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Introduction 
 

 

 

 

 

I am glad to present here all the research I have done on Genetic Programming applied to 

Option pricing. 

 

Chapter 1 wants to introduce the concept of Genetic Algorithms and Genetic Programming 

widely explaining what they are, their structures and all the features that characterized them. 

Chapter 2 focuses on the presentation of the previous work and researches conducted on 

Genetic Algorithms and Genetic Programming, with special attention to the applications in 

the financial world and in particular to option pricing. In this chapter will be given a 

comprehensive and detailed presentation of this financial instrument and will be introduced 

the Black-Scholes formula.  

Chapter 3 is developed in two experiments I run using the Matlab 2013a software in order to 

test the capabilities of Genetic Programming in approximating the Black-Scholes formula. 

Chapter 4 closes this work presenting the conclusions that I have drawn carrying these 

experiments and some suggestions for future works.  
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Chapter 1 
Genetic Algorithms and Genetic 
Programming: a Wide Overview 

 

1.1 Evolutionary Algorithms 

In artificial intelligence, we refer to Evolutionary Algorithms (EAs) as a subset of 

Evolutionary Computation, a generic population-based meta-heuristic optimization algorithm. 

Often directly inspired by nature, meta-heuristics are general algorithmic frameworks, whose 

purpose is the identification of solutions for complex optimization problems and they 

represent a growing research area since a few decades. Meta-heuristics include categories 

based on different criteria: for instance, some meta-heuristics process a single solution (e.g. 

simulated annealing) while others process a set of solutions (and are called population based 

methods, e.g. evolutionary algorithms). 

Evolutionary Algorithms are heuristics that mimic the processes of natural evolution in order 

to solve global search problems. These algorithms are based on the Darwinian principle of the 

“survival of the fittest”, i.e. the most fitting individuals in a certain environment have greater 

possibilities to survive and pass on their “genes” to the next generations.  

The “survival of the fittest” principle is common to others approaches that draw inspiration 

from natural and biological systems. Under the extensive classification of Biologically 

Inspired Algorithm it is possible to include not only the Evolutionary Algorithms, but also the 

Artificial Neural Networks, the Social Systems and the Immune Systems. Considering the 

Artificial Neural Networks, that mimic the capability of the neuron web of the human brain of 

process the inputs and converting them in meaningful output data, there exist three more 

subcategories: Multi-layer Perceptron, Radial Basis Function Networks and Self Organizing 

Maps. The Social Systems is categorized into Particle Swarm Optimization (which also 
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includes the Grammatical Swarm) and the Ant Colony Optimization. Finally the Immune 

Systems are divided into Negative Selection and Clonal Selection.
1
 

Practically speaking, a population of individuals evolves from generation to generation 

through mechanisms similar to sexual reproduction and genes mutation. Each individual 

represents a possible solution to the investigated problem. This mechanism leads to a heuristic 

search which endorses regions in the search area where better solutions are more likely to be 

found, even though it does not completely neglect regions where are situated solutions with 

less probability  of success. Thus, as described by Charles Darwin in On the Origin of Species 

by Means of Natural Selection (1859), over time, due to natural selection, the population as 

whole evolves embedding individuals whose genes are converted into structures and 

behaviors that enable those individuals to better perform in the environment and allow them 

to survive and reproduce. 

Known as Evolutionary Algorithms (EA), this family of computational techniques, 

characterized by the underlying idea of natural selection, is commonly classified into 

Evolutionary Strategies (ES), Evolutionary Programs (EP), Differential Evolution (DE), 

Genetic Algorithms (GA) and Genetic Programming (GP). These techniques usually share the 

general outlines, diverging in term of specific technical details. Later on the attention will be 

focused mainly on Genetic Algorithms and Genetic Programming. 

 

1.2 Genetic Algorithms: an Introduction 

The development of the Genetic Algorithms, almost universally abbreviated to GAs, dates 

from the 1960s, but only in 1975 John Holland introduced them to the wide audience through 

its famous book Adaptation in Natural and Artificial Systems, where he rigorously drew up 

the basic principles, allowing the development of a new thriving branch of research.  

                                                 
1
 For a deep and comprehensive analysis of the various Biologically Inspired Algorithms refer to Biologically 
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Genetic Algorithms are mathematical adaptive heuristics which exploit a randomized search 

in order to solve mainly optimization problems. Based on an finite dimensional set 

(population) of individuals, i.e. solutions of the problem, GAs mimic the principles of natural 

selection and “survival of the fittest”, adapting and evolving solutions to real world issues.  

In nature, individuals in a population compete with each other to survive and to reproduce. 

Highly adapted individuals will spread their genes to an increasing number of individuals in 

each successive generation, often succeeding in producing, through genes recombination, 

even fitter offspring (“superfit individuals”). This process leads to evolution, explaining 

wherein new offspring suit better than the parents in their environment.  

GAs simulate those processes, essential to evolution, working on a finite population of 

individuals. Each individual is evaluated as a candidate solution to the problem of interest. 

Given a quality function to be maximized as an abstract fitness measure, a “fitness score” is 

assigned to each individual considering how good as solution to the problem it is. Thus, the 

fitness function assigns a figure of merit to each solution. The initial population may be 

generated randomly, or using some heuristic method. Thus, for each individual in the 

population, genes are randomly assigned and there is a wide spread of individual fitness. 

Although many variants of GAs exist, each potential candidate solution is traditionally 

encoded as a set of parameters (known as genes), which define the proposed solution to the 

problem the Genetic Algorithm is solving. These genes form a fixed-length binary string 

(0101 . . . 1), often referred to as a chromosome. The set of parameters represented by a 

particular chromosome is referred to as a genotype. The genotype is an abstract representation 

of an individual part of the population and it contains the information needed to compute an 

organism, the phenotype. In other words, the genotype is decoded through the fitness value in 

the phenotype, which represent a potential solution. The fitness of an individual depends on 

the performance of the phenotype, which can be computed from the chromosome, using the 

fitness function. The problem-specific fitness function links each string to a number 

representing its quality or fitness value, which basically provides a measure of performance 

and a measure of reproductive opportunities. 
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The execution of the Genetic Algorithm is a two-stage process starting with the current 

population. Selection is applied to the current population to create an intermediate one 

(reproduction). At the first generation, the current population corresponds to the initial 

population. Each string is evaluated according to the fitness function and, according to this 

value, the strings that present a higher performance are more likely to be copied and placed 

into the intermediate population. Then recombination and mutation are applied to the 

intermediate population to create the next generation. Through the crossover operation, two 

strings randomly chosen are recombined. In each of the two string, a crossover point is 

randomly picked, dividing the strings in two parts. Then, the parts are swapped, generating 

two new strings. The mutation operation, instead, applies only to a single point (bit), which is 

randomly selected only for some randomly chosen strings. The probability of the mutation 

operator is extremely low and it is generally applied with the aim to guarantee the population 

diversity.     

Each string is called schema (plural “schemata”) and each schema H, composed by an 

extended alphabet (the 0 and 1 of the binary alphabet, for example), describes a set of points 

from the search space of a problem that have particular features. In a population of strings of 

length L over an alphabet of size K, then a schema is identified by a string of length L over 

the extended alphabet of size K + 1, where the additional element of the alphabet is the 

asterisk (the symbol which identifies the indifference for the value in that position, i.e. the 

"don't care" symbol). The asterisk is a metasymbol. It is never explicitly processed by the 

Genetic Algorithm. There are (K + 1)^L  schemata of length L. When an individual survives 

to the reproduction and recombination processes performing a high fitness value, it is not easy 

to identify which sequence or combination of symbols that characterize that string is 

responsible for the successful performance. Averages are the most reliable index that may 

disentangle this issue. If a particular combination of attributes is repeatedly associated with 

high performance (because individuals containing this combination have high fitness), it is 

possible to state that this particular combination of attributes is the reason for the observed 

performance. The same is true for combinations associated with low average performance. If 

a particular combination of attributes exhibits both high and low performance, then it may 
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have no explanatory power for the problem. The Genetic Algorithm implements this highly 

intuitive approach to identify the combination of attributes that is responsible for the observed 

performance of a complex nonlinear system.  

Intuitively, it may appear that Genetic Algorithms operate only on the specific individual 

character strings that are actually present in the current population. In his book  Adaptation in 

Natural and Artificial Systems, Holland focused the attention on the fact that Genetic 

Algorithms implicitly processes, in parallel, an extended volume of useful information 

regarding unseen Boolean hyperplanes (schemata). Hence, the Genetic Algorithm has the 

notable property of implicit parallelism (or intrinsic parallelism), which is involved as a 

number of solutions are worked on simultaneously improving efficiency and reducing the 

chance of premature convergence to local maxima
2
. 

The highly fit individuals have chances to get selected for reproduction and recombination by 

cross-breeding with other members in the population and originate new individuals identified 

as “offspring”, which share some features received from the “parents”. The least successful 

units of the population are less likely to reproduce and eventually they will most likely die 

out. Generation over generation, good genes are spread throughout the population, mixed and 

exchanged with other better performing genes as the process runs. Supporting this progression 

by mating the more fit individuals, more promising areas are explored. A well designed GA 

will lead to the convergence of the population to an optimal solution to the problem. 

The parents are recombined through a “crossover” operator, which splits the two genetic 

structures apart at randomly chosen locations. This genetic operation allows new individuals 

to be created and new points in the search space to be tested. The recombination of the 

different part of the genetic structures of the parents creates two offspring. The two offspring 

are usually different from their two parents and different from each other and both contain 

genetic material from each of its parents.  

                                                 
2
 This topic will be further discussed and extended in Chapter 1.5. 
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The new offspring fitness is evaluated by the algorithm and replaces one of the relatively unfit 

members of the population. New genetic structures are created until the new generation is 

completed. The same criterion is iteratively followed for the establishment of successive 

generation until some previously defined termination criterion is met. The obtained final 

population presents a selection of possible solutions, which can be applied in order to solve 

the initial problem.  

Improvements in the population are typical of the fitness-proportionate reproduction and 

crossover operations, because low-fitness individuals tend to be eliminated from the 

population and high-fitness individuals tend to be duplicated. Note that both of these 

improvements in the population come at the expense of the genetic diversity of the 

population. Random “mutation” operations on fixed-length strings may be occasionally 

introduced in order to guarantee genetic heterogeneity and avoid a rapid convergence to local 

maxima. The frequency of applying the mutation operation is controlled by a parameter called 

the mutation probability. Mutation is an asexual operation applied on only single individuals. 

It begins by randomly selecting a string from the mating pool and then randomly selecting a 

number between 1 and L as the mutation point, where L denotes the string length. The 

character (gene) selected as mutation point is changed. In the case of binary alphabet, the gene 

is simply replaced by the opposite value. Mutation is used with moderation in Genetic 

Algorithm works and it is considered as a secondary operation useful in reinstating lost 

diversity in a population because of previous exploitation. Thus, it can be pointed out that the 

Genetic Algorithm principally relies on the creative outcomes of crossover and the 

exploitative effects of the Darwinian principle of survival and reproduction of the fittest. 

 

1.3 Genetic Algorithm’s Basic Principles 

The conventional fixed-length string Genetic Algorithm involves the determination of some 

features. First of all it must be determined the representation scheme, which is a mapping that 

explicates each possible point in the search space as a fixed-length string and it requires the 
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specification of the length L and the alphabet size K. Strictly speaking, before a GA can be 

run, a suitable coding (or representation) for the problem must be devised. Secondly, it is 

necessary to define a fitness measure able to evaluate every fixed-length string. Thirdly, it is 

crucial to fix the parameters and variables for controlling the algorithm, which are primarily 

the population size (M) and the maximum number of generations to be run or another 

termination criterion and, secondarily, the probabilities of reproduction, recombination and 

mutation (        ). Further additional quantitative and qualitative control parameters and 

variables must be expressly nailed down in order to thoroughly specify how to run the 

Genetic Algorithm. One method of result identification is to designate, as result of the Genetic 

Algorithm, the best individual in the last generation of the population at the time of 

termination.  

The Genetic Algorithm performs in a domain-independent way on the fixed-length strings. It 

operates making few assumptions about the considered problem and, for this reason, it 

belongs to the class of methods known as “weak methods”. Even without knowing anything 

about the problem domain or the fitness function, the Genetic Algorithm shows a surprising 

rapidity and effectiveness in searching complex, highly nonlinear, multidimensional search 

spaces. Broadly speaking, the Genetic Algorithm searches for an unknown space for high-

fitness point. Nevertheless, the choices made by the user about the representation scheme, the 

fitness measure and the above listed features (population size, number of generation, 

parameters determination) may influence how well the Genetic Algorithm will perform in a 

specific problem domain. 

The basic Genetic Algorithm model relies on the paramount assumption that an individual’s 

high fitness is due to the fact that it contains good schemata. Hence, with this reproductive 

system, good schemata receive an exponentially increasing number of trials in successive 

generations. This concept is clearly explained in the Holland’s Schema Theorem, which will 

be later discussed. 

Analyzing a method (e.g. Genetic Algorithms) that approach to a solution of a problem by 

investigating the search space, it can be easily understood the issue regarding the trade-off 
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between what are called cost of exploration and cost of exploitation of the already-evaluated 

points in the search space. This trade-off concerns in finding a compromise between the 

computer program’s sources spent in exploring new points from a portion of the search space, 

which we believe may have above-average payoffs, and the sources spent in exploiting area in 

which several points have already been evaluated, in particular starting the new tests from 

schemata whose fitness have already been evaluated as relatively high, in order to find new 

solution with higher fitness value. 

The Genetic Algorithm allows the user to progress the analysis of the search space by testing 

new and different points that are similar to the ones that have already provided above-average 

fitness, directing the search into more promising parts of the search space. The best and the 

average individual increase their fitness from generation to generation towards a global 

optimum. When at least 95% of the population share the same value it is possible to state that 

a gene has converged. Only when all the genes have converged also the population is said to 

be convergent. Once the population has converged to the global optimum, the fitness of the 

average individual will meet the fitness of the best individual. 

Genetic Algorithms are predisposed to stochastic errors. Even in the absence of any selection 

pressure, these stochastic errors may lead to genetic drift
3
, which cause gene variants to 

disappear completely and prematurely, reducing genetic variation. Increasing the mutation 

parameter can reduce the occurrence of genetic drift. Anyway, if the mutation rate is too high, 

the search may become random.  

Mutation also helps to overcome another problem which occurs when genes from a few 

relatively fittest (but not globally optimal) individuals suddenly and rapidly come to prevail 

over the population, provoking the convergence to a local optimum. As the run progresses, 

particular values for each gene begin to predominate, so the range of fitness in the population 

reduces entailing premature convergence or slow finishing. In the first case, once the 

                                                 
3
 The term genetic drift refers to the change in the frequency of a specific gene in the population. This change 

in frequency means a reduction of the fraction of copies of that specified genes. For this reason genetic drift 
may cause the disappearing of that gene. 
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convergence is complete, crossover has limited possibilities to induce the exploration of new 

search space. Only mutation remains to explore entirely new ground. The schema theorem 

demonstrates that Genetic Algorithms naturally assigns an exponentially increasing number of 

trials to the best observed schemata, leading to a trade-off between exploitation of promising 

directions of the search space and exploration of less-frequented regions of the space (see also 

Vose, 1991). Broadly speaking, Holland's schema theorem states that reproduction 

opportunities must be allocated according to the relative fitness of each individual, but 

premature convergence may occur since the population is finite. In order to make Genetic 

Algorithms effective, it is necessary to modify the way individuals are selected for 

reproduction by controlling the number of opportunities that each individual gets for 

reproduction so that it is neither too large nor too small. The consequence is to compress the 

range of fitness preventing the occurrence of “super-fit” individuals from prematurely taking 

over. The same techniques used to combat premature convergence also combat slow 

finishing.  

Nevertheless, the convergence to the global optimum, as before stated, cannot be guaranteed, 

but Genetic Algorithms are generally good at finding “acceptably good” solutions to problems 

taking an “acceptably short” time. It is important to notice that in general, if exact techniques 

already exist for finding the solution of a particular problem, they are likely to perform better 

than Genetic Algorithms in both speed and precision. On the other hand, GAs find their 

ground of application in complex area of search, where no such techniques exist or where the 

existing techniques require huge amounts of time for computational mathematical analysis. 

And even when the specific techniques exhibit good performances, clear improvements can 

be done by hybridizing them with GA. 

1.4 Genetic Programming 

1.4.1 Genetic Programming: an overview 

The Genetic Programming (GP) is an evolutionary algorithm-based process inspired by 

biological evolution to find (computer) programs that implement a previously determined 
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task. It is an extension of Genetic Algorithm, where each element of the population is a 

program instead of a string of bit. The Genetic Programming consists on a set of instructions 

and a fitness function that measure how well a computer program has performed a task. 

Substantially, the Genetic Programming paradigm (where each individual is a computer 

program) continues the trend of dealing with the problem of interest in Genetic Algorithms by 

increasing the elaboration of more complex structures undergoing adaptation, which are 

general, hierarchical computers programs of constantly changing size and shape. The problem 

solving process can be restated as a search for a highly fit individual computer program in the 

search space. Genetic Programming is basically a solving problem procedure which provides 

a way to search for this fittest individual computer program.  

John R. Koza introduced Genetic Programming in his book Genetic Programming - On the 

Programming of Computers by Means of Natural Selection in 1992. Through the Darwinian 

principle of survival and reproduction of the fittest and genetic recombination (crossover 

operation), the populations of computer programs are mated in terms of genes. The initial 

population is randomly generated and each individual computer program is composed of 

functions and terminals pertinent to the problem domain. As Koza specified in his work “The 

functions may be standard arithmetic operations, standard programming operations, 

standard mathematical functions, logical functions, or domain-specific functions. Depending 

on the particular problem, the computer program may be Boolean-valued, integer-valued, 

real-valued, complex-valued, vector-valued, symbolic-valued, or multiple-valued. The 

creation of this initial random population is, in effect, a blind random search of the search 

space of the problem.”  

Individuals are then evaluated according to their performance in the specified problem 

environment through a fitness measure, whose nature varies with the faced problem. Each 

computer program is run over a number of distinct fitness cases and its performance is 

evaluated as the sum or average over the selection of depictive various situations. 

In generation zero the computer programs generally show poor fitness performance. However, 

some individuals will anyway perform better  than others, showing higher fitness measures. 
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Genetic Programming will then exploit these differences in performance and, as for the 

Genetic Algorithm methods, the Darwinian principle of reproduction and survival of the 

fittest and the genetic operation of sexual recombination (crossover) are applied to generate a 

new offspring population of individual computer programs from the current one. In 

proportion to their fitness, the most performing computer programs will be selected for the 

current population through the reproduction operation. The procedure allows them to survive 

by coping them into the new population.  New offspring are then created through sexual 

reproduction between two parental computer programs, which are always selected in 

proportion to their fitness. Normally, the parental programs exhibit divergences in size and 

shape; the offspring individuals are formed by the recombination of subexpressions selected 

from their parents and are typically of different sizes and shapes than their parents. The 

procedure ends with the replacement of old parents with the offspring. Each individual in the 

new generation is then evaluated for its fitness measure and the processes of reproduction and 

sexual recombination are run over and over again, creating the future generations. If two 

computer programs are somewhat effective in solving a problem, then some of their parts 

probably have some responsibility for their good performance. Recombining randomly 

chosen parts of the most performing programs, new computer programs may result event fitter 

and perform better in solving the problem.  

Over many generations, the Genetic Programming algorithm will produce a population of 

individual computer programs with increasing average fitness in dealing with their 

environment, able to exhibit a rapid and effective capability to adapt in changes in the 

environment. In any generation the best-so-far individual is labeled as the outcome generated 

by the Genetic Programming (Koza 1992).  

While in Genetic Algorithms is required a suitable coding (or representation scheme) that 

explicates each possible point in the search space as a fixed-length string and the specification 

of the length L and the alphabet size K, in Genetic Programming the role of preprocessing 

inputs and post-processing outputs is absent or minor. This avoids expensive loss of time. 
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Inputs, intermediate results and outputs are all expressed as functions, the natural terminology 

of the problem domain. 

 

1.4.2 Detailed Description of Genetic Programming 

Genetic Algorithms and Genetic Programming are both characterized by a structure, 

undergoing adaptation, composed by population of individual points from the search space 

instead of a single point. One of the most peculiar feature that differentiate genetic methods 

from other search techniques, is their ability to simultaneously manage a parallel search 

involving hundreds or thousands of points in the search space. In Genetic Programming, as 

before specified, the structures undergoing adaptation are hierarchically structured computer 

programs, whose sizes, shapes and contents may dynamically vary during the process, 

according to the changing environment. Rather, the structures that undergo adaptation in the 

conventional Genetic Algorithm are one-dimensional fixed-length linear strings, as before 

specified. The set of possible structures in Genetic Programming is the set of all possible 

compositions of functions that can be composed recursively from the set of       functions 

from F = {      ,...,f     } and the set of       terminals from T = {     ,...,       }. Each 

particular function    in the function set F takes a specified number z(  ) of arguments z(  ), 

z(  ) ..., z(f     ). That is, the function    has a number of argument equals to  z(  ). 

The functions in the function set may include arithmetic operations (such as +, -, *, /), 

mathematical functions (such as sin, cos, exp, and log), Boolean operations (such as AND, 

OR, NOT), conditional operators (such as If-Then-Else), functions causing iteration (such as 

Do-Until), functions causing recursion, and any other domain-specific functions that may be 

defined.  

For what concerns the terminals, instead, they are either variables, symbolizing inputs, or 

constant, for example a numerical or Boolean constant.  The hierarchical structure undergoing 
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adaptation in Genetic Programming, formed by set of functions and terminals, must be 

selected in order to satisfy the conditions of closure and sufficiency. 

As for the closure property, it will be satisfied only in the case in which the function set 

admits only functions well defined and closed for any combination of argument they may 

encounter. Practically speaking, the closure property requires that any value and data type that 

may be returned by any function in the function set and any value and data type that may be 

assumed by any terminal in the terminal set must be accepted by each of the functions in the 

function set as its argument. This condition is easily satisfied when the problem faced is 

simple, but ordinary computer programs usually contain complex variables and operators. 

Closure can be achieved in a direct and unambiguous way for the vast majority of problems 

simply introducing the protected division function, the protected square root function SRT, 

and the protected natural logarithm function RLOG, which allow the user to successfully 

overcome problematic situations when the division function encounters an attempt of division 

by 0, when the square root function encounters a negative argument or when the logarithm 

function encounters a nonpositive argument. According to the definition provided by Koza 

(1992), the protected functions are arrangements made in order to deal with problematic 

situations that some mathematical functions can encounter. For example, if the arithmetic 

operation of division encounter as its second operator a zero the function would not be 

defined. In this situation, the protected division function will instead return the value 1. For 

what concerns the protected square root function, when it encounters a negative argument it 

will return the square root of the absolute value of that argument. Instead, the protected 

natural logarithmic function returns 0 when the argument is 0 and operates in the absolute 

value of the argument when it encounters a nonpositive argument. 

On the other hand, the sufficiency property  admits only a set of terminals and a set of 

functions capable of expressing a solution to the problem. In other words, before starting to 

run the Genetic Programming, the user needs to be sure or at least to believe that there exist 

composition of the functions and terminals that can provide a solution of the problem. 

Identifying the variables and the set of functions that have sufficient explanatory power to 
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solve a peculiar problem may be obvious or may require a considerable insight, depending on 

the complexity of the problem. 

 

1.4.3 Genetic Programming: the initial structure 

Referring to the initial structure of Genetic Programming means referring to individuals 

constituting the initial population, which is randomly generated as a rooted, point-labeled
4
 

tree with ordered branches (Koza, 1992). Each individual is generated randomly selecting one 

of the functions from the set F (using a uniform random probability distribution). The root of 

the tree will be labeled with the selected function. Imposing the restriction of choosing the 

root exclusively from the function set F, ruling out the possibility of selecting the root of the 

tree from the terminal set, is a choice made according to the fact that the structure is required 

to be hierarchical, not a degenerate structure consisting of a single terminal. The root of the 

tree is usually called point 1. 

 

 

    

 

 

 

Whenever a point of the tree is labeled with a function f from F, the number of lines radiating 

out from that point is the same number of arguments, z(f), taken by the function f. Then, the 

endpoint of each radiating line is labeled selecting randomly an element from the combined 

                                                 
4
 Each point is labeled with a function or one of the terminal set components(i.e. a variable, a constant). 

 
Figure 1.1 

Beginning of the creation of a 
random program tree, with the 

function + as initial node and two 
arguments chosen as roots of the 

tree. 
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set C = F ∪ T of functions and terminals (where F indicates the function set and T the 

terminal set). If a function has been chosen to be the label for any such endpoint, the 

generating process continues recursively. On the other hand, if a terminal is chosen to be the 

label for any point, that point becomes an endpoint of the tree and the generating process is 

terminated for that point. 

 

1.4.4 Genetic Programming: the generative processes 

The process for generating random trees of various sizes and shapes can be implemented in 

different ways.  Among these different ways, two basic processes are the “full” method and 

the “grow” method. The depth of the tree is measured as the length of the longest non-

backtracking
5
 path from the root to an endpoint. 

The “full” method is characterized by the specification of a predefined maximum depth of the 

trees that the length of every non-backtracking path between an endpoint and the root cannot 

exceed. This procedure can be implemented forcing the choice of the label of the points 

whose depth is less than the maximum to the function set F, and constraining the selection for 

the points at the maximum depth to the terminal set T. The “grow” method does not fix the 

depth of the trees with a previously specified length measure. This method of generating  

initial random population involves growing trees that are variably shaped, but still restrict the 

breadth of the path between an endpoint and the root to a maximum depth. The changing 

shapes and sizes of the trees are guaranteed by a random selection of the label for points at 

depths less than the maximum from the combined set C = F ∪ T consisting of the union set of 

                                                 
5
 The term backtracking refers to the backtracking algorithm. This technique is used to solve problems under 

some constraints and it is applied in the analysis of tree structures. The back tracking algorithm explores the 
tree recursively, starting from the root and systematically searching for a solution to a problem among all 
available options. Each node is evaluated by the algorithm as potential solution of the problem. If the node 
does not satisfy the constraints and cannot be considered as a solution, the algorithm excludes it from further 
searches and moves back to the previous node following the same path it has done to reach the node 
evaluated. From this position the algorithm moves along another branch in order to reach a new node. In 
Genetic Programming backtracking is not considered. For a more comprehensive explanation refer to A 
theoretical evaluation of selected backtracking algorithms, Kondrak and Van Beek (1997). 
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the function set F and the terminal set T, and, as in the “full” method, constraining the 

selection for the points at the maximum depth to the terminal set T. 

A more uneven method called “ramped half-and-half” can be applied over a wide range of 

problems. According to Koza (1992), this generative method does best over a broad range of 

problems. The significant point that distinguish this method is the fact that no assumption is 

previously made or generically specified in advance on the size and shape of the solution. The 

“ramped half-and-half” generative method produces a wide range of trees characterized by 

changeful sizes and shapes, incorporating both the “full” and the “grow”method. The ramped 

half-and-half generative method consists of the creation of an equal number of trees using a 

depth parameter that ranges between 2 and the maximum specified depth. This is the 

generative method most preferred by Koza, as he explicitly specified in his book Genetic 

Programming - On the Programming of Computers by Means of Natural Selection (1992).  

He provides a clear explanation in order to clarify the concept behind the “ramped half-and-

half” generative method. In his example, if the maximum specified depth is 6 (the default 

value in Koza’s book), 20% of the trees will have depth 2, 20% will have depth 3, and so 

forth up to depth 6. Then, for each value of depth, 50% of the trees are created via the “full” 

method and 50% of the trees are produced via the “grow”method. Given a fixed value of 

depth, there is a sensible variation in shape and size from each tree to any other. Thus, the 

ramped half-and-half method creates trees having a wide variety of sizes and shapes. 

Empirically, this method has shown better performance than both the “full” and the “grow” 

methods in a large number of researches. 

Another interesting issue considering the generative processes is the presence of duplicate 

individuals in the initial random generation. These individuals are unproductive deadwood 

and represent a waste in computational resources. Furthermore, their presence reduce the 

genetic diversity of the population. Avoiding duplicates in the initial population is desirable 

but not necessary; the creation of duplicates is more likely to happen when trees have small 

dimensions (as it is for a certain percentage of population in the “ramped half-and-half” and 

“grow” methods). In order to control and reduce the presence of duplicates, each newly 
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generated individual should allowed to become part of the initial population only after been 

checked for uniqueness. If a new individual is a duplicate, then the generating process is 

repeated until a unique individual is created. This procedure should be applied only during the 

creation of the first generation; any duplicate in the following generations must be considered 

as a product of the genetic operation of reproduction, thus a natural result of the genetic 

process. Occasionally, it might happen that it is necessary to substitute a small tree with one 

of larger size, if during the process the set of all the feasible tree of that given size has been 

exhausted. If duplicate checking is done, then the user will end up with 100% variety of the 

random population.  

 

1.4.5 Fitness selection 

The selection of the elements on which reproduction, crossover and the other secondary 

genetic operations (i.e. mutation, permutation, editing, encapsulation, decimation
6
) are applied 

influences the convergences in both Genetic Programming and Genetic Algorithms. The 

leading force drawn from the Darwinian natural selection is the fitness.  A major selective 

pressure leads to a more rapid convergence of the algorithm, which may also causes a loss in 

the genetic diversity of the population and a failure in the search for the optimal solution. The 

most common methods used are: the fitness-proportionate selection, in which the probability 

of selection of an individual as parent is proportionate or equal to its normalized fitness; the  

rank selection, in which all the elements are ranked and chosen according to their relative 

fitness, rather than basing the choice on the absolute value of fitness; the tournament 

selection, in which a fixed number of elements is randomly drawn from the population and 

the one with the best fitness value is selected. The fitness-proportionate selection method is 

the one which presents a lower selective pressure. This method, described in Holland's 

Adaptation in Natural and Artificial Systems (1975), supports many of Holland's theoretical 

results. 

                                                 
6
 These operations will be extensively introduced and analyzed in Chapter 1.4.7. 
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In nature, the fitness is a measure of the degree of likelihood that an individual survives to the 

stage of reproduction and reproduces. In the artificial world of mathematical algorithms, as 

before said, the fitness is measured in order to govern and allow the control of the operations 

that modify the structures in the population. Creating an explicit fitness measure for each 

individual let the user approach the vast majority of applications of the conventional Genetic 

Algorithm and Genetic Programming, as clearly illustrated in Koza (1992). Through a well-

defined evaluative process, a scalar fitness value is assigned to each individual. The most 

common fitness measure are well-illustrated in Koza (1992), where the author describes the 

four measures of fitness that are used:  

 raw fitness, 

 standardized fitness, 

 adjusted fitness, and 

 normalized fitness. 

The raw fitness r(i, t) for individual i at time t is the measurement of fitness that is stated in 

the natural terminology of the problem itself. The potential benefit of this approach is 

undermined by the non-comparability of performance of a particular individual across 

generations. The better value resulting after the fitness evaluation may be either smaller
7
 or 

larger (when raw fitness is gain). 

The standardized fitness s(i, t) restates the raw fitness in a way that allows the user to rank all 

the values in a scale where the lowest numerical value is always the best. In certain problem 

domains (for example, in an optimal control problem, where the aim is to minimize costs), a 

lower value of raw fitness is better. In this situation standardized fitness equals the raw fitness 

for that problem  

              . 

                                                 
7
 For example when raw fitness corresponds to an error measure, e.g. when it coincides, incorporates or is 

derived by the Mean Squared Error. 
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It may be convenient and desirable to make the best value of standardized fitness equal to 

zero. If this is not already the case, it can be made so by subtracting (or adding) a constant. 

When for particular problem a greater value of raw fitness is considered a better value, then 

standardized fitness must be computed from raw fitness: standardized fitness equals the 

maximum possible value of raw fitness (denoted by     ) minus the observed raw fitness. 

Basically, the reversal of the raw fitness is required  

                    . 

 

The adjusted fitness measure a(i, t) is computed directly from the standardized fitness s(i, t): 

       
 

        
 

 

where s(i,t) is the standardized fitness for individual i at time t. The adjusted fitness is 

included between 0 and 1, where higher values correspond to better individuals in the 

population. Koza (1992) applies consistently the adjusted fitness, in particular since it has a 

significant feature: it can amplify  the importance of small differences in the value of the 

standardized fitness as it approaches 0 (as often occurs on later generations of a run). Over 

generations, more importance is given to small differences that make the difference between a 

fit individual and a fitter one. This procedure is particularly significant if the standardized 

fitness actually reaches 0, when the perfect solution to the problem is finally achieved.   

It is important to point out that adjusted fitness may be neither relevant nor used when 

specific methods of selection, different from fitness proportionate selection, are applied (for 

instance, tournament selection and rank selection). 

If the method of selection employed is fitness proportionate, the normalized fitness n(i, t) is 

obtained from the adjusted fitness value a(i, t) as follows 
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where              . The normalized fitness is characterized by three significant and 

desirable features. First of all, it ranges between 0 and 1. Secondly, it is larger for the fitter 

individuals in the population. Thirdly, the sum of the normalized fitness values is 1. In 

Genetic Programming problems, the phrases “proportional to fitness” or “fitness 

proportionate” usually refer to the normalized fitness.  

Facing some problems, the user may deal with situations in which the population essential to 

find the solution to the problem is required to be larger and larger. This situation entails an 

extremely time-consuming calculations because both the population size and the amount of 

time required to evaluate the fitness are large, especially when computer resources are limited. 

As Koza (1992) remarks, in many cases, the performance of the Genetic Programming can be 

considerably enhanced through the greed over-selection of the fitter individuals in the 

population. This procedure is applied when starts the selection of the individuals from the 

population for the various genetic operation (e.g., reproduction and crossover): the fitter 

individuals are given an even better chance of selection than is already the case with 

normalized fitness. This greedy over-selection amounts to a further adjustment to the fitness 

measure. This adjustment should be used to improve performance only when the population 

size is 1,000 or larger. 
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1.4.6 Primary Operations for Modifying Structures 

Reproduction 

The structures undergoing the Genetic Programming are modified through the application of 

two primary operations and five operations considered secondary, since the user can 

discretionary choose whether to apply or not these genetic procedures.   

The primary operations are the Darwinian reproduction and the crossover (or sexual 

recombination). 

The reproduction operation is the base of the  Darwinian natural selection and survival of the 

fittest. This operation is asexual since its performance involves only one parental individual 

and it produces only one offspring. A single individual is selected from the population 

following some previously determined selection method based on fitness. Then, the selected 

individual is copied, with no modifications, from the current population into the new 

population (i.e., the new generation). There are many different selection methods based on 

fitness. The most popular, as before said, is fitness-proportionate selection. When this method 

is applied, the reproduction operation is said fitness-proportionate reproduction. If          is 

the fitness value of individual    in the population at generation t, then, under fitness-

proportionate selection, the probability that individual    will be copied into the next 

generation of the population is 

        

        
 
    

 

Usually the fitness value of any individual is evaluated by the normalized fitness function 

n(     ). Thus, the probability that an individual will be copied into the next generation equals 

exactly its normalized fitness n(     ). 

As an alternative to fitness-proportionate selection, the user may choose to apply the  rank 

selection; in this case, as before explained, individuals are selected according to the rank 
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position obtained after the determination of the fitness value associated with them (Baker 

1985). High-fitness individuals in the population are subjected to a concrete reduction in 

terms of potentially dominating effects since rank selection implies a limited amount of 

selection pressure in favor of such individuals. Furthermore, this kind of selection overstates 

the differences among individuals belonging to clusters characterized by very closed fitness 

values (Whitley 1989). In tournament selection, a fixed-number group of individuals 

(generally two) is randomly selected from the population and the individual which displays 

the better fitness value is then chosen.  

Generally, the selection operation can be performed with replacement: this implies that 

parents can be selected several times for reproduction during the current generation. Thus, the 

rate of survival and reproduction for individuals with high fitness value is essential for 

Genetic Algorithms and Genetic Programming. Furthermore, reproduction is particularly 

important in terms of time that can be saved in calculation. The reason is simply the fact that 

individuals that are replicated in next generations do not need to be again measured in terms 

of fitness, since their fitness value will remain unchanged
8
. For example, if the reproduction 

operation is being applied to, say, 10% of the population on each generation, this technique 

alone results in 10% fewer calculations of fitness on every generation. 

 

Crossover 

The crossover (sexual recombination) operation has a relevant influence in Genetic 

Programming. This operation guarantees the variety among individuals in the population by 

creating new offspring formed of parts taken from each parent. Thus, crossover operation 

involves two parents from which are created two new offspring. On the contrary of 

reproduction, crossover is a sexual operation. Parents are selected according to the previously 

determined fitness-based selection method also used for selection in reproduction operations. 

Using a uniform probability function, one random point in each parent will be independently 

                                                 
8
 Except for specific cases in which the fitness function is for example normalized or standardized. 
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selected as the crossover point. The crossover fragment for a particular parent is the rooted 

subtree which has as its root the crossover point and which consists of the entire subtree lying 

below the crossover point. This subtree sometimes consists of one terminal. It is important to 

note that, normally, parents show unequal sizes. The crossover operation has always to take 

into consideration and implement the fixed parameters which define the maximum depth of 

the trees. Practically speaking, the first offspring is formed by getting rid of the crossover 

fragment of the first parent from the first parent and then inserting the crossover fragment of 

the second parent in what is called the remainder or, in other words, at the crossover point of 

the first parent. The same procedure is symmetrically followed for the creation of the second 

offspring. 

The following figures are displaying a graphical example to clarify the crossover operation. 

  

 

 

 

          

 

 

 

 

 

 

 
Figure 1.2 

 
 

Figure 1.3 

 
Figure 1.4 
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Figure 1.2 shows an example of two parental programs. Both trees above are numbered in a 

depth-first, left-to-right way. The crossover points of Parent 1 and Parent 2 are respectively 

located at second point (which corresponds to the NOT function) and at the sixth point (which 

corresponds to the AND function). In Figure 1.3 the crossover fragments are clearly 

highlighted and set apart. As shown in Figure 1.4, the crossover fragment obtained from 

Parent 1 is implemented in the remainder of Parent 2, creating a new offspring. The same 

procedure involves the crossover fragment created from Parent 2 and the remainder of Parent 

1, entailing the creation of the second new offspring. 

Note that in applying the crossover operation, the closure property if the functions has always 

to be respected in order to obtain feasible offspring. 

Considering the crossover operation results, offspring can be generated in a variety of 

different combinations. If the crossover point of the first parent corresponds to a terminal 

point, then the subtree extracted from the second parent will be inserted in the first parent in 

the place of the terminal point, creating an extension of the first individual, while the terminal 

will be inserted at the location of the subtree in the second parent, shearing off the second 

individual. This procedure will often have the effect of producing an offspring with 

considerable depth. 

In the case in which the both selected crossover points correspond to terminal points, the 

crossover operation will simply consist of a swap between the two terminals from one parent 

to the other.  

There is also the possibility that the root of one parental happens to be selected as the 

crossover point. In this situation the entire parent will be inserted at the crossover point of the 

second part, becoming a subtree within the second parent with the result of producing a new 

offspring of considerable depth. Furthermore, the subtree extracted from the second parent 

will, instead, become the other complete offspring. In rare situations, it may happen that the 

crossover point selected from the first parent is the root of the individual (as in the previous 
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case) and the crossover point of the second parent consists of a terminal point. In this case the 

second offspring will consist only of one terminal point.  

When the roots of the both parents are selected as crossover points, the crossover operation 

simply implies the reproduction of both individuals. 

It may happen that an individual can be selected to embody both parents and incestuously 

mates with itself or two identical individuals mate. In these situations the resulting offspring 

are generally different since the crossover points, which are randomly selected, are situated in 

different positions in the parents. These cases are peculiar since they are completely in 

contrast with the case of the conventional Genetic Algorithm. When the crossover operation is 

applied to Genetic Algorithms, it operates on fixed-length character strings where the one 

selected crossover point will be situated in the same position in both parents. Thus, the 

incestuous mating of an individual produces two identical offspring that duplicate the parent. 

These results affect the genetic diversity of the population of the next generation. For both 

genetic methods, when an individual in the population shows extraordinarily good fitness 

relative to the other individuals currently in the population, the Darwinian reproduction 

operation will cause many copies of that one individual to be produced, even if its 

performance is mediocre in the search space as a whole. In fact, the reproduction operation 

entails the selection of a fixed percentage of the population, chosen probabilistically 

proportionate to fitness, that will may be copied into the next generation. This tendency 

towards convergence will be increased, since the extraordinary individual and its copies will 

be frequently selected to participate in crossover: incestuous mating among individuals will 

be recurrent. As before said, in Genetic Algorithms, when an individual incestuously mates 

with itself, the two resulting offspring will be identical: the result may be a strong tendency 

toward convergence which perilously leads to what is called premature convergence. 

Premature convergence involves the convergence of the population to a globally suboptimal 

result and generally happens when a mediocre individual in the search as whole shows 

extraordinary high performance in terms of relative fitness when compared to the other 

individual of the current generation. As Koza (1992) clearly illustrates, in this situation 
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(sometimes called ''survival of the mediocre''), the conventional Genetic Algorithm fails to 

find the global optimum. Naturally, when the global optimum is found, the conventional 

Genetic Algorithm converges with high probability to that globally optimal individual. Once 

the convergence process is started, only the mutation operation may divert the trend, since in 

principle mutation may lead in any direction. Anyway, in practice, it is usually to observe a 

quick reconvergence of the population. Instead, Genetic Programming reacts differently to the 

issue: if an individual incestuously mates with itself, generally the crossover point will be in 

different points of the two parents (except in rare cases), producing two different offspring. In 

conclusion, it can be highlighted that, in Genetic Programming, crossover operation generates 

a counteracting force away from convergence. 

Recalling what before anticipated, a maximum depth of the trees should be fixed at the 

beginning of any computation in Genetic Programming, in order to avoid extreme losses of 

time in complex calculation over few extraordinary large individuals. Once this maximum 

size is established, also the offspring created by the crossover operation must respect this 

parameter. What happens if, after crossover operation, a new offspring, which exhibits a not 

admissible size, is created? In this situation the operation must be aborted: the offspring will 

be eliminated and the first of its parents will be arbitrarily chosen to be copied into the next 

generation. When both offspring exceed the maximum depth admitted, then both parents will 

be reproduced into the new population. If it was possible to execute all the possible 

combination resulting from crossover with no boundaries in terms of depth size of the trees, 

the process would behave as the nature does. Nonetheless, as Koza (1992) illustrates, it is 

possible to establish a default value for the maximum permissible depth (for example 17
9
) 

which guarantees limited negative influence for what concern the exploration and the 

constraining of the solutions. 

 

 

                                                 
9
 This example for the choice of the maximum depth of the tree just reports the number selected by Koza 

(1992).  
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1.4.7 Secondary Operations for Modifying the Structure 

For what concerns the secondary operations in Genetic Programming, there are five more 

optional operations that can occasionally be used, whose worth require to be carefully 

examined, as their influence might be particularly important for the exploration of the search 

space. These five operations are: 

· mutation; 

· permutation;  

· editing; 

· encapsulation; 

· decimation. 

 

Mutation 

The mutation operation is particularly useful since it introduces random changes in structures 

in the population. When applied to conventional Genetic Algorithms, it operates on strings 

and contributes to reintroduce or increment genetic diversity in a population that may be 

experiencing premature convergence. In fact, often a particular symbol (i.e. allele) occupying 

a distinct position on a chromosome string happens to premature extinguish because 

associated to strings with lower performances. Complications arise when that particular allele 

corresponds to the needed character that will allow the Genetic Algorithm to achieve optimal 

solution at a later stage of the run. Occasionally, the mutation operation may effectively 

produce beneficial outcomes reintroducing alleles necessary to reach the optimal solution but 

extinct during the run. As Holland (1975) and Goldberg (1989) underline, in conventional 

Genetic Algorithms the effects of mutation are relatively subordinated to the primary genetic 

operations and, for this reason, it is considered an almost unimportant operation.  

The considerations about the occasional usefulness of mutation applied to strings in the 

conventional Genetic Algorithm are largely inapplicable when this operation is applied to 
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Genetic Programming. Mutation is an asexual operation operating only in one parent. The 

probability, according to which the selection is effectuated, is proportional to the normalized 

fitness and the result of this operation is one offspring.  The initial step of mutation is the 

randomly selection of a point, called mutation point, that can be either an internal point (thus, 

corresponding to a function) or an external point (i.e. a terminal) of the tree. The second step 

involves the removal of both the point selected as mutation point and whatever is below that 

point. After this operation, a randomly generated subtree is inserted at that precise point, 

creating a completely new individual. Naturally also mutation must comply with the 

parameter that specifies the maximum size (depth) of the trees. Normally, this control 

parameter takes the same value of the parameter initially set for the maximum size of 

individuals in the original random population. It may happen that sometimes, at a randomly 

point of the tree, a single terminal is inserted after the mutation operation. Occasionally this 

point mutations occurs also in the crossover operation, when both selected crossover points 

correspond to terminal points. 

In Genetic Programming functions and terminals are not bounded to fixed positions in a fixed 

structure and it is rare that a single function or terminal completely disappear from the 

population, at least in the early stage of the run, because of the low number of functions and 

terminals used in the process. For this reason, while in the conventional Genetic Algorithm 

mutation restores the diversity, especially in cases of premature convergences, this function is 

not essential in Genetic Programming. Furthermore, in Genetic Programming the crossover 

operation may itself produce the same effects of mutation whenever the two crossover points 

in the two parents are both endpoints of the trees. Thus, even though point mutation may be 

useful, the crossover operation already provides it. 
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Permutation 

The permutation generalizes the inversion operation which applies in the conventional 

Genetic Algorithm. In conventional Genetic Algorithms, after selecting two different points of 

a single individual, all the characters included between these two points are reordered by 

reversing their positions. The effect is to put close together some alleles and move farther 

apart others with the purpose of establish a linkage between combinations of alleles that 

perform well when combined together, especially when the inversion operation is applied to 

relatively high-fitness individual.  

As for reproduction and crossover, the individuals subjected to permutation are selected with 

a probability proportional to their fitness value. This asexual operation, which, thus, operates 

on only one parent, produces one offspring.  It begins with the randomly selection of an 

internal point (i.e. a function). When the selected function has k arguments, a permutation is 

selected at random from the set of k! possible permutations and the arguments of the function 

are permuted according to the random permutation chosen. Sometimes immediate effect on 

the returned value may not be visible as long as the selected function has commutative 

properties. Permutation applied to Genetic Programming, as described above, is different 

from the inversion operation for the Genetic Algorithms. While in Genetic Programming 

permutation allows any one of the k! possible permutations to occur, which is randomly 

chosen, the inversion operation allows only one of the k! possible permutations, namely the 

simple reversal. 

 

Editing 

The editing operation aims at simplifying the structures of the individuals as Genetic 

Programming is running. The editing operation is asexual, i.e. it operates on one parent and 

produces one offspring. In order to make the editing operation applicable, a pre-established 

set of domain-independent and domain-specific editing rules must be defined for each 
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individual in the population
10

. The simplification process basically follows one simple rule: 

any function that presents no side effect, that is context independent and has only constant 

atoms as arguments, can be evaluated through the editing operation and can be replaced with 

the value obtained from the evaluation (domain-independent editing rule). A classical 

example is the numeric expression (+ 2 4) which encodes the summation of 2 and 4: this 

function will be substituted by the value 6. Another representative case could be the Boolean 

expression (AND T T), where T stands for True: in this situation the expression will be 

substitute simply by T. As before said, all these cases follow a pre-specified set of domain-

specific editing rules, which covers all the situations that potentially can be simplified. In the 

Genetic Algorithms there are no equivalents to the editing operation since individuals are 

already encoded in fixed-length character strings with a uniform structural complexity. 

In Genetic Programming, the editing operation can be applied in two different ways: 

 the editing operation can be used cosmetically, or in other words, external to the run, 

in order to return a more readable output of displayed individuals. 

 the editing operation may also operate during the run with the aim either for returning 

simplified output or for improving the overall performance of Genetic Programming. 

Whatever is the motivation for which the editing operation is applied, it will be implemented 

to each individual in the population. A frequency parameter controls the recurrence of the 

editing operation across generations. There is a very unclear opinion over the actual result of 

the editing operation in Genetic Programming. Doubts are generally related to the difficult 

question whether simplifying in order to speed up the process is potentially helpful or 

prejudicial (as it decrease the number of structures available for the crossover, the mutation 

and the permutation operations) in finding the solution to problems with Genetic 

Programming. 

 

                                                 
10

 The terms domain-independent and domain-specific editing rules refer to specialized rules whose application 
is not affected or influenced by the run of the Genetic Programming.  
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Encapsulation 

The encapsulation operator automatically identifies useful subtrees and gives them an 

encoded name in order to reference and use them later. In this way it is possible to decompose 

a larger problem into a hierarchy of smaller subproblems, easier to be solved. The automatic 

identification of the subproblems and the definition of a hierarchy are the fundamental steps 

for dealing with large problems. Encapsulation is an asexual operation: as in reproduction 

operation, the parent is selected with a probability proportionate to its fitness value and it 

produces one offspring. The first step of this operation is the randomly selection of a function 

(internal point) of the individual. The encapsulation operation cancels the subtree originated at 

the selected point and establishes a new function which automatically refers to the removed 

subtree. These new encapsulated functions are respectively named   ,   ,   ,   , ..., 

according to their creation and they have no arguments (i.e. the functions are placed at a 

terminal point of the tree). The reference to the new function is then integrated at the selected 

point of the individual subjected to the encapsulation operation. The result of this operation is 

one offspring and one new subtree definition. Furthermore, the initial function set of the 

problem is completed through the integration of the newly created function allowing the 

mutation operation, if used during the run, to incorporate the encapsulated functions in the 

subtrees grown at the selected mutation point. The main positive development of the 

encapsulation operation is the creation of an indivisible single point which encapsulate the 

selected subtree and which is no longer subject to the potentially disruptive effects of 

crossover, becoming a potential building block for future generations. 

Decimation 

In some complex problems
11

, the initial population may present high skewness in the 

distribution of the fitness values. This condition reveals that a very large share of the 

individuals has very poor fitness. In such situation, the main issue is the incredible amount of 

                                                 
11

 Complex problems usually display some penalty in fitness value in order to reduce the otherwise huge 
amount of time consumed for each single run. This happens for example in time optimal control problems or 
problems involving iterative loops. 
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time that can be spent and wasted on very poor individuals in the early stage of the process, 

especially in the first generations. Furthermore, there is a high probability that individuals 

with high fitness values easily start to dominate the population and reduce the genetic 

diversity. Even if in Genetic Programming the crossover operation guarantees high 

capabilities in reintroducing genetic diversity in the population, the selection of the parents 

participating in crossover is always based on fitness: in other words, crossover focuses on the 

few individuals that relatively perform better in terms of fitness value and for this reason the 

reintroduction of variety is not always obvious. The decimation operation offers a faster way 

to deal with this situation. As the term in itself suggests, the decimation operation reduces the 

number of individuals in a population letting survive a percentage of the population and 

eliminating the remaining individuals. Two parameters need to be established in order to 

correctly apply the decimation operator: a percentage and a condition specifying when the 

operation is to be invoked. The percentage parameter specifies the share of population that 

must be preserved while the other parameter defines on which generations the decimation 

parameter will be applied (for example, the percentage may be 10% and the operation may be 

invoked on generation 0). Immediately after the fitness calculation for generation 0, all but 

10% of the population is deleted. Obviously, if decimation is applied on 10% of the 

population of generation 0, the user will provide an initial population composed by 10 times 

the individuals of the population desired for the remaining of the run. Individuals are selected 

probabilistically according to their fitness value and reselection is not allowed so as to 

guarantee the maximum variety among the individuals in the remaining population. 

 

1.4.8 Termination Criteria and Result Designation 

As the Genetic Algorithm, the Genetic Programming process is virtually never-ending. For 

this simple reason, the user must establish at the beginning of the run a termination criterion 

that has to be met and satisfied. This termination criterion can be either the achievement of a 

fixed maximum number G of generations that have to be run or a problem-specific success 

predicate that has been satisfied, which may for example involve finding a 100%-correct 
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solution to the problem
12

. In more complex problems (for example optimization problems) the 

exact solution may not be immediately recognizable or not even expected to be found. In 

these situations the user should apply as success predicate a lower criterion for success 

(instead of the 100%-correct solution). Another termination criterion applied in Genetic 

Programming is the method of result designation, which identifies the best individual ever 

appeared in any generation of the population, or in other words the best-so-far individual 

resulting from the run of the Genetic Programming. The best-so-far individual is reported as 

the result of the entire run as soon as the run meets the termination criterion. In alternative, the 

result designation method can select the best-of-generation individual in the population at the 

time the termination criterion is met. This method usually produce the same result as the best-

so-far method; the explanation for this is the fact that the best-so-far individual is usually in 

the population at the time of termination. This correspondence happens in two cases. In the 

first case, due to its high fitness, the best-so-far individual is more likely to be copied into the 

next generations by the reproduction operation until the termination of the run. In the second 

case, the run is terminated at the generation in which the best-so-far individual is created and 

it satisfies the termination criterion.  

 

1.4.9 Control Parameters 

Genetic Programming is generally controlled by 19 control parameters, including two major 

numerical parameters, 11 minor numerical parameters, and six qualitative variables that select 

among various alternative ways of executing a run. The two major numerical parameter are 

the population size M and the maximum number of generations to be run G. The eleven minor 

parameters used to control the process are: 

 The probability of crossover,   ; 

 The probability of reproduction,   ; 

                                                 
12

 For example some individuals of the population display a standardized fitness of 0 (Koza,1992). 
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 The selected crossover points are equally allocated through a probability distribution 

    (for example     =90%) among the internal (function) points of each tree, while 

the remaining share of crossover points (10%) is equally distributed among the 

external (terminal) points of each tree; 

 A maximum size (measured by depth),          , is established for individuals created 

by the crossover operation; 

 A maximum size (measured by depth),          , is established for the random 

individuals generated for the initial population; 

 The probability of mutation,   ; 

 The probability of permutation,   ; 

 The parameter specifying the frequency,    , of applying the editing operation; 

 The probability of encapsulation,    ; 

 The percentage and condition for invoking the decimation operation
13

; 

 The decimation percentage,   ; 

Moreover, the execution of the runs is influenced by six more qualitative variables: 

 The generative method for the initial random population; 

 The method of selection for reproduction and for the first parent in crossover; 

 The method of selection for the second parent in crossover; 

 The type of fitness measure applied; 

 The application or not of the greed over-selection method; 

 The application of the elitist strategy
14

. 

 

                                                 
13

 The decimation operation requires to establish the percentage of individual that must survive and the 
condition for evoking the operation, which consist in setting the number of the generation at which the 
operation must operate. For  example, setting this condition at  0 means that the decimation operation will be 
applied on the generation 0 (i.e. the initial generation). 
14

 The elitist strategy allows the best-so-far individuals to pass on unchanged to the next generation in order to 
avoid decrease in the solution quality from generation to generation. 
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1.5 The Schemata  

In the Genetic Algorithm the number of individuals actually present in the current population 

is just an infinitesimal share of the complete search space of the problem. In his book 

Adaptation in Natural and Artificial Systems (1975), Holland clearly shows how the Genetic 

Algorithm, processing fixed-length character strings, implicitly operates information about a 

massive number of unseen schemata. The Genetic Algorithm, in parallel, computes for each 

generation an appraisal of the average fitness of each unseen schemata. The paramount 

concept underlying the Schemata Theorem is, indeed, the implicit calculation that operates on 

the schemata. In other word, the Genetic Algorithm computes the reproduction and crossover 

operations on the M individuals actually part of the population, but still processes all the 

possible existing schemata. 

Individuals are encoded in strings of length L and each gene can assume a value over an 

alphabet of size K. Instead, a schema is defined as a string of length L over an extended 

alphabet of size K plus the metasymbol *. The high consideration received by the concept of 

schema is due to the fact that a particular schema might be a relevant component of the final 

solution of the problem. Given a particular string expressed in a binary alphabet, for instance 

H=(0 0 0 1 0 1 0 1), the schemata connected to this string will consist of any possible schema 

whose structure match with that string; in other words each symbol matches the symbol of the 

identifier for all specific positions, where the *-symbol is matching anything, for example 

H=(0 * * 1 0 * 1). Thus, what the implicit parallelism implies is that one string’s fitness tells 

us something about the relative fitness of more than one schema. The assumption underlying 

the Schema Theorem is the fact that individuals’ high fitness values are due to the existence 

of a good schemata. According to Holland, for Genetic Algorithms using fitness-

proportionate reproduction and crossover, those individuals who present good schemata, and 

therefore high fitness values, should receive higher chances to pass on their genes in the next 

generation. In case of binary alphabet, there are        schemata and each individual 

appears in    cases;  therefore, in a population of M individual strings there will occur     
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schemata. Following Holland’s thought, the expectation for each schema H to occur in the 

next generation is 

         
      

    
            

where          is the number of each schema H expected to occur in the next generation, 

        is the number of each schema H in the current generation,        is the fitness value 

of the considered schema H,      is the average fitness and   is small. When the fraction 

      

    
 remains above the unit through several generations, the schema presenting above-

average fitness has exponentially increasing possibility to occur in the next generation, too. 

Concerning about  , it is determined by dividing the length δ(H) of the schema (i.e. the 

distance between first and last position of non * symbols)  by L – 1, which is the number of 

points where crossover could operate). Thus,   is small when the length of the schema δ(H) is 

short too, with the consequence preference of Genetic Algorithms to compute on short and 

compact schema.  

In Genetic Programming a schema is the set composed by all the trees in the population that 

are formed by one or more particular subtrees. Assume that the feature that must be shared 

among the individuals belonging to the same schema is a subtree formed by s predefined 

points. All points are specified: “don’t care” symbols do not exist in the Genetic 

Programming schema. The number of individuals that could potentially contemplate this 

feature is unlimited since the possible combinations are infinite, but the Genetic Programming 

procedure, as before said, consider only trees within a pre-specified maximum depth, which is 

provided both in the first generation, concerning the size of the initial random trees, and the 

successive generations, when the depth of individuals varies because of the crossover 

operation. Once the maximum size W is defined, the subset of interest will be finite. All the 

individuals belonging to this subset contribute to the computation of the average fitness of the 

schema,     , which is the average of all the fitness values of the considered individuals. 

Following the same approach used to study the Genetic Algorithm, Holland came to the 
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conclusion that, also in Genetic Programming, the occurrence of schemata in the following 

generations depends on the ratio of the fitness of the schema in interest to the average fitness 

of the population. In other words, what it is really interesting is not the absolute fitness value 

of one individual, but its relative value compared to all the other individuals existing in the 

population. When this ratio is high, it is possible to notice an increase in the number of the 

expected occurrence m(H, t) of that schema in the next generation in an exponential way. 

In contrast with what happens in Genetic Algorithms, the disruptive effect of the crossover 

operation in Genetic Programming is more likely to cause deviations from the near-optimal 

rate of growth (or decay) of a schema. For strings this effect is relatively small because of the 

limited distance between the points in the string contributing to the definition of schema (δ(H) 

). In Genetic programming the disruptive effect is limited only when the schema corresponds 

to a small compact subtree; to overcome this problem, when the schema contains only a single 

well-defined subtree, these subprograms from relatively high-fitness programs become 

building blocks for constructing new individuals in an approximately near-optimal way. Over 

time, the consequences are the reduction of the search space and the increase of the fitness of 

the individuals. This process applies also to schemata with multiple specified subtrees. 
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Chapter 2 
The Literature In Genetic Algorithms 
and Genetic Programming 

 

2.1 Literature Overview 

2.1.1 Genetic Algorithm and Genetic Programming in Financial Applications 

The application of Genetic Programming has collected important results in the solution of 

problems in which the domain is poorly understood and the relevant variables are not 

specifically defined or are unknown. Generally speaking, when the domain is completely 

defined, there might be more specific tools able to solve the problem with good qualitative 

results which allow the user to avoid the intrinsic uncertainty typical of stochastic processes 

like Genetic Programming. On the other hand, Genetic Programming reveals all its potential 

capabilities, especially when it comes about new or not fully understood applications. Genetic 

Programming may help in understanding the true importance of variables and operations, 

revealing new problem solutions and unpredictable connections among variables. In other 

words, Genetic Programming can bring to light new approaches whose application could be 

extended to a wide variety of circumstances. Its contribution is important especially when size 

and shape of the solution are unknown. Instead, in the case in which the characteristics of the 

solution are known, it is possible to approach to the solution with more specific method (for 

instance the Genetic Algorithm, whose strings have a pre-specified length). One of the most 

interesting feature of Genetic Programming is its capability to cope with large amount of data 

and handle the presence of noise in the data. Furthermore, Genetic Programming shows more 

effectiveness in exploiting smaller dataset with respect to others nonparametric approaches, 

such as Neural Networks or Genetic Algorithms.  
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The application of Genetic Algorithms and Genetic Programming has been widely used in an 

enormous number of fields, reporting successful results as automatic programming tool, 

machine learning tool and automatic problem-solving engine. The first term (automatic 

programming tool) defines a computer program whose language is generated by commands 

that follow a precise automatic code; these tools are opposed to the ones which are manually 

processed and computed by the users. The machine learning tools are approaches based on 

algorithms that learn from data. Instead of being merely based on precisely programmed 

instructions, these tools are able to use the inputs provided by the user to build a model and 

process the data in order to make decisions and predictions.  

 

During the last decades the financial application of GAs and GP have seen numerous 

advancements, starting from familiar applications, such as forecasting, trading, and portfolio 

management, and concluding  with enhancements in more recent fields of study, such as cash 

flow management, option pricing, volatility forecasting, and arbitrage. This research area has 

been widely studied and a lot of introductory material is available. Bauer (1994) is one of the 

first and more complete textbooks on the introduction of GAs to finance. No comparable 

textbook can be consulted with regard to GP in computational finance. However, an 

exhaustive analysis of financial applications of GP is exposed in Smith and Chen (1998).  

Because of the extremely vast area of application of Genetic Algorithms and Genetic 

Programming, the description of all these possible practical implementations is impossible. 

For the sake of clarity, an example of the huge work conducted on Genetic Programming is 

the research developed by Shu-Heng Chen (Chen, 2002), who has applied Genetic 

Programming over more than 60 papers in finance and economics. 

Genetic Algorithms and Genetic Programming have been mainly applied to financial 

forecasting and trading, which are the most dynamic financial applications. Just for giving the 

idea of the variety of the subject, even if not updated to the latest years, an extensive review 

has been provided in Evolutionary Computation in Economics and Finance: A Bibliography, 

Chen and Kuo (2002). From the list of publications contained and classified according to their 

domain application, it results that about 40 former publications are focused on financial 

forecasting and 35 on trading. Obviously, the connection between forecasting and trading is 
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extremely close: the main aim of financial forecasting is to boost the productivity of trading. 

Excluding financial forecasting and trading, the remaining published application of GAs and 

GP are mainly focused on portfolio optimization, cash flow management, option pricing, 

volatility modeling and arbitrage.  

Recalling Chen works, Chen has recently worked on the modeling of agents in stock markets 

(Chen and Liao, 2005), game theory (Chen, Duffy, and Yeh, 2002), evolving trading rules for 

the S&P 500 (Yu and Chen, 2004) and forecasting the Heng-Sheng index (Chen, Wang, and 

Zhang, 1999). In 2008 Chen examined the extent to which the return of financial trading 

rules, obtained through Genetic Programming, is correlated with the entropy rates of the price 

time series (Navet, N. and Chen, S.-H. 2008), deepening the preceding works on Genetic 

Programming in financial trading. Among these works dedicated to financial trading and 

Genetic Programming, it is necessary to cite also the work of Dempster and Jones (2001), 

where it has been developed a real-time adaptive trading system based on combinations of 

different indicators at different frequencies and lags.  

Kaboudan shows that GP can forecast international currency exchange rates (Kaboudan, 

2005), stocks (Kaboudan, 2000) and stock returns (Kaboudan, 1999). Tsang and his co-

workers continue to apply GP to a variety of financial areas, including: betting (Tsang, Li, and 

Butler, 1998), forecasting stock prices (Li and Tsang, 1999; Tsang and Li, 2002; Tsang, 

Yung, and Li, 2004), studying markets (Martinez- Jaramillo and Tsang, 2007), approximating 

Nash equilibrium in game theory (Jin, 2005; Jin and Tsang, 2006; Tsang and Jin, 2006) and 

arbitrage (Tsang, Markose, and Er, 2005). Dempster also uses GP in foreign exchange trading 

(Austin, Bates, Dempster, Leemans and Williams, 2004; Dempster and Jones, 2000; 

Dempster, Payne, Romahi and Thompson, 2001). Pillay has used GP in social studies and 

teaching aids in education, (e.g. Pillay, 2003). Since 1995, the International Conference on 

Computing in Economics and Finance (CEF) has been held every year. It regularly attracts 

papers focused on Genetic Programming, many of which are on-line. In 2007 Brabazon and 

O’Neill established the European Workshop on Evolutionary Computation in Finance and 

Economics (EvoFIN). 
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2.2.2 Derivative Securities: A Focus on Options 

Concerning the prediction of derivative securities behavior, Genetic Programming has been 

widely investigated and applied in the study of derivative securities’ behavior.  

The term “derivative security” defines a financial contract whose value is established by the 

market price of the underlying cash instrument at the time considered. In other terms, the 

price of the underlying asset determines the price of the derivative security. 

The underlying asset can be 

- Stocks; 

- Currencies; 

- Interest rates; 

- Indexes; 

- Commodities, like crude oil, gold and many more. 

Furthermore, derivative securities can be grouped under three general headings: 

- Futures and forwards; 

- Options; 

- Swaps. 

 

Since the main aim of this work is the analysis of Genetic Programming applied to the option 

pricing, a brief introduction to options and the previous literature dedicated to the this topic is 

provided. 

In finance, the term option defines the peculiar contract that confers on the buyer (owner) of 

the option the opportunity, but not the obligation, to buy or sell the underlying asset on which 

the option is written at the strike price on or before the specified expiration date. Options 

mainly diverge from the other derivative securities thanks to the rights that the possessor is 

entitled: the user is not obliged to buy or sell the underlying. The operation happens only if it 

is the most profitable choice, otherwise the possessor will not exercise his right. On the other 

hand, the corresponding seller has to fulfill the transaction: he is obliged to sell or buy if the 

buyer (owner) exercises the option. According to the purpose of the operation, option trading 
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gives various benefits; in particular, it limits the risk and provides a leverage protecting or 

enhancing a portfolio in increasing, decreasing or neutral markets.  

Options can be classified in call or put options, which respectively give the right to buy or sell 

the underlying asset at the strike price on or before the expiration date. The other main 

classification is between European and American options: the first gives the opportunity to 

exercise the option only  at the expiration date while the second group gives to the owner the 

right to exercise the option in any moment from the subscription of the contract until the date 

of expiration.  

Option pricing is a current growing research topic, which is attracting the attention in both 

academic and practical financial fields. The price, or cost, of an option is known as the 

premium, the amount of money that grants the right of exercise the option. The premium is 

non-refundable, whether or not the option is exercised. 

The value of the option premium is usually formed by the intrinsic value (the difference 

between the strike price of the option and the value of the underlying asset) and the time 

value, which refers to the difference between the premium and the intrinsic value. Generally, 

the time value of the option increases as the expiration date is further in the future. The 

underlying price is definitely the most influential component of the option premium as it 

influences directly the option price. Strike price instead defines the intrinsic value, if there is 

any. In particular, the premium augments its value if the option is in-the-money (and the 

option is more likely to be exercised) and, on the other side, it drops as the option becomes 

out-of-the-money (and the option will probably be not exercised). An option is considered in-

the-money when its exercise is considered convenient; in the case of call options this happens 

when the underlying price is higher than the strike price, while put options are considered in-

the-money when the underlying asset price is below the strike price. Vice versa, call options 

are considered out-of-the-money when the strike price is above the stock price; when 

considering put options, they are out-of-the-money when  the strike price is lower than the 

underlying asset price. Finally, an option is defined at-the-money when the stock and the 

strike price are identical. 

Option traders also consider the volatility of the option, which is a measure of the degree of 

fluctuation of the underlying asset’s price: it displays the speed and magnitude of price 
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changes. Financial traders usually compare the historical and the implied volatility in order to 

understand if an option is over- or undervalued. The historical volatility measures the 

observed price changes in a specified time lapse and is normally calculated using the standard 

deviation from the average price calculated over that precise time period. The historical 

volatility is also known as statistic volatility. Once the statistic volatility has been calculated, 

it can be used in a standard option pricing model (as the Black-Scholes model) in order to 

derive the market value of an option. Normally the market value obtained through this 

calculation (known as theoretical value) is different from the current price of an option and 

this difference is defined as option mispricing. In other words, the theoretical value is an 

estimation evaluated through the application of a model. Its value should picture the worth of 

the option and it is calculated using known parameters and real data. Generally, these inputs 

vary during the lifetime of the option and fluctuations should be considered while applying 

the model. For this reason theoretical value is conceptually different from the current market 

price of an option. Traders are naturally interested in evaluating the effectiveness of the option 

pricing model applied and a good measure that allows to evaluate the efficiency of the model 

is given by the implied volatility. The implied volatility is the expected volatility or, in other 

words, the projection in the future of the volatility rate of the underlying asset price at the 

expiration date of an option. The implied volatility can also indicate the current market trend. 

If the implied volatility is higher than the historical volatility it could indicate that the market 

is expecting that some non-specified factors will significantly influence the trend of the 

underlying asset. In this case, generally, the option is overvalued. Implied volatility is 

generally not easily quantifiable as, in general, there is any closed-form formula. Normally, 

when the underlying asset shows high volatility peaks, it entails higher expected price 

fluctuations and consequently a higher option premium.  

The expiration date has a consistent influence in option valuation. The probability that an 

option will be in-the-money is higher as the expiration date is far in the future. Of course, as 

the expiration date comes closer, the value of the option will experience a decrease. 

An interesting effect on option value is ascribable to interest rates and dividends. The interest 

rate’s influence is linked to the cost of owning the underlying asset and, as the rates increase, 

call premiums will rise and put premiums will decrease. The interest rate assumes the role of 
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an opportunity cost: when the interest rates are higher, also the opportunity cost of buying 

stocks becomes higher and buying call options rather than stocks becomes more attractive. In 

other words, buying call options instead of the stocks allows the investor to gain the same 

profit, controlling the same quantitative of the underlying asset but freezing a smaller amount 

of money compared to the money the investor would have used directly buying the 

underlying. This condition pushes up the call option demand and consequently the call option 

price (ceteris paribus).  For what concerns put options, they can be considered as substitutes 

for shorting shares. Shorting shares implies a positive cash flow into investor’s account, 

entailing earnings from interests. For this reason, buying put options can be profitable when 

speculating to downside trending. When, instead, interest rates increase, put option buyers can 

not earn on interests. In a scenario of rising interest rates, put options are less attractive than 

shorting shares causing a drop in put option demand and consequently a drop in put option 

premium. Following the same reasoning, a decrease in interest rates implies a rise in put 

options demand along with the premium increase.  

Option prices are also conditioned by dividends: any time dividends are cashed, the 

underlying asset’s price experiences a drop on the ex-dividend date. The considerations that 

must be taken into account are two: when the dividend’s value increases, call prices will 

decrease and put prices will increase. On the contrary, as the dividend’s value decreases, the 

effect on call and put options will be exactly the opposite. 

The development of both an academic interest and a flourishing trading market in options 

started from 1973, when options became actively traded through a guaranteed clearing house 

at the Chicago Board Options Exchange. Nowadays options are traded through clearing 

houses on regulated markets or over-the-counter (when buyer and seller agree on a bilateral 

customized contract). From the 1970s till the present day a constant attention has been 

directed to the definition of an effective option pricing model. Generally, models exploit fixed 

certain parameters and data (such as the underlying price, the strike price and the expiration 

date) and calculated factors, such as the implied volatility, in order to derive the theoretical 

value of the option at a specified time. During the option lifetime, variable data and 

parameters will fluctuate and these changes will influence the position of the theoretical 

value.  
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2.2.3 Black-Scholes Formula 

The first and most common approach to option pricing is the Black-Scholes model, published 

in 1973 by Fischer Black and Myron Scholes in a paper entitled "The Pricing of Options and 

Corporate Liabilities" published in the Journal of Political Economy and derived by the 

previous research of Robert Merton and Paul Samuelson. In that paper, a closed-form option 

pricing formulas were obtained through a dynamic hedging argument and a no-arbitrage 

condition. The Black-Scholes formula has been widely recognized as a milestone in the 

option pricing theory and it is commonly applied in finance, but the academic world agrees on 

the restrictiveness of the assumptions under this model, which shows systematic biases from 

actual option prices. Above all, it has been assumed that the underlying asset returns follow a 

normal distribution and discontinuous jumps are not considered possible. This assumption is a 

limit in real-world applications. In fact, a misspecification of the stochastic process will lead 

to systematic pricing and hedging errors for derivative securities linked to the underlying asset 

(Brabazon). A strong assumption is also made on the efficiency of the market: market 

movements cannot be predicted. Due to these lacks in accuracy and affinity to the real world 

option pricing behavior, some researches have been directed to new non-parametric 

approaches, as Genetic Programming (Chen 1997).  

The Black-Scholes approach is applied to European put and call options, that can only 

exercised at the expiration date. The original shape of the model does not take into 

consideration any dividend during the analyzed lapse. Anyway, further adaption has made 

possible to account for dividends estimating the ex-dividend date value of the underlying 

asset.  

The Black-Scholes pricing formula for call options: 

                
            where              

            
 

    

  
  

        
 

 

 

 

 

C = Call premium 

S = Current stock price 

t = Time until option exercise 

K = Option striking price 

r = Risk-free interest rate 

N = Cumulative standard normal 

distribution 

e = Exponential term 

s = Standard Deviation 

ln = Natural Logarithm 
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The formula composition can be analyzed in two parts: the first one, SN(d1), consists in 

multiplying the current stock price, S, by the change in the call premium in relation to a 

change in the underlying price, N(d1). From this multiplication it can be derived the 

advantage of buying the underlying. The second part, N(d2)Ke^(-rt), shows, instead, the 

present value of paying the exercise price upon expiration. The difference between these two 

parts is the option value. The five variable needed in Black-Scholes formula, as shown in the 

formula above reported, are five: strike price, stock price, time to maturity, volatility and risk 

free interest rate. 

 

2.2 Literature In GAs and GP Option Pricing and Related Works 

Pricing financial products is certainly one of the most complex issues in finance and, when 

the underlying asset returns do not follow a precise stochastic process, an exact solution is 

generally not available (Chen 1997).  Various nonparametric approaches, among the others of 

course also Genetic Algorithms and Genetic Programming, have been widely studied to test 

their capability to properly overcome the lack of the Black-Scholes model in flexibility.  

 

A wide literature has investigated the features of these applications. 

 

In 1994 James M. Hutchinson, Andrew W. Lo, and Tomaso Poggio published an innovative 

paper that inspired many further works: A Nonparametric Approach to Pricing and Hedging 

Derivative Securities Via Learning Networks. The authors propose a nonparametric approach 

for the estimation of the pricing formula of a derivative asset using learning networks. These 

nonparametric modelling tools exploit data in order to learn from them altering the 

connections between the input elements and analyzing the evolution of the problem results 

obtained. In this paper, Black-Scholes option prices are simulated and it is proved that the 

learning networks have the ability to recover the Black-Scholes rule. For this purpose, a two-

year option prices set has been trained. A comparison is conducted analyzing four other 

approaches: ordinary least squares, radial basis function networks, multilayer perceptron 
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networks, and projection pursuit
15

. Furthermore, these methods have been tested to real 

market data from S&P 500 futures options, from 1987 to 1991. 

The method presented by Hutchinson, Lo and Poggio is a nonparametric data-driven 

approach, a technique characterized by the fact that the data itself attempts to generate a 

model that determines both the behavior and the dynamics of the underlying asset and the 

connection between the considered asset and the prices of derivative securities. Meanwhile, 

assumptions on the underlying and on the pricing model are reduced to the minimum: 

lognormality and sample-path continuity are not taken into consideration and the parameters 

adapt to the changing environment during the run as data keep evolving through generations. 

The main inputs of the model are the underlying asset price, the strike price, the date of 

expiration, the volatility and the free-interest rate, while the output is the derivative’s price 

obtained as problem’s solution of the nonparametric data-driven problem.  

The aim of this work is to prove the capability of learning networks to approximate the Black-

Scholes formula. For this purpose, the learning networks are trained on option prices 

randomly generated through Monte Carlo simulation
16

 in a world where the Black-Scholes 

rule is applied. In other words, the data generated via Monte Carlo simulation set up a training 

set, which consists of an input vector that includes the variables of interest, and an output 

vector. The input and output vectors are used together with the learning method, whose task is 

to process the input vector in order to obtain an output vector as closer as possible to the 

originally given one. In this test the output vector used for the training test is formed by the 

option prices calculated with the Black-Scholes formula. The resulting solutions obtained 

with the learning networks are compared with the Black-Scholes formula solutions both 

analytically and in out-of-sample experiments. The results confirm the considerations 

proposed by the authors: the Black-Scholes formula is recovered with extreme accuracy by 

the learning network. 

 

                                                 
15

 For more information see Biologically Inspired Algorithms for Financial Modelling, Anthony Brabazon and 
Michael O’Neill (2006) – Springer edition. 
16

  Monte Carlo methods are a wide group of computational algorithms that, generally, randomly generate 
sample data according to a probabilistic function defined on a pre-specified domain. Refer to Monte Carlo, by 
George Fishman (2006) for a comprehensive introduction to Monte Carlo methods. 
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In 1997 Shu-Heng Chen and Who-Chiang Lee publish their paper Option Pricing with 

Genetic Algorithm: The Case of European-Style Options, an interesting study of the 

application of Genetic Algorithm in option pricing, focusing in particular on European call 

options, whose solution is compared to the one obtained from the Black-Scholes option 

pricing theorem. The obtained results are extremely promising, in particular when the authors 

consider in-the-money options, but some issues with the construction of the test structure 

limiting the performance of the model. The fitness functions, in fact, are calculated through a 

relative measure, the absolute percentage error, which evaluates, in absolute percentage 

terms, the residuals between the call option prices derived by the Genetic Algorithm and the 

call option prices derived by the Black-Scholes formula. This relative measure displays an 

asymmetric distribution, reaching values close to zero when the options are in-the-money and 

values up to 70% or 80% when the options considered are out-of-the-money.  For this reason, 

the authors claim the necessity of new researches and in-depth analysis.  

 

Another important research dedicated to option pricing was published in 1998 by Jay White, 

who applied genetic adaptive neural networks (GANNs) for pricing interest rate futures call 

and put options. In this work, Genetic Algorithms were used to implement the option pricing 

formulae evolving and determining the weights of the neural networks. In order to use the 

Genetic Algorithm in option pricing and therefore derive a formula that can be represented by 

a bit string, Chen and Lee (1997) approach the issue using a series expansion
17

, truncating the 

infinite series to a finite one. Then, the authors let the Genetic Algorithm process the bit 

strings that encode the coefficients obtained by the finite series expansion.  

As option pricing formula size and shape are not easily derivable, in more recent studies, it is 

common the application of the tree representation, typical of the Genetic Programming [Chen, 

Lee and Yeh (1999); Chindambaram et al. (2000); Keber (2000); Keber (2001)].  

 

                                                 
17

 Series expansions are mathematical methods used to calculate a function whose expression cannot be stated 
using the basic mathematical operators addition, subtraction, multiplication and division. Thus, this type of 
functions are expressed as the sum of powers in one of its variables, or by a sum of powers of another (usually 
elementary) function     . Refer to  Finite series-expansion reconstruction methods, Censor Y. (1983). 
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The paper of Hutchinson, Lo and Poggio has been considered as a benchmark work: their 

conclusions has been a comparison term and an inspiring starting point for many following 

papers. An example is the paper published in 1997 by Thomas H. Noe and Jun Wang, The 

Self-Evolving Logic of Financial Claims. This paramount study is reported in the book 

“Genetic Algorithms and Genetic Programming in Computational Finance”, edited by Shu-

Heng Chen, Springer Edition 2002. In this paper, Genetic Programming has been used as an 

optimization technique to price financial instruments; the purpose is to show how easily 

Genetic Programming can approximate the Black-Scholes formula even when trained on 

small data sample. Thus, applying the Genetic Programming to S&P 500 futures options, they 

found that GP performances in option pricing were at least comparable to the performance of 

artificial neural networks in Hutchinson et al. (1994). 

Noe and Wang wonder about the existence of a pricing technique that does not require a 

specified pricing structure and does not need to predefine a clear relation between the 

underlying asset’s price and the derivative’s price. To overcome these restrictions 

encountered both in the Black-Scholes model and in non-parametric data-driven model (as the 

radial-bias neural network method used by Hutchinson, Lo and Poggio), Noe and Wang 

investigate the Genetic Programming approach. The data sample used for the search is 

relatively small with respect to the database generally needed, as Genetic Programming can 

perform well also with a restrict collection of data. In fact, the results show that this method 

can find a pricing formula that displays small pricing errors. Furthermore, in the following 

tests, the Black-Scholes formula has been incorporated in the initial population, with the 

meaning that the authors have employed as output vector the normalized ratio of the option 

price obtained with the Black-Scholes formula and the strike price. Thanks to these 

arrangements, the representation of the Black-Scholes formula depicted in a tree-shape has 

been possible. 
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Figure 1 - Black-Scholes option pricing formula in tree representation. 

 

 

The result is surprisingly interesting: the introduction of the Black-Scholes formula shortens 

the evolutionary process, but the accuracy in option pricing reached in this second test is 

substantially the same as in the previous test. Keeping Hutchinson, Lo and Poggio research as 

a sort of benchmark, Noe and Wang first apply Genetic Programming in a simulated market 

governed by the Black-Scholes pricing formula. In this first case, three terminal functions are 

defined: the ratio of the spot stock price and strike price, the time to maturity and a real 

number between -1 and 1. For what concerns the non-terminal functions, they are randomly 

chosen between a set of operators such as plus, minus, multiplication, division, logarithm, 

exponential, minimum, maximum, square root, and cumulative normal. The resulting option 

price formula is normalized by the strike price. The composition of the terminal and non-

terminal sets easily allows Noe and Wang to introduce the Black-Scholes formula, depicted in 

a tree form representation (see Figure 1).  

N randomly generated programs form the initial population and their fitnesses are evaluated. 

The tournament selection is adopted and termination criteria are set. In particular the process 

will conclude as the best so far program correctly assess a true pricing value to a previously 

fixed percentage of the options, or when there is no improvement for a selected number of  

consecutive generation, or when the maximum number of generations that can be run is 

reached. 
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Then the raw fitness of a trading program is defined as:  

 

               
     

      
  

  
        

 

   

 

 

where    is the option price resulting from the Genetic Programming process,   
  is the option 

price obtained from the market, or in simulation, from the Black-Sholes option pricing 

formula. S is the number of nodes in a tree and f and g are monotone increasing functions. In 

other words, the first term represents the raw fitness, the second one an increasing function 

which measure the relative pricing errors and the third one controls the size of the genetic 

programs.  

In the second test, the Black-Scholes formula is incorporated in the Genetic Programming 

approach. Assumptions are made on volatilities in the population and the number of total 

generation is reduced. The test proves the ability of Genetic Programming to recover the 

pricing formula in a Black-Scholes world.  

Finally, in the third test, Genetic Programming applies to the S&P 500 futures options; data 

are collected from the Chicago Mercantile Exchange. The application of Genetic 

Programming to S&P 500 futures option shows that the results obtain are better or at least 

comparable to the one obtained by Hutchinson, Lo and Poggio (1994). 

 

In 1998 N. K. Chidambaran, Chi-Wen Jevons Lee, and Joaquin R. Trigueros published their 

research An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming, 

investigating the relationship between the option price, its contract terms and the behavior of 

the underlying asset price. Exploiting the capability of Genetic Programming of incorporating 

preexisting and commonly used formulas, the model searches for the best approximation to 

the true pricing formula. With the aid of Monte Carlo simulations, Chidambaran, Lee and 

Trigueros prove that, when stock prices follow a jump-diffusion process, Genetic 

Programming is able to reach a high potential option pricing formula, comparable if not 

preferable to the one obtained with the Black-Scholes model. The approach used by the 
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authors is non-parametric but, as largely said before, Genetic Programming displays 

advantages over other learning networks since it can cope with smaller database, on the 

contrary of neural networks employed by Hutchinson, Lo and Poggio (1994). One interesting 

feature of this work is a comparison between six different alternative parent-selection 

methods: Best, Fitness-proportionate, Fitness-overselection, Random, Tournament with 4 

individuals and Tournament with 7 individuals. Findings show that the Fitness-overselection 

method is the one with the most promising results for option pricing. The model incorporates 

the Black-Scholes formula in the initial gene pool. This shortcut simplifies the process to 

search for the best option pricing model. In fact, in this way the searching process starts from 

an already locally optimum solution. Furthermore, the Black-Scholes model easily adapts to a 

jump-diffusion process
18

, making the assumption of normal distributed returns no more 

necessary and, thus, approaching to the real world structure.  

The first test run by Chidambaran, Lee and Trigueros (1998) aims to verify the ability of 

Genetic Programming to implement the Black-Scholes formula. The dataset has been 

generated through Monte Carlo simulation. Stock returns are assumed to follow a diffusion 

process                       , while compound expected returns, standard deviation 

and risk-free interest rate are arbitrarily chosen by the authors. The formula for the calculation 

of the stock price is          
 
    and for each stock price realization has been generated a 

sample of call options. The Black-Scholes formula has been used in order to obtain option 

prices for each simulated option and, following Hutchinson, Lo and Poggio (1994), annual 

volatility and risk-free interest rate are constant throughout the options’ lifetime. Results 

obtained in the first simulation are compared with a simulation in a jump-diffusion world, as 

described by Merton (1976). As a closed form solution is available, it is possible to compare 

the pricing errors from the Genetic Programming model and for the Black-Scholes one. In this 

scenario, the Genetic Programming formula reaches better solutions in 10 out of 10 runs in 

comparison with the Black-Scholes approach. When the solutions are applied to the S&P 

                                                 
18

 The jump-diffusion process is a combination of the jump process and the diffusion process, introduced by 
Merton (1976). The jump process is a stochastic process characterized by discrete movements (jumps) instead 
of a smoothed continuous movement. The diffusion process, in probability theory, is defined as a solution to a 
stochastic differential equation.  
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Index, Genetic Programming performs almost as well as in the previous case and it is 

preferred to Black-Scholes formula in 9 out of 10 cases. When the comparison involves the 

study of five equities, Genetic Programming shows better results for 4 of the 5 stocks 

considered. The same result is reached if Genetic Programming is compared to the results 

obtained by Hutchinson, Lo and Poggio (1994), while the resolution time is definitely smaller 

with respect to what is necessary for learning networks.  

Summing up, results show that Genetic Programming formulas beat the Black-Scholes 

equation in 9 out of 10 tests when the jump-diffusion process is selected for generating the 

stock-prices and in 10 out of 10 runs when the analysis is executed on S&P Index options. 

Furthermore, also the third test, which has been run over five stocks of the sample, shows 

how this approach outperforms the Black-Scholes model in 4 out of 5 stocks. 

Since the Genetic Programming approach can incorporate the Black-Scholes formula, these 

solutions can be considered as an adaptation of the Black-Scholes model extended in order to 

remove the restrictions on the underlying assumptions. 

 

A more recent study was published in 2007 by Anthony Brabazon, Conall O’Sullivan and 

Zheng Yin, Adaptive Genetic Programming for Option Pricing. In this paper an adaptive 

Genetic Programming method is applied to option pricing. Crossover and mutation 

probability dynamically vary during the runs. In this case, the experiments are conducted 

analyzing market option price data. The tests have been designed such that a total of twenty 

Genetic Programming runs were launched, ten of which use in the process only fixed 

parameters, while the other ten use dynamic adaptive parameters. The aim of the paper is to 

show the outperforming capability of the adaptive Genetic Programming with respect to the 

more classic approach with fixed parameters. As expected by the authors, the results prove 

that better results are reached when parameters are free to vary and adapt to the surrounding 

environment.  

 

Beyond the pure option price analysis, various studies have focused on the capability of 

Genetic Programming to generate performing hedging strategies. Chen has studied this topic 

and in 1999, after a cooperation with Wo-Chiang Lee and Chia-Hsuan Yeh, he has released 
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the paper Hedging Derivative Securities with Genetic Programming, a study case based on 

the previous works of, among the others, Hutchinson, Lo, and Poggio (1994), Chen and Lee 

(1997), Noe and Wang (1997) and Trigueros (1997). The previous studies have shown how 

Genetic Programming can recover the Black-Scholes using both randomly generated data and 

real historical data, e.g. S&P Index. This work, instead, focuses on the potential capability of 

Genetic Programming, compared with the Black-Scholes model, in developing hedging 

strategy. In this study data used to train and test the Genetic Programming model are daily 

closing prices of S&P 500 index options obtained from the Chicago Board Options Exchange 

and performance are evaluated according to a notion of tracking error. Results show that only 

20% of the 97 tests run by the Genetic Programming outperform the Black-Scholes model, 

displaying a lower tracking error. This unsuccessful conclusion may find its explanations in 

the extremely short temporal period took into consideration. Indeed, the authors claim that a 

test based on a single year seems to be too limited. Nonetheless, considering the previous 

work, this paper display results that outperform the ones found in the previous literature, 

showing an interesting room for improvement. 

 

In 2012, edited by Sebastian Ventura, the book Genetic Programming – New Approaches and 

Successful Applications is released. Among all the interesting researches published in this 

book, a new focus on the dynamic hedging is presented by Fathi Abid, Wafa Abdelmalek and 

Sana Ben Hamida in their paper Dynamic Hedging Using Generated Genetic Programming 

Implied Volatility Models. The aim of this paper is the analysis of a correct approach to 

forecast the volatility of financial derivatives. Forecasting volatility is one of the crucial issues 

in trading and risk management of derivatives as the estimation of the volatility has a huge 

influence in dynamic hedging. Using Genetic Programming as an approach for volatility 

estimation should allow the users to free the search from strong assumptions concerning the 

underlying asset price trends. The core focus of the paper is the influence on option contracts 

prices by new information and the variations in expectations and by the changes in the value 

of the underlying asset; obviously, the dynamic hedging would be risk-free only in a world 

volatility is perfectly predictable. For this reason, the more precise and accurate the prediction 

of the volatility is, the more performing the hedging model will be. The dataset used is the 
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daily prices for the European S&P 500 index calls and puts options traded on the Chicago 

Board of Options Exchange from 02 January to 29 August 2003. The paper is structured 

following two parts. The first part studies the generation of implied volatility from option 

markets using static and dynamic training of Genetic Programming. The static training 

implies the independent application of Genetic Programming on single sub-samples of the 

entire dataset, while in the dynamic training the Genetic Programming trains on all the sub-

samples are trained at the same time just changing the training sub-sample during the process. 

The second part analyzes the precision of implied volatility models generated through Genetic 

Programming related to dynamic hedging. The results prove the relevance of the implied 

volatility forecasting in hedging strategies. Hedge performances resulting from Genetic 

Programming runs are higher than those achieved in a Black-Scholes world. In summary, the 

conclusions show that the best Genetic Programming hedging performance is obtained for in-

the-money call options and at-the-money put options in all the tested hedging strategies. 
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Chapter 3 
The Experiment 

 

3.1 Design of the Experiment  

Once the Genetic Programming has been defined and its features widely described, we finally 

want to test practically the potentiality of this tool. Numerous applications have been reported 

in the previous chapter in order to present the most interesting works in the empirical 

research. A particular focus has been placed on the studies lead on option pricing. 

The following experiment has been designed using only simulated data. Tests have been 

devised in order to study the option pricing capability of Genetic Programming in a scenario 

of poor information and simple mathematical operators.  

Through the software Matlab R2013a I generated a random population of 500 European call 

option prices written on a stock which pays no dividends. This population has been generated 

following a uniform distribution applied to the variables strike price, distributed in the interval 

[70;130], time to maturity (expressed in years) and volatility, randomly generated and taking 

values respectively in a interval of [0.5;3] and[0.005;0.2]. Instead, I kept fixed the Stock price 

at 100 and the free-risk interest rate at 3%. Each option displays a different price/strike ratio, 

time to maturity and volatility. The sample is equally divided in in-the-money and out-of-the 

money options in order to guarantee an equal proportion.  

Crossover and Mutation probability are set at pc=0.7 and pm=0.3. Each formula obtained 

after each Genetic Programming run in Matlab was assessed by a Fitness Value, which, as 

said before, summarize the capability of the formula to resemble the Black-Scholes solution. 

Furthermore, each formula is also coupled with another descriptive value, the Mean Squared 

Error (MSE), or in other words an estimator that calculate the average of the squared 
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differences between the estimator (the Call option price obtained with the Genetic 

Programming solution) and the true value (the Call option price obtained with the Black-

Scholes formula). The fitness selection method applied is the tournament selection, in which a 

fixed number of elements is randomly drawn from the population and the one with the best 

fitness value is selected. 

The test has been designed in two different step. In the first step I considered only 250 

European call options, 125 in-the-money and 125 out-of-the-money and I considered only 

seven variables. The second part of the experiment has been designed using the original 500 

European call options and adding to the seven variables other 14 more variables. The 

mathematical operators used in both tests are the sum, the subtraction, the multiplication, the 

division and the exponential operator. 

3.2 First test 

After calibrating the Matlab code, the first step consisted in generating 48 runs over the 

sample data. Each run differs from the other because of the combinations of the population 

size (which can take values among 50, 75, 100, 250 and 500), the maxtreedepth operator 

(which defines the maximum size of the tree and can take values 8, 10 or 12) and the number 

of generations run (whose values vary among 50, 75, 100 and 250). Unfortunately, because of 

the limits of the personal computer used during this experiment, I could not always test the 

Genetic Programming over populations of 500 individuals. 

In the first test I considered as inputs seven variables, namely the Stock Price, the Strike Price, 

the Risk-Free Interest Rate, the Maturity (expressed in years) and the Volatility. The two 

further variables are two constant used in order to implement the exponential function and the 

square root operator. The first constant is the natural number 2.718, which has been 

introduced with the purpose of teaching to the code how to reproduce the exponential 

function. The other constant  is 0.5 and it has been included in the variables with the purpose 

to make the code learn the square root operator. The output consists obviously in the Black-

Scholes formula results for each call option. These results are obtained using the Matlab 
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formula “blsprice”, which directly refers to the Black-Scholes formula for European Call 

options, reported in Figure 1. 

 

                
            where              

            
 

    

  
           

        
 

 

 

Figure 1 – Black-Scholes formula for European call option pricing. 

 

Because of the reduced number of inputs, I was not expecting to obtain a precise replication 

of the Black-Scholes formula results. In particular, in this first part of the experiment, the 

code have no chance to learn how to implement neither the Cumulative standard normal 

distribution nor the logarithmic ratio between Stock and Strike price, both used in the Black-

Scholes formula. As in the real world nothing seems to prove that the assumptions above the 

Black-Scholes model should hold (in particular the assumption that claims that the underlying 

asset returns follow a normal distribution), I chose to not implement these two functions and 

the experiment has been designed in order to be also directly tested to real financial data.  

On the contrary, the purpose of the test was the study of the Genetic Programming in order to 

understand its capability to well perform even in the  presence of a “poor” information 

environment. In other words, this first analysis focused on the study of the performance of the 

Genetic Programming approach in terms of Fitness Values, MSE values and the effective 

distribution of the prices obtained with Genetic Programming with respect to the values 

obtained with the Black-Scholes formula. 

After running the 48 Genetic Programming tests over the different combinations of population 

size, tree maximum depth and maximum number of generations, I obtained 48 formulas, each 

C = Call premium 

S = Current stock price 

t = Time until option exercise 

K = Option striking price 

r = Risk-free interest rate 

N = Cumulative standard normal 

distribution 

e = Exponential term 

s = Standard Deviation 

ln = Natural logarithm 
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one with its related fitness and MSE value. Each formula has been applied to the 250 

European call options forming the database. Thus, a complete Excel spreadsheet has been 

generated in order to report for each option its true value (the one obtained with the Black-

Scholes formula) and all the values obtained with the 48 Genetic Programming formulas. Due 

to the variety of combinations in the parameter set (population size, maximum depth of the 

tree, maximum number of generations) that changes for each run, the Genetic Programming 

formulas are characterized by extremely various performances in terms of fitness and MSE 

values.  

In order to clearly understand the effective capability of Genetic Programming in pricing, I 

used as discerning terms between performing and less performing formulas the fitness and the 

MSE values and I compared the two sets.  As the sample was wide (I run 48 tests), I did not 

consider for this comparison the obtained formulas that provided a constant result
19

, the 

formulas able to perform only in a in-the-money scenario
20

 and the formulas that encountered 

different mathematical issues in the process of calculation of the option prices and whose 

results presented some calculation errors
21

. In this first analysis, after removing the above 

listed problematic formulas, I obtained a sample of 34 formulas. Then, I made a discretionary 

selection of the formulas with respect to their performance in terms of fitness and MSE 

values. I set, as bounding limit for the selection, fitness value higher than 0.70 and MSE lower 

than 600. Setting this discretionary limits helped me in reducing to 19 the number of formulas 

to be considered more performing. 

                                                 
19

 For example the formula obtained setting popusize=50, maxtreedepth=8 and c=50, that displayed a 
particularly low fitness value (0,307857) and an extremely high MSE (1482,868763) and the following structure 

                                       
where EXP is the number 2.718, kept constant for all the options analyzed, used with the aim to help the code 
in learning and reproducing the exponential function. 
20

 This is the case of the formula obtained setting popusize=100, maxtreedepth=8 and c=250,  
                                                                                   

                                                       
                                                                
                               

even though it was displaying a high fitness value (0,835407) and relatively low MSE (304,943618). 
21

 As I did not set any mathematical restriction, in some formulas happened to appear calculations impossible 
to be mathematical solved (as the square root of a negative number) 
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The choice of discerning the Genetic Programming formulas with respect to their fitness and 

MSE values is connected to the fact that the mere comparison of the prices obtained with the 

Genetic Programming tests with the values calculated with the Black-Scholes formula would 

not have helped in understanding the effective capability of Genetic Programming in pricing. 

I am not expecting the Genetic Programming to perfectly recover the Black-Scholes formula 

results. For this reason I keep considering the Genetic Programming formulas displaying high 

fitness values and low MSE values even though the prices obtained with these formulas may 

show discrepancies with the Black-Scholes formula prices. 

 

3.2.1.The Graphical and Analytical Comparison  

At this point, I chose to plot graphically the formulas in order to compare their behavior with 

the trend of Black-Scholes formula results. I focused on the graphical representation of the 

most performing formula, but I have also included three graphs representing formulas 

characterized by low fitness and high MSE (Table 2). The comparison between more 

performing and less performing formulas will be graphically presented with scatter plot 

graphs and time series graphs, while the Genetic Programming formulas will be presented 

analytically in a chart (Table 3 and 

Concerning the Genetic Programming formulas with high performances, I graphically 

compared the Black-Scholes results with groups of 4 formulas and, secondly, singularly with 

the formulas that graphically displayed a trend closer to the one of Black-Scholes formula 

one. In this process I used firstly a scatter plot where the variable on the Y axis is the Black-

Scholes formula. At this point, I selected the five formulas that display the higher correlation 

with the Black-Scholes formula (Table 1). 
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Table 1 – Scatter plot analysis of the relation between Black-Scholes formula and the more performing 

Genetic Programming formulas. 

For the sake of clarity, a graphical representation of poor performing formulas could help in 

understanding why the formulas previously shown in Table 1 can be considered good in 

approximating the results of the Black-Scholes formula one. For this reason I present them in 

Table 2. 

From the sample of 34 option formulas obtained after removing the problematic formulas, I 

selected the 15 Genetic Programming formulas that displayed the worst scatter plot graphs. 

From this selection I chose to excerpt from that sample the five formulas with the lowest 

fitness values. The discerning term has been fixed as fitness values below 0.60. 
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Table 2 – Scatter plot analysis of the relation between Black-Scholes formula and the less performing 

Genetic Programming formulas. 

Table 2 clearly shows the low correlation between the formulas considered and the Black-

Scholes one supporting the choice of focusing on the investigation of Genetic Programming 

formulas according to the fitness and MSE values. 

In order to enhance the understanding of the scatter plot analysis, I generated a correlation 

matrix including both the more and less performing formulas with the purpose of obtaining 

more precise statistical data. 
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BLS 

FORMULA16 FORMULA28 FORMULA40 FORMULA44  

1,0000 0,9462 0,9525 0,8810 0,8962 BLS 

 1,0000 0,9825 0,9238 0,9383 FORMULA16 

  1,0000 0,9262 0,9317 FORMULA28 

   1,0000 0,9860 FORMULA40 

    1,0000 FORMULA44 

      

FORMULA47 FORMULA10 FORMULA19 FORMULA23 FORMULA46  

0,9471 0,4757 0,7129 0,7408 0,7110 BLS 

0,9903 0,5021 0,6676 0,7109 0,6627 FORMULA16 

0,9925 0,5076 0,7065 0,7415 0,7012 FORMULA28 

0,9440 0,5675 0,7898 0,7601 0,7878 FORMULA40 

0,9518 0,5234 0,7406 0,7377 0,7371 FORMULA44 

1,0000 0,4976 0,7007 0,7428 0,6953 FORMULA47 

 1,0000 0,6779 0,4489 0,6751 FORMULA10 

  1,0000 0,8449 0,9977 FORMULA19 

   1,0000 0,8246 FORMULA23 

    1,0000 FORMULA46 

      

    FORMULA17B  

    0,7684 BLS 

    0,7898 FORMULA16 

    0,8018 FORMULA28 

    0,8663 FORMULA40 

    0,8419 FORMULA44 

    0,8005 FORMULA47 

    0,4184 FORMULA10 

    0,7687 FORMULA19 

    0,7780 FORMULA23 

    0,7494 FORMULA46 

    1,0000 FORMULA17B 

 Table 3 – Correlation matrix between Black-Scholes formula and the selected Genetic Programming 

formulas. 

The correlation matrix displayed in Table 3 confirms the results drawn from the scatter plot 

graphs. Indeed the Genetic Programming formulas considered less performing show lower 

correlation values with respect the formulas considered more performing, with a minimum 

value reached by the Formula 10, whose associated value of correlation is 0.4757.  
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The five more performing formulas selected through a simple graph analysis are also the 

formulas that displays higher fitness values and, in particular, the lower MSE values. From 

the first graphical analysis of the scatter plots, I analyzed the trends of these five formulas 

with respect to the Black-Scholes one, removing the formulas that displayed a lower 

correlation with the Black-Scholes formula. I made this choice after a  further comparison 

between these five formulas in terms of fitness and MSE values, that is reported in Table 4. 

The remaining three formulas are compared and shown in different graphs in Table 5, Table 

6. Table 7 and Table 8 in order to guarantee to the reader a better comprehension of the 

graphs.  

The following chart displays the features of the five more performing formulas, allowing a 

comparison between their characteristics. The two formulas eliminated after the scatter plot 

analysis show a small fitness value and a higher MSE value when compared with the other 

three formulas. This comparison validate the choice of not taking them into consideration for 

the final graphical analysis. 

 popusize Max tree    

depth 

Max nr of 

generations 

Fitness 

value 

MSE  

Value 

Formula 

FORMULA 16 250 8 250 0,918 174,01 -170159,586470 * (EXP)  -4625,176260 * 

(ST) + 0,000077 * ((ST)^(EXP)) + 

30662749,642916 * (((((RATE)*(ST))-((PR)-

(PR)))/((ST)/(VOL)))/(EXP))  -

57341481,430289 * ((MAT)/((PR)-(EXP)))  -

338402,467542 * (VOL) + 589437,513732 * 

(MAT) + 1701,327835 * ((ST)*(EXP)) 

+462569,774091 
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FORMULA 28 250 10 100 0,917765 176,183 -67602,723483 * (EXP)  -

81116320927,718185 * ((PR)-

((VOL)+((ST)+(PR))))-81116323010,613144 

* (ST) + 2433489625,881561 * (MAT) + -

766,277878 * ((SQRT)-((EXP)*(ST))) + -

0,753958 * ((VOL)*(ST))  -

81115753577,374222 * 

(((((RATE)+((EXP)^(SQRT)))^(RATE))^((R

ATE)*((SQRT)*(RATE))))*((VOL)+((MAT)

*(RATE)))) +184140,726949 

 

FORMULA 40 250 12 50 0,779557   472,284 -0,210191 * 

(((((VOL)+(MAT))+((ST)*((ST)/((((ST)+((E

XP)^(MAT)))-

(RATE))+(PR)))))*((ST)/(PR)))/((SQRT)+(V

OL))) + 0,310988 * (ST) -22909,085822 * 

(EXP)  -15,619677 * ((VOL)/(MAT)) 

+62260,687125 

FORMULA 44 250 12 75 0,810046 406,962 -1662,501269 * (ST) + 611,550917 * 

((ST)*(EXP))  -293152,699453 * 

((VOL)/(((ST)/(RATE))+(PR))) + 2,889952 * 

(((VOL)/(RATE))-

(((RATE)*(EXP))^(((MAT)*(VOL))*(MAT))

)) -0,134150 * (((PR)^(EXP))*(SQRT)) 

+18342,42034 

FORMULA 47 100 12 100 0,906710 199,868

313 

-400510247,048350 * (EXP)  -2121,501538 * 

(ST)  -16848,036845 * ((EXP)-(MAT)) + 

4233377,299564 * ((EXP)*((RATE)-(((EXP)-

(PR))+((RATE)*(VOL))))) + 345228,685402 

* (VOL)  -6198,004946 * ((EXP)*(MAT)) + 

780,451583 * ((ST)*(EXP)) -

31070295,881522 

Table 4 – Analytical description of the five more performing Genetic Programming formulas. 
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The choice of removing Formula 40 and Formula 44 has been made because of the extremely 

high values of the MSE (both above 400) in comparison with the other Genetic Programming 

formulas taken into consideration.  

Before presenting through time series graphs the three selected most performing formulas, I 

will present a chart, equivalent to the previous one shown in Table 3, which analytically 

presents the five less performing Genetic Programming formulas displayed in Table 2. 

 popusiz

e 

Max 

tree 

depth 

Max nr of 

generations 

Fitness  

value 

MSE  

Value 

Formula 

FORMULA 10 75 8 100 0,5735 913,6438 -31,685016 * (((((MAT)/(PR))-(VOL))*((MAT)-

((RATE)^(((MAT)/(EXP))^((VOL)^(VOL))))))/(

EXP)) -84536,647655 

FORMULA 19 100 10 50 0,5087 1052,547 18,832794 * 

((VOL)*(((MAT)*(SQRT))+((VOL)-(RATE)))) 

+ 762,275178 * ((PR)/(EXP)) -280440,66946 

FORMULA 23 100 10 75 0,5501 963,7693 -106642,681788 * (((PR)+(EXP))*(VOL)) + 

10954157,767224 * (VOL) -0,240591 

FORMULA 46 75 12 100 0,505 1058,569 -10255,408317 * (EXP) + 10,489846 * 

((VOL)*(MAT)) +27875,582188 

FORMULA 

17B 

50 10 50 0.593 870.788634 -254.439211 * 

((EXP)*((PR)+(((SQRT)+(VOL))-(EXP))))  -

0.143044 * (ST) + 711.071810 * (VOL) 

+67640,529523 

Table 5 – Analytical description of the five less performing Genetic Programming formulas. 

Analyzing Table 5, it appears clear that the fitness and the MSE values play an paramount 

role in evaluating the capability of Genetic Programming in option pricing. These five 

formulas have been chosen according to their low fitness values (below 60) but they are also 
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the five formulas that displays the highest MSE values. Obviously these two indicators are 

linked and with a cross-check of these values we can derive important information about the 

performance of the Genetic Programming formulas. 

 

Table 6 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming 

Formula 16. 
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Table 7 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming 

Formula 28. 

Table 8 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming 

Formula 47. 
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Table 9 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming 

Formula 47. 

 

From the graph analysis and the comparison obtained in Table 2, it is possible to draw some 

conclusion from this first part of the test. The Genetic Programming formula that displayed 

better performance where the ones presenting a fitness value above the 0.9 and the MSE 

below 200. The last three formulas taken into consideration where precisely the only three 

formulas displaying an MSE below 200.  

Following the results obtained in the graphs and comparing them with the starting dataset, I 

can state that the Genetic Programming formulas performance are closer to the Black-Scholes 

formula when considering in-the-money European call options
22

. 

                                                 
22

 As we can see in the graphs, GP formulas trends are more close to the Black-Scholes one  in the left half of 
the graphs, where are represented the in-the-money options. Anyway we have to limit the comparison to the 
positive plane of the graphs, thus not considering the drops of GP formulas when displaying negative prices.  
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After focusing on the more and less performing Genetic Programming formula, I took into 

consideration the whole dataset, considering all the 48 obtained Genetic Programming 

formula, also the ones that displayed mathematical calculation problems. Considering the 

fitness values and the MSE values as indicators of good performance, and according to the 

results so far obtained, I chose to analyze the whole database dividing the resulting formula 

according to the fitness and MSE values to them associated. I chose to consider, as previously 

done, performing the formula with Fitness value higher than 0.70, MSE lower than 630 and 

free from any kind of mathematical calculation issues (as before done). After this selection, 

the number of Genetic Programming formula that can be considered at least sufficiently good 

in approximating the Black-Scholes formula are 27 out of 48. 

3.3 Second Test 

The second part of the experiment is run over a wider number of input variables, designed in 

order to provide to the code more possibilities to approximate the Black-Scholes formula. The 

input variables integrated are 21. In addition to the starting 7 variables, I added the logarithm 

of the ratio between the Stock price and the Strike price (ln(P/S)), the square root of the 

Maturity time (SQRT(T)) expressed in years, the normal distribution of the logarithm of the 

ratio between the Stock price and the Strike price (N[ln(P/S])), the normal distribution of the 

square root of the Maturity time expressed in years (N[SQRT(T)]), the    factor, the    

factor, the normal distribution of the    factor (     ), the normal distribution of the   factor 

(     ), the numerator of   , the numerator of   , the denominator of    (which corresponds 

to the denominator of   ), and more three variables that corresponds to the normal 

distribution of respectively the numerator of   , of the numerator of    and of the 

denominator of   . 

The run of this second part of the experiment basically follows the same design and method 

applied in the first part. I used the complete simulated dataset, randomly generated at the 

beginning of the experiment. I kept fixed the crossover and the mutation probabilities 

respectively at 0.7 and 0.3. The fitness selection method applied is again the tournament 
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selection and obviously the Genetic Programming formulas obtained have been evaluated 

with a Fitness value and a MSE value. 

Anyway, because of the variation in the number of inputs, some adjustment were necessary. 

As I have been using an extremely larger dataset with respect to the first test due to the 

addition of 250 more European call options and the introduction of 14 more variables, I 

reduced the number of runs. I generated 39 runs and each of them differs from the others 

because of the different combination of population size (which can take values among 50, 75, 

100, 25023), the maxtreedepth operator (which defines the maximum size of the tree and can 

take values 8, 10 or 12) and the number of generations run (whose values vary among 50, 75, 

100 and 250). Most of the tests run were extremely time consuming, taking more than one 

hour to complete the process and unfortunately, because of the limits of the personal 

computer, I could run only few tests with population size equals to 250. 

While in the first tests I did not allowed the Genetic Programming code to implement neither 

the normal cumulative function nor the natural logarithmic function, in this second test I 

introduced both these function manipulating my dataset and introducing them directly through 

the calculation of the new input variables that I add. The purpose of this test is to verify if the 

Genetic Programming code I  used can approximate the Black-Scholes formula learning from 

the new variables better than in the first part of the experiment. 

As in the previous test, I constructed a new complete Excel spreadsheet in which all the 

Genetic Programming formulas has been used to calculate an estimator of the 500 European 

call options.  

Unlike in the first test, in this second one it is immediately clear, looking at the values 

obtained, that the Generated Programming formulas displays a lower heterogeneity in terms 

of fitness values calculated. All the formulas obtained show a fitness values larger than 0.90. 

                                                 
23

 I exclude any test with population size equals to 500 individual, which was instead run in the first 
experiment. 
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On the other hand, unless few cases, all the formulas are related to high MSE values with 

respect with the ones obtained in the first part of the experiment24.  

Another important difference with the first test is the fact that no formula presents constant 

results or encounters mathematical problems with the calculation of both in-the-money and 

out-of-the-money options. For these reasons, for my first analysis, I did not have to remove 

formulas from my sample. 

Following the same procedure I previously applied, I firstly compared in terms of a graphical 

representation the 39 formula and compared their behavior with the one displayed  by the 

Black-Scholes formula. After the graphical analysis I further studied the more and less 

performing formulas in term of an analytical comparison. 

 

3.3.1.GRAPHICAL ANALYSIS 

The first comparison has been made with the aid of scatter plot graphs, which display the 

correlation of results obtained with the various Genetic Programming formulas with the 

Black-Scholes ones. 

Graphical results, as I expected after seeing the results obtained in terms of fitness values, are 

satisfactory. I report here below the graphical results for the formulas that could be considered 

more and less performing. As almost all the Genetic Programming formulas obtained in this 

second test display high fitness values, I chose as discretionary bounding limits fitness values 

above 0.97 and MSE below 1229.17, which the average Mean Squared Error value of the 

sample set constituted by 39 formulas. Then, as in the first part of the experiment, I made a 

graphical comparison. The following graphs presented in Table 1 are the graphs that show the 

higher correlation between the Genetic Programming formulas and the Black-Scholes one, 

among all the more performing formulas I analyzed.    

                                                 
24

 While in the first part of the experiment the highest MSE displayed was 1482.868763, in this second test the 
average MSE is 1229.17. 
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Table 1 – Scatter plot analysis of the relation between Black-Scholes formula and the more performing Genetic 

Programming formulas. 

 

 

In Table 2, instead, are reported the graphs that display the lower correlation between Genetic 

Programming formulas and the Black-Scholes one. 
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Table 2 – Scatter plot analysis of the relation between Black-Scholes formula and the less performing Genetic 

Programming formulas. 

Table 1 shows the extremely high correlation between the Genetic Programming formulas 

selected as the more performing and the Black-Scholes formula. Nonetheless, also the 

formulas considered in Table 2 display a good correlation with the Black-Scholes one. 

Comparing these graphs with the ones obtained in the first experiment tells us how the new 

variables included as new inputs in the dataset have extremely influenced the capability of the 

Genetic Programming code to recover the Black-Scholes formula. 

In order to understand how strongly all these Genetic Programming formulas graphically 

presented in Table 1 and 2 are correlated with the Black-Scholes formula, I created a 

correlation matrix, presented in Table 3. 
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BLS FORMULA7 FORMULA9 FORMULA18 FORMULA20  

1,0000 0,9995 0,9723 0,9819 0,9811 BLS 

 1,0000 0,9731 0,9825 0,9817 FORMULA7 

  1,0000 0,9812 0,9865 FORMULA9 

   1,0000 0,9990 FORMULA18 

    1,0000 FORMULA20 

      

 FORMULA22 FORMULA23 FORMULA37 FORMULA39  

 0,9665 0,9986 0,9981 0,9992 BLS 

 0,9673 0,9981 0,9980 0,9997 FORMULA7 

 0,9940 0,9729 0,9741 0,9714 FORMULA9 

 0,9886 0,9831 0,9854 0,9830 FORMULA18 

 0,9938 0,9822 0,9838 0,9822 FORMULA20 

 1,0000 0,9678 0,9683 0,9670 FORMULA22 

  1,0000 0,9975 0,9979 FORMULA23 

   1,0000 0,9976 FORMULA37 

    1,0000 FORMULA39 

Table 3 – Correlation matrix between Black-Scholes formula and the selected Genetic Programming 

formulas. 

In Table 3 the correlation coefficients between the Black-Scholes formula and the Genetic 

Programming formula are displayed.  The Genetic Programming formulas considered less 

performing are highlighted in red. It appears that obviously the formulas that graphically 

display a higher correlation also show values higher than 0.99 in the correlation matrix. 
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Nonetheless, also the formulas that graphically looks less performing show correlation values 

above 0.966. In order to draw more consistent conclusions I also present a chart that 

summarize all the features of the Genetic Programming formulas taken into consideration. 

 

 popusize maxtreedepth max 

generation nr 

Fitness 

value 

MSE FORMULA 

FORMULA 18 50 10 100 0,959856 1699,687551 4935,391412 * ((num 

d1)/(Strike)) +6,112178 

FORMULA 7 50 8 100 0,998896 52,386932 -26,153737 * (N(d2)) + 

120,205762 * ((N(num 

d2))*(N(d1))) +1,542835 * 

(N(Sqrt(T))) + 8,924008 * 

(d1) + 1,584866 * (ln(P/S))  -

8,961602 * (d2) + 0,131279 * 

((N(d2))/((den d1)/(ln(P/S))))  

-24,708360 * 

((N(d2))/(N(num d1))) + 

16,427998 * (N(d1)) -

1,61839 

FORMULA 9 100 8 100 0,945344 2594,295688 13,369819 * ((den d1)-(r)) + 

55,860916 * (num d1) 

+5,705871 

FORMULA 20 100 10 100 0,958251 1776,197638 101,321054 * ((N(num 

d2))*(num d1)) +6,240229 

FORMULA 23 100 10 250 0,997132 136,133857 -3570,280431 * (N(num d2))  

-1284,624564 * ((den 

d1)*(den d1)) + 63,808801 * 

((num d2)*(N(d1))) + 

3605,814423 * (N(num d1)) -
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15,615279 

FORMULA 22 75 10 250 0,931234 3130,180110 56,460913 * (num d1) 

+7,050409 

FORMULA 37 50 12 250 0,996303 175,496388 34,594291 * (num d1) + 

76,427356 * (N(den d1)) + 

29,094004 * ((num 

d2)*(((N(d2))/(N(den d1)))-

(SQRT))) -37,226416 

FORMULA 39 100 12 250 0,998370 77,373792 -0,938838 * 

((Strike)*(N(d2))) + 

2,523461 * ((T)*(N(d2))) + 

94,714028 * (N(d1)) 

+0,147342 

Table 4 – Analytical description of the selected Genetic Programming formulas. 

Table 4 helps us in understanding which are the factors that influence the performances of the 

Genetic Programming formulas. As in Table 3, the formulas considered less performing are 

highlighted in red. It is clear, again, that high fitness values are linked to the more performing 

formulas: they all display values above 0.995. Focusing on the formulas considered less 

performing, we can see that they also show high fitness values, always above 0.93. 

Nevertheless, they are all related to MSE values much higher than the more performing 

formulas, which instead are the ones displaying the lower Mean Squared Error values, even if 

compared with the entire data sample of the 39 Genetic Programming formulas. 

In order to conclude the graphical comparison I also plot the formulas in the following time 

series graph. 
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Table 5 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 7 and 23 

 

Table 6 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 37 and 

39 
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   Table 7 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 9 and 

18 
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Table 8 – Graph comparing the trend of the Black-Scholes formula and the Genetic Programming Formulas 20 and 

22 

 

 

Table 5 and 6 graphically show the behaviors of the more performing Genetic Programming 

formulas, while Table 7 and 8 displays the graph of the less performing Genetic Programming 

formulas. The differences in behavior are clear. Prices obtained by the less performing 

formulas show more discrepancies with the prices obtained with the Black-Scholes formula, 

especially when considering the in-the-money options, which in the graphs are located in the 

left half of the graph. Curiously, the only formula among the more performing that shows 

some discrepancy is the Formula identified by the number 37, especially considering the in-

the-money options, where it displays some negative values. 

For the sake of completeness, I am interested in understanding also which is the number of 

Genetic Programming formulas that can be considered as more performing taking into 
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account the whole dataset of 39 formulas. According with the conclusions drawn from this 

second experiment, I chose to set as bounding constraints in order to define which  formula 

can be considered performing the Fitness Value above 0.97 and the MSE below 750. 

The formulas satisfying these constraints that can be considered more performing are 15 out 

of 39. The reason of this low ratio may be find in the fact that for 17 different setting 

combinations25 the Genetic Programming code repeatedly obtained the same 3 formulas, all 

of them displaying low fitness values and high MSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
25

 Combinations of population size, maximum depth of the tree and maximum number of generations run. 
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Chapter 4 
Conclusions 

This work has been designed with the purpose of analyzing the approach and application of 

Genetic Programming in the financial world, with a special focus on the option pricing. 

Because of the strong connections between Genetic Programming and Genetic Algorithms, I 

started this work (Chapter 1) by presenting a wide overview of both of them, first 

contextualizing them in the world of Biologically Inspired Algorithms and Evolutionary 

Algorithms, and then introducing a comprehensive and complete description of their basic 

principle, their theoretical foundations and their structures.  

I explained the fundamental concept of survival of the fittest, which has inspired this whole 

class of algorithms, and I introduced the concepts presented in the Holland’s Schema 

Theorem, linked to both Genetic Algorithms and Genetic Programming. Following the 

paramount and pioneering work of John Koza in the field of Genetic Programming, I 

thoroughly presented a description of the elements that undergo the structure of Genetic 

Programming, analyzing the initial structure, its generative process, the fitness selection issue 

and all the primary and secondary operations. 

Following, in Chapter 2, I introduced an overview of the existing literature of Genetic 

Algorithms and Genetic Programming in Economics and Financial fields. This chapter opens 

with a descriptive explanation of the potential capabilities of the Genetic Programming as 

problem-solving tool and the presentation proceeds with the introduction to the major papers 

and books published in the field of Genetic Algorithm and Genetic Programming application 

to the financial fields. The released literature that deals with this topic is extremely vast and 

various, covering all the possible financial applications, in particular the one related with 

financial derivative securities. I focused the attention on a peculiar argument, the option 

pricing. After covering a wide introduction to options, including all the features of this 

financial tool, I presented and explained the Black-Scholes formula, giving special attention 

to its mathematical implication and to the assumption underlying the application of this 

formula in the real world. 
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Starting from this point, I introduced seven papers I found particularly interesting. The first 

one, in particular, A Nonparametric Approach to Pricing and Hedging Derivative Securities 

Via Learning Networks published in 1997 by James M. Hutchinson, Andrew W. Lo, and 

Tomaso Poggio, became an inspiring work for further researches. In this first paper neither 

Genetic Algorithms not Genetic Programming are applied,  but the other papers I took into 

consideration were all inspires by this work.  

My third Chapter has been inspired by the papers I presented in Chapter 2, in particular by 

two researches. The first is the work realized by Shu-Heng Chen and Who-Chiang Lee, that 

published in 1997 their paper Option Pricing with Genetic Algorithm: The Case of European-

Style Options, focused on the application of Genetic Algorithm in option pricing, in particular 

on European call options, and in which solutions are compared to the ones obtained from the 

Black-Scholes option pricing theorem. The second study is the work of Thomas H. Noe and 

Jun Wang, The Self-Evolving Logic of Financial Claim, published in 1997. In this paper, 

Genetic Programming has been used as an optimization technique to price financial 

instruments; the purpose is to show how easily Genetic Programming can approximate the 

Black-Scholes formula even when trained on small data sample. 

Starting from these analysis, I decided to conduct an experiment on a set of simulated data 

with the aim of studying the capability of Genetic Programming in approximating the Black-

Scholes formula for European call options in two different scenarios. The experiment has 

been devised in two different tests, the first with a reduced set of 7 inputs and the second with 

a larger set of 21 inputs. The main implication of this different set of variables was the fact 

that in the first experiment the Matlab code I used was not in the condition to replicate the 

Cumulative normal distribution function and the Logarithmic function, both part of the Black-

Scholes formula, while in the second experiment I introduced both these function 

manipulating my dataset and introducing them directly through the calculation of the new 

input variables that I add. 

As the assumptions underlying the Black-Scholes formula do not hold in the real world 

(especially the assumption according to which the underlying asset returns follow a normal 

distribution) I chose in the first experiment to not force the Genetic Programming in 

replicating the Black-Scholes formula calculations. Designed in this way, the first experiment 
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could easily be tested with real data, in the real world, where the Black-Scholes assumption 

are not proven to hold. 

Considering the results that I obtained, the first test displayed a good capability in 

approximating the behavior of the Black-Scholes formula prices. Taking into consideration 

the best performing Genetic Programming formulas have shown performance closer to the 

Black-Scholes formula when considering in-the-money European call options. Considering 

the whole set 27 out of 48 genetic Programming formulas can be defined at least sufficiently 

good in approximating the Black-Scholes formula. 

For the second test, instead, I immediately noticed how every Genetic Programming formula 

displayed high fitness values (almost all the formulas presented fitness values above 0.95) but 

also a much higher average MSE with respect to the values observed in the first test. 

Considering the GP formulas that displayed fitness values above 0.998 and MSE values under 

200, they can approximate the Black-Scholes solution with a satisfying level of precision. 

Considering the whole database of 39 GP formulas obtained in the second test, instead, it is 

possible to state that 15 Genetic Programming functions display good performances. 

 

According to the results that I found, further researches should be carried on, firstly exploring 

the settings combinations that I was not able to run and wider database, with more data, and, 

secondly running the Matlab code and testing the capabilities of Genetic Programming in 

option pricing in a real data set. In particular it would be really interesting see how the first 

test behave when applied to data from the real world, where Black-Scholes formula 

assumption do not hold. 

 

 

 

 



89 

 

References 

 

Abid, F., Abdelmalek, W. and Hamida, S. B. 2012  “Dynamic Hedging Using Generated 

Genetic Programming Implied Volatility Models.” INTECH. 

Allen, F. and Karjalainen, R. 1999. “Using genetic algorithms to find technical trading rules.” 

Journal of Financial Economics 51: 245-271. 

Bauer, R. J. 1994. Genetic algorithms and investment strategies. John Wiley & Sons. 

Beasley, D., Bull, D. R. and Martin R. R. 1993. “An overview of genetic algorithms: part 1, 

fundamentals.” University Computing 15(2): 58-69. 

Beasley, J. E., Meade, N. and Chang, T.-J. 2003. “An evolutionary heuristic for the index 

tracking problem.” European Journal of Operational Research 148: 621-643. 

Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, Walter J. 2008. “A survey on 

metaheuristics for stochastic combinatorial optimization 

Black, F. and Scholes, M. 1973. “The pricing of options and corporate liabilities.” Journal of 

Political Economy 81(3): 637-654. 

Brabazon, A. and O’Neill M. 2006. “Biologically Inspired Algorithms for Financial 

Modelling.” Springer Edition. 

Brabazon, A. and O’Neill M. 2008. “Natural Computing in Computational Finance Vol. 1, 2, 

3 and 4.” Springer Edition.  

Chen, S-H. and Lee, W-C. 1997. “Option Pricing with Genetic Algorithm: The Case of 

European-Style Options.” Seventh International Conference on Genetic Algorithms. 

Michigan, State University.  



90 

 

Chen, S-H. and Lee, W-C. 1997. “Option pricing with genetic algorithms: a second report.” 

International Conference on Neural Networks 1: 21-25. 

Chen, S-H. 2009 “Genetic Algorithms And Genetic Programming In Computational 

Finance.” Springer Edition. 

Chen, S-H., Lee, W-C. and Yeh, C-H. 2009. “Hedging Derivative Securities with Genetic 

Programming.” International Journal of Intelligent Systems in Accounting, Finance & 

Management, 237–251. 

Chidambaran, N. K., Lee, C. J. and Trigueros, J., 1998. “An Adaptive Evolutionary Approach 

to Option Pricing via Genetic Programming.” Conference on Computational Intelligence for 

Financial Engineering. 

Chidambaran, N. K. 2003. “Genetic Programming With Monte Carlo Simulation For Option 

Pricing.” Proceedings of the 2003 Winter Simulation Conference. 

Chiong, R. “Nature-Inspired Algorithms for Optimisation.” Springer. 

Davis, L. 1991. Handbook of genetic algorithms. Von Nostrand Reinhold. 

Deboeck, G. J. 1994. Trading on the edge: neural, genetic and fuzzy systems for chaotic 

financial markets. John Wiley & Sons. 

Dempster, M. A. H. and Jones, C. M. 2001. “A real-time adaptive trading system using 

genetic programming.” Quantitative Finance 1: 397-413. 

Folino, G. 2003. “Algoritmi evolutivi e programmazione genetica: strategie di progettazione e 

parallelizzazione” Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte 

Prestazioni (ICAR). 

Glover, F. and Kochenberger, G. A. 2003 “Handbook of Metaheuristic.” Kluwer Academic 

Publishers. 



91 

 

Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning. 

Addison-Wesley. 

Holland, J. H. 1975. Adaptation in natural and artificial systems. University of Michigan. 

Hui, A. “Using Genetic Programming to Perform Time-Series Forecasting of Stock Prices” 

Hull, J. 1997. “Options, Futures, and Other Derivatives.” Pearson Education Inc. 

Hutchinson, J.M., Lo, A. W. and Poggio, T. “A Nonparametric Approach to Pricing and 

Hedging Derivative Securities Via Learning Networks.” The Journal of Finance, Vol. 49, No. 

3, 851-889. 

Iba, H. and Sasaki, T. 2002. “Using genetic Programming to Predict Financial Data” 

Koza, J. R. 1992. Genetic programming: on the programming of computers by means of 

natural selection. The MIT press. 

Navet, N. and Chen, S.-H. 2007. “Financial data mining with genetic programming: a survey 

and look forward.” Available at www.loria.fr/~nnavet/. 

Navet, N. and Chen, S.-H. 2008. “On predictability and profitability: would GP induced 

trading rules be sensitive to the observed entropy of time series?” In Natural Computing in 

Computational Finance, Springer. 

Neumann, F. and Witt, C. 2010 “Bioinspired Computation in Combinatorial Optimization – 

Algorithms and Their Computational Complexity.” Springer Edition. 

Noe, T. H. 1997 “The Self-Evolving Logic of Financial Claims”, Genetic Algorithms and 

Genetic Programming in Computational Finance, edited by Shu-Heng Chen, Springer Edition. 

Poli, R., Langdon, W. B. and McPhee, N. F., 2008. “A Field Guide to Genetic Programming.” 

ISBN 978-1-4092-0073-4 . 



92 

 

Potvin, J.-Y., Soriano, P. and Vallee, M. 2004. “Generating trading rules on the stock markets 

with genetic programming.” Computers and Operations Research 31: 1033-1047. 

Riolo, R., Vladislavleva, E., 2013 Ritchie, M. D. and Moore, J. H. “Genetic Programming 

Theory and Practice.” Springer Edition 

Rodgers, A. and Prugel-Bennett, a. 1999. “Genetic drift in GA selection schemes.” IEEE 

Transactions on Evolutionary Computation 3(4): 298-303. 

Yin, Z., Brabazon, A. and O’Sullivan, C. 2007. “Adaptive Genetic Programming for Option 

Pricing” 

 

 


