroot et al. (1995), it were employed three

types of pooling schemes, denoted with H,,(y|lw)m = 1,2, 3, special cases of
the generalised linear form:

9(Hn(ylw)) = > wrg(Fi())
k=1

where ¢ is a continuous monotonic function and w = (wy,--- ,wg) is a
K

vector of combination weights, with > (wq, -+ ,wg) and wy > 0. If g is
k=1

differentiable with inverse ¢—! and the cdfs ey k=1, K, admits pdf



fr,k =1,--- K then the generalised combination model con be re-written

in terms of probability density function h,, as

1 W
R = m kz_:lwkg (Fx(y)g(fx(y))

(2.2)

where ¢’ denotes the first derivate of g. The three cases considered in this

paper are:

1. Linear opinion pool (m=1) i.e. g(x)=x

Hy(y|wr) = Zkak

2. Harmonic opinion pool (m=2) i.e. g(x)=1/x

Hy(ylwi) = (Z wiFr(y )1

3. Logarithmic opinion pool (m=3) i.e g(x)=log(x)

Hy(ylwr) = HFk

with densities functions:

1. Linear opinion pool (m=1) i.e. g(x)=x

hi(y|wr) Zwkfk

2. Harmonic opinion pool (m=2) i.e. g(x)=1/x

ha(ylwr) = Ha(ylw)* > wiFi(y) > f(y)

k=1

3. Logarithmic opinion pool (m=3) i.e g(x)=log(x)

hs(ylwr) = Hs(y,w Hkakz ()

(2.4)
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Figure 2.1: Density Function for linear (Hj, red line), harmonic (Hj, blue
line), and logarithmic (Hj, green line) combination models. Combination
weight w = 0.5

where fi(y) corresponds to the probability density function of Fi(Y).

To conclude, an example of predictive pdfs is presented in figure 2.1, in order

to appreciate the difference among the three types of combination schemes.
The predictive functions to be combined are:

Fi ~N(2,1), Fy ~ N(—2,1)
where N (11, 0) is the normal distribution with location p and scale o.

At first look, linear combination model is able to generate multimodal
pdfs, whereas harmonic and logarithmic models generate unimodal pdf with
certain degrees of skewness depending on the value of the combination weights
(see Fig. 2.2).

Most of literature on the issue, characterises different types of combina-
tion formulas wherever they satisfy or not some particular conditions. The
strong and weak setwise properties of McConway (1981), the zero preserva-
tion property by Bacharach (1975) or the independence preservation prop-
erty by Laddaga (1977). Such weights mean models have found many ad hoc
applications but they raise serious problems with respect to accountability,
neutrality and empirical control. For these reasons, it is preferred to use the
perspective of Hora (2010) and taking into account calibration and dispersion.
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2.3 Calibration Model

The calibration issue states what means for Fy to be a “good” predictive
distribution function for the empirical data Y.

Dawid (1984) introduced the criterion of complete calibration for compar-
ing prequential probabilities Fy, = P(Y;, = 1|Y7,--- Y} — 1) with the binary
outcomes Y. This criterion requires that the averages of the F}, and of the Y}
converges to the same limit. The validity of this criterion is justified by the
fact that the above property holds with probability one, so that its failure
discredits Fj.. In the case of continuous quantities Yy, Dawid (1982) apply the
Rosenblatt (1952) concept of Probability Integral Transform (PIT); which is
a random variable described by:

Zy = Fp(Yy)

where F}, is the predictive cumulative distribution function. In the case of
continuous Y} (and the continuous F'), Yj, ~ F}, then Z is standard uniform
as shown in the following: P(Z;, < 2) = P(Fy(Yz) < 2) = P(Y, < F;/'(2) =
Fy.(F;7'(2))) = z,which is the cumulative distribution function of a standard
uniform.

In summary, the PIT is the value that the predictive cumulative distri-
bution function attains at the observation; the PIT takes values in the unit
interval, and so the possible values of its variance are constrained to the
closed interval [a, ﬂ A variance of % corresponds to a uniform distribution.

Gneiting and Ranjan (2013) generalised the complete calibration criterion
used by Dawid (1984) applying it on non-binary outcomes Y. As mentioned
at the beginning of this section, a useful tool for combining predictive dis-
tribution function is the conditional distribution of the observation Y given
the o-algebra generated by the predictive cumulative distribution functions,
Fy,---, Fg, or by the combination formula:

GylFr, -+ Fr) = Y(H(F1(y), -, Fx(y)))|0 (2.10)

almost surely.

where () is a map from F to F. This is a modified version of the auto-
calibration property given in Tsyplakov (2011) for ¢(z) = z. Here we assume
that the calibration is obtain by a distortion, through 1, of a combination
scheme H. Following the combination schemes given in the previous section,
the relationship between calibration and combination is given by the following
composition of functions

Glylw) = (Pop™) (Z ww(Fk(y))> (2.11)



where (Yop™!)(z) = (g7 (x)).

In particular this must satisfy some requirements on the PITs dispersion: the
aggregation method is flexibly dispersive or exchangeably dispersive in the
sense analysed by Gneiting and Ranjan (2013):

1. The combination formula is flexibly dispersive if for the class F of fixed,
non-random cdf, for all Fy € F and Fy,--- , Fy € F, L(Y) = F} then
H(F_y,---, Fy) is a neutrally dispersed forecast (i.e. varZy = 1/2)

2. The combination formula is exchangeably flexible dispersive if for the
class F of fixed, non-random cdf, for all F, € F and Fy,--- , F} € F,
L(Y) = Fy then H(F_4,--- , F}) is anonymous
(ie. H(Fyay, -, Fex)) = H(F1, -+, Fk)) and neutrally dispersed
forecast (i.e. varZy = 1/2)

In a nutshell, aggregation methods has to be sufficiently flexible to ac-
commodate situations typically encountered in practice. In the next part, a
possible solution to the problem of choosing the combination and calibration
scheme will be described.

2.3.1 Beta mixture calibration and combination model

Introduced by Ranjan and Gneiting (2010) and generalised in Gneiting and
Ranjan (2013), the beta transformation of the pooling operator H takes the
form:

Gn(y]0) = Ba,p(Hm(y|w)) (2.12)

where B, 3 denotes the cumulative distribution function of the beta distribu-
tion with parameters a > 0 and 5 > 0 and H,,(y|w) is one of the combination
formulae defined by 2.3, 2.4, 2.5. Moreover consider that a > 1 and g > 1
reduces the beta-transformed pool in the beginning pooling operator. If

Fy, .-+, Fx admits Lebesgue densities, the previous can be written in terms
of aggregated probability density functions (pdf):
9W|0) = (A (y|w))ba,s(Hm(y|w)) (2.13)

where h,, is defined by equations 2.6, 2.7, 2.8 and b, s is the pdf of the beta
distribution. Bassetti et al. (2015) interprets the beta transformation as a
parametric calibration function which acts on the combination of Fy,--- , Fx
with weights w, k=1, --- |, K.



Furthermore equations 2.12 and 2.13 are generalised proposing the use of a
mixture of beta calibration and combination models:

m(y|0) = ZPJ a]ﬁg m(y “*’J)) (2.14)

and
m(y]6) = ij m (Y]6))bag; 3, (Hon (y]w;)) (2.15)
where 0 = (a, B8,w, p), comprises @ = ay,--- ,ay and B = [y, -+, 5y,
the beta calibration parameters, w = wy;, -+, wg; the vector of combination
weighs and p = (p1,- -, ps) the vector of the beta mixture weights.

In conclusion, a simulation example is reported to illustrate the effect
of beta combination and calibration model on predicting realisations of the
variable of interest x. Consider:

for ¢ = [1,1000] and two predictive cdfs:

Fr s N(0.5,1)
F2 — N(O, 3)

the first one errs in predicting the mean of the distribution, the second one
errs in predicting the variance. Here we not pay attention to the combination
formula that generates the two predictive functions. In the figure 2.3, which
represent cdfs of PITs, the difference among the two errors types is evident:
errors in mean are displayed by a cdf that overestimate (or underestimate,
depending on error sign) the “true” cumulative density function; while errors
in variance appear as an underestimate in the left side of the distribution,
and an overestimate in the right side, the discontinuity point corresponds at
the mean, in which the two line intersect.

Now let apply the beta transformation to each predictive function sep-
arately in order to appreciate the effect of the procedure. In figure 2.4 are
reported the initial predictive function, their beta transformation, the simu-
lated “true realisations”.

10
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Chapter 3

Bayesian Inference

Before proceeding in the presentation of the Bayesian inference setting, a
different parametrisation of the problem has been proved being more con-
venient in various papers involving beta distributions (see, e.g, Robert and
Rousseau (2002), Bouguila et al. (2006), Casarin et al. (2012), Billio and
Casarin (2011) and Casarin et al. (2015b)). The technique consists in think-
ing the standard Beta distribution of # with (o > 0 and 5 > 0) in terms of
gamma distribution. Then, the reparameterised beta density function:

R\
) = F T — )

where p = a/(a+ ), v = a+ [ and I'(:) denoted the gamma distribution.

.I'HV_I (1 . .1’)(1_”)’/_1]1[0,1] (J}),

The aim of this section is to provide an estimation procedure for a com-
bined and calibrated model, in which the cumulative prediction functions
Fi: are aggregated in a single cumulative distribution function (F}) for the
subsequent realisation yr.;. To handle this issue, consider a unit prediction
horizon, where the training set is composed by predictive cdfs Fi, -, Fiy
based on the information available in t — 1 along with the respective realisa-
tions y;.

Let consider the following reparameterised cdf and pdf function of beta
mixture combination and calibration model in equations 2.14 and 2.15:

mt yt ij Lk, Vk yt|wk))
Gt (1) Zp] (Yelwr )b e (Hon (1 |0r))

13



fort=1,---,T, m=1,--- 3 represent the type of combination employed,
k =1,---, K the predictive distributions and j = 1,---,J the number of
beta mixtures. Moreover, the parameter p = (py, -+, pux) € (0,1), v =
(1, ,vk) € (0,00) w = (w1, ,wy) € A% and p = (p1, -+, px) € Ay,
are collected in a single parameter vector 6 = (u, v, w, p).

Thus, the bayesian approach in Bassetti et al. (2015) assumes:

p ~ Be(§u1, &)

v, ~ Ga(§1,602),

wi ~ Dir(&1, -+, &,),
P~ Dz’r({,ﬂ, te 75/)1)7

for k = 1,--- , K where Be(a, 5) is a Beta Distribution with density pro-
portional to 227 1(1 — 2)%~%, Ga(y, ) is a Gamma distribution with density
proportional to z7exp{—dz} for x > 0, and Dir(ey,--- ,€;) is a Dirichlet

J
distribution with density proportional to [] :E;j -
j=1

The complete data likelihood is:

T J
L(Y, D|6) = [T 1 oxlim (vulw)b, o (Hon ()

t=1 j=1

where dj; was introduced as allocation variable following the data augmen-
tation issue of Frihwirth-Schnatter (2006), Y = (v1,--- ,yr) and

D = (diy, -+ ,dj,-- ,diT,--- ,d;T). The implied joint distribution of D
and @ given the observation y:

J
(D, 0Y) oc g(p.v.w) [T o5 T b welwn)B, o, (Ho ().

j=1 teD;

where g(p,v,w) corresponds to the prior density of the parameters, and
Dj=t=1,--- ,T|d; = 1.

To sample from the joint distribution, a Gibbs sampler is created to draws
iteratively from 7(D|0,Y), m(p, v|p,w, DY), n(w|p, v, p, D,Y), m(p|p,v,w, D,Y).
The output of the algorithm is 8; = p;, p;, Vi, w; for i = 1,--+ | I, where [ is
the number of iteration in the Gibbs sampler, which can be used to approxi-
mate the cdf posterior predictive distribution at time 7'+ 1, Gpry1 (Yri1 as

14



follow,

I J K
. 1 ) -
Grr (Y = 1— T > piiBh, <<P ' (Z iji(p(FTJrl(yTJrl)))) :

i=lo+1 j=1 k=1

where [ is a set of burn-in MCMC samples. In the next chapter, we consider
the two-component beta mixtures, i.e. the case of J = 2. The Gibbs sampler
was replace by a global MH sampler, with target distribution:

T
m(p,v,w, plY) o | T phun(yelwr)B, o, (Hon(yelw1)

t=1

+ (1= p)hun (ye|w2) b7,y (Ho (e @) )= (1 = pu) o=
. Vg”_lexp{—fuy}wgw_l(l — w)fw_lp’g"_l(l — ,0)5”_1. (3.1)
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Chapter 4

Empirical Analysis

4.1 Simulation study

In this simulation study we focus on multimodal true distributions. A ran-
dom variable Y;, ¢ = 1,---,1 is simulate from a mixture of three normal
distributions. We denote with F'(y|u, o) the cdf of the distribution N (p, o)
and the data generating process (DPG) is specified as:

Y, K pIN(=2,2) + paN(0,2) + psN(2,2), (4.1)

where p = (p1, p2, p3) € Az and Ay, denotes the k-dimensional standard sim-
plex.

Moreover, we assume that the set of predictive models includes the fol-
lowing two normal distribution N'(—1,1) and A (0.5, 3). The distributions of
the combination schemes compared in our simulation experiment are:

1. The Equally Weighted Model (EW)

Hi(y,w) =wF(y| = 1,1) + (1 — w)F(y[0.5,3),

B w (1-w)
H(y,w) = Fly = 1,1) | F(y05,3)°

Hj(y,w) = exp{wlog(F(y| — 1,1)) + (1 — w)log(F(y[0.5,3))},

where w is the combination weight equal to 1/2. Hy, Hy, H3 Corre-
sponds to equations 2.3, 2.4, 2.5 for linear, harmonic and logarithmic
pool, respectively, when k = 2.
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2. The beta-transformed model (BC1)

G (yl0) = Bag(Hm(y|w))

where 0 = («, 5,w), H,,(y|w) is defined by equations 2.3, 2.4, 2.5 and
hm(Y,wy) is defined by equation 2.6, 2.7 and 2.8

3. The two-component beta mixture model (BC2)

Gu(yl0) = pBay g, (Hin(ylw1)) + (1 = p) Bas, g, (Him(y|w2)),

where 0 = (p, a1, ag, 51, fo, wy,wh) and H,,(Y,w) are the same as in
the BC1 model.

The posterior approximation is based on a set of 100,000 MCMC iter-

ations after a burn-in period of 50,000 iterations. An example of MCMC
output is given in Appendix.
The posterior means of BC1 and BC2 parameters (represented by the vector
0), of i.i.d. 1,000 observations each, are reported in Table 4.1 for the lin-
ear combination models, in Table 4.2 for the harmonic combination models,
and in Table 4.3 for the logarithmic combination models, according to p;.
In these tables, o and 3 stands for the parameters of the beta distribution
in the BC1 model and in the first component of the BC2 model, while the
second component of BC2 is referred to o* and g*.

Generally, BC2 models build more flexible predictive cdf: in most of the
cases presented, the BC1 models do not take into account the first predictive
distribution function (F7), while BC2 weights more the first one than the
second predictive cdf, with few exceptions. Comparing pooling schemes, no
clear tendency appear form the tables.

Figure 4.1 displays a comparison through PITs of linear, harmonic and
logarithmic pools when those are combined with the equally weighted model
and the 45 degree line, which represent the PITs plot for the unknown ideal
model: as it is possible to see, the EW model does not behave in the same way
for the different pool schemes: indeed, in the first two cases it is preferable
to adopt for a logarithmic pool, while in the last two cases, the logarithmic
one is the worst, and the nearest to the 45 degree line is the linear pool. The
decision than depend on the nature of the data to be forecasted.

A graphical inspection of PIT cumulative density functions of the three
models are proposed to compare them with the simulated data to be predicted
seen in the first columns of Fig. 4.2, 4.3 and 4.4. In all the experiments the
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Table 4.1: Parameters estimates in the linear combination model for different
choices of the mixture probabilities p; of the data generating process.

P [ (1/5,1/5,3/5) | (1/7, 1/7,5/7) | (3/5, 1/5, 1/5) | (5/7, 1/7, 1/7)
9 | BC1 | BC2 | BCI | BC2 | BCI| BC2 | BCI| BC2
a | 0.755 | 3203 | 0.921 | 6.970 | 0.461 | 0.452 | 0.496 | 0.650
B
w

0.642 | 0.953 | 0.639 | 0.937 |0.816 | 3.744 | 0.812 | 0.876
0.015 | 0.191 | 0.000 | 0.500 | 0.256 | 0.925 | 0.342 | 0.230

ok 0.692 0.665 0.550 0.707
B 3.093 0.713 0.827 13.033
W 0.150 0.233 0.063 0.315
p 0.697 0.512 0.215 0.806

Table 4.2: Parameters estimates in the harmonic combination model for
different choices of the mixture probabilities p; of the data generating process.

P [ (1/5, 1/5,3/5) | (1/7, 1/7, 5/7) | (3/5, 1/5, 1/5) | (5/7, 1/7, 1]7)
9 | BC1 | BC2 | BCl| BC2 |BCL| BC2 | BCL| BC2
a | 0744 7.026 | 0.906 | 7.775 | 0.416 | 0.383 | 0.457 | 0.457
B 10634 | 0.878 |0.632| 1.013 | 0.755 | 0.827 | 0.747 | 0.778
w | 0.042| 0529 |0.024 | 0456 |0.363| 0.734 |0.507 | 0.511

ok 0.615 0.665 3.720 0.462
JoF: 0.929 0.651 1.133 0.734
W 0.380 0.302 0.093 0.474
p 0.453 0.415 0.824 0.456

Table 4.3: Parameters estimates in the logarithmic combination model for
different choices of the mixture probabilities p; of the data generating process.

P [ (1/5, 1/5, 3/5) | (1/7, 177, 5/7) | (3/5, 1/5, 1/5) | (6/7, 1/7, 1/7)
g | BC1| BC2 | BC1| BC2 | BC1| BC2 | BC1 | BC2
a | 0.751 ] 7.062 | 0917 | 6.514 | 0.441 | 2.587 | 0.469 | 2.180
p
W

0.639 | 0.950 |0.640 | 0.966 |0.764 | 1.109 | 0.753 | 0.869
0.018 | 0.517 |0.000 | 0.431 |0.370 | 0.031 | 0.465 | 0.411

ok 0.578 0.645 0.367 0.515
B 0.823 0.680 0.875 2.770
W 0.426 0.379 0.843 0.423
p 0.484 0.510 0.274 0.389
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Figure 4.1: PITs cdf for EW model with linear, harmonic and logarithmic
pools at different values of p;.

PITs of the equally weighted model (magenta line) lack to predict accept-
ably the standard uniform cdf of the data simulated by a mixture of normal
distributions.

The beta-transformed models (BC1) (red line) predict better the unifor-
mity than the EQ models, but they overestimate or underestimate the black
line mainly in the central part of the support. In all the pool typology used,
the beta-mixture models (BC2) provide the closest calibrated cdfs to the
uniform one, being able to achieve a better flexibility among the others.

To highlight the behaviour of the two-component beta mixture (BC2),
the right column of figures 4.2, 4.3 and 4.4 show the contribution in the
calibration process of each element. As an example, consider the first panel
of Fig. 4.2, the BC1 and BC2 models with linear pooling. The solid blue
line represent the probability density function of the first component of the
mixture, the dashed blue line the second component. Multimodality of the
data is explained by two predictable functions: the first item BC2; cali-
brates mainly the predictive density over the positive part of the support;
the second mixture component, denoted with BC2,, calibrates the density
over the negative part. Table 4.1 reports the following values for the weight
w: w; = 0.191 and we = 0.150. This means that both components weights
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Figure 4.2: Left column: PITs cdf for linear pool at different values of p;.
Right column: Contribution of the calibration components for BC1 (green
line) and BC2 (blue line), where BC2; (solid) is the first component of the
beta mixture in BC2, and BC2; (dashed) the second component.
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Figure 4.3: Left column: PITs cdf for Harmonic pool at different values of p;.
Right column: Contribution of the calibration components for BC1 (green
line) and BC2 (blue line), where BC2; (solid) is the first component of the
beta mixture in BC2, and BC2, (dashed) the second component.
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Figure 4.4: Left column: PITs cdf for Logarithmic pool at different values
of p;. Right column: Contribution of the calibration components for BC1
(green line) and BC2 (blue line), where BC2; (solid) is the first component
of the beta mixture in BC2, and BC2, (dashed) the second component.

22



more the second model in the pool, i.e. N(2,2).

In conclusion we had proved the validity of the result achieved in Bassetti
et al. (2015) for calibration and linear combination of predictive densities are
valid for and can be extended to other pooling schemes, including the har-
monic pooling and the logarithmic pooling. Moreover, no clear preference
for one combination scheme appears from our examples.

4.2 Financial Application: Standard&Poors500
Index

In this section we illustrate the effectiveness of the beta-mixture calibration
with an application to the S&P500 index. Moreover this is an extension of
the dynamic predictive density combinations in Casarin et al. (2015a) whose
database for S&P500 is used to employ the following section.

We consider S&P500 daily percent log returns from January, 15 2007 to
December, 315 2009; an updated version of the database used in Geweke and
Amisano (2010), Geweke and Amisano (2011), and Fawcett et al. (2013). The
price series {y; } were constructed assembling data from different sources: the
WRDS database; Thompson/Data Stream; the total number of returns in
the sample is ¢ = 784. Many investors (also institutional) try to replicate the
performance of S&P500 index with a set, of stocks, not necessarily identical to
those included in the index. Casarin et al. (2015a) individuate 3,712 stocks
quoted in the NYSE and NASDAQ eligible for this purpose, whose 1,883
satisfy the control for liquidity (i.e. each stock has been traded a number of
days corresponding to at least 40% of the sample size).

Then, a density forecast for each of the stock prices is produced by 4.2.

Yit = Ci + KaGakiy = i + 011Gy + 030,01 (4.2)

where y;; is the log return of stock ¢ = 1,---,1,883 at day ¢t = 784, (;4—1 ~
N(0,1) and ;41 ~ T (v;) for the Normal and t-Student cases, respectively.
Both models produce 784 one day ahead density forecast from January 1%
2007 to December, 315 2009 by substituting the ML estimates for the un-
known parameters (¢;, 0,0, 0;1, 052, ;) (to further details please refer to Casarin
et al. (2015a)

The major contribution of this technic is the construction of a sequential
cluster analysis to our forecasts. Casarin et al. (2015a) compute two clusters:
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one for Normal GARCH(1,1) models and another for t--GARCH(1,1). Then,
is our aim now to obtain a combined forecast of the S&P500 index combin-
ing and calibrating the two classes of predictive distribution functions, i.e.
GARCH(1,1) and t-GARCH(1,1), through the equally weighted, the beta
calibrated and the two-components beta mixture models with linear, har-
monic and logarithmic pooling schemes.

The clustered weights here is assumed to be one and defined by:

o {3;“66 i <1883
"o g, i> 1883
where 3766 are total the number of predictive distribution function: 1883 be-
longing to the class GARCH(1,1) and 1883 to the class --GARCH(1,1). i.e.
the combination model attains weight w;/3766 to the class of GARCH(1,1)
(first 1883 models) and 1 — w; to the class of --GARCH(1,1) (second 1883
models). The stage is open to further extensions, suggesting a less restricting
weighting system.

The period taken into account is particularly interesting because it over-
passes the financial crisis. The effect of this event is well evident in the figure
4.5 which shows the time variation and the clustering effect in the volatility
of the daily daily percent log returns of S&P500 index over the time. Here
the analysis is split in three subsample of 200 observations each representing
three periods with different features: from January, 1% 2007 to October, 5%
2007, is consider a tranquil period, and the predictability of the index could
be hypothesised better than the one from June, 20" 2008 to March, 26" 2009
during which the financial crisis has its development: here one can expect
that the high volatility makes more difficult to predict the returns; finally,
the third subsample considers data from March, 27" 2009 to December, 31%
2009, the post-crisis period and will be interesting to inquire if some difficul-
ties in the forecastability is still present or not.

The two classes of predictive density functions GARCH(1,1), --GARCH(1,1)
are combined and calibrated through the models presented in section 4: the
equally weighted (EW) model, the beta calibrated (BC1) model and the two-
mixture beta calibrated (BC2) model for each combination scheme: linear,
harmonic and logarithmic.

Figure 4.6 displays a comparison through PITs of linear, harmonic and log-
arithmic pools when those are combined with the equally weighted model
and the 45 degree line, which represents the PITs for the unknown ideal
model. Linear, harmonic and logarithmic pools have the same behaviour in
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the mainly part of the support, the differences among them are in the tails,
in particular in the left one. With respect to linear and logarithmic scheme
indeed, the harmonic pool (blue line) underestimates more the frequency of
the observations in the tails. The scheme closer to the 45 degree line is the
harmonic one, thanks to its better performance in predicting tail events.

For a period of the first 200 days, from January, the 15 2007 to October,
the 10" 2007, where the volatility is roughly the same, the posterior means
of BC1 and BC2 parameters (represented by the vector ), are reported in
Tables 4.4, 4.5, 4.6. Here, a and g stands for the parameters of the beta
distribution in the estimated BC1 model and in the first component of the
BC2 model, while the second component of BC2 is referred to o and S*.
In all the cases presented, the estimated BC1 models give zero weight to
the class of t-GARCH(1,1) models, as well as the fist component of the beta
mixture (BC2). While second component of the BC2, in the harmonic and
logarithmic cases weights more class of t--GARCH(1,1) models than the class
of GARCH(1,1) models. To better understand the effect of these parameters
estimates, a graphical inspection of PITs is reported in figures 4.7, 4.8 4.9,
for the pre-crisis, in-crisis and post crisis period respectively.

In all the pooling scheme applied the PITs of the equally weighted model
(magenta line) lack to predict acceptably the ideal standard uniform cdf; as
it is possible to see in figures 4.7 - 4.9, just in one case, the linear one, both
BC1 and BC2 perform well, providing the closest calibration to the uniform
one, being able to achieve a better flexibility for all the time periods analysed.
In the harmonic and logarithmic cases, the BC1 model lack to calibrate class
of GARCH(1,1) and the class of t--GARCH(1,1) models fitting even worsen
than the EW model. However, a satisfactory calibration is obtain by the
BC2 model, even if, not as good as that achieved in the linear pool. This
is verified for all the periods of time analysed, even if, PITs calibration gets
worse in the crisis and post crisis fases, highlighting some difficulties in being
flexible. However, the linear pooling achieves good calibrated forecasts in
both beta combination models; if the pool employed is chosen among the
harmonic and the logarithmic schemes, satisfactory results are provided by
the two-component beta mixture model.

In conclusion we had proved that the result achieved in Bassetti et al.
(2015) for beta-mixture calibration and linear combination of predictive den-
sities are still valid when harmonic and logarithmic combination schemes are
used.
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Figure 4.5: Different behaviour of the EW model for the three pool schemes
applied to S&P500 daily percent log return .
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Figure 4.6: Different behaviour of the EW model for the three pool schemes
applied to S&P500 daily percent log return .
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Table 4.4: Parameters estimates in the different combination models for pre-
crisis data subsample: January, 1% 2007 - October, 5* 2007.

P Linear Harmonic Logarithmic
# | BC1 | BC2 | BC1 | BC2 | BC1 | BC2
a | 5.840 | 0.000 | 0.084 | 17.573 | 2.468 | 34.692
B 15.807 | 0.000 | 0.371 | 15.114 | 2.867 | 34.462
w | 1.000 | 0.000 | 1.000 | 0.863 | 1.000 | 0.706

ok 5.812 0.020 1.781
B 5.651 0.466 2.166
W 1.000 0.199 0.93
p 0.000 0.7926 0.269

Table 4.5: Parameters estimates in the different combination models for in-
crisis data subsample: June, 20" 2008 - March, 26" 2009.

P Linear Harmonic Logarithmic
6 | BC1 BC2 BC1 | BC2 | BC1 | BC2
a | 7.025 | 278.600 | 0.977 | 0.944 | 0.974 | 1.010
B ] 6.646 | 803.260 | 0.865 | 1.014 | 1.292 | 1.018
w | 1.000 | 1.000 | 0.740 | 0.263 | 0.821 | 0.031

ok 6.760 0.975 1.131
B 6.334 1.010 0.972
W 1.000 0.247 0.298
p 0.000 0.000 0.000

Table 4.6: Parameters estimates in the different combination models for pre-
crisis data subsample: March, 27" 2009 - December, 31¢ 2009.

P Linear Harmonic Logarithmic
0 | BC1 BC2 BC1 | BC2 | BC1 | BC2
a | 6.542 | 47110.000 | 1.031 | 0.972 | 1.127 | 1.007
B8 |6.071 0.000 0.419 | 0.942 | 2.275 | 1.066
w | 1.000 1.000 0.823 | 0.967 | 0.186 | 0.406

% 6.710 1.039 0.891
Bx 6.307 0.938 1.015
W 1.000 0.920 0.921
p 0.000 0.000 0.000
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Figure 4.7: PITs cdf of the ideal model C (black line), EW (magenta),
BC1(red) and BC2(green) for Linear (top right), Harmonic (bottom left)
and Logarithmic (bottom right) pools and PiTs of EW models (top left)
for linear (red), harmonic (blue) and logarithmic (green), in the first data
subsample: pre-crisis period
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Figure 4.9: PITs cdf of the ideal model C (black line), EW (magenta),
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Chapter 5

Results

The aim of this paper was investigate combination and calibration models
in some generalised pooling schemes. Starting from what explain in Bas-
setti et al. (2015), the combination and calibration models for the linear pool
are generalised for other pooling schemes, among which the harmonic and
the logarithmic pool. Since the three schemes behave differently, this paper
would inquire if the results in Bassetti et al. (2015) are verified also with a
generalise pools of predictive distributions.

The results of the simulation example supplied a substantially equivalence
among the polling schemes, providing the same evidence for combination
and calibration models than those in Bassetti et al. (2015). However, this
equivalence was not verified in our application to daily log returns of S&P500
index for the period January 1%* 2007 - December, 31%¢ 2009: the application
of combination and calibration schemes gives the results of the simulation
example just for the linear pooling, while for the others schemes the results
are verified just for what concerns the two-component beta mixture model.
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Appendix A

Gibbs sampling details

Gibbs sampling details In this work, it was design a Metropolis-Hastings for
posterior inference. In chapter 4, a beta and beta-mixture calibration models
are presented and applied to simulated data.

A Metropolis-Hastings (MH) algorithm has been used to approximate
the posterior distribution of the unknown parameters 8 = (o, §,w) and 6 =
(a1, B1, wi, g, Ba,wa, p) for the beta calibrated model and the beta-mixture
calibrated model respectively. The joint posterior for J = 2 is reported in
the chapter 3.

In order to account for the constrains on the parameters, the target
distributions of the MH algorithm for u,v,w and p is obtain by apply—
ing a change of variable: p = 1/(1 + exp{—6,}), v = exp{hy} and w =
1/(1+exp{—0.165}) to the joint posterior for BC1 and the target distributions
for puy, o, V1, V2, Wi, Wa and p the Change of variable p; = 1/(1 4+ erp{ (91})
v = exp{eg} wi = 1/(1 + exp{—0.105}), o = 1/(1 + exp{—0.16,}), v/
exp{0s}, wy = 1/(1 + exp{—0.10}), p = 1/(1 + exp{—0.16;}). The MH
acceptance probability accounts for the Jacobian:

. exp{—0.16 }
o 0'1(1+exp{70.191})2 0 A 0
J(01,02,03) = 0 exp{fa} 0
0 0 0.1 eap{—0.103}

" (14exp{—0.163})2

that is

J (01,05, 05) = 0.12e2p{—0.16, + 05 — 0.105} (1 + exp{—0.16,}) >
(14 exp{—0.105})2 (1)
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for the BC1, and

J(01,05,03,04,05,06,07) =

- ezp{70.10A1}
" (14exp{—0.16, })2 OA 0
= 0 exp{fs} 0
- exp{—0.163}
0 0 0.1 (1+exp{—0.163})2
_ ezp{70.1é4}
0-1 (1+exp{—0.104})2 0 . 0 0
0 exp{0s} 0 0
- exp{—0.165}
0 0 0.1 (1+exp{—0.105})? 0 X
0 0 0 —0.1cxp{=0107}

T (14-exp{—0.167})2

that is

J(éla é2> és; é4; é57 é67 é?) = 0-1569517{—0-1(@1 + é?, + é4 + éa + 97) + éQ + 55}
(14 exp{—0.16:})"2(1 + exp{—0.105})"2(1 + exp{—0.10,}) 2
(14 exp{—0.105})"2(1 + exp{—0.16:})"2 (2)

for the BC2 model.

Where equation 1 and 2 report the Jacobian used in the MH acceptance
ratios for the BC1 and BC2 models, respectively. The variance/covariance
matrix of the MH proposal distribution are ¥ = diag{0.05% 0.1?,10?} and
¥ = diag{0.052,0.052,10%,0.052,0.052, 10%,10%} for the BC1 and BC2 mod-
els, respectively. We set the initial values of the MH sampler to the maximum
likelihood estimate of the parameter 6.

The assumption of i.i.d. samples generated by the MH algorithm and the
ergodic theorem guaranty the almost sure convergence of the MH empirical
averages to the posterior mean. An example of the MCMC output and
of ergodic means, for one of the experiments, is given in Fig. 1 for the
parameters of the BC1 model and in Fig. 2-3 for the parameters in BC2
model.
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Figure 1: Samples of BC1 model: variable inspection and its empirical aver-
age for 1000 iteractions
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Figure 2: Samples of BC2 model: variable inspection and its empirical aver-
age for 1000 iteractions
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Figure 3: Samples of BC2 model: variable inspection and its empirical aver-
age for 1000 iteractions
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