

Corso di Laurea magistrale (ordinamento
ex D.M. 270/2004)
in Economics

Tesi di Laurea

Option Pricing with Genetic
Programming

Relatore
Ch. Prof. Marco Corazza

Laureando
Alice Preo
Matricola 829215

Anno Accademico
2014 / 2015

2

Contents

Introduction pag 3

Acknowledgements pag 4

Chapter 1 - Genetic Algorithms and Genetic Programming: a Wide Overview pag 5

Chapter 2 - The Literature In Genetic Algorithms and Genetic Programming pag 42

Chapter 3 – The Experiment pag 60

Chapter 4 – Conclusions pag 86

References pag 89

3

Introduction

I am glad to present here all the research I have done on Genetic Programming applied to

Option pricing.

Chapter 1 wants to introduce the concept of Genetic Algorithms and Genetic Programming

widely explaining what they are, their structures and all the features that characterized them.

Chapter 2 focuses on the presentation of the previous work and researches conducted on

Genetic Algorithms and Genetic Programming, with special attention to the applications in

the financial world and in particular to option pricing. In this chapter will be given a

comprehensive and detailed presentation of this financial instrument and will be introduced

the Black-Scholes formula.

Chapter 3 is developed in two experiments I run using the Matlab 2013a software in order to

test the capabilities of Genetic Programming in approximating the Black-Scholes formula.

Chapter 4 closes this work presenting the conclusions that I have drawn carrying these

experiments and some suggestions for future works.

4

Acknowledgments

It is a pleasure to thank the people that made my thesis possible.

I want to express my acknowledgment to my supervisor Professor M. Corazza, for his help

and support and for his patience in correcting my mistakes.

I want to express my gratitude also to my family, who has always supported and trusted me,

and to my friends, that has always stood by my side.

5

Chapter 1
Genetic Algorithms and Genetic
Programming: a Wide Overview

1.1 Evolutionary Algorithms

In artificial intelligence, we refer to Evolutionary Algorithms (EAs) as a subset of

Evolutionary Computation, a generic population-based meta-heuristic optimization algorithm.

Often directly inspired by nature, meta-heuristics are general algorithmic frameworks, whose

purpose is the identification of solutions for complex optimization problems and they

represent a growing research area since a few decades. Meta-heuristics include categories

based on different criteria: for instance, some meta-heuristics process a single solution (e.g.

simulated annealing) while others process a set of solutions (and are called population based

methods, e.g. evolutionary algorithms).

Evolutionary Algorithms are heuristics that mimic the processes of natural evolution in order

to solve global search problems. These algorithms are based on the Darwinian principle of the

“survival of the fittest”, i.e. the most fitting individuals in a certain environment have greater

possibilities to survive and pass on their “genes” to the next generations.

The “survival of the fittest” principle is common to others approaches that draw inspiration

from natural and biological systems. Under the extensive classification of Biologically

Inspired Algorithm it is possible to include not only the Evolutionary Algorithms, but also the

Artificial Neural Networks, the Social Systems and the Immune Systems. Considering the

Artificial Neural Networks, that mimic the capability of the neuron web of the human brain of

process the inputs and converting them in meaningful output data, there exist three more

subcategories: Multi-layer Perceptron, Radial Basis Function Networks and Self Organizing

Maps. The Social Systems is categorized into Particle Swarm Optimization (which also

6

includes the Grammatical Swarm) and the Ant Colony Optimization. Finally the Immune

Systems are divided into Negative Selection and Clonal Selection.
1

Practically speaking, a population of individuals evolves from generation to generation

through mechanisms similar to sexual reproduction and genes mutation. Each individual

represents a possible solution to the investigated problem. This mechanism leads to a heuristic

search which endorses regions in the search area where better solutions are more likely to be

found, even though it does not completely neglect regions where are situated solutions with

less probability of success. Thus, as described by Charles Darwin in On the Origin of Species

by Means of Natural Selection (1859), over time, due to natural selection, the population as

whole evolves embedding individuals whose genes are converted into structures and

behaviors that enable those individuals to better perform in the environment and allow them

to survive and reproduce.

Known as Evolutionary Algorithms (EA), this family of computational techniques,

characterized by the underlying idea of natural selection, is commonly classified into

Evolutionary Strategies (ES), Evolutionary Programs (EP), Differential Evolution (DE),

Genetic Algorithms (GA) and Genetic Programming (GP). These techniques usually share the

general outlines, diverging in term of specific technical details. Later on the attention will be

focused mainly on Genetic Algorithms and Genetic Programming.

1.2 Genetic Algorithms: an Introduction

The development of the Genetic Algorithms, almost universally abbreviated to GAs, dates

from the 1960s, but only in 1975 John Holland introduced them to the wide audience through

its famous book Adaptation in Natural and Artificial Systems, where he rigorously drew up

the basic principles, allowing the development of a new thriving branch of research.

1
 For a deep and comprehensive analysis of the various Biologically Inspired Algorithms refer to Biologically

7

Genetic Algorithms are mathematical adaptive heuristics which exploit a randomized search

in order to solve mainly optimization problems. Based on an finite dimensional set

(population) of individuals, i.e. solutions of the problem, GAs mimic the principles of natural

selection and “survival of the fittest”, adapting and evolving solutions to real world issues.

In nature, individuals in a population compete with each other to survive and to reproduce.

Highly adapted individuals will spread their genes to an increasing number of individuals in

each successive generation, often succeeding in producing, through genes recombination,

even fitter offspring (“superfit individuals”). This process leads to evolution, explaining

wherein new offspring suit better than the parents in their environment.

GAs simulate those processes, essential to evolution, working on a finite population of

individuals. Each individual is evaluated as a candidate solution to the problem of interest.

Given a quality function to be maximized as an abstract fitness measure, a “fitness score” is

assigned to each individual considering how good as solution to the problem it is. Thus, the

fitness function assigns a figure of merit to each solution. The initial population may be

generated randomly, or using some heuristic method. Thus, for each individual in the

population, genes are randomly assigned and there is a wide spread of individual fitness.

Although many variants of GAs exist, each potential candidate solution is traditionally

encoded as a set of parameters (known as genes), which define the proposed solution to the

problem the Genetic Algorithm is solving. These genes form a fixed-length binary string

(0101 . . . 1), often referred to as a chromosome. The set of parameters represented by a

particular chromosome is referred to as a genotype. The genotype is an abstract representation

of an individual part of the population and it contains the information needed to compute an

organism, the phenotype. In other words, the genotype is decoded through the fitness value in

the phenotype, which represent a potential solution. The fitness of an individual depends on

the performance of the phenotype, which can be computed from the chromosome, using the

fitness function. The problem-specific fitness function links each string to a number

representing its quality or fitness value, which basically provides a measure of performance

and a measure of reproductive opportunities.

8

The execution of the Genetic Algorithm is a two-stage process starting with the current

population. Selection is applied to the current population to create an intermediate one

(reproduction). At the first generation, the current population corresponds to the initial

population. Each string is evaluated according to the fitness function and, according to this

value, the strings that present a higher performance are more likely to be copied and placed

into the intermediate population. Then recombination and mutation are applied to the

intermediate population to create the next generation. Through the crossover operation, two

strings randomly chosen are recombined. In each of the two string, a crossover point is

randomly picked, dividing the strings in two parts. Then, the parts are swapped, generating

two new strings. The mutation operation, instead, applies only to a single point (bit), which is

randomly selected only for some randomly chosen strings. The probability of the mutation

operator is extremely low and it is generally applied with the aim to guarantee the population

diversity.

Each string is called schema (plural “schemata”) and each schema H, composed by an

extended alphabet (the 0 and 1 of the binary alphabet, for example), describes a set of points

from the search space of a problem that have particular features. In a population of strings of

length L over an alphabet of size K, then a schema is identified by a string of length L over

the extended alphabet of size K + 1, where the additional element of the alphabet is the

asterisk (the symbol which identifies the indifference for the value in that position, i.e. the

"don't care" symbol). The asterisk is a metasymbol. It is never explicitly processed by the

Genetic Algorithm. There are (K + 1)^L schemata of length L. When an individual survives

to the reproduction and recombination processes performing a high fitness value, it is not easy

to identify which sequence or combination of symbols that characterize that string is

responsible for the successful performance. Averages are the most reliable index that may

disentangle this issue. If a particular combination of attributes is repeatedly associated with

high performance (because individuals containing this combination have high fitness), it is

possible to state that this particular combination of attributes is the reason for the observed

performance. The same is true for combinations associated with low average performance. If

a particular combination of attributes exhibits both high and low performance, then it may

9

have no explanatory power for the problem. The Genetic Algorithm implements this highly

intuitive approach to identify the combination of attributes that is responsible for the observed

performance of a complex nonlinear system.

Intuitively, it may appear that Genetic Algorithms operate only on the specific individual

character strings that are actually present in the current population. In his book Adaptation in

Natural and Artificial Systems, Holland focused the attention on the fact that Genetic

Algorithms implicitly processes, in parallel, an extended volume of useful information

regarding unseen Boolean hyperplanes (schemata). Hence, the Genetic Algorithm has the

notable property of implicit parallelism (or intrinsic parallelism), which is involved as a

number of solutions are worked on simultaneously improving efficiency and reducing the

chance of premature convergence to local maxima
2
.

The highly fit individuals have chances to get selected for reproduction and recombination by

cross-breeding with other members in the population and originate new individuals identified

as “offspring”, which share some features received from the “parents”. The least successful

units of the population are less likely to reproduce and eventually they will most likely die

out. Generation over generation, good genes are spread throughout the population, mixed and

exchanged with other better performing genes as the process runs. Supporting this progression

by mating the more fit individuals, more promising areas are explored. A well designed GA

will lead to the convergence of the population to an optimal solution to the problem.

The parents are recombined through a “crossover” operator, which splits the two genetic

structures apart at randomly chosen locations. This genetic operation allows new individuals

to be created and new points in the search space to be tested. The recombination of the

different part of the genetic structures of the parents creates two offspring. The two offspring

are usually different from their two parents and different from each other and both contain

genetic material from each of its parents.

2
 This topic will be further discussed and extended in Chapter 1.5.

10

The new offspring fitness is evaluated by the algorithm and replaces one of the relatively unfit

members of the population. New genetic structures are created until the new generation is

completed. The same criterion is iteratively followed for the establishment of successive

generation until some previously defined termination criterion is met. The obtained final

population presents a selection of possible solutions, which can be applied in order to solve

the initial problem.

Improvements in the population are typical of the fitness-proportionate reproduction and

crossover operations, because low-fitness individuals tend to be eliminated from the

population and high-fitness individuals tend to be duplicated. Note that both of these

improvements in the population come at the expense of the genetic diversity of the

population. Random “mutation” operations on fixed-length strings may be occasionally

introduced in order to guarantee genetic heterogeneity and avoid a rapid convergence to local

maxima. The frequency of applying the mutation operation is controlled by a parameter called

the mutation probability. Mutation is an asexual operation applied on only single individuals.

It begins by randomly selecting a string from the mating pool and then randomly selecting a

number between 1 and L as the mutation point, where L denotes the string length. The

character (gene) selected as mutation point is changed. In the case of binary alphabet, the gene

is simply replaced by the opposite value. Mutation is used with moderation in Genetic

Algorithm works and it is considered as a secondary operation useful in reinstating lost

diversity in a population because of previous exploitation. Thus, it can be pointed out that the

Genetic Algorithm principally relies on the creative outcomes of crossover and the

exploitative effects of the Darwinian principle of survival and reproduction of the fittest.

1.3 Genetic Algorithm’s Basic Principles

The conventional fixed-length string Genetic Algorithm involves the determination of some

features. First of all it must be determined the representation scheme, which is a mapping that

explicates each possible point in the search space as a fixed-length string and it requires the

11

specification of the length L and the alphabet size K. Strictly speaking, before a GA can be

run, a suitable coding (or representation) for the problem must be devised. Secondly, it is

necessary to define a fitness measure able to evaluate every fixed-length string. Thirdly, it is

crucial to fix the parameters and variables for controlling the algorithm, which are primarily

the population size (M) and the maximum number of generations to be run or another

termination criterion and, secondarily, the probabilities of reproduction, recombination and

mutation (). Further additional quantitative and qualitative control parameters and

variables must be expressly nailed down in order to thoroughly specify how to run the

Genetic Algorithm. One method of result identification is to designate, as result of the Genetic

Algorithm, the best individual in the last generation of the population at the time of

termination.

The Genetic Algorithm performs in a domain-independent way on the fixed-length strings. It

operates making few assumptions about the considered problem and, for this reason, it

belongs to the class of methods known as “weak methods”. Even without knowing anything

about the problem domain or the fitness function, the Genetic Algorithm shows a surprising

rapidity and effectiveness in searching complex, highly nonlinear, multidimensional search

spaces. Broadly speaking, the Genetic Algorithm searches for an unknown space for high-

fitness point. Nevertheless, the choices made by the user about the representation scheme, the

fitness measure and the above listed features (population size, number of generation,

parameters determination) may influence how well the Genetic Algorithm will perform in a

specific problem domain.

The basic Genetic Algorithm model relies on the paramount assumption that an individual’s

high fitness is due to the fact that it contains good schemata. Hence, with this reproductive

system, good schemata receive an exponentially increasing number of trials in successive

generations. This concept is clearly explained in the Holland’s Schema Theorem, which will

be later discussed.

Analyzing a method (e.g. Genetic Algorithms) that approach to a solution of a problem by

investigating the search space, it can be easily understood the issue regarding the trade-off

12

between what are called cost of exploration and cost of exploitation of the already-evaluated

points in the search space. This trade-off concerns in finding a compromise between the

computer program’s sources spent in exploring new points from a portion of the search space,

which we believe may have above-average payoffs, and the sources spent in exploiting area in

which several points have already been evaluated, in particular starting the new tests from

schemata whose fitness have already been evaluated as relatively high, in order to find new

solution with higher fitness value.

The Genetic Algorithm allows the user to progress the analysis of the search space by testing

new and different points that are similar to the ones that have already provided above-average

fitness, directing the search into more promising parts of the search space. The best and the

average individual increase their fitness from generation to generation towards a global

optimum. When at least 95% of the population share the same value it is possible to state that

a gene has converged. Only when all the genes have converged also the population is said to

be convergent. Once the population has converged to the global optimum, the fitness of the

average individual will meet the fitness of the best individual.

Genetic Algorithms are predisposed to stochastic errors. Even in the absence of any selection

pressure, these stochastic errors may lead to genetic drift
3
, which cause gene variants to

disappear completely and prematurely, reducing genetic variation. Increasing the mutation

parameter can reduce the occurrence of genetic drift. Anyway, if the mutation rate is too high,

the search may become random.

Mutation also helps to overcome another problem which occurs when genes from a few

relatively fittest (but not globally optimal) individuals suddenly and rapidly come to prevail

over the population, provoking the convergence to a local optimum. As the run progresses,

particular values for each gene begin to predominate, so the range of fitness in the population

reduces entailing premature convergence or slow finishing. In the first case, once the

3
 The term genetic drift refers to the change in the frequency of a specific gene in the population. This change

in frequency means a reduction of the fraction of copies of that specified genes. For this reason genetic drift
may cause the disappearing of that gene.

13

convergence is complete, crossover has limited possibilities to induce the exploration of new

search space. Only mutation remains to explore entirely new ground. The schema theorem

demonstrates that Genetic Algorithms naturally assigns an exponentially increasing number of

trials to the best observed schemata, leading to a trade-off between exploitation of promising

directions of the search space and exploration of less-frequented regions of the space (see also

Vose, 1991). Broadly speaking, Holland's schema theorem states that reproduction

opportunities must be allocated according to the relative fitness of each individual, but

premature convergence may occur since the population is finite. In order to make Genetic

Algorithms effective, it is necessary to modify the way individuals are selected for

reproduction by controlling the number of opportunities that each individual gets for

reproduction so that it is neither too large nor too small. The consequence is to compress the

range of fitness preventing the occurrence of “super-fit” individuals from prematurely taking

over. The same techniques used to combat premature convergence also combat slow

finishing.

Nevertheless, the convergence to the global optimum, as before stated, cannot be guaranteed,

but Genetic Algorithms are generally good at finding “acceptably good” solutions to problems

taking an “acceptably short” time. It is important to notice that in general, if exact techniques

already exist for finding the solution of a particular problem, they are likely to perform better

than Genetic Algorithms in both speed and precision. On the other hand, GAs find their

ground of application in complex area of search, where no such techniques exist or where the

existing techniques require huge amounts of time for computational mathematical analysis.

And even when the specific techniques exhibit good performances, clear improvements can

be done by hybridizing them with GA.

1.4 Genetic Programming

1.4.1 Genetic Programming: an overview

The Genetic Programming (GP) is an evolutionary algorithm-based process inspired by

biological evolution to find (computer) programs that implement a previously determined

14

task. It is an extension of Genetic Algorithm, where each element of the population is a

program instead of a string of bit. The Genetic Programming consists on a set of instructions

and a fitness function that measure how well a computer program has performed a task.

Substantially, the Genetic Programming paradigm (where each individual is a computer

program) continues the trend of dealing with the problem of interest in Genetic Algorithms by

increasing the elaboration of more complex structures undergoing adaptation, which are

general, hierarchical computers programs of constantly changing size and shape. The problem

solving process can be restated as a search for a highly fit individual computer program in the

search space. Genetic Programming is basically a solving problem procedure which provides

a way to search for this fittest individual computer program.

John R. Koza introduced Genetic Programming in his book Genetic Programming - On the

Programming of Computers by Means of Natural Selection in 1992. Through the Darwinian

principle of survival and reproduction of the fittest and genetic recombination (crossover

operation), the populations of computer programs are mated in terms of genes. The initial

population is randomly generated and each individual computer program is composed of

functions and terminals pertinent to the problem domain. As Koza specified in his work “The

functions may be standard arithmetic operations, standard programming operations,

standard mathematical functions, logical functions, or domain-specific functions. Depending

on the particular problem, the computer program may be Boolean-valued, integer-valued,

real-valued, complex-valued, vector-valued, symbolic-valued, or multiple-valued. The

creation of this initial random population is, in effect, a blind random search of the search

space of the problem.”

Individuals are then evaluated according to their performance in the specified problem

environment through a fitness measure, whose nature varies with the faced problem. Each

computer program is run over a number of distinct fitness cases and its performance is

evaluated as the sum or average over the selection of depictive various situations.

In generation zero the computer programs generally show poor fitness performance. However,

some individuals will anyway perform better than others, showing higher fitness measures.

15

Genetic Programming will then exploit these differences in performance and, as for the

Genetic Algorithm methods, the Darwinian principle of reproduction and survival of the

fittest and the genetic operation of sexual recombination (crossover) are applied to generate a

new offspring population of individual computer programs from the current one. In

proportion to their fitness, the most performing computer programs will be selected for the

current population through the reproduction operation. The procedure allows them to survive

by coping them into the new population. New offspring are then created through sexual

reproduction between two parental computer programs, which are always selected in

proportion to their fitness. Normally, the parental programs exhibit divergences in size and

shape; the offspring individuals are formed by the recombination of subexpressions selected

from their parents and are typically of different sizes and shapes than their parents. The

procedure ends with the replacement of old parents with the offspring. Each individual in the

new generation is then evaluated for its fitness measure and the processes of reproduction and

sexual recombination are run over and over again, creating the future generations. If two

computer programs are somewhat effective in solving a problem, then some of their parts

probably have some responsibility for their good performance. Recombining randomly

chosen parts of the most performing programs, new computer programs may result event fitter

and perform better in solving the problem.

Over many generations, the Genetic Programming algorithm will produce a population of

individual computer programs with increasing average fitness in dealing with their

environment, able to exhibit a rapid and effective capability to adapt in changes in the

environment. In any generation the best-so-far individual is labeled as the outcome generated

by the Genetic Programming (Koza 1992).

While in Genetic Algorithms is required a suitable coding (or representation scheme) that

explicates each possible point in the search space as a fixed-length string and the specification

of the length L and the alphabet size K, in Genetic Programming the role of preprocessing

inputs and post-processing outputs is absent or minor. This avoids expensive loss of time.

16

Inputs, intermediate results and outputs are all expressed as functions, the natural terminology

of the problem domain.

1.4.2 Detailed Description of Genetic Programming

Genetic Algorithms and Genetic Programming are both characterized by a structure,

undergoing adaptation, composed by population of individual points from the search space

instead of a single point. One of the most peculiar feature that differentiate genetic methods

from other search techniques, is their ability to simultaneously manage a parallel search

involving hundreds or thousands of points in the search space. In Genetic Programming, as

before specified, the structures undergoing adaptation are hierarchically structured computer

programs, whose sizes, shapes and contents may dynamically vary during the process,

according to the changing environment. Rather, the structures that undergo adaptation in the

conventional Genetic Algorithm are one-dimensional fixed-length linear strings, as before

specified. The set of possible structures in Genetic Programming is the set of all possible

compositions of functions that can be composed recursively from the set of functions

from F = { ,...,f } and the set of terminals from T = { ,..., }. Each

particular function in the function set F takes a specified number z() of arguments z(),

z() ..., z(f). That is, the function has a number of argument equals to z().

The functions in the function set may include arithmetic operations (such as +, -, *, /),

mathematical functions (such as sin, cos, exp, and log), Boolean operations (such as AND,

OR, NOT), conditional operators (such as If-Then-Else), functions causing iteration (such as

Do-Until), functions causing recursion, and any other domain-specific functions that may be

defined.

For what concerns the terminals, instead, they are either variables, symbolizing inputs, or

constant, for example a numerical or Boolean constant. The hierarchical structure undergoing

17

adaptation in Genetic Programming, formed by set of functions and terminals, must be

selected in order to satisfy the conditions of closure and sufficiency.

As for the closure property, it will be satisfied only in the case in which the function set

admits only functions well defined and closed for any combination of argument they may

encounter. Practically speaking, the closure property requires that any value and data type that

may be returned by any function in the function set and any value and data type that may be

assumed by any terminal in the terminal set must be accepted by each of the functions in the

function set as its argument. This condition is easily satisfied when the problem faced is

simple, but ordinary computer programs usually contain complex variables and operators.

Closure can be achieved in a direct and unambiguous way for the vast majority of problems

simply introducing the protected division function, the protected square root function SRT,

and the protected natural logarithm function RLOG, which allow the user to successfully

overcome problematic situations when the division function encounters an attempt of division

by 0, when the square root function encounters a negative argument or when the logarithm

function encounters a nonpositive argument. According to the definition provided by Koza

(1992), the protected functions are arrangements made in order to deal with problematic

situations that some mathematical functions can encounter. For example, if the arithmetic

operation of division encounter as its second operator a zero the function would not be

defined. In this situation, the protected division function will instead return the value 1. For

what concerns the protected square root function, when it encounters a negative argument it

will return the square root of the absolute value of that argument. Instead, the protected

natural logarithmic function returns 0 when the argument is 0 and operates in the absolute

value of the argument when it encounters a nonpositive argument.

On the other hand, the sufficiency property admits only a set of terminals and a set of

functions capable of expressing a solution to the problem. In other words, before starting to

run the Genetic Programming, the user needs to be sure or at least to believe that there exist

composition of the functions and terminals that can provide a solution of the problem.

Identifying the variables and the set of functions that have sufficient explanatory power to

18

solve a peculiar problem may be obvious or may require a considerable insight, depending on

the complexity of the problem.

1.4.3 Genetic Programming: the initial structure

Referring to the initial structure of Genetic Programming means referring to individuals

constituting the initial population, which is randomly generated as a rooted, point-labeled
4

tree with ordered branches (Koza, 1992). Each individual is generated randomly selecting one

of the functions from the set F (using a uniform random probability distribution). The root of

the tree will be labeled with the selected function. Imposing the restriction of choosing the

root exclusively from the function set F, ruling out the possibility of selecting the root of the

tree from the terminal set, is a choice made according to the fact that the structure is required

to be hierarchical, not a degenerate structure consisting of a single terminal. The root of the

tree is usually called point 1.

Whenever a point of the tree is labeled with a function f from F, the number of lines radiating

out from that point is the same number of arguments, z(f), taken by the function f. Then, the

endpoint of each radiating line is labeled selecting randomly an element from the combined

4
 Each point is labeled with a function or one of the terminal set components(i.e. a variable, a constant).

Figure 1.1

Beginning of the creation of a
random program tree, with the

function + as initial node and two
arguments chosen as roots of the

tree.

19

set C = F ∪ T of functions and terminals (where F indicates the function set and T the

terminal set). If a function has been chosen to be the label for any such endpoint, the

generating process continues recursively. On the other hand, if a terminal is chosen to be the

label for any point, that point becomes an endpoint of the tree and the generating process is

terminated for that point.

1.4.4 Genetic Programming: the generative processes

The process for generating random trees of various sizes and shapes can be implemented in

different ways. Among these different ways, two basic processes are the “full” method and

the “grow” method. The depth of the tree is measured as the length of the longest non-

backtracking
5
 path from the root to an endpoint.

The “full” method is characterized by the specification of a predefined maximum depth of the

trees that the length of every non-backtracking path between an endpoint and the root cannot

exceed. This procedure can be implemented forcing the choice of the label of the points

whose depth is less than the maximum to the function set F, and constraining the selection for

the points at the maximum depth to the terminal set T. The “grow” method does not fix the

depth of the trees with a previously specified length measure. This method of generating

initial random population involves growing trees that are variably shaped, but still restrict the

breadth of the path between an endpoint and the root to a maximum depth. The changing

shapes and sizes of the trees are guaranteed by a random selection of the label for points at

depths less than the maximum from the combined set C = F ∪ T consisting of the union set of

5
 The term backtracking refers to the backtracking algorithm. This technique is used to solve problems under

some constraints and it is applied in the analysis of tree structures. The back tracking algorithm explores the
tree recursively, starting from the root and systematically searching for a solution to a problem among all
available options. Each node is evaluated by the algorithm as potential solution of the problem. If the node
does not satisfy the constraints and cannot be considered as a solution, the algorithm excludes it from further
searches and moves back to the previous node following the same path it has done to reach the node
evaluated. From this position the algorithm moves along another branch in order to reach a new node. In
Genetic Programming backtracking is not considered. For a more comprehensive explanation refer to A
theoretical evaluation of selected backtracking algorithms, Kondrak and Van Beek (1997).

20

the function set F and the terminal set T, and, as in the “full” method, constraining the

selection for the points at the maximum depth to the terminal set T.

A more uneven method called “ramped half-and-half” can be applied over a wide range of

problems. According to Koza (1992), this generative method does best over a broad range of

problems. The significant point that distinguish this method is the fact that no assumption is

previously made or generically specified in advance on the size and shape of the solution. The

“ramped half-and-half” generative method produces a wide range of trees characterized by

changeful sizes and shapes, incorporating both the “full” and the “grow”method. The ramped

half-and-half generative method consists of the creation of an equal number of trees using a

depth parameter that ranges between 2 and the maximum specified depth. This is the

generative method most preferred by Koza, as he explicitly specified in his book Genetic

Programming - On the Programming of Computers by Means of Natural Selection (1992).

He provides a clear explanation in order to clarify the concept behind the “ramped half-and-

half” generative method. In his example, if the maximum specified depth is 6 (the default

value in Koza’s book), 20% of the trees will have depth 2, 20% will have depth 3, and so

forth up to depth 6. Then, for each value of depth, 50% of the trees are created via the “full”

method and 50% of the trees are produced via the “grow”method. Given a fixed value of

depth, there is a sensible variation in shape and size from each tree to any other. Thus, the

ramped half-and-half method creates trees having a wide variety of sizes and shapes.

Empirically, this method has shown better performance than both the “full” and the “grow”

methods in a large number of researches.

Another interesting issue considering the generative processes is the presence of duplicate

individuals in the initial random generation. These individuals are unproductive deadwood

and represent a waste in computational resources. Furthermore, their presence reduce the

genetic diversity of the population. Avoiding duplicates in the initial population is desirable

but not necessary; the creation of duplicates is more likely to happen when trees have small

dimensions (as it is for a certain percentage of population in the “ramped half-and-half” and

“grow” methods). In order to control and reduce the presence of duplicates, each newly

21

generated individual should allowed to become part of the initial population only after been

checked for uniqueness. If a new individual is a duplicate, then the generating process is

repeated until a unique individual is created. This procedure should be applied only during the

creation of the first generation; any duplicate in the following generations must be considered

as a product of the genetic operation of reproduction, thus a natural result of the genetic

process. Occasionally, it might happen that it is necessary to substitute a small tree with one

of larger size, if during the process the set of all the feasible tree of that given size has been

exhausted. If duplicate checking is done, then the user will end up with 100% variety of the

random population.

1.4.5 Fitness selection

The selection of the elements on which reproduction, crossover and the other secondary

genetic operations (i.e. mutation, permutation, editing, encapsulation, decimation
6
) are applied

influences the convergences in both Genetic Programming and Genetic Algorithms. The

leading force drawn from the Darwinian natural selection is the fitness. A major selective

pressure leads to a more rapid convergence of the algorithm, which may also causes a loss in

the genetic diversity of the population and a failure in the search for the optimal solution. The

most common methods used are: the fitness-proportionate selection, in which the probability

of selection of an individual as parent is proportionate or equal to its normalized fitness; the

rank selection, in which all the elements are ranked and chosen according to their relative

fitness, rather than basing the choice on the absolute value of fitness; the tournament

selection, in which a fixed number of elements is randomly drawn from the population and

the one with the best fitness value is selected. The fitness-proportionate selection method is

the one which presents a lower selective pressure. This method, described in Holland's

Adaptation in Natural and Artificial Systems (1975), supports many of Holland's theoretical

results.

6
 These operations will be extensively introduced and analyzed in Chapter 1.4.7.

22

In nature, the fitness is a measure of the degree of likelihood that an individual survives to the

stage of reproduction and reproduces. In the artificial world of mathematical algorithms, as

before said, the fitness is measured in order to govern and allow the control of the operations

that modify the structures in the population. Creating an explicit fitness measure for each

individual let the user approach the vast majority of applications of the conventional Genetic

Algorithm and Genetic Programming, as clearly illustrated in Koza (1992). Through a well-

defined evaluative process, a scalar fitness value is assigned to each individual. The most

common fitness measure are well-illustrated in Koza (1992), where the author describes the

four measures of fitness that are used:

 raw fitness,

 standardized fitness,

 adjusted fitness, and

 normalized fitness.

The raw fitness r(i, t) for individual i at time t is the measurement of fitness that is stated in

the natural terminology of the problem itself. The potential benefit of this approach is

undermined by the non-comparability of performance of a particular individual across

generations. The better value resulting after the fitness evaluation may be either smaller
7
 or

larger (when raw fitness is gain).

The standardized fitness s(i, t) restates the raw fitness in a way that allows the user to rank all

the values in a scale where the lowest numerical value is always the best. In certain problem

domains (for example, in an optimal control problem, where the aim is to minimize costs), a

lower value of raw fitness is better. In this situation standardized fitness equals the raw fitness

for that problem

 .

7
 For example when raw fitness corresponds to an error measure, e.g. when it coincides, incorporates or is

derived by the Mean Squared Error.

23

It may be convenient and desirable to make the best value of standardized fitness equal to

zero. If this is not already the case, it can be made so by subtracting (or adding) a constant.

When for particular problem a greater value of raw fitness is considered a better value, then

standardized fitness must be computed from raw fitness: standardized fitness equals the

maximum possible value of raw fitness (denoted by) minus the observed raw fitness.

Basically, the reversal of the raw fitness is required

 .

The adjusted fitness measure a(i, t) is computed directly from the standardized fitness s(i, t):

where s(i,t) is the standardized fitness for individual i at time t. The adjusted fitness is

included between 0 and 1, where higher values correspond to better individuals in the

population. Koza (1992) applies consistently the adjusted fitness, in particular since it has a

significant feature: it can amplify the importance of small differences in the value of the

standardized fitness as it approaches 0 (as often occurs on later generations of a run). Over

generations, more importance is given to small differences that make the difference between a

fit individual and a fitter one. This procedure is particularly significant if the standardized

fitness actually reaches 0, when the perfect solution to the problem is finally achieved.

It is important to point out that adjusted fitness may be neither relevant nor used when

specific methods of selection, different from fitness proportionate selection, are applied (for

instance, tournament selection and rank selection).

If the method of selection employed is fitness proportionate, the normalized fitness n(i, t) is

obtained from the adjusted fitness value a(i, t) as follows

24

where . The normalized fitness is characterized by three significant and

desirable features. First of all, it ranges between 0 and 1. Secondly, it is larger for the fitter

individuals in the population. Thirdly, the sum of the normalized fitness values is 1. In

Genetic Programming problems, the phrases “proportional to fitness” or “fitness

proportionate” usually refer to the normalized fitness.

Facing some problems, the user may deal with situations in which the population essential to

find the solution to the problem is required to be larger and larger. This situation entails an

extremely time-consuming calculations because both the population size and the amount of

time required to evaluate the fitness are large, especially when computer resources are limited.

As Koza (1992) remarks, in many cases, the performance of the Genetic Programming can be

considerably enhanced through the greed over-selection of the fitter individuals in the

population. This procedure is applied when starts the selection of the individuals from the

population for the various genetic operation (e.g., reproduction and crossover): the fitter

individuals are given an even better chance of selection than is already the case with

normalized fitness. This greedy over-selection amounts to a further adjustment to the fitness

measure. This adjustment should be used to improve performance only when the population

size is 1,000 or larger.

25

1.4.6 Primary Operations for Modifying Structures

Reproduction

The structures undergoing the Genetic Programming are modified through the application of

two primary operations and five operations considered secondary, since the user can

discretionary choose whether to apply or not these genetic procedures.

The primary operations are the Darwinian reproduction and the crossover (or sexual

recombination).

The reproduction operation is the base of the Darwinian natural selection and survival of the

fittest. This operation is asexual since its performance involves only one parental individual

and it produces only one offspring. A single individual is selected from the population

following some previously determined selection method based on fitness. Then, the selected

individual is copied, with no modifications, from the current population into the new

population (i.e., the new generation). There are many different selection methods based on

fitness. The most popular, as before said, is fitness-proportionate selection. When this method

is applied, the reproduction operation is said fitness-proportionate reproduction. If is

the fitness value of individual in the population at generation t, then, under fitness-

proportionate selection, the probability that individual will be copied into the next

generation of the population is

Usually the fitness value of any individual is evaluated by the normalized fitness function

n(). Thus, the probability that an individual will be copied into the next generation equals

exactly its normalized fitness n().

As an alternative to fitness-proportionate selection, the user may choose to apply the rank

selection; in this case, as before explained, individuals are selected according to the rank

26

position obtained after the determination of the fitness value associated with them (Baker

1985). High-fitness individuals in the population are subjected to a concrete reduction in

terms of potentially dominating effects since rank selection implies a limited amount of

selection pressure in favor of such individuals. Furthermore, this kind of selection overstates

the differences among individuals belonging to clusters characterized by very closed fitness

values (Whitley 1989). In tournament selection, a fixed-number group of individuals

(generally two) is randomly selected from the population and the individual which displays

the better fitness value is then chosen.

Generally, the selection operation can be performed with replacement: this implies that

parents can be selected several times for reproduction during the current generation. Thus, the

rate of survival and reproduction for individuals with high fitness value is essential for

Genetic Algorithms and Genetic Programming. Furthermore, reproduction is particularly

important in terms of time that can be saved in calculation. The reason is simply the fact that

individuals that are replicated in next generations do not need to be again measured in terms

of fitness, since their fitness value will remain unchanged
8
. For example, if the reproduction

operation is being applied to, say, 10% of the population on each generation, this technique

alone results in 10% fewer calculations of fitness on every generation.

Crossover

The crossover (sexual recombination) operation has a relevant influence in Genetic

Programming. This operation guarantees the variety among individuals in the population by

creating new offspring formed of parts taken from each parent. Thus, crossover operation

involves two parents from which are created two new offspring. On the contrary of

reproduction, crossover is a sexual operation. Parents are selected according to the previously

determined fitness-based selection method also used for selection in reproduction operations.

Using a uniform probability function, one random point in each parent will be independently

8
 Except for specific cases in which the fitness function is for example normalized or standardized.

27

selected as the crossover point. The crossover fragment for a particular parent is the rooted

subtree which has as its root the crossover point and which consists of the entire subtree lying

below the crossover point. This subtree sometimes consists of one terminal. It is important to

note that, normally, parents show unequal sizes. The crossover operation has always to take

into consideration and implement the fixed parameters which define the maximum depth of

the trees. Practically speaking, the first offspring is formed by getting rid of the crossover

fragment of the first parent from the first parent and then inserting the crossover fragment of

the second parent in what is called the remainder or, in other words, at the crossover point of

the first parent. The same procedure is symmetrically followed for the creation of the second

offspring.

The following figures are displaying a graphical example to clarify the crossover operation.

Figure 1.2

Figure 1.3

Figure 1.4

28

Figure 1.2 shows an example of two parental programs. Both trees above are numbered in a

depth-first, left-to-right way. The crossover points of Parent 1 and Parent 2 are respectively

located at second point (which corresponds to the NOT function) and at the sixth point (which

corresponds to the AND function). In Figure 1.3 the crossover fragments are clearly

highlighted and set apart. As shown in Figure 1.4, the crossover fragment obtained from

Parent 1 is implemented in the remainder of Parent 2, creating a new offspring. The same

procedure involves the crossover fragment created from Parent 2 and the remainder of Parent

1, entailing the creation of the second new offspring.

Note that in applying the crossover operation, the closure property if the functions has always

to be respected in order to obtain feasible offspring.

Considering the crossover operation results, offspring can be generated in a variety of

different combinations. If the crossover point of the first parent corresponds to a terminal

point, then the subtree extracted from the second parent will be inserted in the first parent in

the place of the terminal point, creating an extension of the first individual, while the terminal

will be inserted at the location of the subtree in the second parent, shearing off the second

individual. This procedure will often have the effect of producing an offspring with

considerable depth.

In the case in which the both selected crossover points correspond to terminal points, the

crossover operation will simply consist of a swap between the two terminals from one parent

to the other.

There is also the possibility that the root of one parental happens to be selected as the

crossover point. In this situation the entire parent will be inserted at the crossover point of the

second part, becoming a subtree within the second parent with the result of producing a new

offspring of considerable depth. Furthermore, the subtree extracted from the second parent

will, instead, become the other complete offspring. In rare situations, it may happen that the

crossover point selected from the first parent is the root of the individual (as in the previous

29

case) and the crossover point of the second parent consists of a terminal point. In this case the

second offspring will consist only of one terminal point.

When the roots of the both parents are selected as crossover points, the crossover operation

simply implies the reproduction of both individuals.

It may happen that an individual can be selected to embody both parents and incestuously

mates with itself or two identical individuals mate. In these situations the resulting offspring

are generally different since the crossover points, which are randomly selected, are situated in

different positions in the parents. These cases are peculiar since they are completely in

contrast with the case of the conventional Genetic Algorithm. When the crossover operation is

applied to Genetic Algorithms, it operates on fixed-length character strings where the one

selected crossover point will be situated in the same position in both parents. Thus, the

incestuous mating of an individual produces two identical offspring that duplicate the parent.

These results affect the genetic diversity of the population of the next generation. For both

genetic methods, when an individual in the population shows extraordinarily good fitness

relative to the other individuals currently in the population, the Darwinian reproduction

operation will cause many copies of that one individual to be produced, even if its

performance is mediocre in the search space as a whole. In fact, the reproduction operation

entails the selection of a fixed percentage of the population, chosen probabilistically

proportionate to fitness, that will may be copied into the next generation. This tendency

towards convergence will be increased, since the extraordinary individual and its copies will

be frequently selected to participate in crossover: incestuous mating among individuals will

be recurrent. As before said, in Genetic Algorithms, when an individual incestuously mates

with itself, the two resulting offspring will be identical: the result may be a strong tendency

toward convergence which perilously leads to what is called premature convergence.

Premature convergence involves the convergence of the population to a globally suboptimal

result and generally happens when a mediocre individual in the search as whole shows

extraordinary high performance in terms of relative fitness when compared to the other

individual of the current generation. As Koza (1992) clearly illustrates, in this situation

30

(sometimes called ''survival of the mediocre''), the conventional Genetic Algorithm fails to

find the global optimum. Naturally, when the global optimum is found, the conventional

Genetic Algorithm converges with high probability to that globally optimal individual. Once

the convergence process is started, only the mutation operation may divert the trend, since in

principle mutation may lead in any direction. Anyway, in practice, it is usually to observe a

quick reconvergence of the population. Instead, Genetic Programming reacts differently to the

issue: if an individual incestuously mates with itself, generally the crossover point will be in

different points of the two parents (except in rare cases), producing two different offspring. In

conclusion, it can be highlighted that, in Genetic Programming, crossover operation generates

a counteracting force away from convergence.

Recalling what before anticipated, a maximum depth of the trees should be fixed at the

beginning of any computation in Genetic Programming, in order to avoid extreme losses of

time in complex calculation over few extraordinary large individuals. Once this maximum

size is established, also the offspring created by the crossover operation must respect this

parameter. What happens if, after crossover operation, a new offspring, which exhibits a not

admissible size, is created? In this situation the operation must be aborted: the offspring will

be eliminated and the first of its parents will be arbitrarily chosen to be copied into the next

generation. When both offspring exceed the maximum depth admitted, then both parents will

be reproduced into the new population. If it was possible to execute all the possible

combination resulting from crossover with no boundaries in terms of depth size of the trees,

the process would behave as the nature does. Nonetheless, as Koza (1992) illustrates, it is

possible to establish a default value for the maximum permissible depth (for example 17
9
)

which guarantees limited negative influence for what concern the exploration and the

constraining of the solutions.

9
 This example for the choice of the maximum depth of the tree just reports the number selected by Koza

(1992).

31

1.4.7 Secondary Operations for Modifying the Structure

For what concerns the secondary operations in Genetic Programming, there are five more

optional operations that can occasionally be used, whose worth require to be carefully

examined, as their influence might be particularly important for the exploration of the search

space. These five operations are:

· mutation;

· permutation;

· editing;

· encapsulation;

· decimation.

Mutation

The mutation operation is particularly useful since it introduces random changes in structures

in the population. When applied to conventional Genetic Algorithms, it operates on strings

and contributes to reintroduce or increment genetic diversity in a population that may be

experiencing premature convergence. In fact, often a particular symbol (i.e. allele) occupying

a distinct position on a chromosome string happens to premature extinguish because

associated to strings with lower performances. Complications arise when that particular allele

corresponds to the needed character that will allow the Genetic Algorithm to achieve optimal

solution at a later stage of the run. Occasionally, the mutation operation may effectively

produce beneficial outcomes reintroducing alleles necessary to reach the optimal solution but

extinct during the run. As Holland (1975) and Goldberg (1989) underline, in conventional

Genetic Algorithms the effects of mutation are relatively subordinated to the primary genetic

operations and, for this reason, it is considered an almost unimportant operation.

The considerations about the occasional usefulness of mutation applied to strings in the

conventional Genetic Algorithm are largely inapplicable when this operation is applied to

32

Genetic Programming. Mutation is an asexual operation operating only in one parent. The

probability, according to which the selection is effectuated, is proportional to the normalized

fitness and the result of this operation is one offspring. The initial step of mutation is the

randomly selection of a point, called mutation point, that can be either an internal point (thus,

corresponding to a function) or an external point (i.e. a terminal) of the tree. The second step

involves the removal of both the point selected as mutation point and whatever is below that

point. After this operation, a randomly generated subtree is inserted at that precise point,

creating a completely new individual. Naturally also mutation must comply with the

parameter that specifies the maximum size (depth) of the trees. Normally, this control

parameter takes the same value of the parameter initially set for the maximum size of

individuals in the original random population. It may happen that sometimes, at a randomly

point of the tree, a single terminal is inserted after the mutation operation. Occasionally this

point mutations occurs also in the crossover operation, when both selected crossover points

correspond to terminal points.

In Genetic Programming functions and terminals are not bounded to fixed positions in a fixed

structure and it is rare that a single function or terminal completely disappear from the

population, at least in the early stage of the run, because of the low number of functions and

terminals used in the process. For this reason, while in the conventional Genetic Algorithm

mutation restores the diversity, especially in cases of premature convergences, this function is

not essential in Genetic Programming. Furthermore, in Genetic Programming the crossover

operation may itself produce the same effects of mutation whenever the two crossover points

in the two parents are both endpoints of the trees. Thus, even though point mutation may be

useful, the crossover operation already provides it.

33

Permutation

The permutation generalizes the inversion operation which applies in the conventional

Genetic Algorithm. In conventional Genetic Algorithms, after selecting two different points of

a single individual, all the characters included between these two points are reordered by

reversing their positions. The effect is to put close together some alleles and move farther

apart others with the purpose of establish a linkage between combinations of alleles that

perform well when combined together, especially when the inversion operation is applied to

relatively high-fitness individual.

As for reproduction and crossover, the individuals subjected to permutation are selected with

a probability proportional to their fitness value. This asexual operation, which, thus, operates

on only one parent, produces one offspring. It begins with the randomly selection of an

internal point (i.e. a function). When the selected function has k arguments, a permutation is

selected at random from the set of k! possible permutations and the arguments of the function

are permuted according to the random permutation chosen. Sometimes immediate effect on

the returned value may not be visible as long as the selected function has commutative

properties. Permutation applied to Genetic Programming, as described above, is different

from the inversion operation for the Genetic Algorithms. While in Genetic Programming

permutation allows any one of the k! possible permutations to occur, which is randomly

chosen, the inversion operation allows only one of the k! possible permutations, namely the

simple reversal.

Editing

The editing operation aims at simplifying the structures of the individuals as Genetic

Programming is running. The editing operation is asexual, i.e. it operates on one parent and

produces one offspring. In order to make the editing operation applicable, a pre-established

set of domain-independent and domain-specific editing rules must be defined for each

34

individual in the population
10

. The simplification process basically follows one simple rule:

any function that presents no side effect, that is context independent and has only constant

atoms as arguments, can be evaluated through the editing operation and can be replaced with

the value obtained from the evaluation (domain-independent editing rule). A classical

example is the numeric expression (+ 2 4) which encodes the summation of 2 and 4: this

function will be substituted by the value 6. Another representative case could be the Boolean

expression (AND T T), where T stands for True: in this situation the expression will be

substitute simply by T. As before said, all these cases follow a pre-specified set of domain-

specific editing rules, which covers all the situations that potentially can be simplified. In the

Genetic Algorithms there are no equivalents to the editing operation since individuals are

already encoded in fixed-length character strings with a uniform structural complexity.

In Genetic Programming, the editing operation can be applied in two different ways:

 the editing operation can be used cosmetically, or in other words, external to the run,

in order to return a more readable output of displayed individuals.

 the editing operation may also operate during the run with the aim either for returning

simplified output or for improving the overall performance of Genetic Programming.

Whatever is the motivation for which the editing operation is applied, it will be implemented

to each individual in the population. A frequency parameter controls the recurrence of the

editing operation across generations. There is a very unclear opinion over the actual result of

the editing operation in Genetic Programming. Doubts are generally related to the difficult

question whether simplifying in order to speed up the process is potentially helpful or

prejudicial (as it decrease the number of structures available for the crossover, the mutation

and the permutation operations) in finding the solution to problems with Genetic

Programming.

10

 The terms domain-independent and domain-specific editing rules refer to specialized rules whose application
is not affected or influenced by the run of the Genetic Programming.

35

Encapsulation

The encapsulation operator automatically identifies useful subtrees and gives them an

encoded name in order to reference and use them later. In this way it is possible to decompose

a larger problem into a hierarchy of smaller subproblems, easier to be solved. The automatic

identification of the subproblems and the definition of a hierarchy are the fundamental steps

for dealing with large problems. Encapsulation is an asexual operation: as in reproduction

operation, the parent is selected with a probability proportionate to its fitness value and it

produces one offspring. The first step of this operation is the randomly selection of a function

(internal point) of the individual. The encapsulation operation cancels the subtree originated at

the selected point and establishes a new function which automatically refers to the removed

subtree. These new encapsulated functions are respectively named , , , , ...,

according to their creation and they have no arguments (i.e. the functions are placed at a

terminal point of the tree). The reference to the new function is then integrated at the selected

point of the individual subjected to the encapsulation operation. The result of this operation is

one offspring and one new subtree definition. Furthermore, the initial function set of the

problem is completed through the integration of the newly created function allowing the

mutation operation, if used during the run, to incorporate the encapsulated functions in the

subtrees grown at the selected mutation point. The main positive development of the

encapsulation operation is the creation of an indivisible single point which encapsulate the

selected subtree and which is no longer subject to the potentially disruptive effects of

crossover, becoming a potential building block for future generations.

Decimation

In some complex problems
11

, the initial population may present high skewness in the

distribution of the fitness values. This condition reveals that a very large share of the

individuals has very poor fitness. In such situation, the main issue is the incredible amount of

11

 Complex problems usually display some penalty in fitness value in order to reduce the otherwise huge
amount of time consumed for each single run. This happens for example in time optimal control problems or
problems involving iterative loops.

36

time that can be spent and wasted on very poor individuals in the early stage of the process,

especially in the first generations. Furthermore, there is a high probability that individuals

with high fitness values easily start to dominate the population and reduce the genetic

diversity. Even if in Genetic Programming the crossover operation guarantees high

capabilities in reintroducing genetic diversity in the population, the selection of the parents

participating in crossover is always based on fitness: in other words, crossover focuses on the

few individuals that relatively perform better in terms of fitness value and for this reason the

reintroduction of variety is not always obvious. The decimation operation offers a faster way

to deal with this situation. As the term in itself suggests, the decimation operation reduces the

number of individuals in a population letting survive a percentage of the population and

eliminating the remaining individuals. Two parameters need to be established in order to

correctly apply the decimation operator: a percentage and a condition specifying when the

operation is to be invoked. The percentage parameter specifies the share of population that

must be preserved while the other parameter defines on which generations the decimation

parameter will be applied (for example, the percentage may be 10% and the operation may be

invoked on generation 0). Immediately after the fitness calculation for generation 0, all but

10% of the population is deleted. Obviously, if decimation is applied on 10% of the

population of generation 0, the user will provide an initial population composed by 10 times

the individuals of the population desired for the remaining of the run. Individuals are selected

probabilistically according to their fitness value and reselection is not allowed so as to

guarantee the maximum variety among the individuals in the remaining population.

1.4.8 Termination Criteria and Result Designation

As the Genetic Algorithm, the Genetic Programming process is virtually never-ending. For

this simple reason, the user must establish at the beginning of the run a termination criterion

that has to be met and satisfied. This termination criterion can be either the achievement of a

fixed maximum number G of generations that have to be run or a problem-specific success

predicate that has been satisfied, which may for example involve finding a 100%-correct

37

solution to the problem
12

. In more complex problems (for example optimization problems) the

exact solution may not be immediately recognizable or not even expected to be found. In

these situations the user should apply as success predicate a lower criterion for success

(instead of the 100%-correct solution). Another termination criterion applied in Genetic

Programming is the method of result designation, which identifies the best individual ever

appeared in any generation of the population, or in other words the best-so-far individual

resulting from the run of the Genetic Programming. The best-so-far individual is reported as

the result of the entire run as soon as the run meets the termination criterion. In alternative, the

result designation method can select the best-of-generation individual in the population at the

time the termination criterion is met. This method usually produce the same result as the best-

so-far method; the explanation for this is the fact that the best-so-far individual is usually in

the population at the time of termination. This correspondence happens in two cases. In the

first case, due to its high fitness, the best-so-far individual is more likely to be copied into the

next generations by the reproduction operation until the termination of the run. In the second

case, the run is terminated at the generation in which the best-so-far individual is created and

it satisfies the termination criterion.

1.4.9 Control Parameters

Genetic Programming is generally controlled by 19 control parameters, including two major

numerical parameters, 11 minor numerical parameters, and six qualitative variables that select

among various alternative ways of executing a run. The two major numerical parameter are

the population size M and the maximum number of generations to be run G. The eleven minor

parameters used to control the process are:

 The probability of crossover, ;

 The probability of reproduction, ;

12

 For example some individuals of the population display a standardized fitness of 0 (Koza,1992).

38

 The selected crossover points are equally allocated through a probability distribution

 (for example =90%) among the internal (function) points of each tree, while

the remaining share of crossover points (10%) is equally distributed among the

external (terminal) points of each tree;

 A maximum size (measured by depth), , is established for individuals created

by the crossover operation;

 A maximum size (measured by depth), , is established for the random

individuals generated for the initial population;

 The probability of mutation, ;

 The probability of permutation, ;

 The parameter specifying the frequency, , of applying the editing operation;

 The probability of encapsulation, ;

 The percentage and condition for invoking the decimation operation
13

;

 The decimation percentage, ;

Moreover, the execution of the runs is influenced by six more qualitative variables:

 The generative method for the initial random population;

 The method of selection for reproduction and for the first parent in crossover;

 The method of selection for the second parent in crossover;

 The type of fitness measure applied;

 The application or not of the greed over-selection method;

 The application of the elitist strategy
14

.

13

 The decimation operation requires to establish the percentage of individual that must survive and the
condition for evoking the operation, which consist in setting the number of the generation at which the
operation must operate. For example, setting this condition at 0 means that the decimation operation will be
applied on the generation 0 (i.e. the initial generation).
14

 The elitist strategy allows the best-so-far individuals to pass on unchanged to the next generation in order to
avoid decrease in the solution quality from generation to generation.

39

1.5 The Schemata

In the Genetic Algorithm the number of individuals actually present in the current population

is just an infinitesimal share of the complete search space of the problem. In his book

Adaptation in Natural and Artificial Systems (1975), Holland clearly shows how the Genetic

Algorithm, processing fixed-length character strings, implicitly operates information about a

massive number of unseen schemata. The Genetic Algorithm, in parallel, computes for each

generation an appraisal of the average fitness of each unseen schemata. The paramount

concept underlying the Schemata Theorem is, indeed, the implicit calculation that operates on

the schemata. In other word, the Genetic Algorithm computes the reproduction and crossover

operations on the M individuals actually part of the population, but still processes all the

possible existing schemata.

Individuals are encoded in strings of length L and each gene can assume a value over an

alphabet of size K. Instead, a schema is defined as a string of length L over an extended

alphabet of size K plus the metasymbol *. The high consideration received by the concept of

schema is due to the fact that a particular schema might be a relevant component of the final

solution of the problem. Given a particular string expressed in a binary alphabet, for instance

H=(0 0 0 1 0 1 0 1), the schemata connected to this string will consist of any possible schema

whose structure match with that string; in other words each symbol matches the symbol of the

identifier for all specific positions, where the *-symbol is matching anything, for example

H=(0 * * 1 0 * 1). Thus, what the implicit parallelism implies is that one string’s fitness tells

us something about the relative fitness of more than one schema. The assumption underlying

the Schema Theorem is the fact that individuals’ high fitness values are due to the existence

of a good schemata. According to Holland, for Genetic Algorithms using fitness-

proportionate reproduction and crossover, those individuals who present good schemata, and

therefore high fitness values, should receive higher chances to pass on their genes in the next

generation. In case of binary alphabet, there are schemata and each individual

appears in cases; therefore, in a population of M individual strings there will occur

40

schemata. Following Holland’s thought, the expectation for each schema H to occur in the

next generation is

where is the number of each schema H expected to occur in the next generation,

 is the number of each schema H in the current generation, is the fitness value

of the considered schema H, is the average fitness and is small. When the fraction

 remains above the unit through several generations, the schema presenting above-

average fitness has exponentially increasing possibility to occur in the next generation, too.

Concerning about , it is determined by dividing the length δ(H) of the schema (i.e. the

distance between first and last position of non * symbols) by L – 1, which is the number of

points where crossover could operate). Thus, is small when the length of the schema δ(H) is

short too, with the consequence preference of Genetic Algorithms to compute on short and

compact schema.

In Genetic Programming a schema is the set composed by all the trees in the population that

are formed by one or more particular subtrees. Assume that the feature that must be shared

among the individuals belonging to the same schema is a subtree formed by s predefined

points. All points are specified: “don’t care” symbols do not exist in the Genetic

Programming schema. The number of individuals that could potentially contemplate this

feature is unlimited since the possible combinations are infinite, but the Genetic Programming

procedure, as before said, consider only trees within a pre-specified maximum depth, which is

provided both in the first generation, concerning the size of the initial random trees, and the

successive generations, when the depth of individuals varies because of the crossover

operation. Once the maximum size W is defined, the subset of interest will be finite. All the

individuals belonging to this subset contribute to the computation of the average fitness of the

schema, , which is the average of all the fitness values of the considered individuals.

Following the same approach used to study the Genetic Algorithm, Holland came to the

41

conclusion that, also in Genetic Programming, the occurrence of schemata in the following

generations depends on the ratio of the fitness of the schema in interest to the average fitness

of the population. In other words, what it is really interesting is not the absolute fitness value

of one individual, but its relative value compared to all the other individuals existing in the

population. When this ratio is high, it is possible to notice an increase in the number of the

expected occurrence m(H, t) of that schema in the next generation in an exponential way.

In contrast with what happens in Genetic Algorithms, the disruptive effect of the crossover

operation in Genetic Programming is more likely to cause deviations from the near-optimal

rate of growth (or decay) of a schema. For strings this effect is relatively small because of the

limited distance between the points in the string contributing to the definition of schema (δ(H)

). In Genetic programming the disruptive effect is limited only when the schema corresponds

to a small compact subtree; to overcome this problem, when the schema contains only a single

well-defined subtree, these subprograms from relatively high-fitness programs become

building blocks for constructing new individuals in an approximately near-optimal way. Over

time, the consequences are the reduction of the search space and the increase of the fitness of

the individuals. This process applies also to schemata with multiple specified subtrees.

42

Chapter 2
The Literature In Genetic Algorithms
and Genetic Programming

2.1 Literature Overview

2.1.1 Genetic Algorithm and Genetic Programming in Financial Applications

The application of Genetic Programming has collected important results in the solution of

problems in which the domain is poorly understood and the relevant variables are not

specifically defined or are unknown. Generally speaking, when the domain is completely

defined, there might be more specific tools able to solve the problem with good qualitative

results which allow the user to avoid the intrinsic uncertainty typical of stochastic processes

like Genetic Programming. On the other hand, Genetic Programming reveals all its potential

capabilities, especially when it comes about new or not fully understood applications. Genetic

Programming may help in understanding the true importance of variables and operations,

revealing new problem solutions and unpredictable connections among variables. In other

words, Genetic Programming can bring to light new approaches whose application could be

extended to a wide variety of circumstances. Its contribution is important especially when size

and shape of the solution are unknown. Instead, in the case in which the characteristics of the

solution are known, it is possible to approach to the solution with more specific method (for

instance the Genetic Algorithm, whose strings have a pre-specified length). One of the most

interesting feature of Genetic Programming is its capability to cope with large amount of data

and handle the presence of noise in the data. Furthermore, Genetic Programming shows more

effectiveness in exploiting smaller dataset with respect to others nonparametric approaches,

such as Neural Networks or Genetic Algorithms.

43

The application of Genetic Algorithms and Genetic Programming has been widely used in an

enormous number of fields, reporting successful results as automatic programming tool,

machine learning tool and automatic problem-solving engine. The first term (automatic

programming tool) defines a computer program whose language is generated by commands

that follow a precise automatic code; these tools are opposed to the ones which are manually

processed and computed by the users. The machine learning tools are approaches based on

algorithms that learn from data. Instead of being merely based on precisely programmed

instructions, these tools are able to use the inputs provided by the user to build a model and

process the data in order to make decisions and predictions.

During the last decades the financial application of GAs and GP have seen numerous

advancements, starting from familiar applications, such as forecasting, trading, and portfolio

management, and concluding with enhancements in more recent fields of study, such as cash

flow management, option pricing, volatility forecasting, and arbitrage. This research area has

been widely studied and a lot of introductory material is available. Bauer (1994) is one of the

first and more complete textbooks on the introduction of GAs to finance. No comparable

textbook can be consulted with regard to GP in computational finance. However, an

exhaustive analysis of financial applications of GP is exposed in Smith and Chen (1998).

Because of the extremely vast area of application of Genetic Algorithms and Genetic

Programming, the description of all these possible practical implementations is impossible.

For the sake of clarity, an example of the huge work conducted on Genetic Programming is

the research developed by Shu-Heng Chen (Chen, 2002), who has applied Genetic

Programming over more than 60 papers in finance and economics.

Genetic Algorithms and Genetic Programming have been mainly applied to financial

forecasting and trading, which are the most dynamic financial applications. Just for giving the

idea of the variety of the subject, even if not updated to the latest years, an extensive review

has been provided in Evolutionary Computation in Economics and Finance: A Bibliography,

Chen and Kuo (2002). From the list of publications contained and classified according to their

domain application, it results that about 40 former publications are focused on financial

forecasting and 35 on trading. Obviously, the connection between forecasting and trading is

44

extremely close: the main aim of financial forecasting is to boost the productivity of trading.

Excluding financial forecasting and trading, the remaining published application of GAs and

GP are mainly focused on portfolio optimization, cash flow management, option pricing,

volatility modeling and arbitrage.

Recalling Chen works, Chen has recently worked on the modeling of agents in stock markets

(Chen and Liao, 2005), game theory (Chen, Duffy, and Yeh, 2002), evolving trading rules for

the S&P 500 (Yu and Chen, 2004) and forecasting the Heng-Sheng index (Chen, Wang, and

Zhang, 1999). In 2008 Chen examined the extent to which the return of financial trading

rules, obtained through Genetic Programming, is correlated with the entropy rates of the price

time series (Navet, N. and Chen, S.-H. 2008), deepening the preceding works on Genetic

Programming in financial trading. Among these works dedicated to financial trading and

Genetic Programming, it is necessary to cite also the work of Dempster and Jones (2001),

where it has been developed a real-time adaptive trading system based on combinations of

different indicators at different frequencies and lags.

Kaboudan shows that GP can forecast international currency exchange rates (Kaboudan,

2005), stocks (Kaboudan, 2000) and stock returns (Kaboudan, 1999). Tsang and his co-

workers continue to apply GP to a variety of financial areas, including: betting (Tsang, Li, and

Butler, 1998), forecasting stock prices (Li and Tsang, 1999; Tsang and Li, 2002; Tsang,

Yung, and Li, 2004), studying markets (Martinez- Jaramillo and Tsang, 2007), approximating

Nash equilibrium in game theory (Jin, 2005; Jin and Tsang, 2006; Tsang and Jin, 2006) and

arbitrage (Tsang, Markose, and Er, 2005). Dempster also uses GP in foreign exchange trading

(Austin, Bates, Dempster, Leemans and Williams, 2004; Dempster and Jones, 2000;

Dempster, Payne, Romahi and Thompson, 2001). Pillay has used GP in social studies and

teaching aids in education, (e.g. Pillay, 2003). Since 1995, the International Conference on

Computing in Economics and Finance (CEF) has been held every year. It regularly attracts

papers focused on Genetic Programming, many of which are on-line. In 2007 Brabazon and

O’Neill established the European Workshop on Evolutionary Computation in Finance and

Economics (EvoFIN).

45

2.2.2 Derivative Securities: A Focus on Options

Concerning the prediction of derivative securities behavior, Genetic Programming has been

widely investigated and applied in the study of derivative securities’ behavior.

The term “derivative security” defines a financial contract whose value is established by the

market price of the underlying cash instrument at the time considered. In other terms, the

price of the underlying asset determines the price of the derivative security.

The underlying asset can be

- Stocks;

- Currencies;

- Interest rates;

- Indexes;

- Commodities, like crude oil, gold and many more.

Furthermore, derivative securities can be grouped under three general headings:

- Futures and forwards;

- Options;

- Swaps.

Since the main aim of this work is the analysis of Genetic Programming applied to the option

pricing, a brief introduction to options and the previous literature dedicated to the this topic is

provided.

In finance, the term option defines the peculiar contract that confers on the buyer (owner) of

the option the opportunity, but not the obligation, to buy or sell the underlying asset on which

the option is written at the strike price on or before the specified expiration date. Options

mainly diverge from the other derivative securities thanks to the rights that the possessor is

entitled: the user is not obliged to buy or sell the underlying. The operation happens only if it

is the most profitable choice, otherwise the possessor will not exercise his right. On the other

hand, the corresponding seller has to fulfill the transaction: he is obliged to sell or buy if the

buyer (owner) exercises the option. According to the purpose of the operation, option trading

46

gives various benefits; in particular, it limits the risk and provides a leverage protecting or

enhancing a portfolio in increasing, decreasing or neutral markets.

Options can be classified in call or put options, which respectively give the right to buy or sell

the underlying asset at the strike price on or before the expiration date. The other main

classification is between European and American options: the first gives the opportunity to

exercise the option only at the expiration date while the second group gives to the owner the

right to exercise the option in any moment from the subscription of the contract until the date

of expiration.

Option pricing is a current growing research topic, which is attracting the attention in both

academic and practical financial fields. The price, or cost, of an option is known as the

premium, the amount of money that grants the right of exercise the option. The premium is

non-refundable, whether or not the option is exercised.

The value of the option premium is usually formed by the intrinsic value (the difference

between the strike price of the option and the value of the underlying asset) and the time

value, which refers to the difference between the premium and the intrinsic value. Generally,

the time value of the option increases as the expiration date is further in the future. The

underlying price is definitely the most influential component of the option premium as it

influences directly the option price. Strike price instead defines the intrinsic value, if there is

any. In particular, the premium augments its value if the option is in-the-money (and the

option is more likely to be exercised) and, on the other side, it drops as the option becomes

out-of-the-money (and the option will probably be not exercised). An option is considered in-

the-money when its exercise is considered convenient; in the case of call options this happens

when the underlying price is higher than the strike price, while put options are considered in-

the-money when the underlying asset price is below the strike price. Vice versa, call options

are considered out-of-the-money when the strike price is above the stock price; when

considering put options, they are out-of-the-money when the strike price is lower than the

underlying asset price. Finally, an option is defined at-the-money when the stock and the

strike price are identical.

Option traders also consider the volatility of the option, which is a measure of the degree of

fluctuation of the underlying asset’s price: it displays the speed and magnitude of price

47

changes. Financial traders usually compare the historical and the implied volatility in order to

understand if an option is over- or undervalued. The historical volatility measures the

observed price changes in a specified time lapse and is normally calculated using the standard

deviation from the average price calculated over that precise time period. The historical

volatility is also known as statistic volatility. Once the statistic volatility has been calculated,

it can be used in a standard option pricing model (as the Black-Scholes model) in order to

derive the market value of an option. Normally the market value obtained through this

calculation (known as theoretical value) is different from the current price of an option and

this difference is defined as option mispricing. In other words, the theoretical value is an

estimation evaluated through the application of a model. Its value should picture the worth of

the option and it is calculated using known parameters and real data. Generally, these inputs

vary during the lifetime of the option and fluctuations should be considered while applying

the model. For this reason theoretical value is conceptually different from the current market

price of an option. Traders are naturally interested in evaluating the effectiveness of the option

pricing model applied and a good measure that allows to evaluate the efficiency of the model

is given by the implied volatility. The implied volatility is the expected volatility or, in other

words, the projection in the future of the volatility rate of the underlying asset price at the

expiration date of an option. The implied volatility can also indicate the current market trend.

If the implied volatility is higher than the historical volatility it could indicate that the market

is expecting that some non-specified factors will significantly influence the trend of the

underlying asset. In this case, generally, the option is overvalued. Implied volatility is

generally not easily quantifiable as, in general, there is any closed-form formula. Normally,

when the underlying asset shows high volatility peaks, it entails higher expected price

fluctuations and consequently a higher option premium.

The expiration date has a consistent influence in option valuation. The probability that an

option will be in-the-money is higher as the expiration date is far in the future. Of course, as

the expiration date comes closer, the value of the option will experience a decrease.

An interesting effect on option value is ascribable to interest rates and dividends. The interest

rate’s influence is linked to the cost of owning the underlying asset and, as the rates increase,

call premiums will rise and put premiums will decrease. The interest rate assumes the role of

48

an opportunity cost: when the interest rates are higher, also the opportunity cost of buying

stocks becomes higher and buying call options rather than stocks becomes more attractive. In

other words, buying call options instead of the stocks allows the investor to gain the same

profit, controlling the same quantitative of the underlying asset but freezing a smaller amount

of money compared to the money the investor would have used directly buying the

underlying. This condition pushes up the call option demand and consequently the call option

price (ceteris paribus). For what concerns put options, they can be considered as substitutes

for shorting shares. Shorting shares implies a positive cash flow into investor’s account,

entailing earnings from interests. For this reason, buying put options can be profitable when

speculating to downside trending. When, instead, interest rates increase, put option buyers can

not earn on interests. In a scenario of rising interest rates, put options are less attractive than

shorting shares causing a drop in put option demand and consequently a drop in put option

premium. Following the same reasoning, a decrease in interest rates implies a rise in put

options demand along with the premium increase.

Option prices are also conditioned by dividends: any time dividends are cashed, the

underlying asset’s price experiences a drop on the ex-dividend date. The considerations that

must be taken into account are two: when the dividend’s value increases, call prices will

decrease and put prices will increase. On the contrary, as the dividend’s value decreases, the

effect on call and put options will be exactly the opposite.

The development of both an academic interest and a flourishing trading market in options

started from 1973, when options became actively traded through a guaranteed clearing house

at the Chicago Board Options Exchange. Nowadays options are traded through clearing

houses on regulated markets or over-the-counter (when buyer and seller agree on a bilateral

customized contract). From the 1970s till the present day a constant attention has been

directed to the definition of an effective option pricing model. Generally, models exploit fixed

certain parameters and data (such as the underlying price, the strike price and the expiration

date) and calculated factors, such as the implied volatility, in order to derive the theoretical

value of the option at a specified time. During the option lifetime, variable data and

parameters will fluctuate and these changes will influence the position of the theoretical

value.

49

2.2.3 Black-Scholes Formula

The first and most common approach to option pricing is the Black-Scholes model, published

in 1973 by Fischer Black and Myron Scholes in a paper entitled "The Pricing of Options and

Corporate Liabilities" published in the Journal of Political Economy and derived by the

previous research of Robert Merton and Paul Samuelson. In that paper, a closed-form option

pricing formulas were obtained through a dynamic hedging argument and a no-arbitrage

condition. The Black-Scholes formula has been widely recognized as a milestone in the

option pricing theory and it is commonly applied in finance, but the academic world agrees on

the restrictiveness of the assumptions under this model, which shows systematic biases from

actual option prices. Above all, it has been assumed that the underlying asset returns follow a

normal distribution and discontinuous jumps are not considered possible. This assumption is a

limit in real-world applications. In fact, a misspecification of the stochastic process will lead

to systematic pricing and hedging errors for derivative securities linked to the underlying asset

(Brabazon). A strong assumption is also made on the efficiency of the market: market

movements cannot be predicted. Due to these lacks in accuracy and affinity to the real world

option pricing behavior, some researches have been directed to new non-parametric

approaches, as Genetic Programming (Chen 1997).

The Black-Scholes approach is applied to European put and call options, that can only

exercised at the expiration date. The original shape of the model does not take into

consideration any dividend during the analyzed lapse. Anyway, further adaption has made

possible to account for dividends estimating the ex-dividend date value of the underlying

asset.

The Black-Scholes pricing formula for call options:

 where

C = Call premium

S = Current stock price

t = Time until option exercise

K = Option striking price

r = Risk-free interest rate

N = Cumulative standard normal

distribution

e = Exponential term

s = Standard Deviation

ln = Natural Logarithm

50

The formula composition can be analyzed in two parts: the first one, SN(d1), consists in

multiplying the current stock price, S, by the change in the call premium in relation to a

change in the underlying price, N(d1). From this multiplication it can be derived the

advantage of buying the underlying. The second part, N(d2)Ke^(-rt), shows, instead, the

present value of paying the exercise price upon expiration. The difference between these two

parts is the option value. The five variable needed in Black-Scholes formula, as shown in the

formula above reported, are five: strike price, stock price, time to maturity, volatility and risk

free interest rate.

2.2 Literature In GAs and GP Option Pricing and Related Works

Pricing financial products is certainly one of the most complex issues in finance and, when

the underlying asset returns do not follow a precise stochastic process, an exact solution is

generally not available (Chen 1997). Various nonparametric approaches, among the others of

course also Genetic Algorithms and Genetic Programming, have been widely studied to test

their capability to properly overcome the lack of the Black-Scholes model in flexibility.

A wide literature has investigated the features of these applications.

In 1994 James M. Hutchinson, Andrew W. Lo, and Tomaso Poggio published an innovative

paper that inspired many further works: A Nonparametric Approach to Pricing and Hedging

Derivative Securities Via Learning Networks. The authors propose a nonparametric approach

for the estimation of the pricing formula of a derivative asset using learning networks. These

nonparametric modelling tools exploit data in order to learn from them altering the

connections between the input elements and analyzing the evolution of the problem results

obtained. In this paper, Black-Scholes option prices are simulated and it is proved that the

learning networks have the ability to recover the Black-Scholes rule. For this purpose, a two-

year option prices set has been trained. A comparison is conducted analyzing four other

approaches: ordinary least squares, radial basis function networks, multilayer perceptron

51

networks, and projection pursuit
15

. Furthermore, these methods have been tested to real

market data from S&P 500 futures options, from 1987 to 1991.

The method presented by Hutchinson, Lo and Poggio is a nonparametric data-driven

approach, a technique characterized by the fact that the data itself attempts to generate a

model that determines both the behavior and the dynamics of the underlying asset and the

connection between the considered asset and the prices of derivative securities. Meanwhile,

assumptions on the underlying and on the pricing model are reduced to the minimum:

lognormality and sample-path continuity are not taken into consideration and the parameters

adapt to the changing environment during the run as data keep evolving through generations.

The main inputs of the model are the underlying asset price, the strike price, the date of

expiration, the volatility and the free-interest rate, while the output is the derivative’s price

obtained as problem’s solution of the nonparametric data-driven problem.

The aim of this work is to prove the capability of learning networks to approximate the Black-

Scholes formula. For this purpose, the learning networks are trained on option prices

randomly generated through Monte Carlo simulation
16

 in a world where the Black-Scholes

rule is applied. In other words, the data generated via Monte Carlo simulation set up a training

set, which consists of an input vector that includes the variables of interest, and an output

vector. The input and output vectors are used together with the learning method, whose task is

to process the input vector in order to obtain an output vector as closer as possible to the

originally given one. In this test the output vector used for the training test is formed by the

option prices calculated with the Black-Scholes formula. The resulting solutions obtained

with the learning networks are compared with the Black-Scholes formula solutions both

analytically and in out-of-sample experiments. The results confirm the considerations

proposed by the authors: the Black-Scholes formula is recovered with extreme accuracy by

the learning network.

15

 For more information see Biologically Inspired Algorithms for Financial Modelling, Anthony Brabazon and
Michael O’Neill (2006) – Springer edition.
16

 Monte Carlo methods are a wide group of computational algorithms that, generally, randomly generate
sample data according to a probabilistic function defined on a pre-specified domain. Refer to Monte Carlo, by
George Fishman (2006) for a comprehensive introduction to Monte Carlo methods.

52

In 1997 Shu-Heng Chen and Who-Chiang Lee publish their paper Option Pricing with

Genetic Algorithm: The Case of European-Style Options, an interesting study of the

application of Genetic Algorithm in option pricing, focusing in particular on European call

options, whose solution is compared to the one obtained from the Black-Scholes option

pricing theorem. The obtained results are extremely promising, in particular when the authors

consider in-the-money options, but some issues with the construction of the test structure

limiting the performance of the model. The fitness functions, in fact, are calculated through a

relative measure, the absolute percentage error, which evaluates, in absolute percentage

terms, the residuals between the call option prices derived by the Genetic Algorithm and the

call option prices derived by the Black-Scholes formula. This relative measure displays an

asymmetric distribution, reaching values close to zero when the options are in-the-money and

values up to 70% or 80% when the options considered are out-of-the-money. For this reason,

the authors claim the necessity of new researches and in-depth analysis.

Another important research dedicated to option pricing was published in 1998 by Jay White,

who applied genetic adaptive neural networks (GANNs) for pricing interest rate futures call

and put options. In this work, Genetic Algorithms were used to implement the option pricing

formulae evolving and determining the weights of the neural networks. In order to use the

Genetic Algorithm in option pricing and therefore derive a formula that can be represented by

a bit string, Chen and Lee (1997) approach the issue using a series expansion
17

, truncating the

infinite series to a finite one. Then, the authors let the Genetic Algorithm process the bit

strings that encode the coefficients obtained by the finite series expansion.

As option pricing formula size and shape are not easily derivable, in more recent studies, it is

common the application of the tree representation, typical of the Genetic Programming [Chen,

Lee and Yeh (1999); Chindambaram et al. (2000); Keber (2000); Keber (2001)].

17

 Series expansions are mathematical methods used to calculate a function whose expression cannot be stated
using the basic mathematical operators addition, subtraction, multiplication and division. Thus, this type of
functions are expressed as the sum of powers in one of its variables, or by a sum of powers of another (usually
elementary) function . Refer to Finite series-expansion reconstruction methods, Censor Y. (1983).

53

The paper of Hutchinson, Lo and Poggio has been considered as a benchmark work: their

conclusions has been a comparison term and an inspiring starting point for many following

papers. An example is the paper published in 1997 by Thomas H. Noe and Jun Wang, The

Self-Evolving Logic of Financial Claims. This paramount study is reported in the book

“Genetic Algorithms and Genetic Programming in Computational Finance”, edited by Shu-

Heng Chen, Springer Edition 2002. In this paper, Genetic Programming has been used as an

optimization technique to price financial instruments; the purpose is to show how easily

Genetic Programming can approximate the Black-Scholes formula even when trained on

small data sample. Thus, applying the Genetic Programming to S&P 500 futures options, they

found that GP performances in option pricing were at least comparable to the performance of

artificial neural networks in Hutchinson et al. (1994).

Noe and Wang wonder about the existence of a pricing technique that does not require a

specified pricing structure and does not need to predefine a clear relation between the

underlying asset’s price and the derivative’s price. To overcome these restrictions

encountered both in the Black-Scholes model and in non-parametric data-driven model (as the

radial-bias neural network method used by Hutchinson, Lo and Poggio), Noe and Wang

investigate the Genetic Programming approach. The data sample used for the search is

relatively small with respect to the database generally needed, as Genetic Programming can

perform well also with a restrict collection of data. In fact, the results show that this method

can find a pricing formula that displays small pricing errors. Furthermore, in the following

tests, the Black-Scholes formula has been incorporated in the initial population, with the

meaning that the authors have employed as output vector the normalized ratio of the option

price obtained with the Black-Scholes formula and the strike price. Thanks to these

arrangements, the representation of the Black-Scholes formula depicted in a tree-shape has

been possible.

54

Figure 1 - Black-Scholes option pricing formula in tree representation.

The result is surprisingly interesting: the introduction of the Black-Scholes formula shortens

the evolutionary process, but the accuracy in option pricing reached in this second test is

substantially the same as in the previous test. Keeping Hutchinson, Lo and Poggio research as

a sort of benchmark, Noe and Wang first apply Genetic Programming in a simulated market

governed by the Black-Scholes pricing formula. In this first case, three terminal functions are

defined: the ratio of the spot stock price and strike price, the time to maturity and a real

number between -1 and 1. For what concerns the non-terminal functions, they are randomly

chosen between a set of operators such as plus, minus, multiplication, division, logarithm,

exponential, minimum, maximum, square root, and cumulative normal. The resulting option

price formula is normalized by the strike price. The composition of the terminal and non-

terminal sets easily allows Noe and Wang to introduce the Black-Scholes formula, depicted in

a tree form representation (see Figure 1).

N randomly generated programs form the initial population and their fitnesses are evaluated.

The tournament selection is adopted and termination criteria are set. In particular the process

will conclude as the best so far program correctly assess a true pricing value to a previously

fixed percentage of the options, or when there is no improvement for a selected number of

consecutive generation, or when the maximum number of generations that can be run is

reached.

55

Then the raw fitness of a trading program is defined as:

where is the option price resulting from the Genetic Programming process,
 is the option

price obtained from the market, or in simulation, from the Black-Sholes option pricing

formula. S is the number of nodes in a tree and f and g are monotone increasing functions. In

other words, the first term represents the raw fitness, the second one an increasing function

which measure the relative pricing errors and the third one controls the size of the genetic

programs.

In the second test, the Black-Scholes formula is incorporated in the Genetic Programming

approach. Assumptions are made on volatilities in the population and the number of total

generation is reduced. The test proves the ability of Genetic Programming to recover the

pricing formula in a Black-Scholes world.

Finally, in the third test, Genetic Programming applies to the S&P 500 futures options; data

are collected from the Chicago Mercantile Exchange. The application of Genetic

Programming to S&P 500 futures option shows that the results obtain are better or at least

comparable to the one obtained by Hutchinson, Lo and Poggio (1994).

In 1998 N. K. Chidambaran, Chi-Wen Jevons Lee, and Joaquin R. Trigueros published their

research An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming,

investigating the relationship between the option price, its contract terms and the behavior of

the underlying asset price. Exploiting the capability of Genetic Programming of incorporating

preexisting and commonly used formulas, the model searches for the best approximation to

the true pricing formula. With the aid of Monte Carlo simulations, Chidambaran, Lee and

Trigueros prove that, when stock prices follow a jump-diffusion process, Genetic

Programming is able to reach a high potential option pricing formula, comparable if not

preferable to the one obtained with the Black-Scholes model. The approach used by the

56

authors is non-parametric but, as largely said before, Genetic Programming displays

advantages over other learning networks since it can cope with smaller database, on the

contrary of neural networks employed by Hutchinson, Lo and Poggio (1994). One interesting

feature of this work is a comparison between six different alternative parent-selection

methods: Best, Fitness-proportionate, Fitness-overselection, Random, Tournament with 4

individuals and Tournament with 7 individuals. Findings show that the Fitness-overselection

method is the one with the most promising results for option pricing. The model incorporates

the Black-Scholes formula in the initial gene pool. This shortcut simplifies the process to

search for the best option pricing model. In fact, in this way the searching process starts from

an already locally optimum solution. Furthermore, the Black-Scholes model easily adapts to a

jump-diffusion process
18

, making the assumption of normal distributed returns no more

necessary and, thus, approaching to the real world structure.

The first test run by Chidambaran, Lee and Trigueros (1998) aims to verify the ability of

Genetic Programming to implement the Black-Scholes formula. The dataset has been

generated through Monte Carlo simulation. Stock returns are assumed to follow a diffusion

process , while compound expected returns, standard deviation

and risk-free interest rate are arbitrarily chosen by the authors. The formula for the calculation

of the stock price is

 and for each stock price realization has been generated a

sample of call options. The Black-Scholes formula has been used in order to obtain option

prices for each simulated option and, following Hutchinson, Lo and Poggio (1994), annual

volatility and risk-free interest rate are constant throughout the options’ lifetime. Results

obtained in the first simulation are compared with a simulation in a jump-diffusion world, as

described by Merton (1976). As a closed form solution is available, it is possible to compare

the pricing errors from the Genetic Programming model and for the Black-Scholes one. In this

scenario, the Genetic Programming formula reaches better solutions in 10 out of 10 runs in

comparison with the Black-Scholes approach. When the solutions are applied to the S&P

18

 The jump-diffusion process is a combination of the jump process and the diffusion process, introduced by
Merton (1976). The jump process is a stochastic process characterized by discrete movements (jumps) instead
of a smoothed continuous movement. The diffusion process, in probability theory, is defined as a solution to a
stochastic differential equation.

57

Index, Genetic Programming performs almost as well as in the previous case and it is

preferred to Black-Scholes formula in 9 out of 10 cases. When the comparison involves the

study of five equities, Genetic Programming shows better results for 4 of the 5 stocks

considered. The same result is reached if Genetic Programming is compared to the results

obtained by Hutchinson, Lo and Poggio (1994), while the resolution time is definitely smaller

with respect to what is necessary for learning networks.

Summing up, results show that Genetic Programming formulas beat the Black-Scholes

equation in 9 out of 10 tests when the jump-diffusion process is selected for generating the

stock-prices and in 10 out of 10 runs when the analysis is executed on S&P Index options.

Furthermore, also the third test, which has been run over five stocks of the sample, shows

how this approach outperforms the Black-Scholes model in 4 out of 5 stocks.

Since the Genetic Programming approach can incorporate the Black-Scholes formula, these

solutions can be considered as an adaptation of the Black-Scholes model extended in order to

remove the restrictions on the underlying assumptions.

A more recent study was published in 2007 by Anthony Brabazon, Conall O’Sullivan and

Zheng Yin, Adaptive Genetic Programming for Option Pricing. In this paper an adaptive

Genetic Programming method is applied to option pricing. Crossover and mutation

probability dynamically vary during the runs. In this case, the experiments are conducted

analyzing market option price data. The tests have been designed such that a total of twenty

Genetic Programming runs were launched, ten of which use in the process only fixed

parameters, while the other ten use dynamic adaptive parameters. The aim of the paper is to

show the outperforming capability of the adaptive Genetic Programming with respect to the

more classic approach with fixed parameters. As expected by the authors, the results prove

that better results are reached when parameters are free to vary and adapt to the surrounding

environment.

Beyond the pure option price analysis, various studies have focused on the capability of

Genetic Programming to generate performing hedging strategies. Chen has studied this topic

and in 1999, after a cooperation with Wo-Chiang Lee and Chia-Hsuan Yeh, he has released

58

the paper Hedging Derivative Securities with Genetic Programming, a study case based on

the previous works of, among the others, Hutchinson, Lo, and Poggio (1994), Chen and Lee

(1997), Noe and Wang (1997) and Trigueros (1997). The previous studies have shown how

Genetic Programming can recover the Black-Scholes using both randomly generated data and

real historical data, e.g. S&P Index. This work, instead, focuses on the potential capability of

Genetic Programming, compared with the Black-Scholes model, in developing hedging

strategy. In this study data used to train and test the Genetic Programming model are daily

closing prices of S&P 500 index options obtained from the Chicago Board Options Exchange

and performance are evaluated according to a notion of tracking error. Results show that only

20% of the 97 tests run by the Genetic Programming outperform the Black-Scholes model,

displaying a lower tracking error. This unsuccessful conclusion may find its explanations in

the extremely short temporal period took into consideration. Indeed, the authors claim that a

test based on a single year seems to be too limited. Nonetheless, considering the previous

work, this paper display results that outperform the ones found in the previous literature,

showing an interesting room for improvement.

In 2012, edited by Sebastian Ventura, the book Genetic Programming – New Approaches and

Successful Applications is released. Among all the interesting researches published in this

book, a new focus on the dynamic hedging is presented by Fathi Abid, Wafa Abdelmalek and

Sana Ben Hamida in their paper Dynamic Hedging Using Generated Genetic Programming

Implied Volatility Models. The aim of this paper is the analysis of a correct approach to

forecast the volatility of financial derivatives. Forecasting volatility is one of the crucial issues

in trading and risk management of derivatives as the estimation of the volatility has a huge

influence in dynamic hedging. Using Genetic Programming as an approach for volatility

estimation should allow the users to free the search from strong assumptions concerning the

underlying asset price trends. The core focus of the paper is the influence on option contracts

prices by new information and the variations in expectations and by the changes in the value

of the underlying asset; obviously, the dynamic hedging would be risk-free only in a world

volatility is perfectly predictable. For this reason, the more precise and accurate the prediction

of the volatility is, the more performing the hedging model will be. The dataset used is the

59

daily prices for the European S&P 500 index calls and puts options traded on the Chicago

Board of Options Exchange from 02 January to 29 August 2003. The paper is structured

following two parts. The first part studies the generation of implied volatility from option

markets using static and dynamic training of Genetic Programming. The static training

implies the independent application of Genetic Programming on single sub-samples of the

entire dataset, while in the dynamic training the Genetic Programming trains on all the sub-

samples are trained at the same time just changing the training sub-sample during the process.

The second part analyzes the precision of implied volatility models generated through Genetic

Programming related to dynamic hedging. The results prove the relevance of the implied

volatility forecasting in hedging strategies. Hedge performances resulting from Genetic

Programming runs are higher than those achieved in a Black-Scholes world. In summary, the

conclusions show that the best Genetic Programming hedging performance is obtained for in-

the-money call options and at-the-money put options in all the tested hedging strategies.

60

Chapter 3
The Experiment

3.1 Design of the Experiment

Once the Genetic Programming has been defined and its features widely described, we finally

want to test practically the potentiality of this tool. Numerous applications have been reported

in the previous chapter in order to present the most interesting works in the empirical

research. A particular focus has been placed on the studies lead on option pricing.

The following experiment has been designed using only simulated data. Tests have been

devised in order to study the option pricing capability of Genetic Programming in a scenario

of poor information and simple mathematical operators.

Through the software Matlab R2013a I generated a random population of 500 European call

option prices written on a stock which pays no dividends. This population has been generated

following a uniform distribution applied to the variables strike price, distributed in the interval

[70;130], time to maturity (expressed in years) and volatility, randomly generated and taking

values respectively in a interval of [0.5;3] and[0.005;0.2]. Instead, I kept fixed the Stock price

at 100 and the free-risk interest rate at 3%. Each option displays a different price/strike ratio,

time to maturity and volatility. The sample is equally divided in in-the-money and out-of-the

money options in order to guarantee an equal proportion.

Crossover and Mutation probability are set at pc=0.7 and pm=0.3. Each formula obtained

after each Genetic Programming run in Matlab was assessed by a Fitness Value, which, as

said before, summarize the capability of the formula to resemble the Black-Scholes solution.

Furthermore, each formula is also coupled with another descriptive value, the Mean Squared

Error (MSE), or in other words an estimator that calculate the average of the squared

61

differences between the estimator (the Call option price obtained with the Genetic

Programming solution) and the true value (the Call option price obtained with the Black-

Scholes formula). The fitness selection method applied is the tournament selection, in which a

fixed number of elements is randomly drawn from the population and the one with the best

fitness value is selected.

The test has been designed in two different step. In the first step I considered only 250

European call options, 125 in-the-money and 125 out-of-the-money and I considered only

seven variables. The second part of the experiment has been designed using the original 500

European call options and adding to the seven variables other 14 more variables. The

mathematical operators used in both tests are the sum, the subtraction, the multiplication, the

division and the exponential operator.

3.2 First test

After calibrating the Matlab code, the first step consisted in generating 48 runs over the

sample data. Each run differs from the other because of the combinations of the population

size (which can take values among 50, 75, 100, 250 and 500), the maxtreedepth operator

(which defines the maximum size of the tree and can take values 8, 10 or 12) and the number

of generations run (whose values vary among 50, 75, 100 and 250). Unfortunately, because of

the limits of the personal computer used during this experiment, I could not always test the

Genetic Programming over populations of 500 individuals.

In the first test I considered as inputs seven variables, namely the Stock Price, the Strike Price,

the Risk-Free Interest Rate, the Maturity (expressed in years) and the Volatility. The two

further variables are two constant used in order to implement the exponential function and the

square root operator. The first constant is the natural number 2.718, which has been

introduced with the purpose of teaching to the code how to reproduce the exponential

function. The other constant is 0.5 and it has been included in the variables with the purpose

to make the code learn the square root operator. The output consists obviously in the Black-

Scholes formula results for each call option. These results are obtained using the Matlab

62

formula “blsprice”, which directly refers to the Black-Scholes formula for European Call

options, reported in Figure 1.

 where

Figure 1 – Black-Scholes formula for European call option pricing.

Because of the reduced number of inputs, I was not expecting to obtain a precise replication

of the Black-Scholes formula results. In particular, in this first part of the experiment, the

code have no chance to learn how to implement neither the Cumulative standard normal

distribution nor the logarithmic ratio between Stock and Strike price, both used in the Black-

Scholes formula. As in the real world nothing seems to prove that the assumptions above the

Black-Scholes model should hold (in particular the assumption that claims that the underlying

asset returns follow a normal distribution), I chose to not implement these two functions and

the experiment has been designed in order to be also directly tested to real financial data.

On the contrary, the purpose of the test was the study of the Genetic Programming in order to

understand its capability to well perform even in the presence of a “poor” information

environment. In other words, this first analysis focused on the study of the performance of the

Genetic Programming approach in terms of Fitness Values, MSE values and the effective

distribution of the prices obtained with Genetic Programming with respect to the values

obtained with the Black-Scholes formula.

After running the 48 Genetic Programming tests over the different combinations of population

size, tree maximum depth and maximum number of generations, I obtained 48 formulas, each

C = Call premium

S = Current stock price

t = Time until option exercise

K = Option striking price

r = Risk-free interest rate

N = Cumulative standard normal

distribution

e = Exponential term

s = Standard Deviation

ln = Natural logarithm

63

one with its related fitness and MSE value. Each formula has been applied to the 250

European call options forming the database. Thus, a complete Excel spreadsheet has been

generated in order to report for each option its true value (the one obtained with the Black-

Scholes formula) and all the values obtained with the 48 Genetic Programming formulas. Due

to the variety of combinations in the parameter set (population size, maximum depth of the

tree, maximum number of generations) that changes for each run, the Genetic Programming

formulas are characterized by extremely various performances in terms of fitness and MSE

values.

In order to clearly understand the effective capability of Genetic Programming in pricing, I

used as discerning terms between performing and less performing formulas the fitness and the

MSE values and I compared the two sets. As the sample was wide (I run 48 tests), I did not

consider for this comparison the obtained formulas that provided a constant result
19

, the

formulas able to perform only in a in-the-money scenario
20

 and the formulas that encountered

different mathematical issues in the process of calculation of the option prices and whose

results presented some calculation errors
21

. In this first analysis, after removing the above

listed problematic formulas, I obtained a sample of 34 formulas. Then, I made a discretionary

selection of the formulas with respect to their performance in terms of fitness and MSE

values. I set, as bounding limit for the selection, fitness value higher than 0.70 and MSE lower

than 600. Setting this discretionary limits helped me in reducing to 19 the number of formulas

to be considered more performing.

19

 For example the formula obtained setting popusize=50, maxtreedepth=8 and c=50, that displayed a
particularly low fitness value (0,307857) and an extremely high MSE (1482,868763) and the following structure

where EXP is the number 2.718, kept constant for all the options analyzed, used with the aim to help the code
in learning and reproducing the exponential function.
20

 This is the case of the formula obtained setting popusize=100, maxtreedepth=8 and c=250,

even though it was displaying a high fitness value (0,835407) and relatively low MSE (304,943618).
21

 As I did not set any mathematical restriction, in some formulas happened to appear calculations impossible
to be mathematical solved (as the square root of a negative number)

64

The choice of discerning the Genetic Programming formulas with respect to their fitness and

MSE values is connected to the fact that the mere comparison of the prices obtained with the

Genetic Programming tests with the values calculated with the Black-Scholes formula would

not have helped in understanding the effective capability of Genetic Programming in pricing.

I am not expecting the Genetic Programming to perfectly recover the Black-Scholes formula

results. For this reason I keep considering the Genetic Programming formulas displaying high

fitness values and low MSE values even though the prices obtained with these formulas may

show discrepancies with the Black-Scholes formula prices.

3.2.1.The Graphical and Analytical Comparison

At this point, I chose to plot graphically the formulas in order to compare their behavior with

the trend of Black-Scholes formula results. I focused on the graphical representation of the

most performing formula, but I have also included three graphs representing formulas

characterized by low fitness and high MSE (Table 2). The comparison between more

performing and less performing formulas will be graphically presented with scatter plot

graphs and time series graphs, while the Genetic Programming formulas will be presented

analytically in a chart (Table 3 and

Concerning the Genetic Programming formulas with high performances, I graphically

compared the Black-Scholes results with groups of 4 formulas and, secondly, singularly with

the formulas that graphically displayed a trend closer to the one of Black-Scholes formula

one. In this process I used firstly a scatter plot where the variable on the Y axis is the Black-

Scholes formula. At this point, I selected the five formulas that display the higher correlation

with the Black-Scholes formula (Table 1).

65

Table 1 – Scatter plot analysis of the relation between Black-Scholes formula and the more performing

Genetic Programming formulas.

For the sake of clarity, a graphical representation of poor performing formulas could help in

understanding why the formulas previously shown in Table 1 can be considered good in

approximating the results of the Black-Scholes formula one. For this reason I present them in

Table 2.

From the sample of 34 option formulas obtained after removing the problematic formulas, I

selected the 15 Genetic Programming formulas that displayed the worst scatter plot graphs.

From this selection I chose to excerpt from that sample the five formulas with the lowest

fitness values. The discerning term has been fixed as fitness values below 0.60.

66

Table 2 – Scatter plot analysis of the relation between Black-Scholes formula and the less performing

Genetic Programming formulas.

Table 2 clearly shows the low correlation between the formulas considered and the Black-

Scholes one supporting the choice of focusing on the investigation of Genetic Programming

formulas according to the fitness and MSE values.

In order to enhance the understanding of the scatter plot analysis, I generated a correlation

matrix including both the more and less performing formulas with the purpose of obtaining

more precise statistical data.

67

BLS

FORMULA16 FORMULA28 FORMULA40 FORMULA44

1,0000 0,9462 0,9525 0,8810 0,8962 BLS

 1,0000 0,9825 0,9238 0,9383 FORMULA16

 1,0000 0,9262 0,9317 FORMULA28

 1,0000 0,9860 FORMULA40

 1,0000 FORMULA44

FORMULA47 FORMULA10 FORMULA19 FORMULA23 FORMULA46

0,9471 0,4757 0,7129 0,7408 0,7110 BLS

0,9903 0,5021 0,6676 0,7109 0,6627 FORMULA16

0,9925 0,5076 0,7065 0,7415 0,7012 FORMULA28

0,9440 0,5675 0,7898 0,7601 0,7878 FORMULA40

0,9518 0,5234 0,7406 0,7377 0,7371 FORMULA44

1,0000 0,4976 0,7007 0,7428 0,6953 FORMULA47

 1,0000 0,6779 0,4489 0,6751 FORMULA10

 1,0000 0,8449 0,9977 FORMULA19

 1,0000 0,8246 FORMULA23

 1,0000 FORMULA46

 FORMULA17B

 0,7684 BLS

 0,7898 FORMULA16

 0,8018 FORMULA28

 0,8663 FORMULA40

 0,8419 FORMULA44

 0,8005 FORMULA47

 0,4184 FORMULA10

 0,7687 FORMULA19

 0,7780 FORMULA23

 0,7494 FORMULA46

 1,0000 FORMULA17B

 Table 3 – Correlation matrix between Black-Scholes formula and the selected Genetic Programming

formulas.

The correlation matrix displayed in Table 3 confirms the results drawn from the scatter plot

graphs. Indeed the Genetic Programming formulas considered less performing show lower

correlation values with respect the formulas considered more performing, with a minimum

value reached by the Formula 10, whose associated value of correlation is 0.4757.

68

The five more performing formulas selected through a simple graph analysis are also the

formulas that displays higher fitness values and, in particular, the lower MSE values. From

the first graphical analysis of the scatter plots, I analyzed the trends of these five formulas

with respect to the Black-Scholes one, removing the formulas that displayed a lower

correlation with the Black-Scholes formula. I made this choice after a further comparison

between these five formulas in terms of fitness and MSE values, that is reported in Table 4.

The remaining three formulas are compared and shown in different graphs in Table 5, Table

6. Table 7 and Table 8 in order to guarantee to the reader a better comprehension of the

graphs.

The following chart displays the features of the five more performing formulas, allowing a

comparison between their characteristics. The two formulas eliminated after the scatter plot

analysis show a small fitness value and a higher MSE value when compared with the other

three formulas. This comparison validate the choice of not taking them into consideration for

the final graphical analysis.

 popusize Max tree

depth

Max nr of

generations

Fitness

value

MSE

Value

Formula

FORMULA 16 250 8 250 0,918 174,01 -170159,586470 * (EXP) -4625,176260 *

(ST) + 0,000077 * ((ST)^(EXP)) +

30662749,642916 * (((((RATE)*(ST))-((PR)-

(PR)))/((ST)/(VOL)))/(EXP)) -

57341481,430289 * ((MAT)/((PR)-(EXP))) -

338402,467542 * (VOL) + 589437,513732 *

(MAT) + 1701,327835 * ((ST)*(EXP))

+462569,774091

69

FORMULA 28 250 10 100 0,917765 176,183 -67602,723483 * (EXP) -

81116320927,718185 * ((PR)-

((VOL)+((ST)+(PR))))-81116323010,613144

* (ST) + 2433489625,881561 * (MAT) + -

766,277878 * ((SQRT)-((EXP)*(ST))) + -

0,753958 * ((VOL)*(ST)) -

81115753577,374222 *

(((((RATE)+((EXP)^(SQRT)))^(RATE))^((R

ATE)*((SQRT)*(RATE))))*((VOL)+((MAT)

*(RATE)))) +184140,726949

FORMULA 40 250 12 50 0,779557 472,284 -0,210191 *

(((((VOL)+(MAT))+((ST)*((ST)/((((ST)+((E

XP)^(MAT)))-

(RATE))+(PR)))))*((ST)/(PR)))/((SQRT)+(V

OL))) + 0,310988 * (ST) -22909,085822 *

(EXP) -15,619677 * ((VOL)/(MAT))

+62260,687125

FORMULA 44 250 12 75 0,810046 406,962 -1662,501269 * (ST) + 611,550917 *

((ST)*(EXP)) -293152,699453 *

((VOL)/(((ST)/(RATE))+(PR))) + 2,889952 *

(((VOL)/(RATE))-

(((RATE)*(EXP))^(((MAT)*(VOL))*(MAT))

)) -0,134150 * (((PR)^(EXP))*(SQRT))

+18342,42034

FORMULA 47 100 12 100 0,906710 199,868

313

-400510247,048350 * (EXP) -2121,501538 *

(ST) -16848,036845 * ((EXP)-(MAT)) +

4233377,299564 * ((EXP)*((RATE)-(((EXP)-

(PR))+((RATE)*(VOL))))) + 345228,685402

* (VOL) -6198,004946 * ((EXP)*(MAT)) +

780,451583 * ((ST)*(EXP)) -

31070295,881522

Table 4 – Analytical description of the five more performing Genetic Programming formulas.

70

The choice of removing Formula 40 and Formula 44 has been made because of the extremely

high values of the MSE (both above 400) in comparison with the other Genetic Programming

formulas taken into consideration.

Before presenting through time series graphs the three selected most performing formulas, I

will present a chart, equivalent to the previous one shown in Table 3, which analytically

presents the five less performing Genetic Programming formulas displayed in Table 2.

 popusiz

e

Max

tree

depth

Max nr of

generations

Fitness

value

MSE

Value

Formula

FORMULA 10 75 8 100 0,5735 913,6438 -31,685016 * (((((MAT)/(PR))-(VOL))*((MAT)-

((RATE)^(((MAT)/(EXP))^((VOL)^(VOL))))))/(

EXP)) -84536,647655

FORMULA 19 100 10 50 0,5087 1052,547 18,832794 *

((VOL)*(((MAT)*(SQRT))+((VOL)-(RATE))))

+ 762,275178 * ((PR)/(EXP)) -280440,66946

FORMULA 23 100 10 75 0,5501 963,7693 -106642,681788 * (((PR)+(EXP))*(VOL)) +

10954157,767224 * (VOL) -0,240591

FORMULA 46 75 12 100 0,505 1058,569 -10255,408317 * (EXP) + 10,489846 *

((VOL)*(MAT)) +27875,582188

FORMULA

17B

50 10 50 0.593 870.788634 -254.439211 *

((EXP)*((PR)+(((SQRT)+(VOL))-(EXP)))) -

0.143044 * (ST) + 711.071810 * (VOL)

+67640,529523

Table 5 – Analytical description of the five less performing Genetic Programming formulas.

Analyzing Table 5, it appears clear that the fitness and the MSE values play an paramount

role in evaluating the capability of Genetic Programming in option pricing. These five

formulas have been chosen according to their low fitness values (below 60) but they are also

71

the five formulas that displays the highest MSE values. Obviously these two indicators are

linked and with a cross-check of these values we can derive important information about the

performance of the Genetic Programming formulas.

Table 6 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming

Formula 16.

72

Table 7 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming

Formula 28.

Table 8 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming

Formula 47.

73

Table 9 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming

Formula 47.

From the graph analysis and the comparison obtained in Table 2, it is possible to draw some

conclusion from this first part of the test. The Genetic Programming formula that displayed

better performance where the ones presenting a fitness value above the 0.9 and the MSE

below 200. The last three formulas taken into consideration where precisely the only three

formulas displaying an MSE below 200.

Following the results obtained in the graphs and comparing them with the starting dataset, I

can state that the Genetic Programming formulas performance are closer to the Black-Scholes

formula when considering in-the-money European call options
22

.

22

 As we can see in the graphs, GP formulas trends are more close to the Black-Scholes one in the left half of
the graphs, where are represented the in-the-money options. Anyway we have to limit the comparison to the
positive plane of the graphs, thus not considering the drops of GP formulas when displaying negative prices.

74

After focusing on the more and less performing Genetic Programming formula, I took into

consideration the whole dataset, considering all the 48 obtained Genetic Programming

formula, also the ones that displayed mathematical calculation problems. Considering the

fitness values and the MSE values as indicators of good performance, and according to the

results so far obtained, I chose to analyze the whole database dividing the resulting formula

according to the fitness and MSE values to them associated. I chose to consider, as previously

done, performing the formula with Fitness value higher than 0.70, MSE lower than 630 and

free from any kind of mathematical calculation issues (as before done). After this selection,

the number of Genetic Programming formula that can be considered at least sufficiently good

in approximating the Black-Scholes formula are 27 out of 48.

3.3 Second Test

The second part of the experiment is run over a wider number of input variables, designed in

order to provide to the code more possibilities to approximate the Black-Scholes formula. The

input variables integrated are 21. In addition to the starting 7 variables, I added the logarithm

of the ratio between the Stock price and the Strike price (ln(P/S)), the square root of the

Maturity time (SQRT(T)) expressed in years, the normal distribution of the logarithm of the

ratio between the Stock price and the Strike price (N[ln(P/S])), the normal distribution of the

square root of the Maturity time expressed in years (N[SQRT(T)]), the factor, the

factor, the normal distribution of the factor (), the normal distribution of the factor

(), the numerator of , the numerator of , the denominator of (which corresponds

to the denominator of), and more three variables that corresponds to the normal

distribution of respectively the numerator of , of the numerator of and of the

denominator of .

The run of this second part of the experiment basically follows the same design and method

applied in the first part. I used the complete simulated dataset, randomly generated at the

beginning of the experiment. I kept fixed the crossover and the mutation probabilities

respectively at 0.7 and 0.3. The fitness selection method applied is again the tournament

75

selection and obviously the Genetic Programming formulas obtained have been evaluated

with a Fitness value and a MSE value.

Anyway, because of the variation in the number of inputs, some adjustment were necessary.

As I have been using an extremely larger dataset with respect to the first test due to the

addition of 250 more European call options and the introduction of 14 more variables, I

reduced the number of runs. I generated 39 runs and each of them differs from the others

because of the different combination of population size (which can take values among 50, 75,

100, 25023), the maxtreedepth operator (which defines the maximum size of the tree and can

take values 8, 10 or 12) and the number of generations run (whose values vary among 50, 75,

100 and 250). Most of the tests run were extremely time consuming, taking more than one

hour to complete the process and unfortunately, because of the limits of the personal

computer, I could run only few tests with population size equals to 250.

While in the first tests I did not allowed the Genetic Programming code to implement neither

the normal cumulative function nor the natural logarithmic function, in this second test I

introduced both these function manipulating my dataset and introducing them directly through

the calculation of the new input variables that I add. The purpose of this test is to verify if the

Genetic Programming code I used can approximate the Black-Scholes formula learning from

the new variables better than in the first part of the experiment.

As in the previous test, I constructed a new complete Excel spreadsheet in which all the

Genetic Programming formulas has been used to calculate an estimator of the 500 European

call options.

Unlike in the first test, in this second one it is immediately clear, looking at the values

obtained, that the Generated Programming formulas displays a lower heterogeneity in terms

of fitness values calculated. All the formulas obtained show a fitness values larger than 0.90.

23

 I exclude any test with population size equals to 500 individual, which was instead run in the first
experiment.

76

On the other hand, unless few cases, all the formulas are related to high MSE values with

respect with the ones obtained in the first part of the experiment24.

Another important difference with the first test is the fact that no formula presents constant

results or encounters mathematical problems with the calculation of both in-the-money and

out-of-the-money options. For these reasons, for my first analysis, I did not have to remove

formulas from my sample.

Following the same procedure I previously applied, I firstly compared in terms of a graphical

representation the 39 formula and compared their behavior with the one displayed by the

Black-Scholes formula. After the graphical analysis I further studied the more and less

performing formulas in term of an analytical comparison.

3.3.1.GRAPHICAL ANALYSIS

The first comparison has been made with the aid of scatter plot graphs, which display the

correlation of results obtained with the various Genetic Programming formulas with the

Black-Scholes ones.

Graphical results, as I expected after seeing the results obtained in terms of fitness values, are

satisfactory. I report here below the graphical results for the formulas that could be considered

more and less performing. As almost all the Genetic Programming formulas obtained in this

second test display high fitness values, I chose as discretionary bounding limits fitness values

above 0.97 and MSE below 1229.17, which the average Mean Squared Error value of the

sample set constituted by 39 formulas. Then, as in the first part of the experiment, I made a

graphical comparison. The following graphs presented in Table 1 are the graphs that show the

higher correlation between the Genetic Programming formulas and the Black-Scholes one,

among all the more performing formulas I analyzed.

24

 While in the first part of the experiment the highest MSE displayed was 1482.868763, in this second test the
average MSE is 1229.17.

77

Table 1 – Scatter plot analysis of the relation between Black-Scholes formula and the more performing Genetic

Programming formulas.

In Table 2, instead, are reported the graphs that display the lower correlation between Genetic

Programming formulas and the Black-Scholes one.

78

Table 2 – Scatter plot analysis of the relation between Black-Scholes formula and the less performing Genetic

Programming formulas.

Table 1 shows the extremely high correlation between the Genetic Programming formulas

selected as the more performing and the Black-Scholes formula. Nonetheless, also the

formulas considered in Table 2 display a good correlation with the Black-Scholes one.

Comparing these graphs with the ones obtained in the first experiment tells us how the new

variables included as new inputs in the dataset have extremely influenced the capability of the

Genetic Programming code to recover the Black-Scholes formula.

In order to understand how strongly all these Genetic Programming formulas graphically

presented in Table 1 and 2 are correlated with the Black-Scholes formula, I created a

correlation matrix, presented in Table 3.

79

BLS FORMULA7 FORMULA9 FORMULA18 FORMULA20

1,0000 0,9995 0,9723 0,9819 0,9811 BLS

 1,0000 0,9731 0,9825 0,9817 FORMULA7

 1,0000 0,9812 0,9865 FORMULA9

 1,0000 0,9990 FORMULA18

 1,0000 FORMULA20

 FORMULA22 FORMULA23 FORMULA37 FORMULA39

 0,9665 0,9986 0,9981 0,9992 BLS

 0,9673 0,9981 0,9980 0,9997 FORMULA7

 0,9940 0,9729 0,9741 0,9714 FORMULA9

 0,9886 0,9831 0,9854 0,9830 FORMULA18

 0,9938 0,9822 0,9838 0,9822 FORMULA20

 1,0000 0,9678 0,9683 0,9670 FORMULA22

 1,0000 0,9975 0,9979 FORMULA23

 1,0000 0,9976 FORMULA37

 1,0000 FORMULA39

Table 3 – Correlation matrix between Black-Scholes formula and the selected Genetic Programming

formulas.

In Table 3 the correlation coefficients between the Black-Scholes formula and the Genetic

Programming formula are displayed. The Genetic Programming formulas considered less

performing are highlighted in red. It appears that obviously the formulas that graphically

display a higher correlation also show values higher than 0.99 in the correlation matrix.

80

Nonetheless, also the formulas that graphically looks less performing show correlation values

above 0.966. In order to draw more consistent conclusions I also present a chart that

summarize all the features of the Genetic Programming formulas taken into consideration.

 popusize maxtreedepth max

generation nr

Fitness

value

MSE FORMULA

FORMULA 18 50 10 100 0,959856 1699,687551 4935,391412 * ((num

d1)/(Strike)) +6,112178

FORMULA 7 50 8 100 0,998896 52,386932 -26,153737 * (N(d2)) +

120,205762 * ((N(num

d2))*(N(d1))) +1,542835 *

(N(Sqrt(T))) + 8,924008 *

(d1) + 1,584866 * (ln(P/S)) -

8,961602 * (d2) + 0,131279 *

((N(d2))/((den d1)/(ln(P/S))))

-24,708360 *

((N(d2))/(N(num d1))) +

16,427998 * (N(d1)) -

1,61839

FORMULA 9 100 8 100 0,945344 2594,295688 13,369819 * ((den d1)-(r)) +

55,860916 * (num d1)

+5,705871

FORMULA 20 100 10 100 0,958251 1776,197638 101,321054 * ((N(num

d2))*(num d1)) +6,240229

FORMULA 23 100 10 250 0,997132 136,133857 -3570,280431 * (N(num d2))

-1284,624564 * ((den

d1)*(den d1)) + 63,808801 *

((num d2)*(N(d1))) +

3605,814423 * (N(num d1)) -

81

15,615279

FORMULA 22 75 10 250 0,931234 3130,180110 56,460913 * (num d1)

+7,050409

FORMULA 37 50 12 250 0,996303 175,496388 34,594291 * (num d1) +

76,427356 * (N(den d1)) +

29,094004 * ((num

d2)*(((N(d2))/(N(den d1)))-

(SQRT))) -37,226416

FORMULA 39 100 12 250 0,998370 77,373792 -0,938838 *

((Strike)*(N(d2))) +

2,523461 * ((T)*(N(d2))) +

94,714028 * (N(d1))

+0,147342

Table 4 – Analytical description of the selected Genetic Programming formulas.

Table 4 helps us in understanding which are the factors that influence the performances of the

Genetic Programming formulas. As in Table 3, the formulas considered less performing are

highlighted in red. It is clear, again, that high fitness values are linked to the more performing

formulas: they all display values above 0.995. Focusing on the formulas considered less

performing, we can see that they also show high fitness values, always above 0.93.

Nevertheless, they are all related to MSE values much higher than the more performing

formulas, which instead are the ones displaying the lower Mean Squared Error values, even if

compared with the entire data sample of the 39 Genetic Programming formulas.

In order to conclude the graphical comparison I also plot the formulas in the following time

series graph.

82

Table 5 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 7 and 23

Table 6 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 37 and

39

83

 Table 7 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 9 and

18

84

Table 8 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 20 and

22

Table 5 and 6 graphically show the behaviors of the more performing Genetic Programming

formulas, while Table 7 and 8 displays the graph of the less performing Genetic Programming

formulas. The differences in behavior are clear. Prices obtained by the less performing

formulas show more discrepancies with the prices obtained with the Black-Scholes formula,

especially when considering the in-the-money options, which in the graphs are located in the

left half of the graph. Curiously, the only formula among the more performing that shows

some discrepancy is the Formula identified by the number 37, especially considering the in-

the-money options, where it displays some negative values.

For the sake of completeness, I am interested in understanding also which is the number of

Genetic Programming formulas that can be considered as more performing taking into

85

account the whole dataset of 39 formulas. According with the conclusions drawn from this

second experiment, I chose to set as bounding constraints in order to define which formula

can be considered performing the Fitness Value above 0.97 and the MSE below 750.

The formulas satisfying these constraints that can be considered more performing are 15 out

of 39. The reason of this low ratio may be find in the fact that for 17 different setting

combinations25 the Genetic Programming code repeatedly obtained the same 3 formulas, all

of them displaying low fitness values and high MSE.

25

 Combinations of population size, maximum depth of the tree and maximum number of generations run.

86

Chapter 4
Conclusions

This work has been designed with the purpose of analyzing the approach and application of

Genetic Programming in the financial world, with a special focus on the option pricing.

Because of the strong connections between Genetic Programming and Genetic Algorithms, I

started this work (Chapter 1) by presenting a wide overview of both of them, first

contextualizing them in the world of Biologically Inspired Algorithms and Evolutionary

Algorithms, and then introducing a comprehensive and complete description of their basic

principle, their theoretical foundations and their structures.

I explained the fundamental concept of survival of the fittest, which has inspired this whole

class of algorithms, and I introduced the concepts presented in the Holland’s Schema

Theorem, linked to both Genetic Algorithms and Genetic Programming. Following the

paramount and pioneering work of John Koza in the field of Genetic Programming, I

thoroughly presented a description of the elements that undergo the structure of Genetic

Programming, analyzing the initial structure, its generative process, the fitness selection issue

and all the primary and secondary operations.

Following, in Chapter 2, I introduced an overview of the existing literature of Genetic

Algorithms and Genetic Programming in Economics and Financial fields. This chapter opens

with a descriptive explanation of the potential capabilities of the Genetic Programming as

problem-solving tool and the presentation proceeds with the introduction to the major papers

and books published in the field of Genetic Algorithm and Genetic Programming application

to the financial fields. The released literature that deals with this topic is extremely vast and

various, covering all the possible financial applications, in particular the one related with

financial derivative securities. I focused the attention on a peculiar argument, the option

pricing. After covering a wide introduction to options, including all the features of this

financial tool, I presented and explained the Black-Scholes formula, giving special attention

to its mathematical implication and to the assumption underlying the application of this

formula in the real world.

87

Starting from this point, I introduced seven papers I found particularly interesting. The first

one, in particular, A Nonparametric Approach to Pricing and Hedging Derivative Securities

Via Learning Networks published in 1997 by James M. Hutchinson, Andrew W. Lo, and

Tomaso Poggio, became an inspiring work for further researches. In this first paper neither

Genetic Algorithms not Genetic Programming are applied, but the other papers I took into

consideration were all inspires by this work.

My third Chapter has been inspired by the papers I presented in Chapter 2, in particular by

two researches. The first is the work realized by Shu-Heng Chen and Who-Chiang Lee, that

published in 1997 their paper Option Pricing with Genetic Algorithm: The Case of European-

Style Options, focused on the application of Genetic Algorithm in option pricing, in particular

on European call options, and in which solutions are compared to the ones obtained from the

Black-Scholes option pricing theorem. The second study is the work of Thomas H. Noe and

Jun Wang, The Self-Evolving Logic of Financial Claim, published in 1997. In this paper,

Genetic Programming has been used as an optimization technique to price financial

instruments; the purpose is to show how easily Genetic Programming can approximate the

Black-Scholes formula even when trained on small data sample.

Starting from these analysis, I decided to conduct an experiment on a set of simulated data

with the aim of studying the capability of Genetic Programming in approximating the Black-

Scholes formula for European call options in two different scenarios. The experiment has

been devised in two different tests, the first with a reduced set of 7 inputs and the second with

a larger set of 21 inputs. The main implication of this different set of variables was the fact

that in the first experiment the Matlab code I used was not in the condition to replicate the

Cumulative normal distribution function and the Logarithmic function, both part of the Black-

Scholes formula, while in the second experiment I introduced both these function

manipulating my dataset and introducing them directly through the calculation of the new

input variables that I add.

As the assumptions underlying the Black-Scholes formula do not hold in the real world

(especially the assumption according to which the underlying asset returns follow a normal

distribution) I chose in the first experiment to not force the Genetic Programming in

replicating the Black-Scholes formula calculations. Designed in this way, the first experiment

88

could easily be tested with real data, in the real world, where the Black-Scholes assumption

are not proven to hold.

Considering the results that I obtained, the first test displayed a good capability in

approximating the behavior of the Black-Scholes formula prices. Taking into consideration

the best performing Genetic Programming formulas have shown performance closer to the

Black-Scholes formula when considering in-the-money European call options. Considering

the whole set 27 out of 48 genetic Programming formulas can be defined at least sufficiently

good in approximating the Black-Scholes formula.

For the second test, instead, I immediately noticed how every Genetic Programming formula

displayed high fitness values (almost all the formulas presented fitness values above 0.95) but

also a much higher average MSE with respect to the values observed in the first test.

Considering the GP formulas that displayed fitness values above 0.998 and MSE values under

200, they can approximate the Black-Scholes solution with a satisfying level of precision.

Considering the whole database of 39 GP formulas obtained in the second test, instead, it is

possible to state that 15 Genetic Programming functions display good performances.

According to the results that I found, further researches should be carried on, firstly exploring

the settings combinations that I was not able to run and wider database, with more data, and,

secondly running the Matlab code and testing the capabilities of Genetic Programming in

option pricing in a real data set. In particular it would be really interesting see how the first

test behave when applied to data from the real world, where Black-Scholes formula

assumption do not hold.

89

References

Abid, F., Abdelmalek, W. and Hamida, S. B. 2012 “Dynamic Hedging Using Generated

Genetic Programming Implied Volatility Models.” INTECH.

Allen, F. and Karjalainen, R. 1999. “Using genetic algorithms to find technical trading rules.”

Journal of Financial Economics 51: 245-271.

Bauer, R. J. 1994. Genetic algorithms and investment strategies. John Wiley & Sons.

Beasley, D., Bull, D. R. and Martin R. R. 1993. “An overview of genetic algorithms: part 1,

fundamentals.” University Computing 15(2): 58-69.

Beasley, J. E., Meade, N. and Chang, T.-J. 2003. “An evolutionary heuristic for the index

tracking problem.” European Journal of Operational Research 148: 621-643.

Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, Walter J. 2008. “A survey on

metaheuristics for stochastic combinatorial optimization

Black, F. and Scholes, M. 1973. “The pricing of options and corporate liabilities.” Journal of

Political Economy 81(3): 637-654.

Brabazon, A. and O’Neill M. 2006. “Biologically Inspired Algorithms for Financial

Modelling.” Springer Edition.

Brabazon, A. and O’Neill M. 2008. “Natural Computing in Computational Finance Vol. 1, 2,

3 and 4.” Springer Edition.

Chen, S-H. and Lee, W-C. 1997. “Option Pricing with Genetic Algorithm: The Case of

European-Style Options.” Seventh International Conference on Genetic Algorithms.

Michigan, State University.

90

Chen, S-H. and Lee, W-C. 1997. “Option pricing with genetic algorithms: a second report.”

International Conference on Neural Networks 1: 21-25.

Chen, S-H. 2009 “Genetic Algorithms And Genetic Programming In Computational

Finance.” Springer Edition.

Chen, S-H., Lee, W-C. and Yeh, C-H. 2009. “Hedging Derivative Securities with Genetic

Programming.” International Journal of Intelligent Systems in Accounting, Finance &

Management, 237–251.

Chidambaran, N. K., Lee, C. J. and Trigueros, J., 1998. “An Adaptive Evolutionary Approach

to Option Pricing via Genetic Programming.” Conference on Computational Intelligence for

Financial Engineering.

Chidambaran, N. K. 2003. “Genetic Programming With Monte Carlo Simulation For Option

Pricing.” Proceedings of the 2003 Winter Simulation Conference.

Chiong, R. “Nature-Inspired Algorithms for Optimisation.” Springer.

Davis, L. 1991. Handbook of genetic algorithms. Von Nostrand Reinhold.

Deboeck, G. J. 1994. Trading on the edge: neural, genetic and fuzzy systems for chaotic

financial markets. John Wiley & Sons.

Dempster, M. A. H. and Jones, C. M. 2001. “A real-time adaptive trading system using

genetic programming.” Quantitative Finance 1: 397-413.

Folino, G. 2003. “Algoritmi evolutivi e programmazione genetica: strategie di progettazione e

parallelizzazione” Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte

Prestazioni (ICAR).

Glover, F. and Kochenberger, G. A. 2003 “Handbook of Metaheuristic.” Kluwer Academic

Publishers.

91

Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley.

Holland, J. H. 1975. Adaptation in natural and artificial systems. University of Michigan.

Hui, A. “Using Genetic Programming to Perform Time-Series Forecasting of Stock Prices”

Hull, J. 1997. “Options, Futures, and Other Derivatives.” Pearson Education Inc.

Hutchinson, J.M., Lo, A. W. and Poggio, T. “A Nonparametric Approach to Pricing and

Hedging Derivative Securities Via Learning Networks.” The Journal of Finance, Vol. 49, No.

3, 851-889.

Iba, H. and Sasaki, T. 2002. “Using genetic Programming to Predict Financial Data”

Koza, J. R. 1992. Genetic programming: on the programming of computers by means of

natural selection. The MIT press.

Navet, N. and Chen, S.-H. 2007. “Financial data mining with genetic programming: a survey

and look forward.” Available at www.loria.fr/~nnavet/.

Navet, N. and Chen, S.-H. 2008. “On predictability and profitability: would GP induced

trading rules be sensitive to the observed entropy of time series?” In Natural Computing in

Computational Finance, Springer.

Neumann, F. and Witt, C. 2010 “Bioinspired Computation in Combinatorial Optimization –

Algorithms and Their Computational Complexity.” Springer Edition.

Noe, T. H. 1997 “The Self-Evolving Logic of Financial Claims”, Genetic Algorithms and

Genetic Programming in Computational Finance, edited by Shu-Heng Chen, Springer Edition.

Poli, R., Langdon, W. B. and McPhee, N. F., 2008. “A Field Guide to Genetic Programming.”

ISBN 978-1-4092-0073-4 .

92

Potvin, J.-Y., Soriano, P. and Vallee, M. 2004. “Generating trading rules on the stock markets

with genetic programming.” Computers and Operations Research 31: 1033-1047.

Riolo, R., Vladislavleva, E., 2013 Ritchie, M. D. and Moore, J. H. “Genetic Programming

Theory and Practice.” Springer Edition

Rodgers, A. and Prugel-Bennett, a. 1999. “Genetic drift in GA selection schemes.” IEEE

Transactions on Evolutionary Computation 3(4): 298-303.

Yin, Z., Brabazon, A. and O’Sullivan, C. 2007. “Adaptive Genetic Programming for Option

Pricing”

