Corso di Laurea magistrale
(ordinamento ex D.M. 270/2004)
in Scienze Ambientali

Tesi di Laurea

Upgrade di un impianto di digestione anaerobica alla luce del Decreto Biometano (n.295/2013) e valorizzazione del digestato in agricoltura.

Relatore
Prof. Cristina Cavinato

Laureando
Panin Silvia
Matricola 823522

Anno Accademico
2013/2014
SOMMARIO:

ABSTRACT .. 1

1. INTRODUZIONE .. 2

 1.1. DIGESTIONE ANAEROBICA ... 4

 1.1.1. Fasi del processo .. 7

 1.1.2. Parametri di gestione del processo ... 9

 1.2. SITUAZIONE ITALIANA DELLA DIGESTIONE ANAEROBICA NEL COMPARTO AGRICOLO 12

 1.3. NORMATIVA DI RIFERIMENTO ... 16

 1.3.1. Decreto Ministeriale FER del 6 luglio 2012 ... 18

 1.3.2. Decreto Biometano .. 20

 1.4. PROGETTO VALDIGE .. 22

2. OBIETTIVI DEL LAVORO SPERIMENTALE ... 23

3. MATERIALI E METODI ... 24

 3.1. DESCRIZIONE IMPIANTO DI TERRASSA PADOVANA (PD) .. 24

 3.1.1. Condizioni operative impianto full-scale .. 27

 3.2. SUBSTRATI UTILIZZATI DURANTE LA SPERIMENTAZIONE ... 28

 3.2.1. Silomais .. 28

 3.2.2. Liquame bovino ... 30

 3.2.3. Farina di mais .. 31

 3.2.4. Letame .. 32

 3.2.5. Arundo Donax L ... 33

 3.2.6. Miscanthus x Giganteus ... 34

 3.2.7. Topinambur ... 36

 3.3. TEST BMP IN DISCONTINUO ... 37

 3.3.1. Caratteristiche dei substrati e dell’inoculo ... 37

 3.3.2. Apparato strumentale e condizioni operative ... 39

 3.4. IMPIANTO PILOTA LAB-SCALE ... 42

 3.4.1. Descrizione CSTR ... 42

 3.4.2. Condizioni operative .. 43

 3.4.3. Piano di monitoraggio .. 45

 3.5. VALUTAZIONE DELLE EMISSIONI DI CO₂ DA DIGESTATO .. 46

 3.5.1. Aree di campionamento ... 46

 3.5.1.1. Aziende agricole .. 46
3.5.1.2. Campo sperimentale ... 48
3.5.2. Apparato strumentale e condizioni operative 49

4. RISULTATI E DISCUSSIONI .. 51

4.1. MONITORAGGIO IMPIANTO FULL-SCALE 51

4.1.1. Caratteristiche del digestato ... 51
4.1.2. Bilanci di massa impianto full-scale ... 52

4.2. TEST BMP: CONFRONTI TRA I SUBSTRATI 54

4.2.1. Produzioni specifiche e costanti di idrolisi 54
4.2.2. Bilanci di massa ... 59

4.3. IMPIANTO PILOTA CSTR LAB-SCALE ... 61

4.3.1. Confronto tra le due fasi sperimentali ... 61
4.3.1.1. Caratteristiche inoculo .. 61
4.3.1.2. Parametri di stabilità ... 62
4.3.1.3. Rese di processo ... 64
4.3.1.4. Bilanci di massa ... 66

4.4. VALUTAZIONE MISCANTHUS X G. E INSILATO DI MAIS 68

4.5. VALUTAZIONE DELL’USO AGRONOMICO DEL DIGESTATO 70

4.5.1. Misurazioni in pieno campo: confronto tra Azienda 1 e 2 70
4.5.2. Misurazioni in campo sperimentale .. 75

5. CONCLUSIONI .. 78

APPENDICE 1 .. 80
A. PARAMETRI DI STABILITÀ ... 80
B. ANALISI DI CARATTERIZZAZIONE DEI SUBSTRATI 82

APPENDICE 2 ... 84

6. GLOSSARIO ... 89

7. BIBLIOGRAFIA ... 89
Indice delle Tabelle:

TABELLA 1: TIPICI SUBSTRATI UTILIZZATI IN DIGESTIONE ANAEROBICA ELORO RESA INDICATIVA IN BIOGAS (FONTE: C.R.P.A.) .. 5
TABELLA 2: RIEPILOGO DEI PRINCIPALI PROVVEDIMENTI EUROPEI (A) E NAZIONALI (B) SULLE ENERGIE RINNOVABILI .. 17
TABELLA 3: “RICETTA” UTILIZZATA PER COMPORRE L’ALIMENTAZIONE QUOTIDIANA MEDIA DELL’IMPIANTO. .. 27
TABELLA 4: CONDIZIONI OPERATIVE IMPIANTO FULL-SCALE ... 28
TABELLA 5: CARATTERISTICHE INSILATO DI MAIS ... 30
TABELLA 6: CARATTERISTICHE LIQUAME BOVINO .. 30
TABELLA 7: CARATTERISTICHE FARINA DI MAIS .. 31
TABELLA 8: CARATTERISTICHE LETAME .. 32
TABELLA 9: CARATTERISTICHE ARUNDO D .. 34
TABELLA 10: CARATTERISTICHE MISCANTHIS X G ... 35
TABELLA 11: CARATTERISTICHE TOPINAMBUR CON E SENZA MICORRIZE ... 36
TABELLA 12: CARATTERISTICHE CHIMICO-FISICHE DELLE BIOMASSE PRIMA DEI TEST BMP .. 38
TABELLA 13: CARATTERISTICHE DELL’INOCULO USATO PER I TEST BMP ... 38
TABELLA 14: CONDIZIONI OPERATIVE DEI TEST BMP .. 40
TABELLA 15: PIANO DI MONITORAGGIO REATTORE LAB-SCALE .. 45
TABELLA 16: CARATTERISTICHE CHIMICHE DEI SUOLI (VALORE MEDIO ± DEVIAZIONE STANDARD) .. 47
TABELLA 17: MONITORAGGIO IMPIANTO DI TERRASSA PADOVANA, CARATTERISTICHE MEDI DELL’EFFLUENTE ... 51
TABELLA 18: IMPIANTO FULL-SCALE: BILANCI DI MASSA PER SOLIDI TOTALI E SOLIDI TOTALI VOLATILI 52
TABELLA 19: IMPIANTO FULL-SCALE: BILANCI DI MASSA PER IL CARBONIO .. 53
TABELLA 20: IMPIANTO FULL-SCALE: BILANCI DI MASSA PER AZOTO TOTALE ... 53
TABELLA 21: IMPIANTO FULL-SCALE: BILANCI DI MASSA PER FOSFORO ... 54
TABELLA 22: RISULTATI DEI TEST BMP E CONFRONTO CON DATI DI LETTERATURA .. 55
TABELLA 23: RIASSUNTO INFORMATIONI BIODEGRADABILITÀ DEI SUBSTRATI ... 58
TABELLA 24: TEST BMP: BILANCI DI MASSA TS E VS PER OGNI SUBSTRATO ... 59
TABELLA 25: TEST BMP: BILANCI DI MASSA COD PER OGNI SUBSTRATO .. 59
TABELLA 26: CONFRONTO PRODUZIONE ANNUALE DI BIOMASSA E RESA IN BIOGAS TRA SILOMAIS E COLTURE INCENTIVATE TESTATE ... 60
TABELLA 27: CONDIZIONI OPERATIVE RUN 1 E RUN 2 ... 61
TABELLA 28: CARATTERISTICHE MEDI DELL’INOCULO USATO PER LA SPERIMENTAZIONE CON CSTR LAB-SCALE .. 62
TABELLA 29: IMPIANTO LAB-SCALE: BILANCI DI MASSA TS PER RUN1 E RUN2 .. 67
TABELLA 30: IMPIANTO LAB-SCALE: BILANCI DI MASSA VS PER RUN1 E RUN2 .. 67
TABELLA 31: IMPIANTO LAB-SCALE: BILANCI COD PER RUN1 E RUN2 .. 67
TABELLA 32: IMPIANTO LAB-SCALE: BILANCI DI MASSA AZOTO E FOSFORO TOTALE PER RUN1 E RUN2 67
TABELLA 33: PRODUZIONE DI ENERGIA ELETTRICA E TERMICA ANNUALE .. 69
TABELLA 34: INTERPRETAZIONE PARAMETRO FOS/TAC.. 81
TABELLA 35: CLASSIFICAZIONE USDA ... 84

Indice delle Figure:

FIGURA 1: RAPPRESENTAZIONE DELLA FILIERA DEL BIOGAS/BIOMETANO (FONTE: AA. VV. ELAB. CIB, 2012) .. 3
FIGURA 2: FASI DELLA DIGESTIONE ANAEROBICA (RAPPRESENTAZIONE SEMPLIFICATA) .. 7
FIGURA 3: TREND DI CRESITA DEGLI IMPIANTI DI BIOGAS (A) E DELLA RELATIVA POTENZA INSTALLATA (B) NEL SETTORE AGRO-ZOOTECNICO .. 15
FIGURA 4: SUDDIVISIONE IMPIANTI PER TIPO DI ALIMENTAZIONE (A) E PER POTENZA INSTALLATA (B) [FONTE: PICCININI (2013), GSE, CIB] ... 15
FIGURA 5: FOTO DELL’IMPIANTO IN PIENA SCALA DI TERRASSA PADOVANA ... 24
FIGURA 6: FOTO DI ZEA MAYS .. 28
FIGURA 7: FOTO CAMPIONE FARINA DI MAIS ... 31
FIGURA 8: FOTO CAMPIONE DI LETAME .. 32
FIGURA 9: FOTO DI ARUNDO D. E DI UN CAMPIONE ... 33
FIGURA 10: FOTO DI MISCANthus X G. E DI UN CAMPIONE ... 34
FIGURA 11: FOTO DI TOPINAMBUR .. 36
FIGURA 12: FOTO BOTTIGLIE DENTRO LA STUFA A 35°C .. 39
FIGURA 13: SCHEMATIZZAZIONE DEL SISTEMA USATO PER LA MISURA DEL BIOGAS ... 40
FIGURA 14: FOTO DEL REATTORE LAB-SCALE CSTR AFFIANCATO DA BAGNO TERMOSTATICO 43
FIGURA 15: FASE DI START-UP .. 44
FIGURA 16: LOCALIZZAZIONE AZIENDA 1 E 2 E RELATIVE AREE DI CAMPIONAMNETO 46
FIGURA 17: RAPPRESENTAZIONE SCHEMATIZZATA DEL CAMPO SPERIMENTALE ... 48
FIGURA 18: SPECIE COLTIVATE NEL CAMPO SPERIMENTALE .. 49
FIGURA 19: CAMERA STATICa NON STAZIONARIA PER LA MISURA DELLE EMISSIONI DI CO₂ DAL SUOLO 49
FIGURA 20: CONFRONTO ANDAMENTO CURVE DI PRODUZIONE DI BIOGAS PER OGNI SUBSTRATO TESTATO ... 56
FIGURA 21: CONFRONTO ANDAMENTO DELLE CURVE DI PRODUZIONE DI METANO PER OGNI SUBSTRATO TESTATO ... 56
FIGURA 22: GRAFICI DELLE PRODUZIONI SPECIFICHE DI BIOGAS (SGP) E METANO (SMP) PER OGNI SUBSTRATO TESTATO ... 57
FIGURA 23: GRAFICO COSTANTI DI IDROLISI PER OGNI SUBSTRATO TESTATO ... 58
FIGURA 24: IMPIANTO LAB-SCALE: ANDAMENTO DEL PH DURANTE LE DUE FASI 63
FIGURA 25: IMPIANTO LAB-SCALE: ANDAMENTO DEL RAPPORTO FOS/TAC DURANTE LE DUE FASI 63
FIGURA 26: IMPIANTO LAB-SCALE: ANDAMENTO DELL’ALCALINITÀ TOTALE E PARZIALE DURANTE LE DUE FASI ... 63
FIGURA 27: ANDAMENTO DELL'AMMONIACA DURANTE LE DUE FASI ... 64
FIGURA 28: CONFRONTO SGP TRA SILOMAIS E MISCANTHUS X G. ... 65
FIGURA 29: ANDAMENTO DELLA PRODUZIONE SPECIFICA DI GAS DURANTE LA SPERIMENTAZIONE CON REATTORE CSTR LAB-SCALE ... 65
FIGURA 30: AZIENDA 1: CONFRONTO EMISSIONI DI CO2 DA SUOLI CON DIFFERENTE TESSITURA, CON O SENZA DIGESTATO, NELLE 339 ORE SUCCESSIVE ALLO SPANDIMENTO ... 71
FIGURA 31: AZIENDA1: CONFRONTO EMISSIONI DI CO2 DA SUOLI CON TESSITURA DIVERSA, CON E SENZA DIGESTATO, A SEGUITO DI ERPICATURA E EVENTO PIOVOSO ... 72
FIGURA 32: AZIENDA1: CONFRONTO EMISSIONI DI CO2 DA SUOLI CON DIFFERENTE TESSITURA, CON E SENZA DIGESTATO, DURANTE IL CICLO VEGETATIVO ... 74
FIGURA 33: TREND DI EMISSIONI DI CO2, RILEVATE IN CAMPO SPERIMENTALE DOPO LO SPANDIMENTO DEL DIGESTATO .. 75
FIGURA 34: CORRELAZIONE TRA EMISSIONI DI CO2 DAL SUOLO E SPECIE COLTIVATE 76
FIGURA 35: CORRELAZIONE EMISSIONI DI CO2 DAL SUOLO E MICORRIZAZIONE ... 76
FIGURA 36: EMISSIONI CO2 DOPO LO SPANDIMENTO(1^SETTIMANA DI RILIEVI) ... 77
FIGURA 37: TREND EMISSIONI DI CO2 DURANTE IL CICLO VEGETATIVO DEL MISCANTHUS X G 77
FIGURA 38: TRIANGOLO TESSITURALE SECONDO USDA .. 85
FIGURA 39: IDROMETRO E CILINDRI CONTENENTI LA SOSPENSIONE ACQUA-SUOLO 86
ABSTRACT

Nell’ultimo decennio la produzione e l’utilizzo del biogas ottenuto dalla co-digestione anerobica di reflui zootecnici e biomasse agricole ha registrato un notevole incremento sul territorio nazionale, specialmente nelle regioni settentrionali. Nel mercato europeo l’Italia con circa 1200 impianti e 1000MW di potenza installata è soltanto seconda dopo la Germania. Il DM del 6 luglio 2012 incentiva la sostenibilità del processo anaerobico mediante la sostituzione di biomasse per uso alimentare con colture energetiche “no-food” e premiando l’immissione in rete o l’utilizzo per autotrazione del biometano prodotto.

La presente tesi ha lo scopo di verificare l’efficienza energetica e la sostenibilità ambientale della filiera del biogas nel comparto agro-zootecnico analizzandone sperimentalmente due aspetti: 1) la fattibilità della sostituzione del silomais con colture alternative come elencate nel DM e 2) l’impatto ambientale del digestato come ammendante agricolo.

In merito al primo aspetto, sono state analizzate in termini chimico-fisici e di produzione di biogas (BMP) alcune colture elencate nel decreto ministeriale; Miscanthus x Giganteus si è contraddistinto con una produzione specifica di 0,37 Nm3CH$_4$/KgVS, maggiore rispetto ad Arundo donax (0,27 Nm3CH$_4$/KgVS) e a Topinambur (Helianthus tuberosus) con e senza micorrize (0,16 e 0,27 Nm3CH$_4$/KgVS rispettivamente).

Successivamente, al fine di valutare le rese di processo del Miscanthus, è stato simulato su scala laboratorio un impianto in piena scala alimentato con deiezioni bovine e silomais, sostituendo gradualmente il silomais con il Miscanthus. L’obiettivo generale è quello di proporre una soluzione efficiente dal punto di vista energetico ed economico, risolvendo inoltre le problematiche di carattere etico e sociale. La produzione specifica media ottenuta sostituendo Miscanthus nel reattore lab-scale è simile a quella dell’impianto full-scale con Silomais. L’utilizzo di Miscanthus consente di aumentare la reattività aziendale grazie ai maggiori incentivi rilasciati dalla normativa (un aumento di 20 €/MWh), inoltre si ha una riduzione dei costi di gestione solitamente legati alla coltivazione di energy crops tradizionali, essendo una coltura dalle ridotte esigenze idriche e di concimi, capace di crescere in terreni marginali e che consente più tagli della biomassa durante l’anno.

Il secondo aspetto trattato si inserisce all’interno del progetto “Valdige”, diretto dal dipartimento DAFNAE dell’Università di Padova, finalizzato alla valorizzazione del digestato in agricoltura. Nel progetto vengono quantificate le emissioni di CO$_2$ dai suoli durante e dopo lo spandimento di digestato in relazione alla tessitura e alle precedenti lavorazioni subite dal terreno. E’ stata quindi valutata la conservazione della fertilità dei terreni a seguito dell’applicazione agronomica del digestato, sostituendo così i fertilizzanti chimici, e verificati gli effetti su differenti colture energetiche (food e no-food) in termini di produzione di biomassa e caratteristiche morfologiche. Le misure effettuate con camera statica hanno evidenziato maggiori emissioni di CO$_2$ nei primi giorni dopo lo spandimento (7245,4 mg/m2h) rispetto a quelli seguenti (458,3 mg/m2h) in relazione al notevole apporto di sostanza organica. Questo effetto però è compensato da un aumento della fertilità del suolo e dal mancato uso di fertilizzanti chimici, il cui processo produttivo comporta considerevoli emissioni di gas serra.
1. INTRODUZIONE

La diminuzione globale delle riserve di petrolio, il conseguente aumento dei prezzi di mercato dei combustibili fossili e la necessità di ridurre le emissioni dei gas serra (GHG), responsabili dei cambiamenti climatici, ha promosso, negli ultimi anni, la ricerca e lo sviluppo di fonti energetiche alternative e rinnovabili (IEA, 2010).

Nel mercato nazionale il settore delle biomasse sta rivestendo un ruolo via via crescente, essendo una risorsa praticamente inesauribile, capace di ridurre e/o annullare le emissioni di gas serra.

In Italia gli impianti che sfruttano il processo di digestione anaerobica, per produrre biogas e successivamente biometano, si sono diffusi in maniera esponenziale nel corso degli ultimi 15 anni.

Le convenienti politiche di incentivazione, promosse dalle istituzioni nazionali, hanno favorito la crescita di questa filiera. I recenti strumenti legislativi hanno contribuito ad orientare gli investimenti verso soluzioni più sostenibili e compatibili con il settore agro-zootecnico. Gli impianti di biogas, alimentati con effluenti di allevamento, colture dedicate e residui agricoli consentono una migliore gestione dei reflui animali e il riciclaggio degli scarti di lavorazione, rendendo i rifiuti una risorsa da cui ricavare energia pulita.

Il biogas ottenuto può essere utilizzato per la produzione combinata di energia termica ed elettrica. Spesso il calore viene reimpiegato in azienda riducendo i costi di gestione interni; mentre una considerevole quota di energia elettrica viene ceduta al gestore della rete nazionale, permettendo di integrare il reddito agricolo. Inoltre il biogas, attraverso un processo di purificazione (upgrading), viene ulteriormente raffinato a biometano che può essere immesso nella rete del gas naturale, realizzando una filiera del tipo “carbon negative”. Oppure può essere usato come biocarburante per autotrazione, riducendo così le emissioni di gas serra causate dal traffico veicolare.

I recenti decreti ministeriali (D.M. 6 luglio 2012 e Decreto Biometano n°295/2013) promuovono la produzione di un biogas più ecosostenibile e a basso impatto ambientale, ottenuto dalla digestione di biomasse residuali, FORSU o colture diverse dalle tradizionali energy-crops. La prima parte del presente lavoro di tesi si concentra proprio su questo tema, verificando quindi la fattibilità della sostituzione l’insilato di mais con colture alternative, come ad esempio Miscanthus x G. oppure Arundo D. Si tratta di specie poliennali, con ridotte esigenze idriche, adatte a crescere in terreni marginali e soprattutto NO-FOOD e perciò particolarmente vantaggiose dal punto di vista ambientale, economico ed etico-sociale.
Un altro aspetto positivo della filiera del biogas (Fig.1) riguarda la gestione del digestato, prodotto di risulta del processo anaerobico, utilizzabile come ammendante in agricoltura, nel rispetto dei limiti imposti dalla Direttiva Nitrati. Essendo ricco di nutrienti (N,P,K), presenti in forma prontamente assimilabile dalle piante, può sostituire i tradizionali fertilizzanti, riducendo l’impatto ambientale dei concimi sintetici e i costi relativi al loro acquisto. In letteratura molti autori (Montemurro et al, 2010; Haraldsen et al, 2011; Alburquerque et al, 2012) testimoniano gli effetti positivi del digestato sulle colture dopo la sua distribuzione in campo. Altri vantaggi legati al suo utilizzo sono l’apporto di sostanza organica stabilizzata che aumenta o migliora la fertilità del suolo e la riduzione delle emissioni di gas serra grazie alla funzione di “carbon sink” del terreno. La seconda parte del presente lavoro di tesi è infatti dedicata alla valorizzazione della digestato in agricoltura per la riduzione delle perdite di CO₂ dal suolo, dopo lo spandimento della sua frazione liquida.

Promuovere lo sviluppo di tecnologie energetiche alternative che utilizzano le biomasse, come la digestione anaerobica, consente l’autosostentamento e il miglioramento del comparto agro-zootecnico italiano, favorisce un’attenzione crescente verso la “green economy” e promuove un’agricoltura a ridotte emissioni di CO₂ basata sul recupero dei rifiuti e sulle buone pratiche agricole.
1.1. Digestione anaerobica

La digestione anaerobica è un processo di degradazione biologica della sostanza organica complessa (carboidrati, proteine, lipidi) con produzione finale di biogas, fonte rinnovabile di energia a elevato potere calorifico, e digestato, utilizzabile come fertilizzante in agricoltura.

Il processo avviene in assenza di ossigeno molecolare o legato ad altri elementi, sfruttando l’azione combinata di un complesso consorzio batterico. Per consentire la buona riuscita dell’intero processo, le reazioni biologiche avvengono all’interno di un reattore riscaldato (digestore) in cui vengono ricreate le condizioni ottimali per la crescita e il lavoro dei microrganismi. Variazioni di temperatura possono rallentare o accelerare i processi metabolici o addirittura possono provocare l’inibizione o la scomparsa di popolazioni batteriche molto sensibili, presenti solo in ristretti intervalli termici. L’ambiente di reazione deve quindi risultare da un compromesso tra le esigenze dei singoli gruppi microbici, per consentirne una crescita equilibrata.

Il pH dev’essere mantenuto intorno a valori di neutralità tra 6.8-7.5, mentre il regime termico varia in base ai microrganismi utilizzati nel processo. Il suo valore è di circa 35°C se si lavora in mesofilia, attorno ai 55°C in termofilia oppure tra 10 e 20°C in psicrofilia.

Il biogas ottenuto è una miscela costituita principalmente da metano (50-80%) e anidride carbonica con tracce di N\textsubscript{2}, H\textsubscript{2}, H\textsubscript{2}S e vapore acqueo (Vismara,2011). Prima di poter utilizzare il biogas è necessario eliminare l’acido solfidrico, corrosivo per i motori. La desolforazione avviene attraverso un trattamento di scrubber in un’apposita torre di lavaggio seguita da deumidificazione, tramite raffreddamento, per eliminare il vapore acqueo sottoforma di condensato.

Il biogas prodotto, viene comunemente utilizzato come combustibile in un cogeneratore per la produzione combinata di energia termica ed elettrica. Il calore viene sfruttato in maniera razionale, a seconda della stagione, per l’autoconsumo aziendale. Nei mesi invernali serve a riscaldare i digestori, le stalle e i locali accessori, mentre nei mesi estivi viene impiegato per produrre freddo (trigenerazione). In questo modo il tradizionale sistema di raffreddamento del biogas (“chiller”) viene sostituito da una pompa di calore che consente di recuperare il calore, che altrimenti andrebbe perso per dissipazione, e convertirlo in energia frigorifera. Questa soluzione permette l’autosostentamento dell’azienda e evita elevati consumi elettrici.

Inoltre dal processo di “upgrading” (rimozione della CO\textsubscript{2}) del biogas si può ottenere biometano, un biocombustibile di seconda generazione che contiene circa il 95-98% di CH\textsubscript{4}. Il biometano potrà essere utilizzato per autotrazione oppure immesso nella rete del gas naturale, con ulteriori
vantaggi economici grazie ai recenti incentivi promossi dal Decreto Biometano del 5 dicembre 2013.

Le rese energetiche e la percentuale di metano nel biogas cambiano in base al tipo di matrice trattata, al suo contenuto di sostanza organica (in termini di qualità e quantità) e alle condizioni di processo (Tab.1).

I substrati idonei alla digestione anaerobica derivano da svariati settori produttivi. Tra quelli di provenienza agro-zootecnica ritroviamo: liquame bovino o suino, deiezioni avicole, residui colturali (foraggi, frutta e ortaggi di scarsa qualità, percolati da silos, paglia), colture dedicate (insilato di mais, sorgo, triticale, loiessa, segale).

Altre matrici adatte sono ad esempio:

- scarti organici e acque reflue dell’agro-industria (ad es. siero di latte, residui di macellazione, sottoprodotti delle industrie alimentari, della conservazione, della produzione e/o della lavorazione del vino e delle bevande);
- fanghi di depurazione derivanti dal trattamento delle acque reflue civili;
- frazione organica dei rifiuti solidi urbani (RSU), proveniente da raccolta differenziata.

Inizialmente i substrati più utilizzati erano i reflui di allevamento, ma successivamente si è diffusa sempre di più la tendenza a preferire la tecnica della co-digestione. Alle deiezioni animali vengono aggiunte altre biomasse ad elevata densità (energy crops e sottoprodotti organici) in modo da incrementare la produttività e l’efficienza dell’impianto. Dal punto di vista ambientale la digestione è una soluzione molto vantaggiosa perché consente la riduzione delle emissioni di gas serra e una migliore gestione dei liquami, diminuendo l’impatto odorigeno. A livello economico, la maggiore produzione di biogas permette di aumentare la redditività aziendale grazie alla vendita dell’energia sul mercato. Inoltre l’utilizzo del digestato in agricoltura riduce i costi relativi allo smaltimento dei reflui e all’acquisto di fertilizzanti chimici (Braun and Wellinger, 2003).
In generale il processo di digestione anaerobica può essere condotto mediante due tecniche differenti:

- a secco (*dry digestion*), se il substrato sottoposto a digestione ha un contenuto di sostanza secca (SS) superiore al 20%;
- a umido (*wet digestion*) se invece il materiale ha un tenore di sostanza secca inferiore al 10%.

Questa è la tipologia maggiormente diffusa, in particolare con i reflui zootecnici.

Le tipologie impiantistiche utilizzabili per la digestione anaerobica possono essere monostadio quando l’intero processo si svolge in un unico reattore; oppure del tipo bifase, in cui le fasi di idrolisi/acidogenesi e di metanogenesi, più sensibile, vengono condotte in due distinti reattori, in modo da poter ottimizzare entrambi gli step.

Inoltre gli impianti si differenziano per la modalità di alimentazione adottata: discontinua (tipologia *Batch*) oppure continua. Quest’ultima si suddivide ulteriormente a seconda del comportamento idrodinamico: reattori completamente miscelati (CSTR) e reattori con flusso a pistone (Plug flow).

Oltre al biogas, al termine del processo di digestione anaerobica, si ottiene un altro prodotto di risulta: il digestato. Si tratta di un effluente stabilizzato e igienizzato, utilizzabile come ammendante in agricoltura (Vismara et al., 2011). La sua distribuzione apporta sostanza organica e nutrienti (N, P, K) al terreno e alle colture, evitando il ricorso ai fertilizzanti di sintesi e riducendo l’ emissione dei gas serra (Tambone et al., 2010).

È un materiale che, rispetto alle biomasse di partenza, si presenta omogeneo, con un tenore di umidità più elevato perché parte della sostanza secca è stata degradata biologicamente dai batteri per produrre biogas. La sua composizione chimica dipende principalmente dalle caratteristiche dei substrati in ingresso al digestore. In particolare il quantitativo totale di azoto, presente nei materiali di partenza, non cambia significativamente durante il processo; esso subisce solo una trasformazione chimica. Durante la digestione le molecole contenenti azoto organico vengono demolite per produrre biogas dalla parte carboniosa, mentre il gruppo amminico viene liberato in soluzione come azoto minerale (ammoniacale), forma prontamente assimilabile dalle colture (Vismara et al., 2011).

Di solito il digestato viene sottoposto ad un operazione di separazione solido/liquido, da cui si ottengono due frazioni con caratteristiche e finalità d’uso differenti (Mantovi et al., 2009). La componente solida, di consistenza palabile, ha un contenuto di sostanza secca abbastanza elevato (circa il 15-30%) e concentra in sé la sostanza organica e i nutrienti (N e P) in forma organica a lento rilascio. E’ utilizzabile come ammendante o come lettiera nelle stalle (Mantovi et al., CRPA
oppure, grazie alla sua facilità di trasporto, può essere venduta a terzi, riducendo il surplus aziendale in termini di azoto.

La frazione liquida presenta un basso tenore di solidi (circa il 2-8% di sostanza secca) e un’elevata percentuale di azoto ammoniacale e sali solubili a rilascio immediato. Queste caratteristiche consentono di sostituire la componente chiarificata ai tradizionali concimi di sintesi durante le operazioni di fertirrigazione. La sua distribuzione dev’essere eseguita a ridosso dei periodi di sviluppo e di utilizzo dei nutrienti da parte delle colture, limitando le emissioni in atmosfera dell’ammoniaca per volatilizzazione.

Questo trattamento di separazione consente una gestione agronomica del digestato più flessibile, nonché una riduzione dei volumi di stoccaggio dello stesso. Il trattamento però non porta ad un effettiva riduzione dell’azoto totale presente, ma soltanto una ridistribuzione dello stesso fra le due componenti.

1.1.1. Fasi del processo

La digestione anaerobica è costituita da quattro fasi illustrate in figura 2, ciascuna caratterizzata dall’azione di uno specifico gruppo di microrganismi. Ogni popolazione ha un ruolo ben definito nella demolizione della sostanza organica poiché nessun ceppo batterico è capace di condurre singolarmente alla completa degradazione. Le relazioni sintrofiche tra le classi microbiache coinvolte sono di tipo verticale, ossia il prodotto di una reazione funge da substrato di partenza per la reazione successiva.

![Figura 2: Fasi della digestione anaerobica (rappresentazione semplificata)](image)
Il processo si suddivide in:

1. **Idrolisi**: il materiale organico insolubile e le molecole complesse (lipidi, polisaccaridi, proteine, acidi nucleici) vengono degradate ad opera dei batteri idrolitici in sostanze organiche solubili tra cui monosaccaridi, amminoacidi e acidi grassi a catena lunga (Appels et al., 2008). Questa fase può rappresentare uno step limitante la velocità complessiva del processo se, tra i substrati di partenza, sono presenti matrici lignocellulosiche. Per facilitarne la degradazione si ricorre a pretrattamenti mirati che rendano la struttura del materiale più aggredibile per i batteri idrolitici facilitando l’azione dei loro esoenzimi (idrolasi, proteasi, lipasi, peptidasi).

2. **Acidogenesi** (fermentazione acidogenica): i composti organici solubili prodotti durante l’idrolisi vengono ulteriormente frammentati, grazie ai batteri acidogenici, in acidi grassi volatili e alcoli assieme a NH$_3$, CO$_2$ e H$_2$S ed altri sottoproducti. Durante questa fase la produzione di VFA comporta un leggero abbassamento del pH all’interno del digestore.

3. **Acetogenesi**: gli acidi organici più grandi e gli alcoli vengono convertiti prevalentemente in acido acetico, CO$_2$ e H$_2$ dai batteri acetogeni attraverso il meccanismo di β-ossidazione (Appels et al., 2008). Durante questo processo gli acidi grassi a lunga catena vengono degradati mediante il distacco progressivo, mediato dal coenzima A, di due atomi di carbonio in posizione α e β rispetto al carbossile, con produzione di acidi grassi a catena corta e H$_2$.
 I batteri omoacetogeni invece sintetizzano acetato partendo da biossido di carbonio e idrogeno.

4. **Metanogenesi**: fase finale del processo in cui viene prodotto metano attraverso l’azione di due distinti gruppi di microrganismi metanogeni appartenenti al regno degli Archaea. Microrganismi acetoclastici (o acetotrofi) che convertono l’acido acetico in CH$_4$ E CO$_2$. Questa reazione è responsabile del 70% del metano prodotto, soprattutto nei processi di tipo mesofilo (20°-40°C) tipicamente usati nel settore agro-zootecnico:

 \[
 \text{CH}_3\text{COOH} \rightarrow \text{CH}_4 + \text{CO}_2
 \]

Microrganismi idrogenotrofi che producono il restante 30% di CH$_4$ partendo da CO$_2$ e H$_2$, attraverso l’ossidazione anaerobica dell’idrogeno molecolare ad acqua e la riduzione del biossido di carbonio a metano.

 \[
 4\text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}
 \]
1.1.2. **Parametri di gestione del processo**

L’efficienza della digestione anaerobica dipende da alcuni fattori che devono essere costantemente monitorati per garantirne la stabilità. Variazioni di questi parametri possono favorire o inibire il tasso di crescita dei microrganismi coinvolti, le loro cinetiche di reazione e la velocità di degradazione dei substrati. L’andamento dell’intera catena metabolica che compone il processo di digestione dipende soprattutto dalla fase di metanogenesi, essendo la più lenta e delicata. Il giusto equilibrio tra la concentrazione di acidi grassi, prodotti per acidogenesi e la quantità convertita a metano consente di mantenere una condizione di stabilità. La produzione di biogas può diminuire o arrestarsi in seguito all’accumulo di VFA (in particolare acido acetico) all’interno del digestore. L’acidificazione del mezzo crea un ambiente tossico per i batteri metanigeni, rallentando la velocità del processo e ostacolandone il funzionamento. Per favorire la metanogenesi spesso una parte del digestato viene ricircolata in testa all’impianto; questo inocolo apporta batteri già acclimatati e serve per tamponare l’eventuale acidità prodotta dalle reazioni iniziali di degradazione della sostanza organica.

Di seguito vengono riportati i principali parametri chimico-fisici da controllare attentamente durante il monitoraggio della stabilità del processo biologico.

V. TEMPERATURA

L’intervallo termico viene scelto in funzione delle esigenze dei microrganismi coinvolti per favorirne la crescita e il metabolismo. Variazioni di temperatura influiscono sulla composizione del consorzio batterico in termini di presenza/assenza oppure attività/inibizione di determinate specie. Inoltre piccole oscillazioni comportano cambiamenti della velocità di reazione dei processi metabolici con conseguente calo delle prestazioni generali. Questo si verifica soprattutto se le variazioni avvengono al confine tra i diversi intervalli operativi. I principali regimi termici sono:

- **Mesofilia** in cui la temperatura è compresa tra 25°C e 40°C, con un optimum di circa 35°C;
- **Termofilia** in cui l’intervallo termico è compreso tra 45°C e 70°C, con un optimum attorno ai 55°C;
- **Psicrofilia** in cui la temperatura è inferiore a 20°C (tra 10 e 20°C)

Stafford et al.(1980) hanno osservato che, all’interno del regime termico ottimale, la resa di biogas e la rimozione di substrato aumentano con la temperatura. Generalmente gli impianti del settore agro-industriale vengono progettati per lavorare in mesofilia: questa condizione consente di conciliare la produzione di biogas con i tempi di residenza dei substrati e con le esigenze energetiche aziendali.
Nonostante i batteri idrolitici tendano a preferire ambienti tendenzialmente acidi, il pH all’interno del digestore viene mantenuto in un intervallo compreso tra 6.8 e 8.2 per consentire anche ai batteri metanigeni, più sensibili, di poter svolgere la loro attività metabolica.

Questo parametro incide sugli equilibri di dissociazione delle specie chimiche presenti. In particolare, gli acidi organici a pH bassi si trovano nella forma indissociata che può penetrare la membrana citoplasmatica andando a compromettere l’omeostasi delle cellule batteriche. Per questa ragione è necessario mantenere l’ambiente di reazione in condizioni di neutralità o leggermente basiche; diminuzioni del pH a valori inferiori a 7 indicano l’accumulo di VFA. Questa situazione di instabilità può verificarsi in seguito a sovralimentazione del digestore, creando squilibrio tra la quantità di materiale digerito e le matrici ancora da decomporre. Ai fini di buon monitoraggio del processo, al singolo del pH vanno integrate ulteriori informazioni relative ad esempio al rapporto tra la concentrazione degli acidi grassi volatili e il valore di alcalinità.

ALCALINITÀ (effetto tampone)

Rappresenta la capacità di un sistema di neutralizzare protoni, rappresentati in questo processo dagli acidi organici. Si esprime in termini di concentrazioni di carbonato di calcio. (APAT, 2005). Per la sua determinazione analitica si rimanda all’Appendice n.1

Digestori anaerobici che lavorano in condizioni stabili generalmente presentano valori di alcalinità compresi tra 2500-5000 mg CaCO₃/L (Stafford et al.,1980). Questo parametro è un valido indicatore dell’eventuale accumulo di acidi in seguito ad un eccessivo carico organico alimentato. Lo sbilanciamento verso la fase acidogena, sfavorendo quella metanigena, determina un abbassamento del pH che dev’essere neutralizzato dalla capacità tamponante del sistema. La coesistenza tra ammoniaca, prodotta per degradazione delle proteine, e del bicarbonato, derivante dalla dissoluzione della CO₂ nella fase liquida, determina un sistema tampone (alcalinità) nel digestore anaerobico.

\[
\begin{align*}
\text{CO}_2 + \text{H}_2\text{O} & \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \\
\text{HCO}_3^- + \text{NH}_4^+ & \rightleftharpoons \text{NH}_4\text{HCO}_3
\end{align*}
\]
La presenza contemporanea di ammonio e acido carbonico provoca la formazione di un sale (NH₄HCO₃) disciolto in soluzione. Esso determina una notevole alcalinità nell’ambiente di reazione e consente la stabilità del processo, anche nel caso di accumulo di acidi.

ACIDI GRASSI VOLATILI

Durante le prime fasi della digestione anaerobica vengono prodotti acidi grassi volatili, rappresentati dalla formula generale R-COOH, dove R è un gruppo alchilico del tipo CH₃(CH₂)n che contiene da 0 a 3 atomi di carbonio (acidi a catena corta).

In generale il loro livello di concentrazione, espresso in termini di acido acetico o di COD, è compreso in un ampio intervallo tra 200 fino a 2000 mgAc/L a seconda del tipo di substrato trattato (APAT, 2005). Come parametro di stabilità non viene utilizzata la concentrazione assoluta dei VFA ma la loro variazione: aumenti repentini indicano uno squilibrio della digestione verso processi idrolitici e acidogenici e conseguente rallentamento o inibizione dei batteri metanigeni. Spesso questo incremento è il risultato di un carico eccessivo di materiale in ingresso da trattare che conduce ad abbassamento del pH a seguito dell’esaurimento dell’alcalinità nel mezzo e a una minore produzione di biogas.

RAPPORTO VFA/ALCALINITÀ’

Un utile fattore da monitorare è proprio il rapporto tra queste due grandezze, essendo considerate maggiormente indicative di un eventuale malfunzionamento del processo. In caso di problemi infatti la concentrazione degli acidi tende ad aumentare e al contrario l’alcalinità a diminuire. Valori del rapporto intorno a 0,3 sono indice di stabilità del processo, valori superiori rappresentano l’insorgere di criticità.

Questo rapporto può essere anche misurato attraverso un indicatore sperimentale di origine tedesca chiamato FOS/TAC (Flüchitge Organische Säuren/Totales Anorganisches Carbonat). Per la determinazione analitica dei due fattori si rimanda all’ Appendice n.1

Se il loro rapporto è compreso tra 0,3 e 0,4 significa che il processo è stabile, valori superiori a 0,4 segnalano un eccessivo carico organico, valori inferiori a 0,3 invece indicano una quantità insufficiente di ingestato oppure di scarsa qualità. Eventuali cambiamenti per ristabilire l’equilibrio devono essere apportati in maniera graduale per consentire l’adattamento del consorzio microbico presente nel reattore.
PRODUZIONE E QUALITA’ DEL BIOGAS

Una diminuzione della produzione di biogas oppure una variazioni della sua composizione percentuale sono chiari segnali di instabilità. L’aumento di biossido di carbonio rispetto alla quota di metano nel biogas indica un eccessivo carico organico e un accumulo di acidi. Gli andamenti, quantitativi e qualitativi, del biogas uniti ai parametri precedentemente descritti servono per capire eventuali situazioni di sovraccarico o di “fame” del reattore.

AMMONIACA

La sua presenza deriva dalla degradazione delle proteine presenti nella biomassa, perciò la quantità di ammoniaca nel digestore dipenderà dal tipo di substrato trattato. Essa, entro certi range di accettabilità (200-1500mg/L di NH₃), contribuisce a rafforzare la capacità tampone del sistema, consentendo il funzionamento del processo. Oltre certi livelli però tende a rallentare o impedire la metanogenesi. L’inibizione non dipende dalla sua concentrazione in termini assoluti ma piuttosto dalla presenza di ammoniaca libera (free ammonia) che dipende a sua volta da pH e temperatura del sistema. Valori di azoto ammoniacale tra 1500 e 3000 mg/L sono inibenti in condizioni di pH inferiore a 7,4 (Van Velsen, 1979); mentre valori oltre i 3000 mg/L possono essere inibenti.

ALTRI FATTORI

Lo sviluppo dei microrganismi e la loro attività di degradazione può essere limitata anche da altri fattori che creano condizioni di tossicità all’interno dell’ambiente di crescita. Le cause principali sono il sovraccarico per eccesso di substrato oppure la presenza di sostanze inibenti tra cui residui di pesticidi e prodotti farmaceutici, solventi, disinfettanti, conservanti, metalli pesanti, sali, H₂S.

1.2. Situazione italiana della digestione anaerobica nel comparto agricolo

In Italia la costruzione dei primi impianti per la produzione di biogas da effluenti zootecnici risale agli anni ’80. Un censimento realizzato dall’ ENEA aveva rilevato nel 1983 circa 60 installazioni sul territorio nazionale, molte delle quali, oggi, risultano non essere più attive. La loro costruzione infatti era legata soltanto alla necessità di ridurre l’impatto ambientale dei liquami e non per scopi di risparmio energetico. Gli impianti di quell’epoca erano costruiti senza valutare l’idoneità per le
aziende ospitanti in termini di dimensioni, consumi energetici o caratteristiche dei liquami. Queste costruzioni nacquero dall’errore neo tentativo di voler adattare alle aziende zootecniche processi e tecnologie tipiche del settore industriale. Per questi motivi la digestione anaerobica era ritenuta inadeguata per le esigenze del mondo agricolo e di conseguenza non fu apprezzata e sostenuta dagli allevatori di quegli anni.

La situazione cambiò nel decennio successivo grazie allo sviluppo di tecnologie idonee al settore agro-zootecnico. Si diffusero impianti semplificati e dai costi più accessibili, ottenuti sovrapponendo alla vasca di stoccaggio dei liquami una copertura di materiale plastico. La loro realizzazione consentiva di recuperare energia da fonti rinnovabili, controllare le emissioni maleodoranti e ottenere un prodotto di scarto stabilizzato (digestato) da poter utilizzare come fertilizzante. Gli allevatori potevano beneficiare di un effettivo guadagno economico da questa filiera, ammortizzando, in breve tempo, le spese dell’investimento iniziale. Questi impianti lavoravano in condizioni di psicrofilia o di temperatura semi-controllata, concentrati prevalentemente nelle regioni settentrionali e alimentati con liquami suini o bovini. Nel 1999 si contavano circa 70 installazioni che aumentarono ad un centinaio alla fine del 2004 (censimento CRPA). Nel corso degli anni inoltre si diffuse l’interesse verso la co-digestione dei liquami zootecnici con residui agricoli e colture energetiche (mais, sorgo, tritico) per avere migliori rese di processo. Numerosi studi dimostrano che questa tecnologia era già utilizzata a partire dagli anni ’90 in diversi impianti in piena scala, continuando ad essere perfezionata dai progressi nel campo della ricerca sulla digestione anaerobica. (Ahring et al., 1992, Tafdrup, 1994, Cavinato et al., 2010, Kacprzak et al., 2010, Gübitz et al., 2010)

Il provvedimento n°6 del 29 aprile 1992 emanato dal CIP (Comitato Interministeriale dei Prezzi), contribuì ad aumentare la diffusione degli impianti e l’interesse verso l’utilizzo del biogas in cogenerazione, per la produzione combinata di energia termica ed elettrica. Con questa delibera vennero stabiliti prezzi incentivati per l’energia elettrica prodotta con impianti, entrati in funzione dopo il 30 gennaio 1991 e alimentati da fonti rinnovabili e “assimilate”. In base a questo regime tariffario l’autoproduzione di energia elettrica da biomasse, per la cessione al gestore nazionale, diventò un’opportunità molto vantaggiosa per il settore agricolo. Successivamente i benefici del provvedimento Cip 6/92 vennero sospesi e sostituiti dal sistema dei Certificati Verdi (CV). Si tratta di titoli negoziabili, rilasciati dal GSE, in misura proporzionale all’energia prodotta da un impianto qualificato IAFR, cioè alimentato da fonti rinnovabili. Il nuovo meccanismo di incentivazione consente, a produttori e importatori di energia da fonti tradizionali, di rispettare l’obbligo (art.11, D.Lgs 79/99) di immettere annualmente, nella rete nazionale una quota minima di energia da fonte non fossile. A partire dal 2002 tale quota era del 2%, poi dal
2004 al 2006 fu aumentata dello 0,35% annuo (D.Lgs. 387/2003) e nel periodo 2007-2012 l’incremento era dello 0,75 % annuo.

Il possesso del CV attesta l’adempimento all’obbligo imposto dalla normativa ed ognuno di essi rappresenta convenzionalmente la produzione di 1 MWh di energia rinnovabile ed hanno validità triennale, cioè possono essere usati per ottemperare all’obbligo anche nei successivi due anni dal momento del rilascio.

La normativa può essere rispettata in due modi: immettendo in rete energia elettrica prodotta da fonti rinnovabili oppure acquistando i Certificati dai produttori di energia “verde”.

Con la Legge Finanziaria del 2008 vengono introdotte alcune novità per gli impianti entrati in esercizio dopo il 31/12/2007. Il periodo di incentivazione sale da 8 a 15 anni, l’incentivo viene differenziato a seconda della fonte rinnovabile da cui proviene l’energia e a sostegno del settore agro-zootecnico vengono introdotti i “CV agricoli”. Questi promuovono la produzione di energia dal biogas ottenuto con biomasse e sottoprodotti forestali, agricoli o di allevamento provenienti da filiere corte o contratti di filiera.

Il meccanismo di incentivazione, riconosciuto per 15 anni, dipende dalla taglia dell’impianto:

- a quelli con potenza elettrica installata superiore a 1MWe vengono rilasciati CV con un coefficiente moltiplicatore di 1,8;
- a quelli di piccola taglia (< 1MWe) è riservato un meccanismo di incentivazione alternativo: la tariffa omnicomprensiva (TO). Il suo valore è di 0,28 €/kWh ed include sia l’incentivo che il ricavo ottenuto dalla vendita dell’energia immessa in rete. In questo caso, il gestore può scegliere liberamente quale sistema di incentivi utilizzare tra i due.

Grazie ai vantaggi economici offerti dal sistema incentivante, nel periodo compreso tra il 2008 e il 2012, in Italia si assiste ad un boom di investimenti da parte degli imprenditori agricoli a favore del settore del biogas. In base ai censimenti annuali svolti dal CRPA si può notare una consistente crescita di impianti sul territorio nazionale, soprattutto nelle regioni settentrionali (Lombardia, Veneto, Emilia-Romagna) dove vi è una maggiore concentrazione di grandi allevamenti e aziende agricole.

Rispetto ai 154 impianti di tipo agro-zootecnico censiti ad Aprile del 2007, alla fine del 2010 ne contavano già 314 circa. Nel biennio 2011-2012 il numero di reattori è cresciuto ulteriormente del 95% (a fine 2012 risultano 994 installazioni attive rispetto alle 587 dell’anno precedente), con una potenza elettrica installata totale aumentata del 116% (da 388 a 756 MWe circa) come dimostrano i grafici riportati in Figura 3.
Nel corso degli anni la tendenza comune per il 65-70% degli impianti è quella di preferire la co-digestione fra effluenti zootecnici, sottoproducti agroindustriali e colture dedicate rispetto alla sola alimentazione con deiezioni animali. Circa il 34% degli impianti utilizza solo reflui zootecnici, l’12% soltanto energy crops e il 54% sfrutta la co-digestione di entrambi i substrati con l’aggiunta di altri residui agricoli. (Fig.4a) In questo modo è possibile aumentare la potenza installata degli impianti che negli ultimi anni è compresa tra 500-1000 KWe (Fig.4b).

Lo scadere dei benefici derivanti dalla tariffa omnicomprensiva al 31/12/2012 spiega lo sviluppo esponenziale del settore del biogas in quegli anni. Molti imprenditori infatti considerano la futura politica incentivante meno remunerativa, preferendo così costruire il proprio impianto entro la fine del 2012.

Con l’entrata in vigore del DM 6 luglio 2012, viene ridefinito il meccanismo degli incentivi e le modalità di accesso ad essi, per tutti gli impianti in esercizio dal 1° gennaio 2013. Gli obiettivi principali di questa nuova politica sono: sostenere lo sviluppo delle realtà agricole medio-piccole,
favorire l’utilizzo di matrici di scarto per produrre biogas, sostituire le colture energetiche tradizionali con specie no-food e soprattutto promuovere la filiera del biometano.

Nonostante le difficoltà legate all’attuale crisi economica e l’incertezza normativa che si rinnova quasi annualmente, la produzione di energia da fonti rinnovabili rimane una delle priorità nazionali. I recenti investimenti nel settore del biogas agro-zootecnico hanno permesso all’Italia di diventare il secondo mercato europeo dopo la Germania (con circa 1200 impianti e una potenza installata attorno ai 1000 MW) e il terzo mondiale dopo la Cina. E’ quanto afferma l’accordo tra GSE e Consorzio Italiano Biogas (CIB), firmato il 9 ottobre 2014, per il consolidamento del settore e lo sviluppo all’estero delle tecnologie italiane legate alla filiera biogas-biometano in ambito agricolo. Gli impianti attualmente attivi in Italia sono circa 1054 (Fabbri et al.,2013) possono potenzialmente coprire il 10% del fabbisogno energetico nazionale e garantire, oltre alla produzione di energia elettrica e termica, fertilizzanti naturali e biocarburanti utilizzando una tecnologia sicura e sostenibile a livello ambientale ed economico.

1.3. Normativa di riferimento

La produzione di energia da fonti rinnovabili è uno degli obbiettivi principali della politica energetica comunitaria a causa del progressivo impoverimento delle riserve fossili. L’obiettivo è quello di sostituire l’attuale sistema energetico con un modello basato su risorse più sostenibili a livello ambientale ed economico.

Per continuare a contrastare l’emergenza clima-energia, anche dopo la scadenza del protocollo di Kyoto, l’Unione Europea ha pensato di raccogliere una serie di provvedimenti all’interno del

La volontà e l’impegno degli stati membri a rispettare gli obblighi comunitari ha contribuito ad una notevole crescita del settore delle energie rinnovabili, tra cui la valorizzazione energetica delle biomasse.

L’articolo 2, lettera e) definisce la biomassa come “la frazione biodegradabile dei prodotti, rifiuti e residui di origine biologica provenienti dall’agricoltura (comprendente sostanze vegetali e animali), dalla silvicoltura e dalle industrie connesse, comprese la pesca e l’acquacoltura, gli sfalci e le potature provenienti dal verde pubblico e privato, nonché la parte biodegradabile dei rifiuti industriali e urbani.”

Nel corso degli anni l’interesse verso risorse alternative a quelle fossili, come le biomasse, si è tradotto in una serie di normative e provvedimenti strategici adottati sia a livello europeo che nazionale e riassunti nelle Tab.2a e 2b. Numerosi impianti per la produzione di biogas e biometano sono stati costruiti proprio grazie alle politiche di incentivazione che si sono susseguite durante quest’ultimo decennio.

Tabella 2: Riepilogo dei principali provvedimenti europei (a) e nazionali (b) sulle energie rinnovabili

<table>
<thead>
<tr>
<th>Anno</th>
<th>Normativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>COM/96/576 - Libro Verde. Energia per il futuro: le fonti energetiche rinnovabili</td>
</tr>
<tr>
<td>1997</td>
<td>COM/97/599 - Libro Bianco sulle fonti rinnovabili</td>
</tr>
<tr>
<td>2001</td>
<td>Direttiva 2001/77/CE – Promozione dell’elettricità da fonti energetiche rinnovabili</td>
</tr>
<tr>
<td>2003</td>
<td>2003/30/CE – Promozione uso biocarburanti nei trasporti in sostituzione dei combustibili fossili</td>
</tr>
<tr>
<td>2004</td>
<td>Direttiva 2004/8/CE – Promozione della cogenerazione</td>
</tr>
<tr>
<td>2005</td>
<td>COM/2005/628 – Piano d’azione per la Biomassa</td>
</tr>
</tbody>
</table>
b) NORMATIVA NAZIONALE

<table>
<thead>
<tr>
<th>Anno</th>
<th>Normativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>D.Lgs n. 79/199 – Meccanismo dei Certificati Verdi</td>
</tr>
<tr>
<td>2008</td>
<td>D.M. 18/12/2008 - "Incentivazione della produzione di energia elettrica da fonti rinnovabili, ai sensi della Finanziaria 2008 (Legge n.244/2007)</td>
</tr>
<tr>
<td>2010</td>
<td>Piano di Azione Nazionale (PAN) per le Energie Rinnovabili</td>
</tr>
<tr>
<td></td>
<td>Presenta una sintesi della politica nazionale, sottolineando il ruolo delle biomasse per usi termici e nel settore dei trasporti.</td>
</tr>
<tr>
<td>2012</td>
<td>D.M. 06/07/2012 – Decreto attuativo del D.Lgs. n.28/2011, promuove gli incentivi alla produzione di energia elettrica da impianti a fonti rinnovabili diverse dal fotovoltaico.</td>
</tr>
<tr>
<td>2013</td>
<td>Strategia Energetica Nazionale (SEN)</td>
</tr>
<tr>
<td>2013</td>
<td>D.M. 05/12/2013 - Decreto Biometano</td>
</tr>
</tbody>
</table>

1.3.1. Decreto Ministeriale FER del 6 luglio 2012

Il 10 luglio 2012 nel Supplemento Ordinario n.143 della Gazzetta Ufficiale n.159, è stato pubblicato il Decreto 6 luglio 2012, emanato dal Ministro dello Sviluppo Economico insieme con il Ministro dell’Ambiente e della Tutela del Territorio e del Mare. Esso rappresenta l’attuazione dell’articolo 24 del del D.Lgs. 28/2011.

Il decreto, in accordo con la direttiva 2009/28/CE, introduce un nuovo sistema di incentivazione per gli impianti che producono energia elettrica sfruttando fonti rinnovabili diverse dal solare fotovoltaico (idroelettrico, geotermico, eolico, biomasse, biogas).

Il precedente sistema di agevolazioni fiscali basato sui Certificati verdi e sulla Tariffa onnicomprensiva viene profondamente modificato. L’attuale decreto prevede una tariffa incentivante base differenziata per classe di potenza installata e per tipo di alimentazione adottato, con l’aggiunta di eventuali bonus. La rimodulazione degli incentivi e delle modalità di accesso ad essi coinvolge gli impianti in esercizio a partire da 1° gennaio 2013, per il triennio 2013-2015 con tariffe annuali decrescenti per allineare l’Italia agli altri Stati europei.
Il nuovo sistema favorisce gli impianti di piccola taglia (< 100 kW) grazie all’accesso diretto alla tariffa incentivante. Quelli dotati di potenza maggiore, invece, devono iscriversi ad appositi registri nazionali per ottenere le agevolazioni, oppure se superano i 5 MW partecipare ad aste al ribasso. La durata degli incentivi è stata prolungata da 15 a 20 anni.

Una delle principali novità introdotte dal Decreto, per gli impianti a biomasse e biogas, consiste proprio nella differenziazione degli incentivi in base al tipo di alimentazione scelto.

Nell’articolo 8 i substrati utilizzabili vengono suddivisi in 4 categorie:

a) prodotti di origine biologica (prodotti agricoli destinati o destinabili al consumo umano, prodotti derivanti dalla gestione del bosco e della silvicoltura, non classificati come rifiuti o sottoprodotti e non ricompresi nella tab.1-A dell’All.1 del Decreto);

b) sottoprodotti di origine biologica provenienti da: attività agricola, allevamento, gestione del verde, attività forestale, attività alimentari e agro-industriali, scarti di origine animale non destinati al consumo umano (riportati nella tabella 1-A del decreto);

c) rifiuti per i quali la frazione biodegradabile è determinata con le modalità di cui all’All.2 del Decreto;

d) rifiuti non provenienti da raccolta differenziata diversi dalla lettera c).

Oltre alla tariffa base, il GSE assegna ulteriori premi cumulabili (compresi tra 10 e 40 €/MWh ciascuno) in relazione alla tipologia di impianto (biomasse, biogas, bioliquidi), alla taglia e alla modalità di funzionamento sostenibile.

Il bonus “CAR” è riferito alla quantità di calore utile prodotto dalla cogenerazione ad alto rendimento e sfruttato per scopi diversi da quelli legati alla produzione di energia dall’impianto CHP stesso.

Il bonus “AZOTO” è riservato agli impianti che lavorano in regime di cogenerazione e adottano sistemi idonei al recupero-riduzione di questo nutriente. Il premio spetta a coloro che utilizzano tecnologie capaci di ridurre la concentrazione di azoto del 60% nel digestato finale rispetto alla quantità contenuta nelle matrici in ingresso. L’effluente può essere quindi utilizzato come ammendante in agricoltura, aumentando la quantità spandibile senza violare i limiti imposti dalla Direttiva Nitrati e riducendone i volumi da dover, altrimenti, stoccare. La produzione di tale fertilizzante deve avvenire senza l’utilizzo di energia termica da fonti non rinnovabili; le vasche di stoccaggio del digestato e dei liquami devono avere copertura impermeabile e le fasi di recupero dell’azoto non devono comportare emissioni di ammonica o altri composti affini.
Altri premi spettano agli impianti capaci di ridurre le emissioni di gas serra durante tutto il processo produttivo (10 €/MWh) e a quelli che utilizzano come alimentazione le biomasse da filiera elencate nell’ allegato 1, Tabella 1-B del decreto (20 €/MWh).

1.3.2. Decreto Biometano

Il Decreto Biometano pubblicato nella Gazzetta Ufficiale n.295 il 17 novembre 2013, stabilisce il nuovo sistema di incentivi a favore del biometano immesso nella rete del gas naturale. Si tratta di un provvedimento interministeriale, firmato il 5 dicembre 2013, dal Ministro dello Sviluppo Economico insieme ai Ministri dell’Ambiente e delle Politiche Agricole.

Ai sensi del D.Lgs.28/2011 il Biometano è definito come: “...gas ottenuto a partire da fonti rinnovabili avente caratteristiche e condizioni di utilizzo corrispondenti a quelle del gas metano e idoneo alla immissione nella rete del gas naturale”. Presenta una concentrazione di CH₄ superiore al 95%, raggiunta mediante un processo di purificazione del biogas (upgrading), in cui avviene la rimozione di CO₂, acqua e H₂S.

Il decreto definisce regole e incentivi riguardo l’introduzione del biometano nella rete del gas naturale, ma anche per il suo utilizzo come biocarburante per autotrazione o in cogenerazione. Maggiori incentivi sono riservati agli impianti di piccola taglia che ottengono il biometano attraverso la digestione anaerobica di rifiuti e sottoprodotti di origine agricola.

Il decreto amplia il concetto di “rete” a: “....tutte le reti e i sistemi di trasporto e distribuzione del gas naturale e del biometano”. La definizione comprende le reti di trasporto e distribuzione del gas naturale i cui gestori hanno l’obbligo di connessione di terzi, le reti private, i sistemi di trasporto mediante carri bombolai e i distributori di carburanti per autotrazione stradale, ma anche ad uso privato, tra cui l’uso agricolo, non necessariamente collegati alle reti di trasporto e distribuzione.

La nuova normativa viene applicata a tutti gli impianti di nuova costruzione in Italia e in esercizio entro 5 anni dall’ entrata in vigore del decreto. Sono previsti alcuni premi anche per le costruzioni pre-esistenti che convertono, totalmente o in modo parziale, la loro produzione di biogas a biometano. In questi casi viene assegnato il 70% dell’incentivo totale se il biometano è usato nei trasporti oppure il 40% se è immesso in rete o destinato alla produzione elettrica.

In base alle finalità d’uso del biometano vengono stabilite le modalità con cui vengono assegnati gli incentivi. Se viene prodotto per essere immesso in rete si ottiene ad un premio, valido per 20 anni, pari al doppio del valore del gas naturale (prezzo di mercato deciso nel 2012), sottraendo il prezzo mensile corrente del gas stesso.
Per i piccoli impianti (resa inferiore a 500 Sm3/h) è prevista una maggiorazione del 10% sull’incentivo, mentre per quelli di capacità produttiva superiore a 1000 Sm3/h spetta una diminuzione del 10% sul premio. Gli impianti con una capacità produttiva compresa tra 250 e 500 Sm3/h per ottenere le agevolazioni devono ricorrere all’ impiego di sottoprodotti (elencati nella tabella 1-A del D.M. 6 luglio 2012) o rifiuti, per almeno il 50% sul peso totale del feed in ingresso. Impianti alimentanti solamente da sottoprodotti ottengono un incentivo con la maggiorazione del 50%.

A coloro che invece utilizzano il biometano nel settore dei trasporti, vengono rilasciati i certificati di immissione in consumo (CIC) di biocarburanti, validi per 20 anni. Se il biometano è ottenuto da sottoprodotti e rifiuti viene applicato il principio del double counting, cioè il raddoppio dei certificati. Tra le materie che danno diritto a questo ulteriore bonus vi sono: la frazione biodegradata dei rifiuti urbani (FORSU), alghe e biomasse NO-food, elencate nella tabella 1-B del D.M. 6 luglio 2012, e i sottoprodotti presenti nella tabella 1-A dello stesso decreto precedente. Per godere della maggiorazione il gestore, all’interno dell’autorizzazione per la costruzione e l’esercizio dell’impianto a biometano, deve dichiarare l’utilizzo esclusivo di una o più biomasse sopra elencate. Nel caso di codigestione di sottoprodotti con altri substrati, in percentuale non superiore al 30%, è previsto un premio aggiuntivo sul 70% della produzione totale.

L’uso del biometano per autotrazione è utile per soddisfare entro il 2020 l’obiettivo del 10% di energia rinnovabile nei trasporti che, altrimenti rischia di essere raggiunto ricorrendo all’importazione di biocarburanti.

Altri bonus sono assegnati ai produttori di biometano che lo immettono al consumo, attraverso nuovi impianti di distribuzione per autotrazione (costruiti a proprie spese), senza ricorrere alla rete nazionale del gas. Il valore dei certificati rilasciati ad essi gode di una maggiorazione del 50% per un periodo di 10 anni.

Un altro meccanismo di agevolazioni è destinato al biometano sfruttato in impianti di cogenerazione ad alto rendimento. Esso è incentivato mediante il riconoscimento delle tariffe, riportate nel Decreto 6 luglio 2012, per la produzione di energia elettrica da biogas, al netto degli autoconsumi. L’energia elettrica prodotta utilizzando il biometano invece del biogas ha una maggiore efficienza energetica.

Secondo l’Osservatorio Agroenergia 2013 il potenziale del metano "green" in Italia è di circa 5,6 miliardi di metri cubi l’anno, sufficiente per coprire il consumo nazionale lordo di energia al 2020 dal 5 al 10%. Il Consorzio Italiano del Biogas (CIB) afferma che si potrebbero raggiungere gli 8 miliardi di metri cubi di biometano l’anno, senza competere con la produzione di alimenti e foraggi, soddisfacendo il dibattito etico-sociale legato all’uso delle colture dedicate.
1.4. Progetto ValDige

Il progetto ValDige rientra nel Programma di Sviluppo Rurale (PSR) per il Veneto 2007-2014 ed è finalizzato alla valorizzazione del digestato per la riduzione delle perdite di CO₂. Le attività di ricerca sono dirette dal Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE) dell’Università degli Studi di Padova in collaborazione con la Stalla Sociale di Terrassa Padovana (PD). I lavori svolti, nell’ambito del progetto, sono finanziati dalla Misura 124 (DGR n°1604 del 31/07/2012) a supporto della cooperazione per lo sviluppo di nuovi prodotti, processi e tecnologie nel settore agricolo, alimentare e forestale.

Il progetto nasce dall’esigenza di studiare il comportamento del digestato nel terreno e valutare la risposta agronomica che si ottiene in seguito al suo utilizzo come fertilizzante.

L’attività di ricerca prevede lo spandimento di digestato liquido in due situazioni sperimentali distinte:

a) in pieno campo su terreni coltivati a cereali di proprietà delle aziende agricole che collaborano al progetto;
b) in un campo sperimentale appositamente costruito all’interno dell’azienda “L.Toniolo” dell’Università di Padova, situata a Legnaro nei pressi della facoltà di Agraria. Qui verranno successivamente seminati differenti ordinamenti colturali di particolare interesse, tra cui alcune delle specie erbacee perenni da biomassa incentivate dai recenti Decreti (D.M. 05/12/2013 e D.M. 06/07/2012).

Inoltre sono previste ulteriori prove per valutare l’impiego della frazione solida del digestato su orticole.

Scopo del progetto è quello di individuare le tecniche colturali più adatte a minimizzare le emissioni in atmosfera di biossido di carbonio e in grado di conservare la fertilità dei suoli, attraverso la sostituzione dei tradizionali fertilizzanti di sintesi con matrici organiche (digestati) ottenuti attraverso il processo di digestione anaerobica di biomasse agricole.

Gli obbiettivi principale dell’attività di ricerca sono ampliare il calendario di distribuzione degli effluenti provenienti dagli impianti di cogenerazione, specialmente nelle aree soggette alla Direttiva Nitrati, dimostrare le proprietà fertilizzanti del digestato rispetto agli altri ammendanti chimici, ridurre i fenomeni di lisciviazione dei nitrati dal suolo e ridurre le emissioni di CO₂ dal terreno durante e dopo lo spandimento del digestato.

Il progetto vuole dimostrare che le nuove tecnologie studiate per il settore agro-zootecnico possono soddisfare sia i criteri agronomici di efficienza nella fertilizzazione, sia la possibilità di chiusura di cicli di utilizzo energetico di biomasse derivanti dalla codigestione anaerobica.
2. OBIETTIVI DEL LAVORO SPERIMENTALE

Il presente lavoro di tesi ha lo scopo di verificare l’efficienza energetica e la sostenibilità ambientale della filiera del biogas/biometano nel comparto agro-zootecnico, analizzandone due aspetti fondamentali.

Il primo riguarda la fattibilità di sostituire le tradizionali energy crops, come l’insilato di mais, con nuove colture incentivate dal D.M. FER del 6 luglio 2012. Nel corso della sperimentazione, alcune di queste specie vegetali sono state analizzate in termini chimico-fisici e di produzione di biogas. Al termine dei test BMP la coltura che si è contraddistinta, in termini di produzione specifica di gas, è Miscanthus x G.

Successivamente, per valutare le rese di processo di questa coltura, è stato simulato su scala laboratorio un impianto reale, alimentato inizialmente con deiezioni bovine e silomais, sostituendo poi l’insilato con miscanto.

Il secondo aspetto trattato nella tesi, riguarda l’uso del digestato come ammendante agricolo e la sua valorizzazione per la riduzione delle perdite di CO2.

Scopo delle misurazioni, effettuate dopo lo spandimento del digestato, è verificare la possibile correlazione tra emissioni dal suolo, e variabili come temperatura, umidità, lavorazioni del terreno, crescita della biomassa e confronto tra parcelle con e senza digestato.

L’obiettivo generale è proporre una soluzione efficiente dal punto di vista energetico ed economico, che possa risolvere, inoltre, le problematiche di carattere etico e sociale. Utilizzare colture no-food e sottoprodotti agro-zootecnici per produrre energia rende le biomasse residuali delle risorse da sfruttare.

La sostituzione di silomais con Miscanthus x G. consente inoltre di aumentare la redditività aziendale, grazie ai maggiori incentivi rilasciati dalla normativa, e di ridurre i costi di gestione colturale.
3. MATERIALI E METODI

3.1. Descrizione impianto di Terrassa Padovana (PD)

Figura 5: Foto dell’impianto in piena scala di Terrassa Padovana

L’impianto di biogas esaminato nella presente tesi si trova all’interno della Stalla Sociale di Terrassa Padovana, un comune in provincia di Padova. Si tratta di una società cooperativa agricola attiva dal 1979 e costituita da 16 soci, proprietari di circa 400 ettari di terreno. Lo scopo principale dell’azienda è la trasformazione dei prodotti agricoli conferiti dai soci per allevare bovini da carne destinati alla macellazione.

L’ordinamento colturale dei fondi limitrofi gestiti dai soci è essenzialmente basato sulla coltivazione di mais e frumento, con produzioni in parte reimpiegate in azienda per l’alimentazione del bestiame.

Nell’agosto del 2009 la Stalla Sociale ha investito nella costruzione, ad opera del gruppo austriaco Thoni, di un impianto per la produzione di biogas in grado di fornire fino a 1MW di energia elettrica e 576 kW termici.

Le matrici in ingresso sono costituite da insilati di mais o frumento, a seconda della stagione, in codigestione con liquame, letame e farina di mais.

Di seguito vengono descritte le strutture principali che compongono l’intero impianto.

- **Sistema di caricamento della matrice organica solida**

 Le biomasse solide vengono trasportate dalle platee di stoccaggio verso un contenitore, riempito dall’alto per tutta la sua lunghezza, e grazie ad un sistema di controllo e comando, è possibile alimentare automaticamente a intervalli preimpostati i digestori attraverso coclee di trasporto. Il modulo è dotato di un sistema idraulico di copertura per evitare la percolazione
di acqua meteorica e conseguente dilavamento degli insilati. Il sistema di caricamento esterno introduce le matrici solo nel primo digestore, il cui effluente, attraverso sistemi di pompaggio, alimenta il secondo digestore. Il processo anaerobico infatti si svolge in due stadi per separare la metanogenesi finale dalle fasi precedenti. Le biomasse per avere una pezzatura più aggredibile dai microrganismi durante la digestione, vengono prima trasportate con un nastro trasportatore verso delle frese che le triturano e le sminuzzano. Successivamente il sistema di carico trasferisce la biomassa ad una coclea di immissione montata sulle pareti esterne del digestore e inserisce il materiale circa 1 metro al di sotto del substrato in digestione per evitare perdite di gas o emissioni olfattive.

- **Sistema di caricamento della matrice organica liquida**

 I reflui zootecnici utilizzati provengono tutti dall’allevamento aziendale: i liquami sono stoccati in apposite vasche del volume di 200 m3, mentre il letame in platee coperte. Le matrici liquide passano prima in una prevasca più piccola e da questa vengono inviate al primo digestore per mezzo di pompe. La prevasca è dotata di un’elica miscelatrice con funzione omogeneizzante, per evitare la formazione di croste galleggianti o depositi sul fondo.

- **Digestori**

 L’impianto è dotato di due digestori uguali in cemento armato di forma cilindrica (diametro 26 m e altezza 6m) dal volume utile di 2900 m3 ciascuno, collegati da un edificio di servizio (sala quadri, sala pompe, sala comandi). Il processo di digestione avviene in condizioni di mesofilia: la temperatura nei reattori è mantenuta stabile a 35°C grazie a tubazioni in acciaio, collocate nelle pareti interne. Il riscaldamento dei digestori, delle stalle e dei locali accessori dell’azienda è ottenuto dall’energia termica fornita dal sistema di cogenerazione.

 In ogni digestore sono presenti opportuni punti di ispezione, superiori e laterali, finestrelle per il controllo visivo che permettono di intervenire con manutenzioni e riparazioni straordinarie nel caso di malfunzionamenti. Inoltre sono dotati di un sistema idraulico automatico costituito da valvole di sicurezza che rilasciano il gas nel caso di sovrapressione (> 0,008 bar) oppure introducono aria nel digestore nel caso contrario di sottopressione (< 0 bar). La normale pressione di esercizio è di 0,005 bar.

 L’agitazione del materiale presente nei reattori è svolta da un sistema di miscelatori: due orizzontali a pale coadiuvati da uno verticale ad elica immersa, che consente un ulteriore rimescolamento dal basso verso l’alto. Mantenere in movimento il contenuto interno
permette di ricreare le condizioni ottimali di lavoro per i microrganismi e inoltre evita la formazione di croste superficiali o la sedimentazione sul fondo del materiale più pesante. Ogni digestore è coperto da una cupola a doppia membrana adatta a raccogliere il gas prodotto. La parte interna è costituita da un tessuto in poliestere ricoperto da uno strato di PVC, è difficilmente infiammabile e resistente alle escursioni termiche. La membrana esterna, costruita in poliestere laccato in PVC, sopporta gli agenti atmosferici e i raggi UV ed è anch’essa ignifuga.

Torre di desolforazione

Il biogas, prodotto nel digestore, prima di alimentare il cogeneratore viene convogliato verso un sistema di desolforazione per essere depurato. Il processo, svolto da popolazioni batteriche selezionate, avviene in un’apposita colonna di lavaggio (scrubbing) con funzionamento chimico/biologico. Il gas, mescolato con aria atmosferica (1-5%) viene fatto salire in questa torre in polietilene contro un flusso di acqua atomizzata e contemporaneamente messo a contatto con un filtro biologico, dove particolari microrganismi, provocano la precipitazione dello zolfo per ossidazione:

\[
\text{H}_2\text{S} + \frac{1}{2} \text{O}_2 = \text{S} + \text{H}_2\text{O}
\]

Il processo serve principalmente per evitare problemi di incrostazioni nel motore del cogeneratore. La depurazione a colonna, rispetto ai metodi tradizionali, evita inoltre l’introduzione di ossigeno nel digestore, assicurandone la perfetta funzionalità. Il gas depurato dallo zolfo, prima di essere inviato al modulo di cogenerazione, subisce deumidificazione, tramite raffreddamento, per eliminare il vapore acqueo sotto forma di acqua di condensazione, successivamente raccolta e pompata verso vasche di stoccaggio.

Modulo di cogenerazione

L’impianto produce mediamente 500 m³/h di biogas, con concentrazione di metano attorno al 52-55% circa, che viene combusto da un cogeneratore endotermico dalla potenza elettrica installata di 999 kW, collocato all’interno di un container insonorizzato. L’énergia elettrica disponibile per l’immissione in rete corrisponde circa a 970 kW, al netto della quantità utilizzata per il funzionamento dell’impianto e per l’autoconsumo aziendale. La cessione alla rete di distribuzione avviene tramite una cabina elettrica situata nelle vicinanze e dotata di trasformatori. Dalla combustione del biogas si ottiene inoltre energia termica (circa 590 kW), reimpiegata in azienda per il riscaldamento dei digestori e dei locali accessori.
Stoccaggio del digestato

Il digestato, prodotto di risulta della digestione anaerobica, viene sottoposto a separazione solido-liquido con produzione di due frazioni. La parte solida di consistenza palabile, accumulata in una concimaia coperta, ha un contenuto di sostanza secca di circa 25-30%. La parte liquida, caratterizzata da circa il 5% di sostanza secca, viene stoccata in apposite vasche cilindriche di cemento dal diametro di 26 metri e volume di circa 2000 m³. La fase liquida verrà utilizzata, nei periodi consentiti, come fertilizzante negli appezzamenti di proprietà dei soci della Cooperativa. La presenza di tre vasche assicura lo stoccaggio temporaneo del digestato durante i periodi in cui lo spandimento è vietato dalla Direttiva Nitrati. In alternativa la frazione separata liquida può essere utilizzata come ricircolo nel digestore per garantire il continuo re-inoculo di batteri metanogeni e per mantenere costante la fluidità delle matrici organiche, senza ricorrere all’utilizzo di acqua che graverebbe sul bilancio economico dell’azienda.

3.1.1. Condizioni operative impianto full-scale

L’impianto lavora in regime mesofilo con una temperatura d’esercizio di circa 35°- 40°C. Le matrici organiche introdotte quotidianamente permangono, in media, nei due digestori per un periodo complessivo di circa 88-92 giorni (HRT). Il tempo di ritenzione dipende dalla quantità dei substrati che compongono la razione giornaliera (tab.3). La qualità e la disponibilità delle biomasse, ad esempio, può variare stagionalmente a causa delle diverse lavorazioni adottate all’interno dell’azienda agricola. Il tipico cassone di caricamento delle matrici solide varia tra 420 e 500 quintali al giorno, con una media attorno ai 480 q/d, alle quali si aggiungono circa 150-200 quintali di liquame bovino. In queste condizioni il carico organico complessivo è pari a 3,2 Kg VS/m⁢³ d (6,4 Kg VS/m³ d per digestore).

<table>
<thead>
<tr>
<th>Substrati</th>
<th>Unità di misura</th>
<th>Quantità</th>
<th>% tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSILATO DI MAIS</td>
<td>t/d</td>
<td>41</td>
<td>66</td>
</tr>
<tr>
<td>FARINA DI MAIS</td>
<td>t/d</td>
<td>4,8</td>
<td>8</td>
</tr>
<tr>
<td>LETAME</td>
<td>t/d</td>
<td>1,9</td>
<td>3</td>
</tr>
<tr>
<td>Totale cassone di caricamento matrici solide</td>
<td>t/d</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>LIQUAME BOVINO</td>
<td>t/d</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>= Totalte razione (media)</td>
<td>t/d</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 3: “Ricetta” utilizzata per comporre l’alimentazione quotidiana media dell’impianto.
Con quest’alimentazione vengono introdotti, in media, circa 18572 KgVS/d, che consentono una produzione di biogas di circa 543 m³/h con una concentrazione di metano attorno al 52-53%. Perciò la produzione specifica di gas (SGP) di quest’impianto è di 0,70 m³/KgVS.

<table>
<thead>
<tr>
<th>Tabella 4: Condizioni operative impianto full-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzione di biogas</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>m³/h</td>
</tr>
<tr>
<td>543</td>
</tr>
</tbody>
</table>

3.2. Substrati utilizzati durante la sperimentazione

Nei paragrafi seguenti vengono descritti i substrati utilizzati come alimentazione del reattore lab-scale e durante i test BMP illustrati nella presente tesi sperimentale.

Silomais, liquame bovino, letame, farina di mais e digestato provengono dall’impianto di Terrassa Padovana (Pd). Miscanthus x G., Arundo D. e Topinambur derivano dal campo sperimentale allestito presso l’azienda “E.Toniolo” di Legnaro (Pd), dal gruppo di ricerca del dipartimento DAFNAE.

Le seguenti tabelle (dalla n.5 alla n.11) illustrano le caratteristiche medie dei substrati in termini di TS, TVS, pH, NH₃, COD, TKN, P totale. I dati ottenuti derivano da una serie di analisi di monitoraggio eseguite nel periodo dal 14/04/2014 al 04/12/2014, secondo le metodiche descritte in Appendice 1.

3.2.1. Silomais

![Figura 6: Foto di Zea Mays](image)
Il mais (*Zea Mays L.*) è una specie erbacea annuale appartenente alla famiglia delle *Graminaceae* originaria delle zone tropicali e sub-tropicali dell'America che cominciò a diffondersi in Europa verso il 1600. Attualmente in Italia la sua coltivazione è diffusa soprattutto nelle Regioni settentrionali della Pianura Padana e viene utilizzata sia per l'alimentazione umana e animale sia per produrre biogas, sotto forma di insilato, mediante digestione anaerobica.

E' una pianta a ciclo fotosintetico C4 con esigenze termiche specifiche durante il ciclo di vita: temperatura minima di germinazione pari a 10°C, sviluppo e crescita a 22-24°C, fioritura a 26°C circa.

Questa coltura predilige le regioni italiane del Nord-Est (Veneto, Emilia-Romagna, Friuli Venezia-Giulia) dove le piogge, durante la stagione estiva, sono abbastanza frequenti e regolari in modo da soddisfare le richieste idriche del mais senza ricorrere all’irrigazione artificiale.

Presenta basse esigenze pedologiche adattandosi alle più diverse tipologie di suolo: sabbiosi, argillosi, sub-acidi, sub-alcalini oppure ricchi di torba. Tuttavia predilige terreni profondi in cui vi sia una buona aerazione della rizosfera per evitare fenomeni di asfissia radicale e dove la disponibilità di elementi nutritivi è elevata. La lavorazione del terreno prevede una iniziale aratura, seguita da erpicatura per affinare il suolo e creare le condizioni adatte alla semina primaverile (marzo-aprile).

E' una coltura “da rinnovo” poiché lascia il terreno fertile per le specie che la seguono, avendo ricevuto particolari cure prima e durante il suo ciclo: lavorazioni profonde, concimazioni, irrigazioni. Tradizionalmente veniva inserita nei sistemi avvicendati tra prato e grano, attualmente invece si è diffusa la coltivazione del mais in monosuccessione oppure alternato alla soia ogni tre anni.

Per la produzione di silomas si utilizza il mais trinciato o ceroso, raccolto a settembre durante la fase di maturazione cerosa della granella, quando il mais contiene circa il 30-35% di sostanza secca e un tenore di umidità del 70% circa. Queste condizioni permettono il giusto rapporto tra qualità del prodotto e resa in termini di energia. La produzione media di biomassa trinciata tal quale è compresa tra 40 e 65 t/ha, mentre la resa in termini di sostanza secca è pari a 20-25 t/ha.
Il raccolto viene sottoposto a insilamento, cioè viene stoccato in contenitori chiusi (silos) oppure su piattaforme di cemento circondate su tre lati da muri di contenimento e coperta da un telone plastico isolante. Il foraggio triturato viene pressato e sigillato ottenendo un prodotto stabile durante l’anno e adatto all’alimentazione del bestiame come sostituto di erba o fieno. Lo scopo principale dell’insilamento è la conservazione della biomassa attraverso un’efficace azione di compressione che consente la rimozione dell’ossigeno dal foraggio creando condizioni anaerobiche. Questo ambiente favorisca l’azione dei batteri lattici che convertono zuccheri
semplici e amido in acido lattico mediante fermentazione con conseguente diminuzione del pH a valori inferiori a 4, inibizione della microflora dannosa e interruzione di ogni tipo di degradazione.

<table>
<thead>
<tr>
<th>Tabella 5: Caratteristiche insilato di mais</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILOMAIS</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>u.m.</td>
</tr>
<tr>
<td>MEDIA</td>
</tr>
<tr>
<td>DEV. ST</td>
</tr>
<tr>
<td>MIN</td>
</tr>
<tr>
<td>MAX</td>
</tr>
</tbody>
</table>

(*) rapporto calcolato sul secco

Il silomais utilizzato durante la sperimentazione presenta valori in linea con quelli riportati nelle banche dati del C.R.P.A. Come tutte le energy crops è caratterizzato da una frazione di solidi volatili maggiore rispetto ai solidi totali (>90%) e un rapporto COD/TS pari a 1. Il contenuto di azoto e fosforo è in media pari a 18 mgN/kgTS e 2 mgP/kgTS. Trattandosi di un insilato il pH è acido, anche se leggermente più alto rispetto a valori tipici ritrovati in letteratura di 3,7 (Adani et al. 2008). Il rapporto tra COD e TKN, piuttosto elevato (53,46 mgCOD/mgN), rende l’insilato una biomassa adatta alla digestione anaerobica per la produzione di biogas.

3.2.2. *Liquame bovino*

Il liquame bovino dei vitelloni da carne allevati presso la Stalla Sociale presenta le caratteristiche chimico-fisiche riportate in Tab. 6. L’azienda può contenere fino ad un massimo di 1200 capi di razza Charolaise allevati in stabulazione libera su grigliato o lettiera, come previsto dalla normativa che tutela il benessere degli animali.

<table>
<thead>
<tr>
<th>Tabella 6: Caratteristiche liquame bovino</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQUAME</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>u.m.</td>
</tr>
<tr>
<td>MEDIA</td>
</tr>
<tr>
<td>DEV. ST</td>
</tr>
<tr>
<td>MIN</td>
</tr>
<tr>
<td>MAX</td>
</tr>
</tbody>
</table>

(*) rapporto calcolato sul secco

Il liquame presenta un contenuto di sostanza secca di circa il 9%, di cui il solo il 73% sono solidi volatili trattandosi di un substrato già predigerito. Questi valori sono confrontabili con quelli
ritrovati in letteratura: 8-10% di TS e 70-80% il rapporto VS/TS. Il rapporto tra COD/TS è pari a 0,8 e il contenuto di TKN e fosforo sono piuttosto bassi, rispettivamente 44,3 mgN/kgTS e 14,29 mgP-PO₄/kgTS. Il liquame è però caratterizzato da un elevato contenuto di azoto ammoniacale di circa 3 g/L. Il rapporto COD/N/P sul peso umido è 192:5:1 e quello tra COD e N è di 36.

3.2.3. Farina di mais

La granella di mais dopo la raccolta viene essiccata, macinata e conservata in silos chiusi o in trincee coperte. La farina ottenuta è utilizzata come foraggio per l’alimentazione del bestiame. Questo prodotto viene aggiunto nella razione giornaliera dei bovini per rendere il cibo più digeribile. Una piccola percentuale di farina viene addizionato alla razione quotidiana introdotta nel digestore per aumentare le rese in termini di biogas.

![Figura 7: Foto campione farina di mais](image.jpg)

Tabella 7: Caratteristiche farina di mais

<table>
<thead>
<tr>
<th>FARINA DI MAIS</th>
<th>TS</th>
<th>VS</th>
<th>%VS/TS</th>
<th>pH</th>
<th>COD</th>
<th>TKN</th>
<th>P_tot</th>
<th>COD/N/P tot</th>
<th>COD/N tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>gTS/kgTQ</td>
<td>gTS/kgTQ</td>
<td>%</td>
<td>-</td>
<td>mgCOD/KgTS</td>
<td>mgN/KgTS</td>
<td>mgP-PO₄/KgTS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEDIA</td>
<td>879,25</td>
<td>866,44</td>
<td>96</td>
<td>6,04</td>
<td>1059,29</td>
<td>18,10</td>
<td>2,54</td>
<td>417:7:1</td>
<td>58,52</td>
</tr>
<tr>
<td>DEV.ST</td>
<td>10,59</td>
<td>10,59</td>
<td>0,12</td>
<td>0,03</td>
<td>96,88</td>
<td>4,50</td>
<td>0,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>866,73</td>
<td>854,53</td>
<td>98,31</td>
<td>6,01</td>
<td>944,38</td>
<td>13,00</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>893,94</td>
<td>878,79</td>
<td>98,59</td>
<td>6,08</td>
<td>1177,52</td>
<td>24,88</td>
<td>3,06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) rapporto calcolato sul secco

La farina, come il silomais, presenta un elevato contenuto di solidi volatili, circa il 96% dei TS e un rapporto COD/TS superiore a 1. Il contenuto di TKN e fosforo è rispettivamente pari a 18,10 mgN/kgTS e 2,54 mgP-PO₄/kgTS, in linea con i valori riportati dal CRPA.
3.2.4. Letame

Il letame proveniente dalle stalle dei vitelloni è costituito dalle deiezioni degli animali miste a materiale solido usato come lettiera (segatura o paglia) e stoccato in platee coperte.

Il letame, come il liquame, essendo un materiale già predigerito e stabilizzato ha un rapporto VS/TS di circa il 76%, più basso rispetto a silomais e farina.

![Foto campione di letame](image)

Tabella 8: Caratteristiche letame

<table>
<thead>
<tr>
<th>LETAME</th>
<th>TS</th>
<th>VS</th>
<th>%VS/TS</th>
<th>pH</th>
<th>COD</th>
<th>TKN</th>
<th>P_N</th>
<th>COD/N/P(†) (500:5:1)</th>
<th>COD/N(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA</td>
<td>363,02</td>
<td>275,00</td>
<td>76</td>
<td>9,07</td>
<td>790,96</td>
<td>25,52</td>
<td>10,23</td>
<td>77:2:1</td>
<td>30,99</td>
</tr>
<tr>
<td>DEV.ST</td>
<td>21,86</td>
<td>18,85</td>
<td>0,87</td>
<td>0,04</td>
<td>67,60</td>
<td>3,40</td>
<td>1,16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MIN</td>
<td>344,09</td>
<td>258,06</td>
<td>75,00</td>
<td>9,04</td>
<td>713,39</td>
<td>20,63</td>
<td>8,92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAX</td>
<td>393,48</td>
<td>300,00</td>
<td>76,77</td>
<td>9,09</td>
<td>837,30</td>
<td>27,95</td>
<td>11,61</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) rapporto calcolato sul secco
3.2.5. *Arundo Donax L.*

Figura 9: Foto di Arundo D. e di un campione

Arundo Donax L., conosciuta come canna comune, è una coltura erbacea poliennale originaria dell’Asia Orientale e diffusasi poi nel bacino del Mediterraneo e in molte aree del pianeta caratterizzate da clima caldo-temperato. Presenta alti fusti lignificati che durante lo sviluppo vegetativo possono raggiungere altezza di 6-8 metri, la porzione ipogea è costituita da un sistema di rizomi da cui si dipartono le radici. E’ una graminacea rizomatosa, a ciclo fotosintetico C3, con scarse esigenze idriche e pedologiche. Sebbene prediliga terreni freschi di pianura, si sviluppa in dense colonie lungo torrenti e corsi d’acqua, in zone umide o salmastre. E’ una specie rustica e versatile, cresce in diversi tipi di terreno e tollera la siccità, la salinità e le inondazioni (Nassi o Di Nasso et al.,2013). Solo durante la fase iniziale di impianto (febbraio-marzo) richiede aratura del suolo, irrigazione e apporto di nutrienti per lo sviluppo dei rizomi.

Negli ultimi anni è una tra le colture più studiate per fini energetici essendo una specie no-food e no feed, piuttosto longeva (12-14 anni) e dall’ elevate produttività. Nonostante le basse rese al primo anno d’impianto (8-10 t/ha), già dal secondo anno si registra un aumento di biomassa (20-25 t/ha) arrivando a 30-35 t/ha dal terzo anno in poi (Angelini L.G. et al.,2009). A partire dalla seconda stagione vegetativa, la raccolta annuale avviene nel periodo dicembre-febbraio dopo la defogliazione della pianta, successivamente la biomassa necessita di essicazione avendo un tenore medio di umidità del 40-50%.
<table>
<thead>
<tr>
<th>ARUNDO</th>
<th>TS</th>
<th>VS</th>
<th>VS/TS</th>
<th>COD</th>
<th>TKN</th>
<th>P<sub>tot</sub></th>
<th>COD/N/P<sup>(*1)</sup></th>
<th>COD/N<sup>(*1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>gTS/kgTQ</td>
<td>gTS/kgTQ</td>
<td>%</td>
<td>mgCOD/KgTS</td>
<td>mgN/KgTS</td>
<td>mgP-PO<sub>4</sub>/kgTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td>252,14</td>
<td>229,73</td>
<td>91</td>
<td>1015,27</td>
<td>17,80</td>
<td>2,44</td>
<td>416:7:1</td>
<td>57,03</td>
</tr>
<tr>
<td>DEV.ST</td>
<td>5,10</td>
<td>8,90</td>
<td>2</td>
<td>10,45</td>
<td>6,29</td>
<td>0,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>246,32</td>
<td>220,59</td>
<td>90</td>
<td>1007,88</td>
<td>13,35</td>
<td>2,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>255,81</td>
<td>238,37</td>
<td>93</td>
<td>1022,66</td>
<td>22,25</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*¹) rapporto calcolato sul secco

3.2.6. Miscanthus x Giganteus

Il Miscanto è una graminacea rizomatosa originaria della Cina e giunta in Europa per la produzione della carta e per scopi ornamentali. L’ibrido utilizzato nella sperimentazione è conosciuto come “erba elefantina”, ma il vero nome scientifico è *Miscanthus Giganteus* e deriva dall’incrocio tra *Miscanthus Sinensis* e *Miscanthus Sacchariflorus*.

Un sistema di radici piuttosto profonde (fino a 2,5 metri) e rizomi costituisce la parte ipogea della pianta, mentre la porzione epigea è caratterizzata da rigide foglie lunghe e lanceolate e da fusti eretti che possono superare i 3 metri di altezza.

E’ una specie erbacea poliennale, a ciclo fotosintetico C₄, che predilige climi caldi e sub tropicali, ma capace di sopportare anche le basse temperature invernali tipiche del Nord Europa, dove se ne ritrovano abbondanti coltivazioni. La sua temperatura minima di vegetazione è di 6°C, mentre...
L’intervallo termico ottimale per la crescita è di circa 26-28°C. Si adatta bene a vari tipi di terreni, preferibilmente sciolti e di medio impasto, ben drenati e con u pH compreso tra 5 e 8.

Gli aspetti positivi del miscanto sono: limitate esigenze idriche, l’irrigazione infatti è necessaria soltanto all’impianto, elevata efficienza nell’uso della luce, scarso fabbisogno in termini di nutrizione minerale, tolleranza agli stress biotici (scarsa suscettibilità ai patogeni).

Le lavorazioni iniziali del terreno prevedono aratura ed erpicaatura, mentre la concimazione viene effettuata in relazione alla dotazione di base del suolo. L’impianto, mediante messa a dimora dei rizomi, avviene verso marzo-aprile, la raccolta invece è nel periodo invernale quando le foglie sono ormai cadute e il contenuto di acqua è inferiore al 15%. Questo permette di ottenere una biomassa povera di ceneri (nelle foglie si concentrano silice e altri elementi minerali) che non richiede ulteriori fasi di essiccazione.

Per le sue alte rese colturali, insieme alla canna comune, è una delle specie ligno-cellulosiche più promettenti da sfruttare per scopi energetici. La produzione è scarsa il primo anno dopo l’impianto, aumenta dal secondo al quarto anno, per poi stabilizzarsi fino al quindicesimo anno di vita circa. Alcune prove parcellari hanno dimostrato l’influenza delle condizioni pedoclimatiche sulla resa finale. Nel Sud Europa le produzioni medie sono di 30 t s.s./ha raggiunte con l’ausilio di sistemi di irrigazione. Nelle zone dell’Europa centrale e settentrionale, invece, le rese colturali ottenute senza ricorrere ad apporti idrici, si aggirano attorno ai 10-25 t s.s./ha (Lewandowski I. et al., 2000) In Italia Cosentino et al. (2007) osservarono una produzione media crescente da 3.9 a 24.6 t/ha durante i primi anni di vita; Angelini et al. (2009) ottennero tra il terzo e l’ottavo anno una resa costante di 24.9 t/ha; Mantino et al. (2009) riscontrarono un aumento di biomassa da 2.5 a 26.9 t/ha durante una prova sperimentale condotta per 5 anni.

Tabella 10: Caratteristiche Miscanthus x G.

<table>
<thead>
<tr>
<th>MISCANTHUS</th>
<th>TS</th>
<th>VS</th>
<th>VS/TS</th>
<th>COD</th>
<th>TKN</th>
<th>Pot</th>
<th>COD/N/P(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>gTS/kgTQ</td>
<td>gTS/kgTQ</td>
<td>%</td>
<td>mgCOD/KgTS</td>
<td>mgN/kgTS</td>
<td>mgP-Po/kgTS</td>
<td>COD/N/P(*) (500:5:1)</td>
</tr>
<tr>
<td>MEDIA</td>
<td>271,82</td>
<td>245,36</td>
<td>93</td>
<td>1052,60</td>
<td>13,37</td>
<td>1,93</td>
<td>544:7:1</td>
</tr>
<tr>
<td>DEV.ST</td>
<td>31,19</td>
<td>26,00</td>
<td>2</td>
<td>84,51</td>
<td>4,51</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>214,29</td>
<td>206,35</td>
<td>93</td>
<td>927,40</td>
<td>7,56</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>301,89</td>
<td>269,04</td>
<td>96</td>
<td>1142,21</td>
<td>17,12</td>
<td>2,17</td>
<td></td>
</tr>
</tbody>
</table>

(*) rapporto calcolato sul secco
3.2.7. Topinambur

Il *Topinambur* (*Heliantus tuberosus L.*), appartenente alla famiglia delle *Compositae*, è una pianta perenne a ciclo C3 di origine americana (USA), ma diffusa in molte zone del pianeta grazie alla sua adattabilità. È dotata di un rizoma tuberoso sotterraneo da cui si origina un fusto durante la stagione vegetativa, che può raggiungere fino a 3 metri di altezza. Vengono utilizzati soprattutto i suoi tuberi, ricchi di inulina, nell’alimentazione umana o zootecnica. Tuttavia, per la sua capacità di accumulare notevoli quantità di zuccheri sia nella parte ipogea (tuberi) che negli steli, è stata oggetto di recenti studi come biomassa per la produzione di biogas e bioetanolo (*Curt et al.*, 2006, *Lehtomaki et al.*, 2008). È una pianta rustica a crescita invadente che si adatta ad ogni tipo di terreno, sopporta sia il caldo che il freddo ma predilige climi caldo-temperati, non richiede grandi lavorazioni o abbondanti apporti di acqua o di fertilizzanti. Cresce spontaneamente in aree incolte e terreni marginali, ai lati delle strade di campagna o lungo gli argini dei fiumi.

I tuberi di forma irregolare e bitorzoluta di color marrone vengono raccolti al raggiungimento delle massime dimensioni nella stagione invernale, quando i fusti sono ormai secchi. Gli steli emergono in primavera, crescono durante l’estate e fioriscono verso fine settembre. Il taglio ideale della porzione aerea per scopi energetici sarebbe a inizio fioritura (agosto-settembre) quando è massimo il contenuto di zuccheri in essi ma le dimensioni dei tuberi sono ancora ridotte.

Tabella 11: Caratteristiche Topinambur con e senza micorrize

<table>
<thead>
<tr>
<th></th>
<th>TS</th>
<th>VS</th>
<th>VS/TS</th>
<th>COD</th>
<th>TKN</th>
<th>P<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>gTS/kgTQ</td>
<td>gTVS/kgTQ</td>
<td>%</td>
<td>mgCOD/kgTS</td>
<td>mgN/kgTS</td>
<td>mgP-PO<sub>4</sub>/kgTS</td>
</tr>
<tr>
<td>TOPINAMBUR</td>
<td>187,50</td>
<td>160,16</td>
<td>85,40</td>
<td>778,77</td>
<td>0,53</td>
<td>1,78</td>
</tr>
<tr>
<td>TOPINAMBUR MICORRIZATO</td>
<td>221,43</td>
<td>185,71</td>
<td>83,90</td>
<td>919,29</td>
<td>0,61</td>
<td>2,15</td>
</tr>
</tbody>
</table>
3.3. Test BMP in discontinuo

Per valutare la biodegradabilità delle matrici precedentemente descritte (Par.3.2) e quantificare le loro produzioni massime in termini di biogas e metano, sono stati eseguiti degli appositi test chiamati BMP (Biochemical Methane Potential). L’analisi del potenziale metanigeno è stata condotta in condizioni discontinue (batch), cercando di simulare a scala di laboratorio quanto avviene in un digestore anaerobico reale. La metodica adottata per eseguire i test è quella proposta da ABAI-TG (Task Group for the Anaerobic Biodegradation, Activity and Inhibition of the Anaerobic Digestion Specialist Group of the International Water Association) (Angelidaki et al., 2009). Il metodo prevede che una quantità definita di substrato venga messa a contatto con un adeguato inoculo di biomassa batterica, in condizioni controllate, in modo che la materia organica venga degradata sviluppando biogas.

Secondo Raposo et al. (2011), il BMP stechiometrico in condizioni standard (T=273,15°K e P=1 atm), è di 0,350 L\textsubscript{CH4} a partire da 1 g di COD, mentre in condizioni di mesofilia, cioè a 35°C e sempre a 1 atm, è pari a 0,395 L\textsubscript{CH4}.

3.3.1. Caratteristiche dei substrati e dell’inoculo

Prima di iniziare le prove, i campioni e l’inoculo sono stati sottoposti ad una serie di analisi di caratterizzazione, secondo le metodiche descritte in Appendice 1.

I test, svolti presso il laboratorio di Treviso dell’Università Ca’ Foscari Venezia, sono stati condotti su 7 substrati, prestando particolare attenzione verso Arundo D. e Miscanthus x G., con lo scopo di valutare quale delle due specie fosse la più adatta a sostituire l’insilato di mais, nella successiva sperimentazione con impianto pilota lab-scale.

Silomais, farina di mais, liquame bovino e letame provengono dalla Stalla Sociale di Terrassa Padovana; i campioni di piante invece sono stati forniti dall’ unità di ricerca del dipartimento DAFNAE dell’Università di Padova. Tutte e tre le colture esaminate sono al primo anno di vita dall’impianto.

Nella Tab.12 vengono riportate le caratteristiche delle varie biomasse all’inizio dei test.
L’inoculo utilizzato nelle prove, le cui caratteristiche sono riportate nella Tab.13, è stato prelevato direttamente dal digestore mesofilo dell’impianto in piena scala situato a Terrassa Padovana. Prima di iniziare i test è stato diluito con acqua in rapporto 1:2 in volume, omogeneizzato e filtrato con setaccio da 2mm in modo da abbassare la concentrazione di solidi totali presenti.

I valori ottenuti dalle analisi (pH, ammoniaca, VFA) rientrano nei normali intervalli di stabilità, solo il parametro alcalinità è più alto rispetto ai range tradizionali di 2500-5000 mg CaCO₃/L (Stafford et al.,1980), indice di un elevato potere tampone dell’inoculo.
3.3.2. **Apparato strumentale e condizioni operative:**

I test sono stati eseguiti in modalità multi-batch utilizzando, come reattori, bottiglie di vetro del volume di 1L, strippate con azoto per garantire le condizioni di anaerobiosi. In seguito le bottiglie sono state chiuse con tappi di gomma assicurati con ghiere di alluminio e poste in stufa a 35°C in condizioni di mesofilia (Fig.12).

Figura 12: Foto bottiglie dentro la stufa a 35°C

Oltre ai test condotti sui substrati è stata preparata anche una prova in bianco, per determinare il biogas residuo prodotto dal solo inoculo. Per ogni matrice sono state eseguite 3 repliche. La Tab.14 riassume le condizioni operative dei test.

Per evitare fenomeni di inibizione per eccesso di substrato, soprattutto nella fase di avviamento, la quantità di campione da aggiungere in ogni bottiglia, è stata scelta cercando di mantenere un rapporto tra substrato e inculo F/M (*Food to Microorganism*) intorno a 0,3, come suggerito in letteratura (Raposo et al.,2009). Tale rapporto è espresso in termini di solidi volatili: $\frac{g\text{VS}_{feed}}{g\text{VS}_{inoculo}}$.

Sapendo il contenuto di VS presente nei 500mL di inoculo (gVS inoc) è stato determinato l’apporto medio di solidi volatili apportato dai substrati (gVS feed). Le formule utilizzate per calcolare la quantità effettiva di ogni matrice da aggiungere nelle bottiglie sono le seguenti:

\[12,96 \text{ g (VS}_{\text{tot}} \text{inoc}) \times 0,5 \text{ L (V inoc)} = 6,48 \text{ gVS inoc} \]
\[0,3 \text{ (F/M)} \times 6,48 \text{ g (VS inoc)} = 1,94 \text{ gVS feed} \]
Durante l’incubazione la quantità di biogas è stata misurata giornalmente con metodo volumetrico collegando la bottiglia attraverso un ago ad un sistema costituito da una beuta e un cilindro graduato contenente acqua e acido solforico (Fig.13). Il volume di biogas prodotto corrispondeva allo spostamento del liquido nel cilindro. La presenza di acqua acidificata serve come liquido barriera per impedire la dissoluzione del biossido di carbonio, consentendo la misura della produzione totale del biogas e non solo del metano.

La qualità del biogas in termini di composizione (H₂, O₂, CH₄ e CO₂) è stata determinata per mezzo di un gascromatografo GC 6890N Agilent 37 Tecnologies, dotato di colonna HP-PLOT-MOLESIEVE (30 x 0,53 mm ID x 25μm film) accoppiato ad un rilevatore a conducibilità termica (GC-TCD), utilizzando come gas carrier argon oppure elio. Mediante una siringa a tenuta è stato prelevato da ogni bottiglia un campione da 200 µl e iniettato, attraverso un setto metallico, nella camera di iniezione impostata a 40°C.

La conclusione delle prove è avvenuta dopo un periodo di 43 giorni (dal 01/07/2014 al 14/08/2014).

Generalmente l’arresto dei test BMP avviene quando la variazione tra la produzione giornaliera e quella cumulativa è inferiore al 5%.

![Figura 13: Schematizzazione del sistema usato per la misura del biogas](image)

Tabella 14: Condizioni operative dei test BMP

<table>
<thead>
<tr>
<th>BIOMASSE</th>
<th>Data inizio</th>
<th>Data Fine</th>
<th>Durata del test</th>
<th>n° repliche</th>
<th>T</th>
<th>V inoculo</th>
<th>F/M</th>
<th>VSᵢ₀ inoculo</th>
<th>VSᵢ₀ substrato medi</th>
<th>TQᵢ₀ substrato medi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topinambur_no mico</td>
<td>01/07/2014</td>
<td>14/08/2014</td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,93</td>
<td>12,1</td>
</tr>
<tr>
<td>Topinambur_mico</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,95</td>
<td>10,5</td>
</tr>
<tr>
<td>Arundo D.</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,77</td>
<td>7,7</td>
</tr>
<tr>
<td>Miscanthus x G.</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,94</td>
<td>7,2</td>
</tr>
<tr>
<td>Farina di mais</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,94</td>
<td>2,2</td>
</tr>
<tr>
<td>Silomais</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,94</td>
<td>6,2</td>
</tr>
<tr>
<td>Liquame bovino</td>
<td></td>
<td></td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>500</td>
<td>0,3</td>
<td>6,48</td>
<td>1,94</td>
<td>30</td>
</tr>
</tbody>
</table>
Lo scopo principale di questi test è determinare la produzione specifica di biogas (SGP) e di metano (SMP) di ogni substrato testato e di conseguenza conoscerne la biodegradabilità. Questi parametri rappresentano la quantità di biogas e/o di metano prodotta per unità di sostanza secca volatile introdotta con la matrice di prova. Naturalmente il volume di gas/metano è espresso al netto della quantità prodotta dall’inoculo (o bianco).

\[SGP = \frac{V_{\text{biogas campione}} - V_{\text{biogas bianco}}}{\text{VS substrato IN}} \]

Dove: SGP, produzione specifica di biogas (m³/kgVSin)

\(V_{\text{biogas}} \), volume di biogas prodotto (m³), nel campione e nel bianco

\(\text{VS substrato IN} \), solidi volatili introdotti con il substrato (kgVSin)

Sapendo anche la percentuale di metano all’interno del biogas, è possibile determinare, nello stesso modo, la produzione specifica di metano (SMP) per ciascun campione.

I risultati riportati per ogni matrice esprimono la media dei valori ottenuti dalle tre repliche e il volume di gas/metano è calcolato a 35°C (mesofilia) e 1 atm.

Dai risultati dei test BMP, è possibile ottenere ulteriori informazioni, come ad esempio il tasso o velocità di idrolisi per ogni substrato studiato. Questo parametro è fondamentale essendo l’idrolisi la fase limitante l’intero processo di digestione anaerobica. Essa corrisponde alla prima parte della curva cumulativa costruita per rappresentare la produzione di metano nel tempo.

La costante di idrolisi (\(K_h \)), descritta da una cinetica di primo ordine, è definita dalla seguente espressione (Angelidaki et al., 2009):

\[\frac{dS}{dt} = -k_h S \]

dove: \(S \) è il substrato biodegradabile, \(t \) il tempo (d) e \(K_h \) rappresenta la costante di idrolisi (d⁻¹).

Separando le variabili e integrando si ottiene:

\[\ln \frac{B_\infty - B}{B_\infty} = -k_h t \]
dove:

B_∞ è la produzione finale (o massima) di CH₄, B è la produzione al tempo t e K_h rappresenta la pendenza (o coefficiente angolare) della retta ottenuta.

Questo valore è diverso a seconda della composizione del substrato e esprime il tempo necessario per raggiungere il massimo potenziale di biometanizzazione (Angelidaki et al., 2009). Biomasse caratterizzate da bassi valori di K_h richiedono tempi maggiori durante la fase di idrolisi, perché generalmente ricche di polimeri complessi.

3.4. Impianto pilota *lab-scale*

3.4.1. Descrizione CSTR

Il reattore in formato *lab-scale* (Fig.14) utilizzato durante la sperimentazione è del tipo CSTR (*Continuously Stirred Tank Reactor*), cioè dotato di un sistema di miscelazione continuo mediante motore elettrico. La struttura in plexiglass è di forma cilindrica ed ha un volume utile di 4,5 litri. È circondato da una camicia esterna collegata ad un bagno termostatico che permette di riscaldare l’acqua che scorre nell’intercapedine tra camicia e reattore. Grazie a questo sistema è possibile regolare la temperatura d’esercizio e mantenere all’interno del digestore un regime mesofilo costante di 35°C. La miscelazione è garantita da un agitatore meccanico interno costituito da un albero verticale centrale, dotato di due palette orizzontali, poste ad altezze diverse per consentire una migliore movimentazione del materiale interno.

Sulla sommità il reattore presenta un restringimento cilindrico dotato di un’apertura, solitamente chiusa da un tappo, per assicurare il mantenimento delle condizioni anaerobiche interne.

Nella parte superiore vi sono inoltre alcune valvole utilizzate per il controllo della pressione interna e altre predisposte per il monitoraggio qualitativo del gas. Le percentuali di metano e anidride carbonica sono state rilevate mediante un analizzatore portatile di gas ad infrarossi GA2000™ (Geotechnical Instrument™).
L'alimentazione manuale in semicontinuo, cioè una volta al giorno per cinque giorni settimanali, avveniva sempre alla stessa ora (tra le 12:00 e le 13:00 circa) attraverso l’apertura presente sulla sommità del reattore. Alla base del reattore invece è presente un piccolo foro collegato ad un tubo di gomma dotato di un rubinetto dal quale veniva prelevato giornalmente, prima dell’alimentazione, l’effluente in uscita.

3.4.2. Condizioni operative

La sperimentazione con reattore CSTR, dopo un’iniziale start-up, è stata suddivisa in due periodi mantenendo costanti le condizioni operative e variando il tipo di alimentazione. Obbiettivo del primo periodo era riprodurre a scala di laboratorio il processo reale dell’impianto full-scale di Terrassa Padovana e successivamente sostituire, nel feed quotidiano, la frazione di insilato di mais con Miscanthus x G.

Questa parte del lavoro di tesi è durata circa 90 giorni ripartiti nelle seguenti fasi:

- **Start-up** (11/08 - 10/09), partendo da un carico organico (OLR) minimo di 0,8 KgTVS/m³, si è giunti, per step successivi (Fig.15), al carico prestabilito di 3,2 KgTVS/m³, necessario per la simulazione dell’impianto full-scale. Questa fase è servita per ricreare le condizioni adatte al funzionamento del processo e permettere ai microrganismi, presenti nell’inoculo, di abituarsi in maniera graduale, evitando l’accumulo di acidi a causa di un eccesso di substrato.
RUN 1: Simulazione impianto di Terrassa Padovana (11/09 – 06/10), l’alimentazione in questa fase è costituita da insilato di mais (49%), liquame bovino (41%), letame (5%) e farina di mais (5%). Il carico organico totale è mantenuto costante a 3,2 KgTVS/m³d con un HRT di 56 giorni.

Periodo di transizione (T) (07/10 - 13/10), la quota totale di insilato di mais nel feed è costituita da ½ di silomais e ½ di Miscanthus x G., mentre le dosi degli altri co-substrati restano invariate, come di conseguenza il carico organico. Questa fase è servita a non compromettere la stabilità del processo, evitando cambiamenti repentini dell’alimentazione per permettere alla biomassa batterica di abituarsi al nuovo substrato.

RUN 2: Sostituzione completa del silomais con Miscanthus x G. (14/10 – 4/12), fase conclusiva della sperimentazione con OLR costante di 3,2 KgTVS/m³d e HRT di 56 giorni.

Trattandosi di un reattore CSTR la portata in ingresso Q_{IN} era pari a quella uscente Q_{OUT}. Ogni giorno, durante la sperimentazione una parte dell’effluente in uscita, veniva centrifugato per circa 10’ a 4000 rpm. Successivamente venivano prelevati 70mL dal surnatante chiarificato ottenuto e ricircolati all’interno dell’impianto pilota insieme all'alimentazione quotidiana. Quest’operazione serviva per fornire continuamente alcalinità al sistema e garantire un effetto tampone verso l’eventuale accumulo di acidi, senza alterare il contenuto di solidi in ingresso.

Figura 15: Fase di start-up
3.4.3. **Piano di monitoraggio**

Per valutare il funzionamento del processo nel tempo e controllare le condizioni operative del reattore è stato pianificato un piano di monitoraggio (tab.15) delle analisi da eseguire. I metodi analitici utilizzati sono descritti in Appendice 1.

I parametri di stabilità venivano controllati più volte durante la settimana per verificare l’andamento del processo, mentre i parametri di caratterizzazione dell’effluente in uscita e dei substrati in entrata venivano monitorati con frequenza minore. La composizione del biogas invece veniva osservata giornalmente attraverso un analizzatore portatile di gas ad infrarossi GA2000™ (Geotechnical Instrument™).

Tabella 15: Piano di monitoraggio reattore lab-scale

<table>
<thead>
<tr>
<th>PARAMETRI DI STABILITÀ</th>
<th>Unità di misura</th>
<th>IN</th>
<th>Frequenza</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>1 volta al mese</td>
<td>2-3 volte a settimana</td>
<td></td>
</tr>
<tr>
<td>Ammoniaca</td>
<td>mgN-NH₃/L</td>
<td>1 volta al mese</td>
<td>2-3 volte a settimana</td>
<td></td>
</tr>
<tr>
<td>FOS/TAC</td>
<td>-</td>
<td>-</td>
<td>2-3 volte a settimana</td>
<td></td>
</tr>
<tr>
<td>Alcalinità</td>
<td>mgCaCO₃/L</td>
<td>1 volta al mese</td>
<td>2-3 volte a settimana</td>
<td></td>
</tr>
<tr>
<td>(solo per il liquame)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidi grassi volatili (VFA)</td>
<td>mgCOD/L</td>
<td>1 volta al mese</td>
<td>2-3 volte a settimana</td>
<td></td>
</tr>
<tr>
<td>Solidi totali (TS) e volatili (VS)</td>
<td>gTS/VS/kgTS</td>
<td>2 volta al mese</td>
<td>1 volta a settimana</td>
<td></td>
</tr>
<tr>
<td>Conducibilità</td>
<td>µS/cm</td>
<td>-</td>
<td>1 volta a settimana</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETRI DI CARATTERIZZAZIONE</th>
<th>Unità di misura</th>
<th>IN</th>
<th>Frequenza</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>mgCOD/gTS</td>
<td>1 volta al mese</td>
<td>1 volta a settimana</td>
<td></td>
</tr>
<tr>
<td>Total Kijeldal nitrogen (TKN)</td>
<td>mgN/gTS</td>
<td>1 volta al mese</td>
<td>1 volta a settimana</td>
<td></td>
</tr>
<tr>
<td>Fosforo totale (P₂O₅)</td>
<td>mgP-PO₄/gTS</td>
<td>1 volta al mese</td>
<td>1 volta a settimana</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETRI DI RESA</th>
<th>Unità</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzione di biogas</td>
<td>mL</td>
<td>Giornalmente</td>
</tr>
<tr>
<td>Frazione di metano (%CH₄)</td>
<td>%</td>
<td>Giornalmente</td>
</tr>
<tr>
<td>Frazione di CO₂ (% CO₂)</td>
<td>%</td>
<td>Giornalmente</td>
</tr>
</tbody>
</table>
3.5. Valutazione delle emissioni di CO₂ da digestato

3.5.1. Aree di campionamento

Le misurazioni delle emissioni di CO₂ con camera statica non stazionaria, sono state eseguite in siti differenti, dopo lo spandimento primaverile di digestato fluido proveniente dall’impianto di biogas sito presso la Stalla Sociale di Terrassa Padovana. Le prove sono state condotte in due contesti differenti: in pieno campo all’interno di due aziende agricole padovane e in un campo sperimentale, appositamente allestito per questo scopo presso l’Azienda Agraria Sperimentale “L. Toniolo” dell’Università di Padova.

3.5.1.1. Aziende agricole

La sperimentazione in pieno campo è stata svolta all’interno di alcuni appezzamenti di terreno appartenenti a due dei 16 soci che compongono la cooperativa agricola “Stalla Sociale”. Le aziende in questione sono situate nei comuni padovani di Bovolenta (azienda 1) e di Terrassa Padovana (azienda 2). Le parcelle interessate dalle misurazioni hanno un’estensione di circa 800 m².

Entrambe le aziende ricadono all’interno delle zone definite vulnerabili dalla Direttiva Nitrati, di conseguenza la quantità di digestato fluido distribuito era tale da fornire un apporto pari a 170 KgN/ha. Lo spandimento, eseguito con la tecnica dell’aspersione, è avvenuto il 14 marzo nell’azienda 1 e il 20 marzo nell’azienda 2; mentre in entrambe le aziende, la semina del mais è stata effettuata circa un mese dopo, il 12 aprile 2014.

In entrambe le aziende, prima dell’inizio della prova sono stati prelevati campioni di terreno per caratterizzare la tessitura, secondo la classificazione USDA (1999) e le principali caratteristiche.
chimiche. I risultati delle analisi chimiche sono riportati in Tab.16; le metodiche utilizzate invece sono descritte in Appendice 2.

<table>
<thead>
<tr>
<th>Tessitura</th>
<th>Azienda 1</th>
<th>Azienda 2</th>
<th>Azienda 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,57 ± 0,07</td>
<td>7,51 ± 0,07</td>
<td>7,48 ± 0,14</td>
</tr>
<tr>
<td>EC (µS cm⁻¹)</td>
<td>195,80 ± 45,64</td>
<td>241,00 ± 12,25</td>
<td>252,17 ± 14,66</td>
</tr>
<tr>
<td>OC (g kg⁻¹)</td>
<td>8,10 ± 1,90</td>
<td>12,34 ± 3,15</td>
<td>15,00 ± 2,95</td>
</tr>
<tr>
<td>NTK (mg kg⁻¹)</td>
<td>837,45 ± 346,84</td>
<td>1355,43 ± 280,51</td>
<td>1778,96 ± 91,38</td>
</tr>
<tr>
<td>NO₃-N (mg kg⁻¹)</td>
<td>3,73 ± 2,87</td>
<td>0,53 ± 0,71</td>
<td>1,90 ± 1,85</td>
</tr>
<tr>
<td>NO₂-N (mg kg⁻¹)</td>
<td>0,07 ± 0,01</td>
<td>0,08 ± 0,02</td>
<td>0,10 ± 0,01</td>
</tr>
<tr>
<td>NH₄-N (mg kg⁻¹)</td>
<td>4,53 ± 0,64</td>
<td>6,20 ± 0,65</td>
<td>4,16 ± 2,16</td>
</tr>
<tr>
<td>PO₄-P (mg kg⁻¹)</td>
<td>1,67 ± 0,14</td>
<td>2,91 ± 1,55</td>
<td>2,01 ± 0,36</td>
</tr>
<tr>
<td>P (g kg⁻¹)</td>
<td>0,88 ± 0,11</td>
<td>0,99 ± 0,13</td>
<td>1,13 ± 0,06</td>
</tr>
<tr>
<td>Ca (g kg⁻¹)</td>
<td>46,83 ± 8,32</td>
<td>29,98 ± 8,28</td>
<td>33,47 ± 5,05</td>
</tr>
<tr>
<td>K (g kg⁻¹)</td>
<td>8,88 ± 2,14</td>
<td>11,18 ± 1,38</td>
<td>10,75 ± 1,94</td>
</tr>
<tr>
<td>Mg (g kg⁻¹)</td>
<td>22,51 ± 3,42</td>
<td>17,23 ± 2,26</td>
<td>21,55 ± 1,94</td>
</tr>
<tr>
<td>Na (g kg⁻¹)</td>
<td>0,54 ± 0,08</td>
<td>0,59 ± 0,05</td>
<td>0,54 ± 0,14</td>
</tr>
</tbody>
</table>

Differenti lavorazioni del terreno e concimazioni minerali sono state eseguite in entrambe le aziende.

Il suolo agrario dell’azienda 1 ha subito un’aratura a novembre 2013, un’estirpatura a febbraio 2014 e due erpicature dopo lo spandimento del digestato. Durante la seconda erpicatura, prima della semina del mais, sono stati distribuiti 40 Kg/ha di azoto e 100 Kg/ha di fosforo e potassio in tutte le parcelle (con e senza digestato). Durante la prima settimana di maggio, durante la prima sarchiatura effettuata per il controllo meccanico delle infestanti, sono stati apportati ulteriori 50 Kg/ha di azoto.

Presso l’Azienda 2 è stata effettuata un’aratura a settembre 2013, una estirpatura a dicembre 2013 e, dopo lo spandimento del digestato, due zappature. Contemporaneamente alla seconda zappatura (pre-semina) sono stati distribuiti 45 Kg/ha di azoto e 115 Kg/ha di fosforo in tutte le parcelle, con o senza digestato. Per quanto riguarda il potassio, la gestione aziendale prevede una distribuzione ad anni alterni di 60 Kg/ha grazie alla già buona dotazione intrinseca del terreno.

Presso l’Azienda 1 è stata valutata la possibile correlazione tra differenti tessiture del terreno e emissioni di CO₂ dal suolo, in parcelle con e senza distribuzione di digestato.
Nell’azienda 2 invece, dove la tessitura del terreno è la medesima dappertutto, è stato studiato l’effetto di differenti lavorazioni preparatorie (aratura o rippatura) sulle emissioni di CO₂ in presenza o in assenza di digestato fluido.

Un’altra variabile indagata è la produzione di mais per confrontare le rese nelle aree con e senza digestato.

Nell’azienda 2 invece, dove la tessitura del terreno è la medesima dappertutto, è stato studiato l’effetto di differenti lavorazioni preparatorie (aratura o rippatura) sulle emissioni di CO₂ in presenza o in assenza di digestato fluido.

Un’altra variabile indagata è la produzione di mais per confrontare le rese nelle aree con e senza digestato.

3.5.1.2. Campo sperimentale

Il campo sperimentale in cui sono state eseguite le misurazioni è stato appositamente allestito dall’unità di ricerca del dipartimento DAFNAE, all’interno dell’azienda “L. Toniolo” situata a Legnaro, nei pressi dell’università di Padova. È costituito da 48 cassoni in cemento (2x2 metri), disposti in due file parallele da 24 box ciascuna, come illustrato in figura 17.

Le sei specie coltivate (Fig.18), con e senza micorrize, occupano 8 cassoni ciascuna. Si tratta di differenti ordinamenti colturali di particolare interesse per il settore agricolo. Mais e Sorgo sono tipiche coltivazioni della Pianura Padana, spesso utilizzate come feed per il bestiame e per i digestori anaerobici. *Arundo D.*, *Miscanthus x G.*, *Topinambur* e *Lolium P.* rientrano tra le colture energetiche maggiormente incentivate dal D.M. FER e per questo motivo vengono inserite nello studio sperimentale. All’interno di almeno un box per specie è stato installato un pozzetto per la misurazione dell’umidità del terreno. Il tubo si trova a profondità differenti in base alla lunghezza delle radici della specie presente.

Figura 17: Rappresentazione schematizzata del campo sperimentale

![Diagramma rappresentativo del campo sperimentale](image)

Lolium perenne Sorghum bicolor Zea mays
Heliantus tuberosus Arundo donax Miscanthus x giganteus
Lo spandimento del digestato, in data 1 aprile 2014, ha apportato una quantità di azoto pari a 250 KgN/ha, mentre la semina è stata effettuata in base al ciclo colturale delle specie.

3.5.2. **Apparato strumentale e condizioni operative**

Le misurazioni delle emissioni di CO$_2$ dal suolo, in seguito allo spandimento di digestato, sono state effettuate con una camera statica non stazionaria in acciaio e del volume di 5 L collegata ad un analizzatore portatile ad infrarosso (Geotech G150) (Fig. 19).

Per ogni punto di campionamento, inoltre, è stata rilevata la temperatura e l’umidità del suolo, variabili ambientali che influenzano la respirazione del suolo, come già noto in letteratura.
Nell’Azienda 1 dopo lo spandimento del digestato e prima della semina del mais, sono stati effettuati 9 rilievi (nelle 339 ore successive allo spandimento del digestato). Dopo la semina del 12 aprile 2014, tra il 30° e il 112° giorno dall’emergenza delle piantine, sono stati eseguiti altri 7 rilievi.

Nell’Azienda 2 sono stati effettuati 6 rilievi in pre-semina nelle 270 ore successive allo spandimento, e altri 6 rilievi post-semina (tra il 30° e il 100° giorno). In ognuna delle due repliche per ogni trattamento sono state monitorate le emissioni di CO$_2$ in punti.

Nel campo sperimentale sono stati eseguiti 5 rilievi post-spandimento e 20 durante il ciclo vegetativo delle piante (maggio-settembre). Per ogni cassone è stata eseguita una misurazione, ovvero 4 repliche per ogni trattamento.

Il flusso di CO$_2$ dal suolo è stato calcolato misurando la variazione della concentrazione del gas all’interno della camera durante un intervallo di tempo. La formula utilizzata per il calcolo è la seguente:

$$CO_2 = \frac{V}{A} \times \frac{dc}{dt}$$

dove:

- il flusso di CO$_2$ è espresso in mg/m2s$^{-1}$,
- V è il volume della camera [m3],
- A è l’area di suolo interessata dalla misurazione [m2],
- c è la concentrazione di CO$_2$ [mg/m3]
- t l’intervallo temporale tra due rilevamenti di concentrazione [s].

I dati raccolti durante le misurazioni con camera statica, sono stati sottoposti ad analisi statistica. Per verificare la loro normalità è stato utilizzato il test di Kolmogorov-Smirnov. Non essendo normalmente distribuiti sono stati analizzati impiegando i test non parametrici di Kruskal-Wallis e Mann-Whitney. La correlazione delle emissioni di CO$_2$ con temperatura e umidità del suolo è stata valutata usando la correlazione di Sperman. L’analisi statistica della produzione di biomassa è stata condotta con ANOVA e i valori medi sono stati confrontati con il test di Fisher LSD.
4. RISULTATI E DISCUSSIONI

4.1. Monitoraggio impianto full-scale

4.1.1. Caratteristiche del digestato

La prima parte della sperimentazione riguarda il monitoraggio dell’impianto in piena scala di Terrassa Padovana. I dati acquisiti sono serviti per il confronto con i risultati ottenuti nella successiva sperimentazione con reattore lab-scale. La Tab.17 riporta le caratteristiche medie del digestato ottenute dai monitoraggi eseguiti ogni mese da aprile ad agosto 2014. L’effluente è stato prelevato direttamente dall’uscita del digestore mesofilo dell’impianto in piena scala.

<table>
<thead>
<tr>
<th>Digestato full-scale</th>
<th>u.m.</th>
<th>MEDIA</th>
<th>DEV.STD</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>gTS/kgTQ</td>
<td>72,8</td>
<td>11,7</td>
<td>55,6</td>
<td>81,2</td>
</tr>
<tr>
<td>TVS</td>
<td>gTVS/kgTQ</td>
<td>56,0</td>
<td>10,3</td>
<td>40,4</td>
<td>64,0</td>
</tr>
<tr>
<td>% VS/TS</td>
<td>%</td>
<td>77</td>
<td>0,2</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>7,9</td>
<td>0,2</td>
<td>7,8</td>
<td>8,2</td>
</tr>
<tr>
<td>Alk (pH 6)</td>
<td>mgCaCO$_3$/L</td>
<td>11220,5</td>
<td>1965,3</td>
<td>9650,0</td>
<td>13424,4</td>
</tr>
<tr>
<td>Alk tot (pH 4)</td>
<td>mgCaCO$_3$/L</td>
<td>15798,4</td>
<td>631,1</td>
<td>15164,3</td>
<td>16426,6</td>
</tr>
<tr>
<td>N-NH$_4^+$</td>
<td>mgN- N-NH$_4^+$/L</td>
<td>2398,8</td>
<td>428,4</td>
<td>2272,7</td>
<td>2468,3</td>
</tr>
<tr>
<td>VFA</td>
<td>mgCOD/L</td>
<td>367,0</td>
<td>133,6</td>
<td>214,0</td>
<td>538,0</td>
</tr>
<tr>
<td>TKN</td>
<td>mgN/gTS</td>
<td>41,0</td>
<td>5,9</td>
<td>33,0</td>
<td>46,6</td>
</tr>
<tr>
<td>COD</td>
<td>mgO$_2$/gTS</td>
<td>885,0</td>
<td>103,8</td>
<td>759,3</td>
<td>1009,6</td>
</tr>
<tr>
<td>P tot</td>
<td>mgP-PO$_4$/gTS</td>
<td>9,5</td>
<td>2,7</td>
<td>6,6</td>
<td>11,5</td>
</tr>
</tbody>
</table>

Nel periodo di monitoraggio il pH dell’effluente ha un andamento costante, mantenendo valori medi di 7,9, ottimali per la crescita dei microrganismi coinvolti nel processo.

L’azoto ammoniacale, presente con concentrazioni medie di circa 2600 mg/L, non influisce negativamente sulla stabilità del processo. Secondo Van Velsen (1979) infatti, valori compresi tra 1500 e 3000 mg/L, non sono inibenti se il pH del sistema è superiore a 7,4, come nel nostro caso.

Il contenuto di acidi grassi volatili nell’effluente analizzato è piuttosto costante nel corso dei monitoraggi, senza variazioni repentine della concentrazione, che rimane sempre inferiore a 1 gCOD/L. La stabilità del processo è confermata anche dal rapporto tra VFA e alcalinità totale che risulta inferiore a 0,3. Anche i solidi, sia totali che volatili, mostrano un comportamento abbastanza costante nel periodo monitorato; il tenore di TS è pari al 7% sul totale, mentre il contenuto di VS è circa il 5% sul totale, con un rapporto tra TVS e TS del 77%. Le leggere variazioni...
nel contenuto di solidi, osservate soprattutto durante il 3° e il 4° monitoraggio, sono imputabili ad un incremento del contenuto di TS nel *feed* in entrata.

4.1.2. Bilanci di massa impianto full-scale

Per costruire i bilanci di massa dell’impianto di Terrassa Padovana sono stati utilizzati i valori medi dei flussi in entrata e in uscita dal reattore. L’errore e l’efficienza di rimozione sono stati calcolati con le seguenti formule:

- **Errore (%)** = \(\left(\frac{\text{IN} - \text{OUT}}{\text{IN}} \right) \)

- **Rimozione (%)** = \(\frac{\text{OUT}^*}{\text{IN}} \)

dove OUT rappresenta solo il contributo in uscita del biogas*

Nelle tabelle seguenti vengono riportati i bilanci di massa e le percentuali di rimozione calcolati per i solidi totali e i solidi volatili (Tab.18), per il carbonio inteso come COD (Tab.19) e per i macronutrienti azoto e fosforo (Tab.20 e 21).

Tabella 18: Impianto full-scale: bilanci di massa per solidi totali e solidi totali volatili

<table>
<thead>
<tr>
<th>Parametro</th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
<th>rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silomais</td>
<td>tTS/d</td>
<td>tTS/d</td>
<td>13,40</td>
<td>4,58</td>
</tr>
<tr>
<td>farina</td>
<td>tTS/d</td>
<td>tTS/d</td>
<td>4,22</td>
<td>15,04</td>
</tr>
<tr>
<td>letame</td>
<td>tTS/d</td>
<td>tTS/d</td>
<td>0,70</td>
<td>19,72</td>
</tr>
<tr>
<td>liquame</td>
<td>tTS/d</td>
<td>tTS/d</td>
<td>1,40</td>
<td>19,62</td>
</tr>
<tr>
<td>TS tot IN</td>
<td>tTS/d</td>
<td>tTS/d</td>
<td>19,72</td>
<td></td>
</tr>
<tr>
<td>TS digestato</td>
<td>tTS/d</td>
<td>4,58</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TS gas</td>
<td>tTS/d</td>
<td>15,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS tot OUT</td>
<td>tTS/d</td>
<td>19,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silomais</td>
<td>tVS/d</td>
<td>tVS/d</td>
<td>12,83</td>
<td>3,53</td>
</tr>
<tr>
<td>farina</td>
<td>tVS/d</td>
<td>tVS/d</td>
<td>4,16</td>
<td>15,04</td>
</tr>
<tr>
<td>letame</td>
<td>tVS/d</td>
<td>tVS/d</td>
<td>0,53</td>
<td>18,57</td>
</tr>
<tr>
<td>liquame</td>
<td>tVS/d</td>
<td>tVS/d</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td>VS tot IN</td>
<td>tVS/d</td>
<td>18,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS digestato</td>
<td>tVS/d</td>
<td>3,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS gas</td>
<td>tVS/d</td>
<td>15,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS tot OUT</td>
<td>tVS/d</td>
<td>18,58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il flusso in uscita dal reattore è stato determinato sommando i TS o i VS presenti nel digestato insieme a quelli rimossi attraverso il gas prodotto.

I TS o i VS in uscita, trasformati in biogas, si ricavano attraverso una semplice formula che considera la produzione media di biogas e il suo peso molecolare medio. Quest’ultimo si calcola facilmente conoscendo il contenuto medio di CH\textsubscript{4} e CO\textsubscript{2}, assumendo che il biogas è formato solo da queste due componenti. L’espressione utilizzata per la conversione è la seguente:

\[
gr_{biogas} = gTS = n_{biogas} \times PM_{biogas} \times (PV/RT) \times \left(\frac{PM_{CH_4} \times \%CH_4/100}{100} \right) + \left(PM_{CO_2} \times \%CO_2/100 \right)
\]

Dove:

- \(n_{biogas} \): n* di moli di biogas (mol)
- \(PM_{biogas} \): peso molecolare del biogas espresso in g/mol
- T: temperatura di esercizio (*K)
- R: costante universale dei gas
V= produzione giornaliera media di gas

%CH₄ e %CO₂: contenuto medio di metano (PMCH₄=16g/mol) e di biossido di carbonio (PMCO₂=44g/mol) nel biogas.

La stabilità e il buon funzionamento del processo attualmente attivo nell’impianto full-scale di Terrassa, sono dimostrati dai bilanci riportati in Tab.18. Per i TVS si ottengono rese maggiori perché il biogas è prodotto specialmente a spese di questa frazione. La percentuale d’errore, pari a zero, e le elevate efficienze di rimozione sono state ottenute calcolando per differenza il biogas prodotto, poiché l’effettiva portata giornaliera di biogas prodotto dall’impianto è un’informazione che non ci è stata fornita.

Per quanto riguarda il bilancio del carbonio, il COD in entrata è stato ottenuto dalla sommatoria dei contributi medi dei vari substrati che compongono l’alimentazione. Il COD uscente, invece, è stato calcolato sommando il COD medio del digestato con quello trasformato in biogas.

Il bilancio si chiude con un errore accettabile essendo inferiore al 20% e la resa di rimozione risulta piuttosto elevata.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
<th>rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>silomais</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>tCOD/d</td>
<td>12,67</td>
<td>4,47</td>
<td>0,55</td>
<td>1,11</td>
</tr>
</tbody>
</table>

Nelle Tab.20 e 21 vengono riportati i bilanci di massa dei macronutrienti azoto e fosforo.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
</tr>
</thead>
<tbody>
<tr>
<td>N tot</td>
<td>silomais</td>
<td>farina</td>
<td>letame</td>
</tr>
<tr>
<td>tN/d</td>
<td>0,25</td>
<td>0,08</td>
<td>0,02</td>
</tr>
</tbody>
</table>

I flussi di azoto totale in entrata e in uscita sono stati calcolati sommando, per ogni substrato, i valori di TKN medi con il contenuto medio di azoto ammoniacale. L’analisi del TKN infatti, è stata sempre eseguita sul campione secco e quindi manca della frazione ammoniacale. Tuttavia, per i substrati in entrata, questa componente non fornisce un contributo significativo rispetto ai corrispondenti TKN, fatta eccezione per il liquame. Nel digestato invece il contenuto di azoto ammoniacale è maggiore del TKN determinato sulla sostanza secca, perché durante il processo di digestione anaerobica, la degradazione di proteine e amminoacidi comporta ammonificazione.
I bilanci dei macronutrienti riportano errori piuttosto alti di segno positivo, probabilmente a causa di una sottostima nelle analisi del digestato o a causa di variazioni delle portate. Per quanto riguarda il fosforo, un’ulteriore spiegazione del risultato ottenuto, potrebbe essere la precipitazione di questo elemento all’interno del digestore in seguito ai valori di pH tendenzialmente alcalini, come rilevato nel corso dei monitoraggi.

4.2. Test BMP: confronti tra i substrati

4.2.1. Produzioni specifiche e costanti di idrolisi

L’elaborazione dei dati raccolti nel corso dei 43 giorni di durata dei test BMP, ha permesso di costruire, per ogni matrice, le curve cumulative medie della produzione specifica di biogas (SGP) e di metano (SMP), al netto del bianco. Come si può notare osservando i grafici riportati nelle Fig. 20 e 21, il processo di digestione si innesca rapidamente grazie alla presenza della flora microbica presente nell’inoculo e la produzione di biogas comincia sin dai primi giorni della prova. La curva di produzione cumulativa presenta, normalmente, una prima parte di crescita intensa per poi ridurre la velocità di produzione sino a tendere ad un asintoto orizzontale che rappresenta il valore massimo di produzione. La prima fase di idrolisi è caratterizzata da una maggiore velocità di produzione per la presenza di sostanze facilmente biodegradabili, convertite rapidamente in biogas.

Nella tabella sottostante (Tab. 22) vengono riassunti i risultati ottenuti dai test di biometanazione, confrontati con i relativi valori ritrovati in letteratura.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
</tr>
</thead>
<tbody>
<tr>
<td>P tot</td>
<td>tP/d</td>
<td>tP/d</td>
<td>tP/d</td>
</tr>
<tr>
<td>silomais</td>
<td>0,028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>farina</td>
<td>0,011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>letame</td>
<td>0,007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquame</td>
<td>0,020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P tot IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P tot OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Confrontando i substrati testati, la biomassa con la maggiore resa in termini di biogas è il Miscanto con un SGP medio di 0,77 Nm3/KgVS, seguito da Topinambur non micorrizzato e farina di mais entrambi con una produzione di 0,72 Nm3/KgVS e da silomais con 0,68 Nm3/KgVS.

Osservando l’andamento delle curve (Fig.20 e 21), quella del miscanto, soprattutto nei primi 25-30 giorni dall’inizio delle prove, si differenzia dalla altre. La sua composizione comporta una cinetica di degradazione più lenta rispetto alle altre biomasse; polimeri come lignina, emicellulosa e cellulosa, più difficili da idrolizzare, tendono a rallentare la prima fase di idrolisi del processo.

Rese inferiori invece sono state riscontrate con canna comune, Topinambur micorrizzato e liquame con valori di SGP pari a 0,51 Nm3/KgVS, 0,48 Nm3/KgVS, 0,27 Nm3/KgVS rispettivamente.

La minore produttività di Arundo D. è da imputare alla tipologia di solidi volatili introdotti, probabilmente più difficili da degradare oppure al periodo di taglio della biomassa. Tuttavia possiamo affermare che i test hanno dato dei risultati confrontabili con i valori riportati in letteratura (Tab.22).

Anche per quanto riguarda le rese specifiche in termini di metano, il Miscanto si è contraddistinto, rispetto agli altri substrati, con una produzione media di 0,37 Nm3CH$_4$/KgVS. Questo risultato è leggermente superiore a quello riportato da Mayer F. et al.,(2014) di circa 0,25, 0,30 e 0,32 m3CH$_4$/KgVS ottenuti con aliquote di miscanto insilato al 1°, 2° e 3° anno dall’impianto rispettivamente. Questa differenza può dipendere dal fatto che il campione utilizzato nella presente sperimentazione è fresco e proviene dal primo anno di vita e quindi più facilmente aggredibile dalla biomassa batterica.
Silomais e farina di mais presentano rispettivamente SMP di 0,31 e 0,29 Nm3CH$_4$/KgVS, seguiti da *Arundo D.* e *Topinambur* (senza micorrize), entrambi con una produzione di metano di 0,27 Nm3CH$_4$/KgVS e infine liquame e *Topinambur* micorrizzato con le rese più basse pari a 0,19 e 0,16 Nm3CH$_4$/KgVS, rispettivamente. Tuttavia i risultati ottenuti non si discostano di molto dai valori medi ritrovati in letteratura (Tab.22).

Figura 20: Confronto andamento curve di produzione di biogas per ogni substrato testato

Figura 21: Confronto andamento delle curve di produzione di metano per ogni substrato testato
Figura 22: Grafici delle produzioni specifiche di biogas (SGP) e metano (SMP) per ogni substrato testato.
Dai risultati dei test è stato possibile ricavare ulteriori informazioni sulla biodegradabilità dei substrati, riportate in Tab.23. Per ognuno di essi è stata determinato la loro costante di idrolisi (K_h) e il giorno in cui viene raggiunto il 90% della produzione finale di metano (t_{90}). Calcolando il reciproco di K_h, si ottiene il tempo di residenza, necessario ad ogni substrato, per essere idrolizzato all’interno del digestore. Matrici come Arundo e farina di mais, con K_h maggiori, si dimostrano più facilmente degradabili dai microrganismi rispetto a Miscanthus x G. o Topinambur, e di conseguenza la loro fase di idrolisi si concluderà in un tempo minore.

<table>
<thead>
<tr>
<th>BIOMASSE</th>
<th>Costante di idrolisi K_h</th>
<th>$1/K_h$</th>
<th>t_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arundo D.</td>
<td>0,148 g$^{-1}$</td>
<td>11</td>
<td>28°</td>
</tr>
<tr>
<td>Topinambur (no micorizze)</td>
<td>0,089 g$^{-1}$</td>
<td>13</td>
<td>34°</td>
</tr>
<tr>
<td>Topinambur (con micorizze)</td>
<td>0,076 g$^{-1}$</td>
<td>7</td>
<td>21°</td>
</tr>
<tr>
<td>Miscanthus x G.</td>
<td>0,074 g$^{-1}$</td>
<td>14</td>
<td>34°</td>
</tr>
<tr>
<td>Farina di mais</td>
<td>0,134 g$^{-1}$</td>
<td>7</td>
<td>20°</td>
</tr>
<tr>
<td>Silomais</td>
<td>0,103 g$^{-1}$</td>
<td>10</td>
<td>25°</td>
</tr>
<tr>
<td>Liquame bovino</td>
<td>0,105 g$^{-1}$</td>
<td>10</td>
<td>33°</td>
</tr>
</tbody>
</table>

Nel grafico seguente (Fig.23) la costante di idrolisi di ogni substrato (K_h) è rappresentata dal coefficiente angolare (in valore assoluto) ottenuto mediante linearizzazione, come suggerito da Angelidaki, et al. (2009).

![Figura 23: Grafico costanti di idrolisi per ogni substrato testato](image)
4.2.2. Bilanci di massa

Al termine delle prove sono state eseguite una serie di analisi sul contenuto delle bottiglie in termini di TS, VS, pH, alcalinità, COD, TKN e fosforo totale. I dati ottenuti sono serviti per costruire i rispettivi bilanci di massa (Tab. 24 e 25) e per poter valutare la riuscita o meno dei test mediante le percentuali di rimozione ottenute.

Tabella 24: Test BMP: Bilancio di massa TS e VS per ogni substrato

<table>
<thead>
<tr>
<th></th>
<th>IN TS</th>
<th>OUT TS</th>
<th>Rimozione</th>
<th>IN VS</th>
<th>OUT VS</th>
<th>Rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>g/d</td>
<td>g/d</td>
<td>%</td>
<td>g/d</td>
<td>g/d</td>
<td>%</td>
</tr>
<tr>
<td>Topinambur (no mico)</td>
<td>2,27</td>
<td>2,07</td>
<td>91</td>
<td>1,93</td>
<td>2,07</td>
<td>100</td>
</tr>
<tr>
<td>Topinambur (con mico)</td>
<td>2,33</td>
<td>1,47</td>
<td>63</td>
<td>1,95</td>
<td>1,47</td>
<td>76</td>
</tr>
<tr>
<td>Arundo D.</td>
<td>1,96</td>
<td>1,21</td>
<td>62</td>
<td>1,77</td>
<td>1,21</td>
<td>68</td>
</tr>
<tr>
<td>Miscantus x G.</td>
<td>2,08</td>
<td>2,04</td>
<td>98</td>
<td>1,94</td>
<td>2,04</td>
<td>100</td>
</tr>
<tr>
<td>Farina di mais</td>
<td>1,95</td>
<td>2,01</td>
<td>100</td>
<td>1,94</td>
<td>2,01</td>
<td>100</td>
</tr>
<tr>
<td>Silomais</td>
<td>2,05</td>
<td>1,83</td>
<td>89</td>
<td>1,94</td>
<td>1,83</td>
<td>94</td>
</tr>
<tr>
<td>Liquame bovino</td>
<td>2,51</td>
<td>0,51</td>
<td>20</td>
<td>1,94</td>
<td>0,51</td>
<td>26</td>
</tr>
</tbody>
</table>

Tabella 25: Test BMP: Bilancio di massa COD per ogni substrato

<table>
<thead>
<tr>
<th></th>
<th>IN COD</th>
<th>OUT COD</th>
<th>Rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td>u.m.</td>
<td>mgCOD/d</td>
<td>mgCOD/d</td>
<td>%</td>
</tr>
<tr>
<td>Topinambur (no mico)</td>
<td>1767</td>
<td>1699</td>
<td>96</td>
</tr>
<tr>
<td>Topinambur (con mico)</td>
<td>2137</td>
<td>1050</td>
<td>49</td>
</tr>
<tr>
<td>Arundo D.</td>
<td>1974</td>
<td>1499</td>
<td>76</td>
</tr>
<tr>
<td>Miscantus x G.</td>
<td>2165</td>
<td>2309</td>
<td>100</td>
</tr>
<tr>
<td>Farina di mais</td>
<td>2133</td>
<td>1771</td>
<td>83</td>
</tr>
<tr>
<td>Silomais</td>
<td>2203</td>
<td>1953</td>
<td>89</td>
</tr>
<tr>
<td>Liquame bovino</td>
<td>2070</td>
<td>1317</td>
<td>64</td>
</tr>
</tbody>
</table>

In generale i bilanci di *Topinambur* senza micorizze, *Miscanthus x G.*, farina e insilato di mais si chiudono con un errore accettabile e una percentuale di rimozione molto elevata. Gli altri substrati, cioè *Topinambur* con micorizze, *Arundo D.* e liquame bovino riportano, invece, una percentuale di errore superiore al range di accettabilità (±)20% e bassa efficienza di rimozione. Questo risultato era abbastanza prevedibile per il liquame essendo una matrice già pre-digerita, mentre la scarsa rimozione ottenuta con le altre due matrici può dipendere dalla loro composizione ligno-cellulosica. La durata delle prove (43 giorni) non è stata sufficiente a degradare completamente sostanze come lignina, emicellulosa e cellulosa. Oltre a prolungare il tempo dei test, forse, questi substrati dovevano essere triturati più finemente prima di iniziare le prove per rendere la loro pezzatura più aggredibili dai microrganismi.
In base ai risultati ottenuti dai test BMP e dai bilanci di massa, è stato scelto *Miscanthus x G.* come sostituto dell’insilato di mais, da usare nella sperimentazione con reattore CSTR lab scale. Tra le tre colture testate che godono degli incentivi del D.M. del 6 luglio 2012, è la specie che consente una maggiore resa in biogas per ettaro rispetto ad *Arundo D.* e *Topinambur* (Tab.26). Inoltre, a differenza di quest’ultimo, essendo una coltura NO-FOOD e NO-FEED è una valida soluzione alle polemiche etico-sociali nei confronti della produzione di energia sfruttando colture alimentari. Il confronto tra le biomasse testate, in termini di resa produttiva media, è riassunto nella tabella seguente:

Altri aspetti positivi del miscanto sono:

- elevata resa in biomassa (25-30 tss/ha dal 2°-3° anno in poi), con possibilità di più tagli durante l’anno;
- capacità di crescere in terreni marginali, evitando di occupare superfici agricole per la sua coltivazione;
- basso costo colturale (ridotte esigenze idriche e di fertilizzanti);
- coltura poliennale di durata dall’impianto di 12-14 anni;
- richiede limitate lavorazioni del terreno, riducendo il rischio di erosione del suolo, senza alterarne il contenuto di sostanza organica e biodiversità
- basse emissioni di CO₂

<table>
<thead>
<tr>
<th>Biomasse testate</th>
<th>SGP</th>
<th>SMP</th>
<th>Resa media colturale</th>
<th>Resa biogas</th>
<th>Resa CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³ biogas/Kg VS</td>
<td>m³ CH₄/Kg VS</td>
<td>t ss/hay</td>
<td>m³ biogas/hay</td>
<td>m³ CH₄/hay</td>
</tr>
<tr>
<td>Silomais</td>
<td>0,77</td>
<td>0,35</td>
<td>15-20</td>
<td>13022</td>
<td>5937</td>
</tr>
<tr>
<td>Arundo D</td>
<td>0,58</td>
<td>0,30</td>
<td>25-30</td>
<td>14398</td>
<td>7623</td>
</tr>
<tr>
<td>Miscanthus x G.</td>
<td>0,87</td>
<td>0,42</td>
<td>30-35</td>
<td>26255</td>
<td>12616</td>
</tr>
<tr>
<td>Topinambur</td>
<td>0,81</td>
<td>0,30</td>
<td>20-25</td>
<td>15534</td>
<td>5826</td>
</tr>
</tbody>
</table>
4.3. IMPIANTO PILOTA CSTR LAB-SCALE

4.3.1. Confronto tra le due fasi sperimentali

In questi paragrafi sono riportati i risultati ottenuti durante la sperimentazione condotta a scala di laboratorio con impianto pilota CSTR. Come già anticipato nel Paragrafo 3.4.2, dopo un iniziale periodo di start-up, il lavoro è stato suddiviso in due fasi successive chiamate RUN 1 e RUN 2, aventi le stesse condizioni operative ma diverso tipo di alimentazione (Tab.27). Dopo aver analizzato l’andamento dei parametri di stabilità, le prestazioni delle due fasi sperimentali sono confrontate tra di loro e rispetto all’impianto in piena scala.

<table>
<thead>
<tr>
<th>Tabella 27: Condizioni operative RUN 1 e RUN 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condizioni operative</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td>HRT</td>
</tr>
<tr>
<td>OLR</td>
</tr>
<tr>
<td>ALIMENTAZIONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.3.1.1. Caratteristiche inoculo

Per riuscire a riprodurre a scala di laboratorio, le medesime condizioni dell’impianto full-scale, l’inoculo utilizzato è stato prelevato direttamente dal digestore mesofilo situato a Terrassa Padovana.
Prima di iniziare la prova è stato filtrato con un setaccio con fori del diametro di 2mm, per abbassare la concentrazione di solidi totali presenti. Nella Tab.28 sono riassunte le caratteristiche medie dell’inoculo in termini di TS, TVS, pH, alcalinità totale e parziale, ammoniaca, VFA, COD (particolato e solubile), TKN e Ptot.
La concentrazione di solidi totali è pari a 60,2 gTS/KgTQ, dei quali il 77% sono solidi volatili. Il rapporto COD:TKN:P è 57:4:1 sul campione secco, mentre è pari a 63:8:1 se calcolato sul peso umido. Il rapporto cambia perché, in quest’ultimo caso, influisce la componente dell’azoto ammoniacale e del COD solubile. Sebbene il contenuto di ammonica sia piuttosto elevato (circa 3gN-NH₄/L), non risulta essere inibente visto il pH di 8,2. L’inoculo presenta una concentrazione di VFA molto bassa e una notevole alcalinità sia parziale che totale.
4.3.1.2. Parametri di stabilità

I grafici seguenti (Fig.24,25,26,27) descrivono l’andamento di pH, alcalinità totale e parziale, rapporto FOS/TAC e ammoniaca (come N-NH₄⁺) durante il monitoraggio delle due fasi sperimentali. Il passaggio da RUN 1 a RUN 2 è avvenuto in maniera graduale attraverso un breve periodo di transizione (T), delimitato nei grafici da linee tratteggiate verticali. Il pH è mediamente pari a 8 in entrambi i periodi, oscillando da un minimo di 7,7 a un massimo di 8,2. L’alcalinità totale assume valori molto elevati: in RUN 1 è 11,7 g CaCO₃/L e scende leggermente a 10,7 g CaCO₃/L in RUN 2. Tuttavia questo parametro non sembra destabilizzare l’andamento del processo: la differenza tra alcalinità totale e parziale, infatti, si mantiene costante durante tutta la sperimentazione e questo significa che non vi è accumulo di acidi nel corso delle fasi. Anche l’andamento del rapporto FOS/TAC indica che le condizioni sono stabili; il suo valore, mediamente inferiore a 0,3, segnala che il carico organico (OLR) dovrebbe essere addirittura aumentato. Durante il periodo di sperimentazione con reattore lab-scale, non è stato possibile analizzare il reale andamento dei VFA a seguito di problemi tecnici legati alla strumentazione di laboratorio. Di conseguenza sono stati adottati parametri come il rapporto FOS/TAC e la differenza tra alcalinità totale e parziale per controllare il loro eventuale accumulo. La concentrazione di ammoniaca, mediamente stabile attorno ai 2,4 g/L in entrambe le fasi, non risulta essere inibente per i microrganismi coinvolti nella digestione anerobica, grazie al pH del sistema superiore a 7,4 (Van Velsen, 1979). Valori così alti di pH e ammoniaca dipendono dalle

Tabella 28: Caratteristiche medie dell’inoculo usato per la sperimentazione con CSTR lab-scale

<table>
<thead>
<tr>
<th>INOCULO</th>
<th>u.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>gTS/kg</td>
</tr>
<tr>
<td>VS</td>
<td>gVS/kg</td>
</tr>
<tr>
<td>%VS/TS</td>
<td>%</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>VFA</td>
<td>mgCOD/L</td>
</tr>
<tr>
<td>Alcalinità totale</td>
<td>mg CaCO₃/L</td>
</tr>
<tr>
<td>Alcalinità parziale</td>
<td>mg CaCO₃/L</td>
</tr>
<tr>
<td>COD</td>
<td>mg/gTS</td>
</tr>
<tr>
<td>sCOD</td>
<td>mg/L</td>
</tr>
<tr>
<td>tCOD</td>
<td>g/L</td>
</tr>
<tr>
<td>TKN</td>
<td>mgN/gTS</td>
</tr>
<tr>
<td>N-NH₄</td>
<td>mgN-NH₄/L</td>
</tr>
<tr>
<td>Ntot</td>
<td>g/L</td>
</tr>
<tr>
<td>Ptot</td>
<td>mgP-PO₄/gTS</td>
</tr>
<tr>
<td>Ptot</td>
<td>gP/L</td>
</tr>
</tbody>
</table>
caratteristiche chimiche dei substrati in ingresso, soprattutto dalla componente liquame (Cavinato et al. 2009).

Figura 24: Impianto lab-scale: andamento del pH durante le due fasi

Figura 25: Impianto lab-scale: andamento del rapporto FOS/TAC durante le due fasi

Figura 26: Impianto lab-scale: andamento dell’alcalinità totale e parziale durante le due fasi
4.3.1.3. Rese di processo

L’ andamento della produzione specifica di biogas durante le due fasi sperimentali è riportato in Fig.29. Come già accennato, lavorando con volumetrie più piccole rispetto agli impianti reali è stato necessario diminuire il tempo di ritenzione idraulica del reattore lab-scale a 56 giorni, rispetto a quello adottato in piena scala di 88-92 giorni. Inoltre, l’operazione di ricircolo, eseguita nel CSTR lab-scale determina un tempo di residenza dei solidi (SRT= 30 giorni) inferiore rispetto all’HRT del full-scale, provocando una minore degradazione dei substrati. Tuttavia, ai fini della stabilità del processo, questa operazione era necessaria per rifornire il sistema di alcalinità ed evitare l’accumulo di acidi.

La riduzione del tempo di residenza dei solidi ha comportato una riduzione della resa di produzione specifica di biogas media: nel RUN 1 risulta un SGP di 0,46 m3/Kg\(\text{VS}\), cioè il 66% della produzione specifica di biogas del reattore full-scale (0,70 m3/Kg\(\text{VS}\)). Per quanto riguarda RUN 2 la produzione specifica è di 0,31 m3/Kg\(\text{VS}\), ovvero il 42% della produzione potenziale ottenibile lavorando nelle condizioni del piena scala e sostituendo Miscanthus nel feed quotidiano. Il valore di produzione specifica di biogas finale è stato calcolato considerando i risultati ottenuti dai test BMP, stimando quindi una produzione potenziale di 0,75 m3/Kg\(\text{VS}\). Le percentuali sopra riportate sono confermate inoltre dalle cinetiche, infatti in figura 28 è evidente che la velocità di degradazione del Miscanthus è inferiore rispetto all’insilato di mais e che a parità di tempo (circa a 12 giorni) la percentuale di produzione di gas è del 40% per il Miscanthus e del 70% circa per il silomais. La minore resa ottenuta per RUN 2, dipende quindi dal contenuto di lignina, maggiore in Miscanthus x G. rispetto all’insilato di mais. La percentuale media di lignina nel Miscanto è compresa nel range 8-15 %s.s. (Menardo et al,2012); mentre nel silomais si aggira attorno al 2-6

Il contenuto medio di metano prodotto durante RUN 2 è pari al 55%, mentre in RUN1 è pari al 53%. Questi risultati sono confrontabili con la percentuale contenuta nel biogas dell’impianto di Terrassa Padovana (52-53%), e in generale con i valori medi di metano prodotti dagli impianti alimentati con matrici agro-zootecniche.
Le differenze tra RUN 1 e RUN 2 possono essere correlate anche a problemi di miscelazione del materiale nel reattore. Il miscelatore, nel corso della seconda fase della sperimentazione, girava più lentamente, arrivando spesso a bloccarsi. La miscelazione era ostacolata da ammassi di substrato che, attaccandosi alle pale, tendevano ad arrestare la rotazione. Le matrici che componevano l’alimentazione venivano sempre triturate finemente prima di essere introdotte nel reattore, ma nonostante quest’accorgimento, gli accumuli di materiale si formavano costantemente. La consistenza fibrosa del miscanto è responsabile di questa problema; se il sistema di miscelazione avesse avuto delle pale aggiuntive, in grado di rimescolare il materiale dal basso verso l’alto (come avviene nei tradizionali impianti di biogas che trattano matrici agricole) probabilmente la resa di RUN 2 sarebbe stata superiore.

Anche il differente rapporto C/N tra RUN 1 e RUN 2, pari a 30 e 34 rispettivamente, può aver compromesso le prestazioni della seconda fase sperimentale a causa di un minor contenuto di azoto all’interno del sistema per il nutrimento dei batteri.

Altre perdite giornaliere di gas potrebbero essersi verificate in seguito a problemi di tenuta o durante le fasi di alimentazione del reattore o di campionamento dell’effluente.

L’affidabilità della sperimentazione è confermata dalla stabilità del processo in entrambe le fasi e dai risultati ottenuti con i bilanci di massa, illustrati nel paragrafo successivo. Nel complesso il processo condotto a scala di laboratorio ha portato a risultati interessanti, se confrontati, proporzionalmente, con le condizioni operative di reattori reali di dimensioni decisamente maggiori.

4.3.1.4. Bilanci di massa

Al termine della sperimentazione con reattore CSTR lab scale sono stati calcolati i bilanci di massa (Tab.29,30,31,32) utilizzando la portata (g/d) e i valori medi, in termini di TS, VS, COD, TKN e P$_{tot}$, dell’effluente in entrata e in uscita. I dati utilizzati per costruire i bilanci si riferiscono al periodo di stazionarietà del processo per entrambe le fasi. Per determinare l’errore e la percentuale di rimozione sono state utilizzate le stesse formule adottate nei bilanci dell’impianto full-scale (riportate nel Paragrafo 4.1.3).
Tabella 29: Impianto lab-scale: bilancio di massa TS per RUN1 e RUN2

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
<th>rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>silomais</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 1</td>
<td>gTS/d</td>
<td>gTS/d</td>
<td>gTS/d</td>
<td>gTS/d</td>
</tr>
<tr>
<td></td>
<td>Miscanthus</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 2</td>
<td>gTS/d</td>
<td>gTS/d</td>
<td>gTS/d</td>
<td>gTS/d</td>
</tr>
</tbody>
</table>

Tabella 30: Impianto lab-scale: bilancio di massa VS per RUN1 e RUN2

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
<th>rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>silomais</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 1</td>
<td>gVS/d</td>
<td>gVS/d</td>
<td>gVS/d</td>
<td>gVS/d</td>
</tr>
<tr>
<td></td>
<td>Miscanthus</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 2</td>
<td>gVS/d</td>
<td>gVS/d</td>
<td>gVS/d</td>
<td>gVS/d</td>
</tr>
</tbody>
</table>

Tabella 31: Impianto lab-scale: bilancio COD per RUN1 e RUN2

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
<th>errore</th>
<th>rimozione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>silomais</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 1</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
</tr>
<tr>
<td></td>
<td>Miscanthus</td>
<td>farina</td>
<td>letame</td>
<td>liquame</td>
</tr>
<tr>
<td>RUN 2</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
<td>gCOD/d</td>
</tr>
</tbody>
</table>

Tabella 32: Impianto lab-scale: bilancio di massa azoto e fosforo totale per RUN1 e RUN2

<table>
<thead>
<tr>
<th></th>
<th>N tot</th>
<th>P tot</th>
<th>errore</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN 1</td>
<td>0,53</td>
<td>0,06</td>
<td>22</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>RUN 2</td>
<td>0,40</td>
<td>0,07</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Per entrambe le fasi sperimentali, i bilanci si chiudono con un errore accettabile, inferiore all’intervallo di tolleranza pari a (±)20%. La percentuale d’errore più rilevante in termini di VS per RUN 2 (+12%) e i valori con segno negativo, dipendono da imprecisioni analitiche, errori durante le fasi di alimentazione o campionamento a causa delle piccole volumetrie di lavoro o problemi di
tenuta. Le rese di rimozione, superiori per RUN 1 rispetto a RUN 2, sono legate ai motivi spiegati nel paragrafo precedente. La lignina contenuta nel Miscanthus x G. e il breve tempo di residenza dei solidi (SRT) nel reattore, ha determinato una incompleta degradazione del materiale in ingresso e di conseguenza una percentuale di rimozione più bassa.

Per quanto riguarda il bilancio dell’azoto, i flussi in entrata sono stati calcolati sulla base dei valori medi di TKN ottenuti dalle analisi sui substrati solidi; solo per il liquame è stato aggiunto anche il contributo dell’azoto ammoniacale. I flussi in uscita invece, sono stati determinati sommando il valore medio di TKN, calcolato sulla sostanza secca, con il contenuto medio di azoto ammoniacale presente nel digestato.

I bilanci dei macronutrienti, soprattutto per RUN 1, riportano errori, di segno positivo, superiori al 20% probabilmente a causa di analitiche con conseguente sottostima dell’effluente in uscita. Lavorare con volumi piccoli inoltre, comporta delle difficoltà in fase di campionamento perché l’aliquota prelevata potrebbe non essere rappresentativa dell’intero sistema. Tutto ciò influenza sui risultati finali. Per quanto riguarda il fosforo, un’ulteriore spiegazione del risultato ottenuto, potrebbe essere la precipitazione di questo elemento all’interno del digestore in seguito ai valori di pH tendenzialmente alcalini, come rilevato nel corso dei monitoraggi.

4.4. Valutazione Miscanthus x G. e insilato di mais

La sostituzione del silomais con Miscanthus x G. conduce sicuramente a dei vantaggi dal punto di vista economico, ambientale e sociale.

Come già illustrato nella Tab.26 del Paragrafo 4.2.3, il miscanto rispetto al mais conduce ad una resa per ettaro, in termini di biogas e metano, molto più elevata. La maggiore produzione annuale di biomassa per ettaro ed anche i test BMP, eseguiti nel corso del lavoro di tesi, confermano la migliore potenzialità del miscanto rispetto al silomais. Il costo colturale del miscanto, inoltre, è di circa 800-1000 €/ha, inferiore rispetto ai 1000-1800 €/ha stimati per la coltivazione del mais (ENAMA, 2012). La spesa più rilevante per il miscanto si verifica al primo anno a seguito dei costi di impianto, fertilizzazione e irrigazione, poi per i restanti 12-14 anni di vita questa coltura ha scarse esigenze di acqua e concimi e il terreno non deve essere continuamente lavorato durante il suo ciclo vegetativo.

Partendo dall’ipotesi di voler sostituire il silomais con Miscanthus x G., è stata valutata la convenienza di questa scelta per l’impianto full-scale di Terrassa Padovana.

I dati ricavati dal monitoraggio condotto su di esso, considerando un OLR di 3,2 KgVS/m³d, mostrano una resa giornaliera di biogas pari a 13033 m³/d, il 73% della quale (circa 9500 m³/d) è
prodotta dalla quantità di VS giornalieri introdotti con silomais (circa 12 t\textsubscript{VS}/d), che corrispondono a 38 t\textsubscript{TQ}/d. Conoscendo la resa media annuale di biogas per ettaro coltivato a mais (riportata in Tab.26), è stato calcolato che, per soddisfare le prestazioni dell’impianto di Terrassa Padovana, sono necessari circa 267 ha di superficie agricola.

Mantenendo costante la quantità di biogas finale e sostituendo il Miscanthus si osserva che la dose necessaria di questa biomassa, nella razione quotidiana, è pari a 43 tonnellate di tal quale, che corrispondono a 11 tonnellate di solidi volatili introdotti giornalmente. Ripetendo lo stesso calcolo usato per il silomais, utilizzando ovviamente il valore di SGP relativo al Miscanthus, si ottiene che la superficie da impiegare per soddisfare le prestazioni dell’impianto, è circa 132 ha, praticamente la metà di quella occupata per il mais. Oltre ad un risparmio in termini di suolo adibito alla crescita di colture a scopo energetico, l’ulteriore vantaggio, è quello di poter sfruttare terreni marginali. Di conseguenza le superfici agricole possono essere destinate alla coltivazione di prodotti alimentari e non più impegnate per molti anni dalle energy crops.

Inoltre, considerando che il cogeneratore dell’impianto di Terrassa Padovana ha una potenza installata di 1 MW, è sufficiente una produzione inferiore di gas (circa 500m3/h) per soddisfare l’utilizzo delle sue potenzialità. Di conseguenza, la quantità di biomassa nel feed giornaliero e le superfici destinate alla sua coltivazione, si riducono ulteriormente. A parità di gas finale prodotto, per Miscanthus saranno sufficienti 122 ha per 39 t\textsubscript{TQ}/d, rispetto ai 246 ettari e 35 t\textsubscript{TQ}/d richiesti dal mais.

Considerando una produzione di 500 m3/h di biogas, ottenuta dall’impianto di Terrassa Padovana, e sapendo che il suo potere calorifico inferiore è circa 5500 kcal/Nm3, è possibile ricavare l’energia totale prodotta in un anno, pari a 24318 MWh/y circa. Questa viene convertita, mediante cogenerazione, in energia elettrica (8171 MWh/y) considerando un rendimento del 35%, e energia termica (6931 MWh/y) considerando un rendimento del 50%. Questi valori sono calcolati considerando un funzionamento del cogeneratore per 8600 ore all’anno e sottraendo alla quantità totale di energia elettrica e energia termica la parte destinata agli autoconsumi (Tab.33).

<table>
<thead>
<tr>
<th>Tabella 33: Produzione di energia elettrica e termica annuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>LORDA</td>
</tr>
<tr>
<td>MWh/y</td>
</tr>
<tr>
<td>Produzione elettrica annua</td>
</tr>
<tr>
<td>Produzione termica annua</td>
</tr>
</tbody>
</table>

In base al nuovo sistema incentivante, stabilito dal D.M. 6 luglio 2012, il guadagno ottenibile dalla vendita dell’energia elettrica al GSE è di circa 1.307.337 € all’anno se si utilizza Miscanthus,
mentre è pari a 1.143.920 € all’anno con l’insiolato di mais. Gli impianti a biogas, di potenza compresa tra 600 e 1000 KW, alimentati con prodotti di origine biologica, possono godere di una tariffa base di 140 €/MWh a cui si aggiungono eventuali premi incentivanti. L’uso di biomasse da filiera, come Miscanthus, elencate nella Tab.1-b, Allegato 1 del Decreto FER, consente di aggiungere alla tariffa base un bonus di 20 €/MWh.

La sostituzione consentirebbe di aumentare il guadagno aziendale di circa 163.417 €/anno rispetto all’alimentazione tradizionale. Il ricavo economico potrebbe aumentare se si volessero adottare, ad esempio, dei sistemi di recupero dell’azoto dal digestato (Bonus Azoto) o sistemi di cogenerazione ad alto rendimento (Bonus CAR).

Nel caso in cui il biogas prodotto fosse convertito in biometano, sarebbe possibile godere, per 20 anni, dei vantaggiosi incentivi introdotti dal D.M. “biometano” del 5 dicembre 2013. Secondo la normativa, per un impianto di nuova costruzione che produce circa 500m³/h di biogas utilizzando sottoprodotti o biomasse non alimentari come il Miscanthus, i ricavi ottenibili sono circa 0.398€/m³ se il biometano viene soltanto immesso nella rete del gas naturale o 0.624€/m³ se viene utilizzato nel settore dei trasporti.

4.5. Valutazione dell’uso agronomico del digestato

4.5.1. Misurazioni in pieno campo: confronto tra azienda 1 e 2.

Le misurazioni delle emissioni di CO₂ effettuate nelle due settimane successive allo spandimento primaverile, mostrano una differenza tra le parcelle con e senza digestato. I valori mediani registrati nei suoli ammendati sono pari a 0,4 g/m²h e 0,15 g/m²h rispettivamente per l’azienda 1 e 2. Mentre nelle parcelle senza digestato le emissioni sono 1,6 volte inferiori nell’azienda 1 (0,25 g/m²h) e 3,4 volte inferiori nell’azienda 2 (0,04 g/m²h). I dati ottenuti sono in linea con quelli riportati da Pezzola et al. (2012), il quale afferma che l’uso del digestato comporta un aumento delle emissioni del terreno.

Tuttavia, il flusso di CO₂ è elevato durante le prime ore successive allo spandimento, poi tende ad esaurirsi nei tre giorni seguenti. Le maggiori emissioni iniziali sono dovute al rilascio della CO₂ discolta nel digestato e alla rapida respirazione dei microrganismi a seguito dell’apporto di carbonio facilmente degradabile (Fangueiro et al., 2010; Bol et al., 2003).
Il carbonio fornito al suolo tramite il digestato era di circa 158,8 g/m². Nell’azienda 1 la quantità emessa sotto forma di CO₂ durante le 339 ore di monitoraggio post spandimento, era circa il 34,1% del C totale apportato nelle parcelle franco sabbiose e il 20,2% in quelle franco-argillose. Nell’azienda 2, la quantità di CO₂ determinata durante le 270 ore di campionamento, è il 9,6% del carbonio totale fornito con lo spandimento.

Le analisi eseguite sui campioni di terreno prelevati, segnalano una tessitura differente soltanto tra le parcelle presenti nell’azienda 1, mentre il suolo dell’azienda 2 ha la stessa granulometria dappertutto. Di conseguenza è stata studiata la possibile correlazione tra l’intensità delle emissioni di CO₂ e la variabile tessitura soltanto per quanto riguarda l’azienda 1 (Fig.30).

Nei terreni franco-sabbiosi il flusso è di circa 0,54 g/m² h e 0,32 g/m² h rispettivamente in presenza o in assenza di digestato. Negli appezzamenti franco-argillosi, invece, i valori mediani rilevati sono sempre inferiori, precisamente 0,29 g/m² h nelle aree con digestato e 0,21 g/m² h in quelle senza. I risultati ottenuti concordano con quanto affermato da Hebert et al. (1991), che valutò una maggiore mineralizzazione dei composti contenenti carbonio nei terreni sabbiosi rispetto a quelli argillosi. Come noto vi è una maggiore perdita di carbonio organico da suolo limoso o sabbioso rispetto a quello argilloso (Burke et al., 1989); quest’ultimo, tende ad accumulare e stabilizzare maggiormente la materia organica, rendendola meno accessibile alla decomposizione microbica.

Struttura e tessitura del suolo, secondo Van Veen et al. (1989), incidono sul turnover del carbonio organico facilmente degradabile attraverso la biomassa microbica: i suoli argillosi tendono ad essere più “conservativi” rispetto a quelli sabbiosi con granulometria più grossolana.

![Figura 30: Azienda 1: confronto emissioni di CO₂ da suoli con differente tessitura, con o senza digestato, nelle 339 ore successive allo spandimento](image-url)
Sempre nell’azienda 1 il flusso di emissioni, superiore nelle parcelle ammendate rispetto a quelle non trattate, dipende anche da altri due fattori: la prima erpicatura e il primo evento piovoso subito dopo lo spandimento (Fig.31). La distribuzione del digestato, mediante aspersione, comporta una deposizione superficiale del materiale organico, che in seguito ad erpicatura, viene interrato e reso più disponibile per i microrganismi. Nelle 120 ore successive allo spandimento, le emissioni misurate nelle aree ammendate superano quelle indisturbate di 1,8 volte nelle parcelle franco argillose e di 2,5 volte in quelle franco-sabbiose.

Inoltre tra il settimo e il decimo giorno dallo spandimento del digestato, l’abbondante pioggia caduta (19,6mm), ha contribuito a rendere le condizioni del suolo più favorevoli per l’attività dei microrganismi nelle parcelle trattate: +1,7 volte per il suolo franco-argiloso e +2,8 volte per quello franco-sabbioso.

Nell’azienda 2, invece, è stata indagata la possibile correlazione tra emissioni di CO₂ e lavorazioni preparatorie del terreno, eseguite precedentemente allo spandimento primaverile, precisamente a Settembre 2013.

I dati raccolti, durante il primo periodo di monitoraggio (circa 270 ore), mostrano che aratura e rippatura non hanno alcun effetto significativo sulla respirazione del suolo. Tuttavia, anche in questo caso, si riscontra una differenza tra parcelle con e senza digestato. Tra 50 e 100 ore successive allo spandimento, il flusso è significativamente più alto nelle aree ammendate sempre per effetto della pioggia (19,6mm). Inoltre l’erpicatura eseguita dopo quest’evento

Figura 31: Azienda1: Confronto emissioni di CO₂ da suoli con tessitura diversa, con e senza digestato, a seguito di erpicatura e evento piovoso

Nell’azienda 2, invece, è stata indagata la possibile correlazione tra emissioni di CO₂ e lavorazioni preparatorie del terreno, eseguite precedentemente allo spandimento primaverile, precisamente a Settembre 2013.

I dati raccolti, durante il primo periodo di monitoraggio (circa 270 ore), mostrano che aratura e rippatura non hanno alcun effetto significativo sulla respirazione del suolo. Tuttavia, anche in questo caso, si riscontra una differenza tra parcelle con e senza digestato. Tra 50 e 100 ore successive allo spandimento, il flusso è significativamente più alto nelle aree ammendate sempre per effetto della pioggia (19,6mm). Inoltre l’erpicatura eseguita dopo quest’evento
meteorologico, circa 10 giorno dopo lo spandimento, ha contribuito ad aumentare il flusso di CO₂ nelle parcelle con digestato rispetto a quello indisturbato.

Temperatura e umidità del suolo, sono altre due variabili studiate in relazione alle emissioni di CO₂. Nell’azienda 1 è stata riscontrata una correlazione positiva tra i valori rilevati nelle parcelle franco-sabbiose e l’umidità, sia nelle aree con digestato che in quelle senza. Questo risultato conferma quanto affermato da Dilustro et al.(2005). Secondo questi autori le emissioni di CO₂ sono correlate positivamente con i terreni sabbiosi, ma non con quelli argillosi quando il loro contenuto di acqua supera il punto di avvizzimento. Nel nostro caso, l’umidità media del terreno argilloso, misurata durante il periodo di monitoraggio era 22,3 ± 2,3 %. Nessuna correlazione è stata trovata rispetto alla variabile temperatura. Sempre nell’azienda 1, la temperatura del suolo risulta correlata positivamente soltanto con i valori di emissioni misurati nelle parcelle franco-argillose non ammendate. Per quanto riguarda le corrispondenti parcelle ammendate, aventi la medesima tessitura, non è stato possibile determinare la reale correlazione tra temperatura e flusso di CO₂ a causa di un intenso picco nelle prime 23 ore successive allo spandimento. In effetti, togliendo questi valori iniziali dal set di dati raccolti, anche nei suoli franco-argillosi, oggetto di spandimento, emissioni e temperatura sembrano essere correlate.

Nell’azienda 2, invece, caratterizzata da suolo franco-argilloso, i risultati ottenuti mostrano una correlazione positiva fra emissioni e temperatura e nessuna relazione con l’umidità.

I rilievi sono state eseguite anche durante il ciclo vegetativo del mais in entrambe le aziende. Nell’azienda 1, le emissioni di CO₂ dal suolo erano significativamente più alte (+1,7 volte) nelle parcelle con ammendate rispetto a quelle indisturbate, nelle quali il valore mediano di emissioni è di 0,29 g/m²h; nessuna influenza è stata rilevata per quanto riguarda la tessitura del suolo (Fig.32). I dati raccolti sono in linea con quelli riportati da Li et al.(2013), i quali riscontrarono un aumento del flusso di CO₂ da suoli trattati con digestato durante la stagione di crescita del mais.
Nell’azienda 2, invece, non sono state rilevate differenze tra le parcelle campionate, con un valore medio di emissioni di CO$_2$ inferiore a 0,4 g/m2h. L’aggiunta nel suolo di azoto minerale, eseguita a Maggio, spiega l’assenza di differenze significative tra le parcelle con e senza digestato. Questa ulteriore concimazione ha provocato una secondaria salinizzazione e acidificazione del terreno, riducendo il numero (Lee e Jose, 2003) e l’attività (Shen et al., 2013) dei microrganismi. Tuttavia, Ding et al. (2010), segnalano la presenza in letteratura di prove contrastanti circa gli effetti della concimazione azotata sulle emissioni di CO$_2$ dal terreno. Ad esempio Liljeroth et al. (1990), Gallardo e Schlesinger (1994) riscontrarono degli aumenti, mentre Cardon et al. (2001), Giardina et al. (2004) delle diminuzioni. Confrontando le parcelle con tessitura argillosa in entrambe le aziende, le emissioni di CO$_2$ sono superiori in corrispondenza degli appezzamenti trattati con digestato nell’azienda 1. Nessuna differenza rilevante tra le parcelle dell’azienda 2 (ammendate e non) con quelle senza digestato dell’azienda 1. Quindi la concimazione aggiuntiva, a base di azoto minerale, ha provocato nelle parcelle con digestato dell’azienda 2, una riduzione del tasso di emissioni. Mentre sembra non aver esercitato nessun effetto nelle parcelle senza digestato, i cui valori di CO$_2$ sono simili in entrambe le aziende.

In merito alla produzione di biomassa, nell’azienda 1 non si riscontra una differenza significativa tra le aree con e senza digestato. La produttività media è di 22,7 t /ha nei suoli franco argillosi e 18,7 t/ha in quelli franco sabbiosi. Probabilmente, nell’azienda 1, l’ulteriore apporto di potassio, in aggiunta a quello già contenuto nel digestato, ha portato a questo risultato. In letteratura, Niu et al. (2011), hanno ottenuto, durante il periodo estivo, un aumento del mais dal 9,9% al 14,9 % negli appezzamenti fertilizzati con potassio, rispetto a quelli non fertilizzati. Lui et al. (2012), in uno

![Figura 32: Azienda1: Confronto emissioni di CO$_2$ da suoli con differente tessitura, con e senza digestato, durante il ciclo vegetativo](image)
studio a lungo termine, riportano un miglioramento del 46% sulla resa del mais grazie all’aggiunta di potassio.

Nell’azienda 2, dove non sono state effettuate concimazioni aggiuntive allo spandimento del digestato, la resa è maggiore (+17%) soltanto in corrispondenza delle parcelle ammendate, rispetto a quelle non trattate dove si registra una produzione inferiore, pari a 18 t/ha. Questa differenza dipende anche dalle piogge intense che si sono verificate nell’azienda 2, causando carenza di macronutrienti essenziali (N,P,K) e difficoltà di assorbimento da parte dell’apparato radicale delle piante.

4.5.2. Misurazioni in campo sperimentale

I rilievi effettuati nel campo sperimentale, descritto nel Capitolo 3 (paragrafo 3.5.1.2), sono stati effettuati per valutare l’effetto che sei specie da biomassa, fertilizzate con digestato, possono avere sulla respirazione del suolo. Tra queste ritroviamo anche Miscanthus x G., una delle specie incentivate dal D.M. FER (6 luglio 2012) e utilizzata nella sperimentazione con reattore CSTR lab-scale.

Le emissioni di CO$_2$ misurate subito dopo lo spandimento, mostrano lo stesso trend rilevato in pieno campo, caratterizzato da un picco nelle 24 ore successive alla distribuzione e una diminuzione nei tre giorni seguenti (Fig.33). Nel periodo post spandimento è stata riscontrata una correlazione positiva con la temperatura del suolo, mentre nessuna relazione rispetto alla variabile umidità.

Figura 33: Trend di emissioni di CO$_2$ rilevate in campo sperimentale dopo lo spandimento del digestato

Durante la stagione di crescita (6 maggio - 29 settembre 2014) le specie vegetali influenzano la respirazione del suolo, ma i valori mediani registrati sono sempre inferiori a 500 mg/m2h. Le
emissioni più basse si riscontrano nei box in cui sono coltivati *H. tuberosus* e *A. donax*, seguite da *M. giganteus, Z. mays,* Sorgo ibrido e *L. perenne* (Fig. 34).

La micorrizzazione, inoltre, determina un incremento delle emissioni (+18,6%) nella media delle 6 specie allo studio (Fig. 35). Il flusso di CO₂ da colture con micorrize è correlato positivamente con temperatura e umidità del suolo.

Per quanto riguarda il *Miscanthus x G.* (non micorrizzato) viene riportato il trend di emissioni registrate nei cassoni durante la prima settimana dopo lo spandimento (Fig. 36) e l’andamento, da maggio a settembre, durante il ciclo vegetativo (Fig. 37). Durante questi mesi le emissioni sono piuttosto basse, con valori medi di inferiori a 0,5 g/m²h. Alcuni valori più elevati si riscontrano nel periodo estivo, a seguito della maggiore decomposizione della sostanza organica con temperature più elevate; oppure verso settembre per effetto delle precipitazioni.

Figura 34: Correlazione tra emissioni di CO₂ dal suolo e specie coltivate

Figura 35: Correlazione emissioni di CO₂ dal suolo e micorrizzazone

Per quanto riguarda il *Miscanthus x G.* (non micorrizzato) viene riportato il trend di emissioni registrate nei cassoni durante la prima settimana dopo lo spandimento (Fig. 36) e l’andamento, da maggio a settembre, durante il ciclo vegetativo (Fig. 37). Durante questi mesi le emissioni sono piuttosto basse, con valori medi di inferiori a 0,5 g/m²h. Alcuni valori più elevati si riscontrano nel periodo estivo, a seguito della maggiore decomposizione della sostanza organica con temperature più elevate; oppure verso settembre per effetto delle precipitazioni.
Figura 36: Emissioni CO2 dopo lo spandimento (1° settimana di rilievi)

Figura 37: Trend emissioni di CO2 durante il ciclo vegetativo del Miscanthus x G
5. CONCLUSIONI

Alla luce dei recenti Decreti ministeriali (D.M. 06/07/2012 e D.M. 05/12/2013), il presente studio ha consentito di approfondire la conoscenza della digestione anaerobica nel settore agrozootecnico per ottimizzarne alcuni aspetti. Dai risultati ottenuti si può affermare che:

- La stabilità del processo, attualmente attivo nell’impianto di Terrassa Padovana, è confermata dall’andamento costante dei parametri monitorati e dai bilanci di massa. L’efficienza di rimozione ottenuta per solidi totali, solidi volatili e carbonio sono pari al 77%, 81% e 93% rispettivamente. La co-digestione di insilato di mais con liquame bovino e altri sottoprodotti (farina di mais e letame) determina una produzione specifica di biogas pari a 0,70 m³/kg VS, lavorando con un HRT di 88-92 giorni e un OLR di 3,2 KgVS/m³d.

- I risultati dei test BMP rivelano che Miscanthus x G. è la biomassa, fra quelle testate, con il maggiore potenziale di biometanazione (0,37 Nm³CH₄/KgVS), seguita da silomais (0,31 Nm³CH₄/KgVS) e farina di mais (0,29 Nm³CH₄/KgVS). Le altre colture hanno dimostrato rese inferiori pari a 0,27 Nm³CH₄/KgVS per Arundo D. e a 0,16 Nm³CH₄/KgVS e 0,27 Nm³CH₄/KgVS per Topinambur con e senza micrätze. La bassa resa del liquame (0,19 Nm³CH₄/KgVS) era prevedibile, essendo una matrice già pre-digerita.

- Nella sperimentazione con reattore CSTR lab-scale la diminuzione di HRT e SRT ha comportato una riduzione della resa di produzione specifica di biogas media. Per RUN 1 risulta un SGP di 0,46 m³/KgVS, cioè il 66% della produzione specifica di biogas del reattore full-scale (0,70 m³/KgVS). Per RUN 2 la produzione specifica è di 0,31 m³/KgVS, ovvero il 42% della produzione potenziale (0,75 m³/KgVS) ottenibile lavorando nelle condizioni del piena scala e sostituendo Miscanthus nel feed quotidiano.

- La minore resa ottenuta per RUN 2, dipende dal contenuto di lignina, maggiore in Miscanthus x G. rispetto all’insilato di mais. La differente composizione delle due biomasse si riflette sulle loro cinetiche di degradazione. La velocità di conversione del Miscanthus x G. (Kₙ=0,074 d⁻¹) è più lenta e graduale rispetto al silomais (Kₙ=0,103 d⁻¹)

- La stabilità del processo, in entrambe le fasi, e i risultati ottenuti con i bilanci di massa confermano l’affidabilità della sperimentazione. Secondo una stima preliminare, l’utilizzo di Miscanthus x G. permette un aumento del reddito aziendale di circa 163.417 € all’anno
rispetto all’alimentazione tradizionale con silomais, grazie agli incentivi stabiliti dalla normativa. *Miscanthus x G.* consente, inoltre, una riduzione di circa il 40-50% delle superfici agricole destinate alla crescita di biomassa a scopo energetico. Ulteriori vantaggi riguardano la riduzione dei costi colturali e la possibilità di sfruttare terreni marginali per la sua coltivazione.

- Necessari ulteriori approfondimenti circa le rese ottenibili tramite insilamento del *Miscanthus* o adottando sistemi a doppio taglio. Piante raccolte in fase giovanile, avendo un minor contenuto di lignina, potrebbero consentire maggiori velocità di degradazione della biomassa, riducendo i tempi di residenza idraulica degli impianti.

- Lo spandimento della frazione liquida del digestato determina un effetto positivo sulle rese colturali, ma influenza la respirazione del suolo. Il flusso di CO₂ dal terreno è elevato durante le prime ore successive allo spandimento, poi tende ad esaurirsi nei tre giorni seguenti. Nei suoli ammendati si registrano valori superiori (0,4 g/m²h per azienda 1 e 0,15 g/m²h per azienda 2) rispetto alle parcelle non trattate (0,25 g/m²h per azienda 1 e 0,04 g/m²h per azienda 2).

- La tessitura del suolo è correlata con le emissioni di CO₂: valori più elevati si registrano nel suolo franco-sabbioso rispetto a quello franco-argilloso. Altre possibili variabili che hanno incrementato le emissioni di CO₂ sono state la prima lavorazione post spandimento e il primo evento piovoso.

- La presenza di biomassa fertilizzata con digestato non provoca un aumento significativo delle emissioni durante il ciclo vegetativo delle piante; i valori raccolti nei cassoni coltivati con *Miscanthus* sono inferiori a 0,4 g/m²h. Lo spandimento del digestato è una buona pratica agricola che aiuta a migliorare la fertilità dei suoli e a preservare la loro funzione di “carbon sink”, favorisce un incremento della biomassa vegetale e di conseguenza la fissazione della CO₂ atmosferica.

La sperimentazione condotta, ha dimostrato la necessità di sostenere la ricerca e promuovere l’uso di colture no-food, fonte di reddito aggiuntivo per le aziende e capaci di migliorare l’efficienza energetica del settore agro-zootecnico. La filiera del biogas-biometano grazie alla sua plurifunzionalità rappresenta una valida opportunità per l’auto-sostentamento delle attività agricole italiane e una concreta risposta a supporto della sostenibilità ambientale.
APPENDICE 1

In questa sezione vengono descritte le metodiche analitiche utilizzate per il monitoraggio dei parametri di stabilità del processo e per la caratterizzazione dei substrati. Le analisi sono state eseguite in accordo con gli Standard Methods (APHA – AWWA – WEF).

A. PARAMETRI DI STABILITÀ

- **pH**
 Viene determinato mediante l’uso di un pH-metro dopo la centrifugazione del campione, per rimuovere i solidi.

- **Alcalinità (capacità tampone)**
 Viene determinata mediante titolazione con acido forte (HCl) a concentrazione nota (0.10-0.15N) mediante l’uso di un pH-metro. Il campione dev’essere prima centrifugato e da questo viene poi prelevata una quantità nota (20mL) di surnatante da sottoporre all’analisi. Il valore determinato tra il pH di partenza fino a un valore di pH pari a 4 prende il nome di “alcalinità totale” mentre il valore determinato tra il pH iniziale e quello a pH 6 prende il nome di “alcalinità parziale”. Oltre a questi due valori vengono determinati anche dei valori intermedi in corrispondenza di pH 5.7 e 4.3.

- **Acidi grassi volatili (VFA)**
 L’analisi prevede centrifugazione del campione, prelievo del surnatante e filtrazione a 0.45 μm. Con l’uso di una siringa vengono iniettati 2 μL del campione filtrato all’interno di un gascromatografo accoppiato ad un detector a ionizzazione di fiamma (GC-FID) con idrogeno come gas carrier. La temperatura segue un programma già preimpostato che parte da 80°C fino a 190°C, attraversando due step intermedi a 170°C e 180°C, ognuno con rampe di temperatura di 10°C. La temperatura del FID è impostata a 220°C costanti e quella dell’iniettore a 200°C.
 Gli acidi grassi volatili rilevati dall’analisi sono quelli di maggior importanza nel processo anaerobico, essi sono compresi nell’intervallo C2-C7. La concentrazione di VFA è data dalla somma di acido acetico, propionico, butirrico, i-butirrico, pentanoico, i-pentanoico, caproico, i-caproico, eptanoico, espressa in mg COD/L.

- **Rapporto FOS/TAC**
 E’ un indicatore sperimentale utilizzato per esprimere il rapporto tra acidi grassi volatili e alcalinità all’interno del sistema. Il procedimento, messo a punto dall’istituto di ricerca federale tedesco per l’agricoltura, consente di valutare la stabilità del processo.
 Per calcolare l’indice bisogna titolare con acido forte (HCl 0,1 N) un campione di 20ml prelevato dal substrato in fase di digestione (filtrato prima dalle impurità). Si registrano i volumi di acido necessari a raggiungere pH 5 e pH 4,4. I valori di FOS e TAC si ricavano attraverso le seguenti formule empiriche:
\[FOS = [(V\text{HCl pH}4.4 - V\text{HCl pH}5) \times 1.66 - 0.15] \times 500 \]

\[T'AC = (V\text{HCl pH}5) \times 250 \]

Il rapporto FOS/TAC serve per capire se l’alimentazione è idonea o se va modificata in quantità o qualità. Gli eventuali cambiamenti devono avvenire in modo graduale per consentire l’adattamento del consorzio batterico nel digestore.

<table>
<thead>
<tr>
<th>Tabella 34: interpretazione parametro FOS/TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOS/TAC</td>
</tr>
<tr>
<td>> 0,4</td>
</tr>
<tr>
<td>0,3-0,4</td>
</tr>
<tr>
<td>< 0,3</td>
</tr>
</tbody>
</table>

- **Azoto ammoniacale**
 Il campione viene sottoposto a centrifugazione (4000 giri per 5’ circa) per separare la frazione liquida da quella solida. Successivamente viene prelevata una aliquota nota di surnatante e posta (tal quale o dopo idonea diluizione) in un provettone VELP per essere distillata in controcorrente di vapore a pH alcalino. La determinazione della concentrazione di ammoniaca (espressa in mgN-NH\textsubscript{4}/L), verrà eseguita mediante lettura spettrofotometrica con lunghezza d’onda (\(\lambda\)) a 410 nm con l’aggiunta del reattivo di Nessler. La concentrazione viene calcolata inserendo il valore di assorbanza ottenuto (range di accettabilità compreso tra 0.122 e 0.493) all’interno della retta di calibrazione:

\[\text{conc (mg/l)} = 4.2519 \abs + 0.0872 \]

La concentrazione di azoto ammoniacale del campione è:

\[mgN - NH_4^+ = \text{diluizione} \times \text{conc} \]

- **Conducibilità**
 Parametro correlato con concentrazione di ammonica, pH e alcalinità, il suo andamento fornisce informazioni sulla stabilità del processo. Viene determinata mediante una sonda inserita nel campione prelevato. Il suo valore si esprime in \(\mu S/cm\).
B. ANALISI DI CARATTERIZZAZIONE DEI SUBSTRATI

- **Solidi Totali (TS):**
 Rappresentano il contenuto di sostanza secca del campione, cioè la quantità di materia che, al netto dell’acqua, caratterizza la biomassa alimentata e ne definisce quindi la sua densità energetica. In prima approssimazione essi rappresentano la somma della frazione organica e di quella inerte del substrato. Sono stati ottenuti mediante essiccamento del campione in stufa per 48 ore alla temperatura di 105°C. Il contenuto di TS si esprime in g_{TS}/kg_{TQ}.

 \[TS = \frac{P_2 - T}{P_1 - T} \times 1000 \]

 dove P_1 è il peso del crogiolo + campione tal quale
 P_2 è il peso del crogiolo + campione essiccato
 T è la tara, cioè il peso del crogiolo

- **Solidi volatili (VS):**
 Rappresentano la frazione di materiale organico contenuta nella sostanza secca, cioè la componente biodegradabile dei TS. L’analisi prevede che il crogiolo, dopo l’essiccamimento in stufa a 105°C, venga messo in muffola alla temperatura di 550°C per 24 ore. In questo modo si ottiene la componente inerte dei TS (ceneri). Per differenza si calcolano i solidi volatili, espressi in g_{VS}/kg_{TQ}.

 \[TVS = \frac{(P_2 - T) - (P_3 - T)}{P_1 - T} \times 1000 = \frac{P_2 - P_3}{P_1 - T} \times 1000 \]

 dove:
 P_1: peso del crogiolo + campione tal quale
 P_2: peso del crogiolo + campione essiccato
 T: tara, cioè il peso del crogiolo
 P_3: peso del crogiolo + ceneri.

- **COD (Richiesta chimica di ossigeno):**
 Rappresenta la quantità di ossigeno necessaria ad ossidare chimicamente tutta la materia organica presente. Il metodo consiste nell’ossidazione della sostanza organica con una soluzione di bicromato di potassio ad elevate temperature in ambiente acido, usando come catalizzatore solfato d’argento. L’eccesso di bicromato viene successivamente titolato con soluzione di ferro (III) ammonio solfato (FAS). Il COD del campione, espresso in mgO_2/Kg_{TS} se l’analisi è stata condotta sul campione secco, si ottiene con la seguente formula:

 \[COD \left(\frac{mgO_2}{g_{TS}}\right) = \frac{(B - C) \times \left(\frac{V \times N}{T}\right)}{P} \times 8 \]
dove:
N: normalità del bicromato usato
P: pesata del campione (g TS)
B: volume di FAS usato fino al viraggio del BIANCO (ml)
C: volume di FAS usato fino al viraggio del campione (ml)
T: volume di FAS usato fino al viraggio del TITOLO (ml)
8: fattore che considera il peso milliequivalente dell’ossigeno

L’analisi può essere condotta anche sulla parte solubile del campione, previa centrifugazione e filtrazione a 0,45 µm. Così facendo si ottiene l’SCOD espresso in mgO₂/KgTS.

- **TKN (Azoto totale con metodo di Kjeldahl):**
L’analisi viene condotta sul campione secco e consente di misurare il contenuto d’azoto organico (contenuto in proteine, acidi nucleici, urea composti di sintesi) e azoto ammoniacale. Il procedimento avviene in due fasi:
 1) Trasformazione dell’azoto organico in solfato di ammonio mediante mineralizzazione del campione realizzata per digestione con acido solforico concentrato. In questa fase vengono aggiunti anche ossido di mercurio come catalizzatore e solfato di potassio per innalzare il punto di ebollizione a 370°C.
 2) Distillazione del campione in corrente di vapore in ambiente alcalino

Il distillato, o un’aliquota di esso, viene traverito in un matraccio da 50 mL e aggiunti 2 mL di reagente di Nessler. Dopo 10 minuti di attesa viene effettuata la lettura allo spettrofotometro con lunghezza d’onda di 410 nm. Il valore ottenuto viene espresso come mgN/gTS.

La concentrazione viene calcolata inserendo il valore di assorbanza ottenuto (range di accettabilità compreso tra 0.122 e 0.493) all’interno della retta di calibrazione:

\[
\text{conc} \ (\text{mg/l}) = 4,2519 \ \text{abs} + 0,0872
\]

La concentrazione di TKN viene calcolata con la seguente formula:

\[
mgN - NH_4^+ = \frac{\text{diluizione} \ast \text{conc}}{4 \ast P}
\]

dove P è la pesata del campione secco (gTS)

- **Fosforo totale:**
L’analisi, eseguita su campione secco, permette di determinare la quantità di fosforo presente in esso. Il metodo si basa su una preliminare trasformazione di tutti i composti del fosforo, organico ed inorganico, a ortofosfati attraverso mineralizzazione acida con miscela di acido nitrico e perchlorico in rapporto 3:1 e successiva digestione con H₂SO₄ concentrato. Gli ioni ortofosfato quindi vengono fatti reagire con il molibdato di ammonio e il tartrato di antimonio e potassio, in ambiente acido, formando un eteropoliacido che viene ridotto con acido
ascorbico a blu di molibdeno, intensamente colorato, la cui assorbanza viene misurata alla lunghezza d’onda di 710 nm.
La concentrazione viene calcolata inserendo il valore di assorbanza ottenuto (range di accettabilità compreso tra 0.051 e 0.3030) all’interno della retta di calibrazione:

\[\text{conc (mgP/l)} = 2,0043 \times \text{abs} - 0,0061 \]

La concentrazione di fosforo totale, espressa in mgP-PO₄³⁻/gTS è:

\[\text{mgP-PO₄³⁻} = \frac{\text{conc} \times \text{diluiz} \times 0,1}{P} \]
dove P è la pesata del campione secco (gTS).

APPENDICE 2

In questa sezione vengono descritte le metodiche analitiche utilizzate per determinare la tessitura e le caratteristiche chimiche dei campioni di terreno.

- **Tessitura**
 L’analisi della granulometria di un terreno permette di capire come si distribuiscono le particelle che compongono la struttura del suolo, in base al loro diametro. Innanzitutto viene eseguita la distinzione tra scheletro, formato da particelle più grossolane, e terra fine. La separazione viene condotta a secco, utilizzando setacci con fori del diametro di 2 mm.
 Le particelle con diametro inferiore a 2 mm, costituiscono la frazione più fine del terreno, che viene suddivisa in 3 classi di tessitura: sabbia, limo, argilla.
 Mediante l’uso di diagrammi di forma triangolare (Fig.38) è possibile stabilire l’appartenenza di un suolo ad una determinata classe di tessitura. Ai campioni di terreno analizzati durante il lavoro sperimentale è stata applicata la classificazione proposta dal Dipartimento di Agraria degli Stati Uniti (USDA), riportata nella Tab.35:

<table>
<thead>
<tr>
<th>Tabella 35: Classificazione USDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSE</td>
</tr>
<tr>
<td>SCELETTRO</td>
</tr>
<tr>
<td>Pietra</td>
</tr>
<tr>
<td>Ghiaia</td>
</tr>
<tr>
<td>Sabbia</td>
</tr>
<tr>
<td>FRAZIONE FINE</td>
</tr>
<tr>
<td>Limo</td>
</tr>
<tr>
<td>Argilla</td>
</tr>
</tbody>
</table>
La percentuale della frazione più fine dei campioni di terreno si determina ricorrendo a criteri idrodinamici basati sulla differenza di velocità relativa di caduta delle particelle stesse rispetto al liquido in cui sono immerse, secondo la legge di Stokes:

$$\mathbf{v} = 2 \left(\rho_s - \rho_l \right) g \frac{R^2}{9 \eta}$$

Il metodo utilizzato durante la sperimentazione è quello della “Determinazione della granulometria per setacciatura ad umido con l’uso dell’idrometro”. (Metodo n° II.6 - D.M.13/09/1999 Metodi ufficiali di analisi chimico-fisica del suolo).

La metodica si basa sull’impiego di un idrometro (Fig.39) per determinare la massa volumica della sospensione suolo-acqua dopo un tempo prestabilito di sedimentazione, risalendo, successivamente, alla distribuzione delle particelle in base alle loro dimensioni.

La procedura prevede una dispersione chimico-fisica iniziale del campione: una certa quantità pesata di terra fine essiccata all’aria viene trasferita in un backer, si aggiungono 250 cm3 di acqua e 100 cm3 di soluzione di “Calgon”(esametafosfato di sodio al 5%). Quest’ultimo agisce da deflocculante affinché durante la prova non si formino aggregati di particelle di argilla, le quali, per la loro natura chimica, tendono a combinarsi in aggregati floculanti.

Per favorire la dispersione la soluzione viene sottoposta ad agitazione e, al termine di questa fase, trasferita in un cilindro da 1L, portando a volume con acqua a temperatura ambiente. Prima di procedere con le letture si agita il contenuto del cilindro. Si immerge poi l’idrometro e si effettuano le misurazioni ad intervalli di tempo prestabiliti dalla legge di Stokes. Questa legge sostiene l’esistenza di una correlazione tra la percentuale di particelle che via via sedimentano e la densità del fluido.
Le letture sono state eseguite dopo 30 secondi, 1, 3, 10, 20, 30, 60, 90, 120 minuti e dopo 24 ore. Alle diverse rilevazioni corrispondono diametri differenti delle particelle in sospensione:

\[d = k (L / t)^{0.5} \]

in cui \(t \) è il tempo, misurato dall’inizio della sedimentazione e fino all’istante della lettura, \(k \) è un fattore che dipende dalla temperatura della sospensione e dal peso specifico delle particelle; \(L \) è la distanza dalla superficie della sospensione al livello in cui la densità della sospensione viene misurata, e cioè metà bulbo. Le percentuali vengono ottenute per interpolazione lineare tra i valori di densità letti sull’indicatore superiore del densimetro e i tempi di misura, tramite un’apposita tabella. Dopo aver eseguito tutte le letture la sospensione passa per un setaccio con fori da 50 µm e lavata, finché l’acqua che esce dal setaccio risulta limpida. La frazione rimasta è trasferita in un crogolo, posta in stufa a 105°C per eliminare l’umidità, raffreddata, pesata ed espressa in % della massa iniziale di terra fine.

- **CARBONIO ORGANICO**

Per determinare il contenuto di carbonio organico presente nei campioni di terreno è stata utilizzato il metodo Walkley-Black (*Metodo VII.3 - DM 13.09.99 Metodi ufficiali di analisi chimico-fisica del suolo*). L’analisi si basa sull’ossidazione del carbonio organico ad anidride carbonica, mediante l’utilizzo di potassio bicromato in ambiente acido (H\(_2\)SO\(_4\)).
La reazione viene interrotta, dopo un certo intervallo temporale (20’circa), aggiungendo una quantità prestabilita di acqua. Successivamente, mediante titolazione con una soluzione di ferro (II) solfato eptaidrato, si determina la quantità di potassio bicromato che non ha partecipato alla reazione.

Di seguito vengono elencate le operazioni eseguite durante l’analisi:
1. pesare 0.5gr di terreno in una beuta;
2. aggiungere 10mL di potassio bicromato;
3. aggiungere 20mL di acido solforico concentrato;
4. lasciare riposare 30’;
5. aggiungere 200mL di acqua distillata raffreddata in frigorifero;
6. aggiungere 7 mL di acido fosforico (H₃PO₄);
7. aggiungere 0.5mL di indicatore (ox-red);
8. titolare usando come titolante la soluzione di ferro solfato eptaidrato fino al viraggio della soluzione dal blu al verde brillante.

Contemporaneamente è stata eseguita una prova in bianco con 10 ml di bicromato, 20 ml di acido solforico e 200 ml di acqua distillata.

Per il calcolo del carbonio organico (C) espresso in g/kg, è stata utilizzata la seguente espressione:

\[C = 3.9 \times \left(\frac{B - A}{m} \right) \times M_{Fe} \]

Dove:
B: volume della soluzione di ferro (II) ammonio solfato eptaidrato utilizzato nella titolazione della prova in bianco, espresso in ml;
A: volume della soluzione di ferro (II) ammonio solfato eptaidrato utilizzato nella titolazione della soluzione del campione, espresso in ml;
\(M_{Fe} \): molarità effettiva della soluzione di ferro (II) ammonio solfato eptaidrato;
m = massa del campione di suolo, espressa in grammi.

Per trasformare i g/kg di carbonio organico nel corrispondente contenuto di sostanza organica (S.O.) è possibile utilizzare il fattore 1,724:

\[S.O. = C \times 1.724 \]

FOSFORO ASSIMILABILE

Il contenuto di fosforo assimilabile dalle piante, nei campioni di terreno, è stato determinato mediante metodo Olsen (*Metodo XV.3 - DM 13.09.99 Metodi ufficiali di analisi chimico-fisica del suolo*).

Attraverso l’uso di una soluzione (0.5moli/L) di bicarbonato di sodio vengono estratti dal terreno (che generalmente ha un pH neutro o alcalino) i fosfati legati al Ca, che si trasformano in acido fosforico quando si trovano in un ambiente acido. In presenza di molibdici di ammonio, l’acido fosforico determina dei complessi fosfo-molibdicitici che assumono colore blu quando ridotti con acido ascorbico (blu molibdeno fosforato). La quantità di fosforo presente è proporzionale all’intensità della colorazione, e si determina per via spettrofotometrica. Di seguito vengono riportate le operazioni eseguite durante l’analisi:
1. trasferire 2 gr del campione di terra fine in una falcon o in un contenitore plastico da 125mL;
2. aggiungere 0.5 gr di carbone attivo e 40mL (V1) della soluzione (0.5 moli/L) di sodio bicarbonato (soluzione estraente) a pH 8,5;
3. tenere in agitazione per 30’;
4. filtrare più volte su carta da filtro e raccogliere il filtrato in contenitore plastico;
5. preparare una prova in bianco (omettendo il campione di suolo) seguendo le stesse modalità operative;
6. prelevare 10mL della soluzione filtrata (V2) e trasferirla in un matraccio da 50mL;
7. aggiungere 5 gocce di p-nitrofenolo (indicatore) e goccia a goccia, una quantità della soluzione (2,5 moli/L) di acido solforico fino a scomparsa del colore giallo dell’indicatore;
8. diluire con un po’ d’acqua e aggiungere 8mL del reagente solfomolibdico e portare a volume;
9. dopo 10’ eseguire la lettura allo spettrofotometro con lunghezza d’onda pari a 720nm.

Il contenuto di fosforo estratto con soluzione di sodio bicarbonato dal campione di suolo, viene espresso in mg/kg, utilizzando la seguente espressione:

\[C = (A - B) \times (V1/V2) \times (50/m) \]

dove:

- C: contenuto di fosforo assimilabile presente nel suolo, espresso in mg/kg
- A: concentrazione di fosforo nella soluzione del campione, espressa in mg/L
- B: concentrazione di fosforo nella soluzione della prova in bianco, espressa in mg/L
- V1: volume dell’estratto (= 40mL)
- V2: volume della soluzione del campione usata per la determinazione colorimetrica
- m: massa del campione di terra fine (=2 gr), espressa in gr.

- Analisi dei NITRATI e dei NITRITI

Le analisi sono state eseguite secondo la procedura descritta nel manuale APAT e IRSA-CNR “metodi analitici per le acque” Vol.2. Per i nitrati è stato usato il metodo A1 della sezione 4040 che prevede la determinazione dei nitrati con spettrofotometro (\(\lambda=420\)nm) mediante acido salicilico. Mentre i nitriti sono stati analizzati con il metodo spettrofotometrico (\(\lambda=543\)nm) che utilizza solfanilammide e NEDA (naftiletilen-diammina) illustrato nella sezione 4050.

Prima di applicare questi due metodi vengono pesati 50 gr del campione di terra fine e trasferiti in un backer, a questi vengono aggiunti 100mL di soluzione estraente di solfato di potassio (K2SO4). Il terreno in soluzione è stato sottoposto ad agitazione meccanica per circa un’ora. Per avere un campione privo di impurità e di elementi di disturbo, è stata eseguita un’operazione di filtrazione, con carta da filtro, prima di iniziare l’analisi.
6. Glossario

BMP: Biomethane Potential, potenziale di bio-metanazione
CIB: Consorzio Italiano del Biogas
CIC: Cerificati di Immissione in Consumo
COD: Chemical Oxygen Demand, domanda chimica di ossigeno (mgO₂/l o mgCOD/l)
CAR: Cogenerazione ad Alto Rendimento
CRPA: Centro di Ricerca e Produzioni Animali
CSTR: Continuous Stirred Tank Reactor, reattore miscelato in continuo
DAFNAE: Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
D.M. FER: Decreto Ministeriale sulle Fonti di Energia Rinnovabile (06/07/2012)
GSE: Gestore del Servizio Elettrico nazionale
HRT: Hydraulic Retention Time, tempo di ritenzione idraulica (giorni)
OLR: Organic Loading Rate, carico organico volumetrico (Kg substrato alimentato /m³d)
PSR: Programma di Sviluppo Rurale
SGP: Specific gas production, produzione specifica di biogas (m³biogas/Kg substrato alimentato)
SMP: Specific methane production, produzione specifica di metano (m³CH₄/Kg substrato alimentato)
SRT: Solids Retention Time, tempo di ritenzione dei solidi (giorni)
TKN: Total Kjiendhal Nitogen, azoto totale con metodo Kjiendhal (mg/gTS o mg/l)
TS: Total Solids, solidi totali (gTS/kg)
VFA: Volatile Fatty Acids, acidi grassi volatili (mgCOD/l o mgCH₃COOH/l)
VS: Volatile Solids, solidi volatili totali (gVS/kg)

7. Bibliografia

APHA, American Public Health Association; AWWA, American Water Works Association; WEF, Water Environment Federation; Washington, DC.

APER (2009), Lo studio sulla diffusione degli impianti a bioenergie in Italia.

CRPA, Manuale pratico, “Energia dal Biogas prodotto da effluenti zootecnici, biomasse dedicate e di scarto” – AIEL (2007)

Decreto Legislativo 16 marzo 1999, n. 79 "Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell’energia elettrica" - Gazzetta Ufficiale n. 75 del 31 marzo 1999
Decreto Ministeriale del 13/09/1999, Approvazione dei “Metodi ufficiali di analisi chimica del suolo, emanato dal Ministro per le Politiche Agricole e pubblicato nella Gazzetta Ufficiale Supplemen
to Ordinario n. 248 del 21/10/1999.

Fabbri C., Labertino N., Manfredi S., Piccinini S. (2013) “Biogas, il settore è strutturato e continua a crescere” - L’informatore Agrario, supplemento n.11, pag.11-16

Klimiuk E., Pokój T., Budzyn’ ski W., Dubis B “Theoretical and observed biogas production from plant biomass of different fibre contents” Bioresource Technology 101 (2010) 9527–9535

Mantovi P., C. Fabbri, M. Soldano, S. Piccininini “La separazione del digestato aumenta il potere fertilizzante” L’informatore Agrario n°43/2009, pg.55-59

Mattioli A., Frison N., Bolzonella D. “Un buon monitoraggio aumenta la resa di biogas”- Terra e vita (speciale biogas) n°39/2014

MINISTERO DELLO SVILUPPO ECONOMICO, DECRETO 6 luglio 2012 “Attuazione dell’art. 24 del decreto legislativo 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti a fonti rinnovabili diversi dai fotovoltaici” (GU Serie Generale n.159 del 10-7-2012 - Suppl. Ordinario n. 143)

MINISTERO DELLO SVILUPPO ECONOMICO DECRETO 5 dicembre 2013 “Modalità di incentivazione del biometano immesso nella rete del gas naturale” (GU Serie Generale n.295 del 17-12-2013)

Rossi L., Mantovi P. (2012). Digestato: un utile sottoprodotto del biogas. Conoscere per Competere n.4 Centro Ricerche per le Produzioni Animali (CRPA).

Vismara R., Canziani R., Malpei F., Piccinini S. (2011), Biogas da agrozootecnia e agroindustria
Sitografia

www.consorziobiogas.it (ultimo accesso il 31/01/2015)
www.CRPA.it (ultimo accesso il 10/02/2015)
www.GSE.it (ultimo accesso il 02/02/2015)
www.iea-biogas.net (ultimo accesso il 28/01/2015)
www.dafnæ.unipd.it/valdige (ultimo accesso il 05/02/2015)