
Università Ca’ Foscari di Venezia

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis: number

Web Session Security: Formal Verification,

Client-Side Enforcement and Experimental

Analysis

Wilayat Khan

Supervisor

Prof Michele Bugliesi

PhD Coordinator

Prof Riccardo Focardi

November 27, 2014

Author’s Web Page: http://www.unive.it/nqcontent.cfm?a_id=86656&pid=7300426

Author’s e-mail: khan@dsi.unive.it

Author’s address:

Dipartimento di Informatica

Università Ca’ Foscari di Venezia

Via Torino, 155

30172 Venezia Mestre – Italia

tel. +39 041 2348411

fax. +39 041 2348419

web: http://www.dsi.unive.it

To my mother.

Abstract

Web applications are the dominant means to provide access to millions of on-line

services and applications such as banking and e-commerce. To personalize users’

web experience, servers need to authenticate the users and then maintain their

authentication state throughout a set of related HTTP requests and responses

called a web session. As HTTP is a stateless protocol, the common approach,

used by most of the web applications to maintain web session, is to use HTTP

cookies. Each request belonging to a web session is authenticated by having the

web browser to provide to the server a unique long random string, known as

session identifier stored as cookie called session cookie. Taking over the session

identifier gives full control over to the attacker and hence is an attractive target

of the attacker to attack on the confidentiality and integrity of web sessions. The

browser should take care of the web session security : a session cookie belonging

to one source should not be corrupted or stolen or forced, to be sent with the

requests, by any other source.

This dissertation demonstrates that security policies can in fact be written

down for both, confidentiality and integrity, of web sessions and enforced at the

client side without getting any support from the servers and without breaking too

many web applications. Moreover, the enforcement mechanisms designed can be

proved correct within mathematical models of the web browsers. These claims are

supported in this dissertation by 1) defining both, end-to-end and access control,

security policies to protect web sessions; 2) introducing a new and using exiting

mathematical models of the web browser extended with confidentiality and in-

tegrity security policies for web sessions; 3) offering mathematical proofs that the

security mechanisms do enforce the security policies; and 4) designing and de-

veloping prototype browser extensions to test that real-life web applications are

supported.

Acknowledgments

This dissertation would not have been possible without the help and guidance

of a number of other people. First and foremost, I would like to thank Michele

Bughliesi for giving me the opportunity to work at Ca Foscari and supporting me

throughout my PhD, both, in research and administrative issues. I appreciate the

way he normally used to react to my initial stubborn and impractical ideas when I

was new to the world of formal methods. He suggested and motivated me to learn

the proof assistant Coq and today I proudly can say it was one of the important

decisions towards my bright research carrier. During the later stage of my PhD,

I was fortunate to work with Frank Piessence at DistriNet during my internship.

We worked together on using secure multi-execution technique to the web browser

and he put a lot of efforts in the work that produced very good results in short

time. Without his assistance and guidance, I would not be able to use secure

multi-execution framework to the web session integrity. In the last meeting before

my departure from Belgium, his remarks with words "win win situation" will be

on my mind for ever.

During my stay at Co Foscari, I was lucky to have the opportunity to work with

Stefano Calzavara during my time at Ca Foscari and even now. We worked together

in all the research papers and his guidance and experience have a sound impact on

my knowledge of formal models and mathematical reasoning. In the initial stage

of my research, I really needed help from an expert person, in particular, when I

was formalizing and reasoning about web sessions security. Calzavara provided me

that support off and on during my time at Ca Foscari. Together with Calzavara,

we started with preliminary work, but Riccardo Focardi was always there to push

our ideas further into much more refined ideas. While working on Featherweight

Firefox model, I had many long emails exchanged with Aron Bohannon who helped

me in understanding a number of concepts in the Coq model.

I got strong support before and during my PhD from my mother, who prayed

for my success and always encouraged me. My friend Anwar Ahmad who gave

me his support and motivated me towards higher studies. At Ca Foscari, I met

with other nice persons including Teresa Scantamburlo. She is an exceptionally

positive and humble person and I really enjoyed conversations with her about

Italian culture and sometimes about formal methods research.

I would like to acknowledge the support from the Ca Foscari administration for

their grant covering the whole duration of my PhD, European Union for support-

ing my internship at DistriNet, KU Leuven, Microsoft, NSF and Jane Street for

sponsoring me to attend OPLSS summer school in the United States of America.

Contents

Preface xiii

1 Introduction 1

1.1 Key Concepts . 2

1.2 Threats to Web Sessions . 4

1.2.1 Attacks on Confidentiality of Web Sessions 4

1.2.2 Attacks on Integrity of Web Sessions 7

1.3 Contribution . 8

1.3.1 Confidentiality of Web Sessions 8

1.3.2 Integrity of Web Sessions . 9

1.4 Methodology . 10

1.5 Structure of the Thesis . 11

2 Background and Related Work: Web Browsers and Web Sessions 13

2.1 Overview of Web Browser . 13

2.1.1 Web Technologies . 13

2.1.2 Web Security Policy . 16

2.1.3 Security Policy for Cookies 17

2.1.4 Web Session . 18

2.1.5 Reactive System . 20

2.2 Related Work . 21

2.2.1 Formal Verification . 22

2.2.2 Web Browser Security . 23

ii Contents

2.2.3 Web Session Confidentiality 26

2.2.4 Web Session Integrity . 29

2.3 Web Session Security Using Coq . 32

3 Web Session Confidentiality: Browser Input Output 35

3.1 Input Events . 35

3.2 Output Events . 44

3.3 A Confidentiality Policy . 47

3.3.1 The Policy for Input Events 51

3.3.2 The Policy for Output Events 55

3.3.3 Cross-domain Requests . 58

4 Web Session Confidentiality: The Browser State 61

4.1 Browser State . 61

4.1.1 Windows . 63

4.1.2 Pages . 64

4.1.3 Document Nodes . 65

4.1.4 Activation Records . 66

4.1.5 Cookies . 67

4.1.6 Network Connections . 68

4.1.7 Waiting and Running States 70

4.2 Proof of Session Confidentiality . 74

5 Web Session Confidentiality: Browser-Side Enforcement 77

5.1 Session Cookies Protection in Existing Systems 78

5.2 The Need for Client-side Defence 79

5.3 CookiExt: Enforcing Session Confidentiality 81

5.3.1 Overview . 82

5.3.2 Flagging Session Cookies . 84

Contents iii

5.3.3 White-listing URLs . 84

5.3.4 Redirecting HTTP Requests 85

5.3.5 Challenges in Practice . 87

5.4 Analysis of CookiExt . 89

5.4.1 Methodology . 89

5.4.2 Evaluating Protection . 90

5.4.3 Evaluating the Heuristic . 93

5.4.4 Evaluating Usability . 94

6 Security of CookiExt-Patched Web Browser 95

6.1 Interpretation of CookiExt in Coq 96

6.1.1 Rewriting URLs . 97

6.1.2 Updating Cookies . 99

6.1.3 Translating Input Events . 101

6.2 Confidentiality Policy . 101

6.2.1 Relation sim_ie Versus sim_ie_plus 105

6.3 Patching the Browser With CookiExt 107

6.4 Proof of Session Confidentiality . 109

7 Web Session Integrity: Access Control Enforcement 111

7.1 Web Session Integrity . 111

7.2 Flyweight Firefox Browser Model 113

7.3 Enforcement in EFF . 114

7.3.1 Contextual Information . 116

7.3.2 Security Contexts . 118

7.3.3 Extending Scripts . 119

7.3.4 Secure Cookie Operation . 120

7.4 Threat Model . 121

iv Contents

7.5 Well Formed Traces . 124

7.6 Proof of Session Integrity . 132

7.7 SessInt: Enforcing Session Integrity 132

7.7.1 Pages and Network Connections Stores 133

7.7.2 User Clicks . 133

7.7.3 Implicit Loads . 134

7.7.4 Passwords . 134

7.7.5 Cookies . 135

7.7.6 Protection vs Usability . 137

8 Web Session Integrity: Information-Flow Control Enforcement 141

8.1 Session Protection at Different Layers 141

8.2 Login History Dependent Noninterference: Definition and Enforce-

ment . 143

8.2.1 Login History Dependent Noninterference 144

8.2.2 Enforcement . 147

8.2.3 Security . 151

8.3 Instantiation to Web Session Integrity 152

8.3.1 CSRF . 153

8.3.2 Malicious Script Inclusion 154

8.4 Extensions . 156

8.4.1 Endorsing Script Inclusions 158

8.4.2 Endorsements for Collaborating Applications 158

8.5 Implementation . 162

Conclusion 163

8.6 Protecting Web Sessions . 163

8.6.1 Protecting Attacks on Session Confidentiality 164

Contents v

8.6.2 Protecting Attacks on Session Integrity 166

8.7 Future Work . 167

A Code Listings 169

A.1 expr Data Type . 169

A.2 Rewriting Input Event . 169

A.3 same_form_ie_plus Relation . 171

B Proofs 173

B.1 Proof Technique . 173

B.2 Proof of the Main Result . 177

Bibliography 185

vi Contents

List of Figures

1.1 Reflected cross-site scripting attack 6

1.2 Classic CSRF attack . 6

2.1 Web session . 19

2.2 IOEevents signature . 32

3.1 input_event data type . 36

3.2 url data type . 37

3.3 protocol data type . 38

3.4 net_conn_id data type . 39

3.5 resp data type . 39

3.6 cookie_flags_value data type . 41

3.7 file data type . 42

3.8 doc_tree data type . 43

3.9 script data type . 43

3.10 output_event data type . 45

3.11 req data type . 46

3.12 label data type . 48

3.13 label_lt_equiv function . 49

3.14 url_label function . 50

3.15 cookie_label function . 51

3.16 is_vis_resp_cookie function . 52

3.17 erase_invis_cookies function . 52

3.18 StringMap_key_filter function 52

viii List of Figures

3.19 same_form_ie relation . 54

3.20 vis_ie relation . 54

3.21 sim_ie relation . 55

3.22 vis_oe relation . 55

3.23 sim_oe relation . 56

3.24 same_form_oe relation . 57

3.25 erase_cookies function . 57

4.1 browser data type . 63

4.2 win data type . 63

4.3 page data type . 64

4.4 node_tree data type . 66

4.5 node data type . 66

4.6 act data type . 66

4.7 cookie_id data type . 67

4.8 doc_conn data type . 69

4.9 scr_conn data type . 69

4.10 xhr_conn data type . 70

4.11 waiting and running data types 71

4.12 task data type . 71

4.13 get_site_cookies_httponly function 73

4.14 sim_wrq relation . 76

6.1 support relation . 96

6.2 rewrite_list_doc_tree function 98

6.3 rewrite_script function . 98

6.4 rewrite_file function . 98

6.5 flag_cookies function . 99

List of Figures ix

6.6 upgrade_cookies_ie function . 100

6.7 translate_ie function . 101

6.8 translate_iel function . 101

6.9 cookie_label_plus function . 102

6.10 erase_invis_cookies_plus function 102

6.11 sim_ie_plus relation . 103

6.12 sim_iel_plus relation . 103

6.13 sim_iel relation . 104

6.14 ie_no_secure_cookie function . 104

6.15 sim_ie_sim_ie_plus_equiv_https lemma 105

6.16 sim_ie_sim_ie_plus_equiv_http lemma 106

6.17 sim_iel_plus_rewrite_equiv lemma 108

6.18 sim_iel_plus_update_cookies_equiv lemma 108

6.19 cookie_translation lemma . 109

7.1 net_conn_id data type (with qualifier) 117

7.2 page data type (with qualifier) . 117

7.3 running_state data type (with context) 119

7.4 script data type (extended) . 120

7.5 label data type (extended) . 122

7.6 interception relation . 122

7.7 event data type . 122

7.8 eavesdropping relation . 123

7.9 synthesis relation . 124

7.10 guessable relation . 125

7.11 wf_url relation . 126

7.12 wf_script relation . 126

7.13 wf_doc_tree data type . 127

x List of Figures

7.14 wf_file relation . 128

7.15 wf_resp relation . 129

7.16 wf_input_event relation . 129

7.17 wf_input_stream function . 131

7.18 trace data type . 131

7.19 wf_trace relation . 131

8.1 Basic semantics for secure multi-execution of a reactive system . . . 148

8.2 Semantics for secure multi-execution of a reactive system (updated) 150

8.3 Classic CSRF . 154

8.4 Classic CSRF attack encoding and prevention 155

8.5 Script inclusion attack . 156

8.6 Script inclusion attack encoding and prevention 157

8.7 E-payment scenario [100] . 159

8.8 E-payment application encoding . 160

8.9 E-payment application encoding (updated) 161

List of Tables

5.1 Statistics about cookie flags . 80

5.2 Original session cookie flags . 90

5.3 Secured session cookies . 91

5.4 Redirected requests . 92

8.1 User actions, input/output events and their labels 153

xii List of Tables

Preface

This dissertation is based on the research work carried in the Department of En-

vironmental Sciences, Informatics and Statistics, Ca Foscri University of Venice,

Italy during Sept 2011-Aug 2014. Part of the research took place at the DistriNet

research group, Katholieke Universiteit Leuven, Belgium.

This research has been built upon the Bohannaon’s work: reactive systems and

Coq browser model Featherweight Firefox. In the Coq formalisms, the original

model has been extended with a number of features or updated by removing or

renaming features and many new definitions and theorems have been added. In

addition to extended/updated and new definitions, a number of Coq definitions

from Featherweight Firefox model have been included in this dissertation to keep

the document self-contained. Although, the new additions and updates have been

highlighted in the text, a parallel comparison with the original model would clear

the differences further.

I am the main author of the Coq developments, have written most of the code

in CookiExt and performed all the experiments on real-life web applications using

CookiExt to test its usability and security. I helped in defining Flyweight Firefox

model and its security enhanced version Flyweight Firefox Plus. Using the seman-

tics of Flyweight Firefox, I encoded the attacks captured by the Flyweight Firefox

Plus and helped in debugging the extension SessInt. Finally, I put major contribu-

tions to the work where we defined the login history-dependent noninterference for

reactive systems and designed an enforcement mechanism for it and I completed

the security proof.

xiv Preface

1

Introduction

The web has evolved from static pages to web applications that dynamically ren-

der interactive contents to enrich the user experience with a number of modern

features. To further personalize user’s web experience, web applications require

user authentication using some secret information such as cookies and passwords

and combine related network requests and responses together in a web session

identified by a long random value called session identifier. A session identifier,

which uniquely identifies a web session, is often stored as a cookie and is then

referred to as session cookie1.

To deliver modern web applications, web browsers work with data and scripts

from different sources with different trust levels. In addition, web browsers allow

the users to open more than one web applications in different browser tabs at the

same time. Neither these sources trust each other nor the owner of the browser

equally trust them. In such a mutually distrust environment, user’s password and

session cookies need protection from unauthorized access or tampering, together

called as web session security. In this dissertation, a formal theory of web security2

threats is developed in order to verify mathematically the correctness of client-

side security mechanism. Formal techniques and proof assistant Coq are used to

mathematically verify web session security, mechanisms to enforce session security

1A session cookie with the expires attribute is called authentication cookie [82], however, these
terms are used as synonyms in this dissertation.

2The term ’security’ is used to mean both confidentiality and integrity of web session.

2 1. Introduction

are proposed and prototype browser extensions are implemented to secure web

applications at the browser side.

1.1 Key Concepts

Web Session Modern web applications consist of multiple network requests and

responses to deliver a specific web service, for example, when the user adds items

to the shopping cart on an e-commerce website and then at the end pays for those

items. The collection of all the related network requests and responses that forms

a web service (e.g., online purchase) is called a web session.

Session Cookies Web servers use a long random string value, called session

identifier to identify requests in a web session. Web servers normally store session

identifiers at the users’ browser using HTTP cookies called session cookies.

Access Control Models In the access control, the computer system’s behaviour

is changed at specific points in time by putting selective restrictions on subjects

(processes) to access the objects (resources). The Multi-Level Security (MLS)

model [12], introduced by Bell and LaPadula in 1970s, was used to prevent users

from unauthorized reading of confidential information. Denning showed that the

same concept would work if, instead of total ordering, a lattice of levels is used [42].

Biba [14] observed that integrity of information could be dealt with as the dual to

tracking confidentiality.

Information-Flow Analysis Secure information flow analysis involves per-

forming a static analysis of the program with the goal of proving that it will

not leak sensitive information (session cookies). To protect the confidentiality

and integrity of session cookies, it requires to specify and enforce rules to en-

1.1. Key Concepts 3

sure the browser outputs do not, explicitly or implicitly, leak session cookies and

high integrity request is not influenced by low integrity inputs. The first static

information-flow certification mechanism was presented by Denning and Denning

[43]. Information-flow policies [57, 83], on the other hand, regulate that the secret

input data cannot be inferred by an attacker by observing the system output. In

other words, information-flow policies are end-to-end security policies that define

which inputs and outputs are considered secret/less trustworthy or public/high

trustworthy.

Information-flow models have been widely applied to protect confidential in-

formation [101]. While Biba [14] observed that integrity can be enforced using

information-flow models as formal dual to confidentiality, others applied it as dual

to confidentiality in the decentralized label model [87, 86]. Many others, however,

observed that treating information-flow based integrity as dual to confidential-

ity may yield unsatisfactory and weak notion of security [29, 79]. To strengthen

information-flow (noninterference) based integrity policies, Li et al [79], suggested

invariants on quality of data under program execution. In this dissertation,

information-flow based integrity is used as the dual of confidentiality (Chapter

8) and enforced using secure-multi execution [44] technique with the enforcement

mechanism proved secure.

Noninterference A program (e.g., web browser) is defined to be noninterfer-

ent if its outputs cannot be influenced by inputs at a higher or less trustworthy

security level than their own. It is the prevailing basic semantic notion of se-

cure information-flow introduced by Goguen and Meseguer [57]. The intuition is

that someone observing the final values of public variables cannot conclude any-

thing about the initial values of secret variables [104]. In other words, secret

inputs should not, implicitly or explicitly, affect (or flow into) low outputs. To

4 1. Introduction

capture integrity, it can be stated dually: high integrity outputs should not have

been, implicitly or explicitly, influenced by low integrity (less trustworthy) inputs.

Language-based techniques are considered to be a promising approach to enforce

noninterference [101, 79].

1.2 Threats to Web Sessions

To maintain authenticated web session, session cookie3 is used as authentication

credential based on which the server authenticates each request. Any one who gets

a valid session cookie and send it to the server, the request will be authenticated

as if it was initiated by the real owner of the cookie, thereby, impersonating the

owner. A user can also be impersonated without getting his cookie: the attacker

needs a way to force the browser to send requests on behalf of the user in an

authenticated session. These two categories of threats to web sessions are broadly

categorized as the threats to confidentiality and integrity of web sessions.

1.2.1 Attacks on Confidentiality of Web Sessions

A session cookie may be submitted over unencrypted protocol in clear text which

can be intercepted by the network eavesdropper and replayed to enter the ongo-

ing user’s session effectively impersonating the victim user. To force the browser

to send a cookie only with requests using encrypted protocol HTTPS, the server

sets the cookie with Secure flag. A cookie transmitted over encrypted protocol,

however, ensures protection against network attackers4 during that particular re-

quest, but it can not ensure protection from network attackers before and after

3There can be more than one session cookie in the set of cookies (authentication token)
required to authenticate the user [25].

4As in [7], it is assumed that the attacker, without appropriate certificates, cannot read or
modify the content sent over encrypted channels.

1.2. Threats to Web Sessions 5

the encrypted request. The cookie, for example, may be intercepted later when

transmitted over unencrypted channel [21].

In mixed-content websites5, for example, a non-Secure6 cookie is secure from

attackers when included with the request to https://www.webmail.example.com,

but if the victim navigates to http://www.other.com where the attacker injects

a frame with its src attribute pointing to http://www.webmail.example.com,

the browser will send an HTTP request including the session cookie in clear and

the game is pretty much over [115]. The security flag Secure can be used to

thwart against network attackers [77], however, most of the web applications do

not use this flag properly. In particular, the situation becomes more complicated

in websites with partial support for HTTPS [21].

Web attackers [10, 20] put another major threat to the confidentiality of session

cookies. Assuming a website is vulnerable to Cross-Site Scripting (XSS) [51, 5, 60]

attack, then a web attacker can inject malicious script to the page from vulnerable

website which executes later in the browser and leaks the cookie to the attacker. In

a reflected XSS attack scenario (Figure 1.1), the user signs into a trusted website

(e.g., his bank A) (messages 1−4) and then opens a page in new tab from an

evil website E (messages 5−6). In response, E injects a script by redirecting

the browser to the bank A (messages 7−9). The injected script reads the cookie

registered for website A and leak it to E (message 11) which is used later to

hijack the session (message 12−13). Such threats from the web attackers (e.g.,

XSS attacks) can be mitigated by setting the security flag HttpOnly [1]: when

JavaScript tries to access a cookie with HttpOnly flag set, the result will be an

empty string.

The protection mechanisms based on security flags, Secure and HttpOnly,

are supported by most of the modern web browsers, however, most of the web

5Websites with partial TLS/SSL [45] support.
6A cookie without Secure flag.

6 1. Introduction

Figure 1.1: Reflected cross-site scripting attack

OrigintA

User

Browser OrigintE

13:tpage

12:t[c]thijacked

11:tleaktc

9:tu/script/leaktc66

8:treqtu?q=script/leaktdoc.cookie6

7:tredirecttA/u?q=script/leaktdoc.cookie6

6:topentpage

3:tsuccess

2:tlogin

10:tpage

4:tsuccess

5:topentpage

1:tlogin

Figure 1.2: Classic CSRF attack

Origin8A

User

Browser Origin8E

10:8hidden8response

9:8hidden8request

7:8page

6:8open8page

3:8success

2:8login

8:8page

4:8success

5:8open8page

1:8login

1.2. Threats to Web Sessions 7

developers [21] do not set these flags properly and hence fail to protect against

attacks, on web sessions, from both network and web attackers.

1.2.2 Attacks on Integrity of Web Sessions

Cookies on their own are not sufficient to prevent against the popular class of

attacks called Cross-Site Request Forgery (CSRF) attacks [10, 22] The CSRF is a

class of attacks where the attacker tricks the user to send authenticated requests

using user’s credentials (e.g., session cookies).

Consider, for example, the classic CSRF attack scenario in Figure 1.2. The

user sings into his bank account at A (messages 1−4) and then opens another

web page in a new tab from a malicious website E (messages 5−8) which sends

a hidden request to A (message 9). This can be done, for example, by setting

the src attribute of tag to a URL of the bank A which loads an implicit

request to A and the browser will automatically include the session cookie. If

the parameters of the URL to the bank (message 9) are created carefully, it can

initiate a bank transfer to the attacker’s account as the request is authenticated

by the bank A. Even if it is assumed that network communication and session

cookies are adequately protected, in addition to CSRF, a number of other attacks

are possible such as malicious resource inclusions, session fixation, login and local

CSRF and password theft [23, 73].

The problem that is considered in this dissertation is: how can it be assured

that the browser protects the security of the authenticated sessions that it has, for

instance, with A (the bank), in the sense that no other web site than A itself can

influence authenticated HTTP(S) requests from the browser to A. Unfortunately,

the existing proposals (see Section 2.2 for a detailed survey) in the literature only

address very specific classes (e.g., XSS) of known vulnerabilities, often lack rig-

orous security definitions and proofs and eventually fall short of providing robust

8 1. Introduction

foundations for understanding the real effectiveness of client-side defences against,

both confidentiality and integrity, attacks on web authentication. In this disser-

tation, web security properties are specified and verified mathematically, security

policies are enforced at the browser using browser extensions and the results are

analysed experimentally.

1.3 Contribution

The main objective of this research is to carry out formal verification of web ses-

sions security and enforce security mechanisms at the browser side. Web sessions

face security issues and hence a rigorous analysis using mathematical tools is per-

formed during this research work to ensure protection from attacks on both confi-

dentiality and integrity of web session. This research work consists of mechanized

soundness proof of existing protection mechanisms, definition of a novel formal

notion for session integrity and proof of security of (a model of the) web browser

according to this notion and proof of web session integrity as a noninterference

property. In addition to theoretical results, as the proof-of-concept, the proposed

mechanisms have been implemented as the browser extensions or in the browser

supporting information-flow policies.

1.3.1 Confidentiality of Web Sessions

Soundness of Protection Mechanisms Modern web browsers use protection

mechanisms based on the two security flags Secure and HttpOnly to protect session

cookies from being stolen when transmitted over the network or using JavaScript

code injected by the attacker. While there is a common belief that these flags

provide the security they were designed for, no rigorous study has been carried

so far. The first contribution of the research during this dissertation is the for-

1.3. Contribution 9

malization of web sessions in Coq, security policy based on noninterference that

entails properties of both of these protection mechanisms and proof of soundness

of the Coq model with respect to this policy. The Coq formalism is built upon the

popular browser model Featherweight Firefox [18, 17] by transforming it into an

extended version called Extended Featherweight Firefox (EFF).

Enforcing Session Confidentiality in the Browser In the theoretical study

of these protection mechanisms, the assumption is that session cookies are properly

flagged by the web developers. However, this is not the case in the real world web

applications [21] and hence a browser extension CookiExt is developed. CookiExt

is intended to guarantee that web applications implement correct security policies,

in particular regarding cookie protection. The extension is tested on real-world

web applications and the security it can provide is assessed.

Security of CookiExt-Patched Browser Unlike CookiExt, the EFF browser

model neither changes the cookie flags nor redirects HTTP requests over HTTPS

for the supporting websites. In that sense, the behaviour of the standard browser

is different than the browser extended with CookiExt, therefore, the security guar-

antees of EFF do not apply to EFF patched with CookiExt. Hence, in the next

contribution, the EFF model is patched with (a model of) CookiExt and this Cook-

iExt-patched browser model is then proved secure in Coq according the security

policy defined in terms of noninterference.

1.3.2 Integrity of Web Sessions

Web Session Integrity as Access Control Property A novel notion of web

session integrity is defined and a lightweight version of Featherweight Firefox,

called Flyweight Firefox, is introduced which is then extended further to enforce,

10 1. Introduction

using access control/tainting, this notion of session integrity. A proof that a specific

countermeasure guarantees session integrity in the formal browser model is also

carried. The integrity policy captures common web application attacks such as

session hijacking and cross-site request forgery.

Enforcing Session Integrity in the Browser Another browser extension

SessInt, the integrity counterpart of CookiExt, is developed to implement the in-

tegrity policies in the real browser and its usability and security is analysed. The

extension SessInt describes implementation of an approximation of the counter-

measures adopted in Flyweight Firefox as a Chrome extension.

Web Session Integrity as Information-Flow Control Both, the CookiExt

and SessInt, are extensions to the standard web browsers which do not support

information-flow policies. A more permissive client-side enforcements of web ses-

sion integrity is carried in a browser that supports information-flow security by

Secure Multi-Execution (SME) [44, 26]. A simple version of the security policy

enforced by SessInt is enforced using SME framework to protect against attacks

such as classic CSRF attacks. As proof-of-concept, the theory is implemented as

the extension to FlowFox [38] – a browser that supports information-flow policies.

1.4 Methodology

To prove session security against attacks on both confidentiality and integrity

of web sessions, security policies are defined, enforcement mechanisms based on

information-flow control and access control are developed for them and the mech-

anisms are then mathematically proved secure. In order to achieve these goals, a

model of the standard web browser [19, 18] is used and is then proved that the

(model of) web browser is secure according to a security policy. As the proof-

1.5. Structure of the Thesis 11

of-concept, an approximation of the theory is enforced by implementing browser

extension or is added as a built-in feature in the browser that support information-

flow policies. The browser extensions are then tested on real-world web applica-

tions and their security and usability are analysed.

1.5 Structure of the Thesis

The next chapter is dedicated to the background materials on web browser and

web sessions and research work on their security in the literature. The Chapter 3

include detailed Coq definitions of input and output events of the extended Feath-

erweight Firefox and the confidentiality policy is defined to protect session cookies.

The internal state of the browser is defined in the Chapter 4. This chapter include

definitions of page, window, cookie, network connection and different stores, such

as stores for cookies, network connections, windows and pages. In addition, the

waiting and running states of the browser are defined and the main theorem that

entails confidentiality of session cookies is defined and proved.

The Chapter 5 explains the design of the CookiExt in detail. Moreover, the

methodology of the two sets of experiments is described and then the results

achieved are analysed. The formal Coq definitions of the CookiExt-patched EFF

are given in the Chapter 6 with the proof of main theorem satisfying the security

requirements of the CookiExt-patched browser7.

Chapters 7 and 8 include the work on enforcing integrity policies. In the

Chapter 7, the EFF model is further extended to replicate the features of Flyweight

Firefox [23] to enforce meaningful integrity policies using access control/tainting.

This chapter also include the design of the SessInt and the experimental results

are evaluated. The enforcement of integrity policies using information-flow control

7CookiExt and Coq scripts are available at https://github.com/wilstef/secookie

https://github.com/wilstef/secookie

12 1. Introduction

and the prototype implementation of such policies in the browser FlowFox [38] is

included in the Chapter 8. Finally, the conclusions of this dissertation and some

possible future directions are given in the Chapter 8.5.

2

Background and Related Work:

Web Browsers and Web Sessions

In this chapter, an overview of the standard web browsers and web sessions is

presented along with the major web technologies used in the web platform and

mechanisms that govern the security of the browsers and cookies. A survey of

research work, in the literature, on web browsers security in general and web

sessions security in particular is provided.

2.1 Overview of Web Browser

A web browser is one of the three essential components of the World Wide Web

(WWW) used to surf information on the Web – other two components are the

servers that supply information to the browsers and computer networks used for

browser-server communication. Abstractly, it is a computer software used to re-

trieve information, available on servers, using computer networks.

2.1.1 Web Technologies

In detailed view, a web browser works as a collection of different standards and

technologies [17, 64] including HyperText Transfer Protocol (HTTP) [52, 58], the

HyperText Markup Language (HTML) [64, 97, 93, 72], the Cascading Style Sheets

14 2. Background and Related Work: Web Browsers and Web Sessions

(CSS) [31, 84, 64], the Document Object Model (DOM) [64, 30] and the JavaScript

language [64, 48, 53].

In the simple scenario, the user surfs the web by typing the web address

http://www.example.com/figure.jpg in the address bar of an open browser

window. When the user presses the Enter key on the keyboard, the web browser

creates a message conforming to the HTTP protocol, gets the IP address associated

to www.example.com, establishes TCP connection with the machine represented

by the IP address, sends it an HTTP request message over the TCP connection

established and receives an HTTP response.

HTTP is a detailed specification (protocol) of how client and server should

communicate with each other using request-response model. In this model, the

client initiates an HTTP interaction by sending an (HTTP) request to the server

and the server then responds with a response message. Every HTTP request mes-

sage consists of a start line which include a request method (e.g., GET or POST),

request-URI (e.g., /figure.jpg) and HTTP version, header fields (e.g., Cookie and

Referer) and optional message body. The concatenation of the scheme http://,

domain www.example.com and the request-URI /figure.jpg is known as Uniform

Resource Identifier (URI) (e.g., http://www.example.com/figure.jpg). A URI

with the scheme representing the address of a resource on the web is said to be

a URL1. The scheme (protocol afterwords) is HTTP when the messages are sent

in clear and HTTPS when the messages are encrypted using the protocols Trans-

port Layer Security (TLS)/Secure Socket Layer (SSL) [47, 46]. In a URL, the

domain may also follow a port number preceded by a semicolon, otherwise, the

default port 80 is used for the TCP connection. Similarly, every HTTP response

consists of a status line containing HTTP version, numeric status code (e.g., 200)

and string reason phrase (e.g., OK), header fields (e.g., Set-Cookie and Location)

1In this dissertation, the terms host and domain are used as synonyms and all the URIs are
URLs.

2.1. Overview of Web Browser 15

and optional message body.

HTML is the family of languages used to write most of the documents com-

municated between browsers and servers. The web browser (e.g., Google Chrome)

retrieves HTML documents and display them as web pages to the user using HTML

tags. An HTML document contain tags, that identify the start and end of HTML

elements, such as HTML form <form> elements </form> which may contain

input elements like text fields to get user data (user name and password) and

attributes like action that identifies the file to process the form-data.

Although, HTML markup can be used for both, the semantics and presentation

of a document, however, normally a different web technology called Cascading Style

Sheets (CSS) is used for the later – CSS is used to identify how the contents of

the document should be presented to the user. A style sheet may be defined for

multiple pages each including a link to the external style sheet, added to the head

section of an HTML document as an internal style sheet or it may be added inline

to the relevant tag using the HTML style attribute. External style sheets can be

imported from the source of the page or from the origins different than the source

of the page (cross-origin)2.

JavaScript is the client-side programming language supported by most of the

modern web browsers. HTML documents (web pages) are using JavaScript pro-

grams that can interact with the container document inside the web browser.

Among the most popular JavaScript objects used frequently in this dissertation is

XMLHttpRequest used to exchange data with the server in the background with-

out reloading the whole page. The Document Object Model (DOM), on the other

hand, is an API that defines a way for JavaScript to access and manipulate the

HTML document. Through DOM API, JavaScript can interact or change the

style or contents of the document using the host object document. For example,

2An origin is a triple including the protocol, domain and port number.

16 2. Background and Related Work: Web Browsers and Web Sessions

JavaScript on the web page can access the password entered into the login form

on the page and can write or read the cookies registered by the source of the

page3. JavaScript code files can be included in the page inline or imported from

the external sources, of the same or different origin, using the src attribute of the

HTML <script> tag.

2.1.2 Web Security Policy

The main policy that controls browser security is the Same Origin Policy (SOP) [99]

that constrains the JavaScript access and manipulation of DOM. The simple rule

of SOP is: a JavaScript execution context can access the DOM of the other only

if their origins match. HTTP requests can be initiated by a number of APIs

such as HTML forms, XMLHttpRequest and HTTP redirects, each with different

constraints imposed. The web browser allows requests to any origin, with few con-

straints on methods and headers [7], if generated by HTTP forms and redirects.

Similarly, requests generated by the and <script> tags are not constrained

by the same-origin policy: images and scripts can be loaded from origins different

than the page source (cross-origin). The XMLHttpRequest requests, however, can

only be sent to the same origin with two minor tweaks [115]. Even though, the

same-origin policy does not allow to share data cross-origin using XMLHttpRe-

quest API, sometimes it is desirable to securely share data across the origins. To

allow XMLHttpRequest API to send and receive cross-origin HTTP requests, an

extension Cross-Origin Resource Sharing (CORS) has been proposed [108].

The same-origin policy do not protect cookies (see Section 2.1.3) and web

browsers interpret it differently [63]. Furthermore, it does not adequately protect

the resources belonging to the user [103, 16] and is ambiguous and imprecise [18,

16]. Even more, it can be circumvented easily if the attacker injects JavaScript code

3A cookie can only be read if its security flag HttpOnly is not set (Section 2.1.3).

2.1. Overview of Web Browser 17

on the page exploiting XSS vulnerability [60]. As an alternative, its replacement

with the information-flow control policies has also been studied [17, 15].

2.1.3 Security Policy for Cookies

As HTTP is a stateless protocol [52] with no built-in mechanism to track the

user state, modern web browsers instead use cookies to track the user’s previous

activity (e.g., items added to the shopping cart). An HTTP cookie is a small

piece of data, with a number of attributes4, generated and sent by the server in

an HTTP response using Set-Cookie header and stored in the user’s web browser.

The browser then include all the cookies using Cookie headers, registered by a site,

with each subsequent request to that website [9]. A cookie in the browser store is

uniquely identified by a triple cookie name, domain and path value. A server can

add, set or delete cookies using HTTP response headers and JavaScript can read

and write cookie values using the document object.

Most of the users even don’t know about cookies, their threats to privacy,

whether they are enabled or disabled and how to manage them [85]. Interestingly,

cookies are not protected by the main browser’s security policy SOP. Cookies do

not respect SOP in several ways – web browser allows access to the given domain

and its sub-domains regardless of the protocol and port used. A page from a

domain can set a cookie for the same and any of its parent domain provided the

later is not a public suffix [54]. Similarly, the browser include a cookie with a

request to a URL if the cookie domain is suffix of the domain in URL and the

cookie path is prefix of the path in URL. When the server receives a cookie name

and value, it can not determine its attribute values nor the domain from where it

was set.

4The most popular attributes used in this dissertation are the name, domain, path, Secure
and HttpOnly.

18 2. Background and Related Work: Web Browsers and Web Sessions

Web server may instruct the browser to put additional constraints on cookies

using protection mechanisms by adding independent security attributes Secure

and HttpOnly. Using the Secure flag, the server instructs the browser to refrain

from including the cookie with HTTP requests over unencrypted protocol (HTTP)

to protect it from (network) attackers during transmission. The Secure flag, how-

ever, does not ensure cookie integrity in the cross-scheme threat model [77, 78]. For

example, an active network attacker can set a cookie, with or without Secure flag,

over HTTP protocol for the same host name as the victim site which is later sent

with requests over HTTP(S). The attacker can overwrite the user’s session iden-

tifier with his or her own, thereby, launching attack on session initialization [10].

The HttpOnly flag, on the other hand, prevents JavaScript to access the cookie

via document.cookie API with the hope to prevent malicious scripts on the page

to steal the cookie.

2.1.4 Web Session

To deliver personalized web pages, web applications first require the user to au-

thenticate against web applications and then maintain the user’s authenticated

state over the series of subsequent HTTP request and response pairs [70]. To

authenticate the user, most of the professional web applications use the method

password-based authentication or more specifically form-based authentication. In

the first step, user provides his user name and password in the login form, which

is submitted to the server in an HTTP request using the GET or POST method.

If the submitted user name and password match with any of the server’s internal

records, the user is authenticated.

In the second step, web applications then need to maintain this authenticated

state over the series of following HTTP request/response pairs. As HTTP is a

stateless protocol, session management is built on top of HTTP using cookies

2.1. Overview of Web Browser 19

– the server either promote an existing session identifier (stored as cookie) into

an authenticated state or a new cookie is created. In both cases, the (session)

cookie serves to combine all the subsequent related network requests and response

together into a web session. As browser attaches all the cookies registered by a

website with request to that website, including the session cookie, the web server

authenticates each request by looking at the value of the cookie containing session

identifier. All the requests received by the server carrying this cookie value are

regarded as authenticated, hence, this cookie serves as authentication credential.

Although, there exists other approaches for session management such as URL

rewriting or hidden form parameters [98], using cookies to manage web session is

the most popular approach adopted by most of the web applications and supported

by modern browsers and hence is considered in this dissertation.

Figure 2.1: Web session

User

Origin5ABrowser

7:5personalized5page

6:5[c]5req5u

3:5[set5c]5success

2:5login5pwd

8:5render5page

4:5success

5:5open5page5at5A

1:5enter5pwd

Consider, for example, the scenario where a user signs in to his bank account

at A using his user name and password (Figure 2.1). The browser submits the

user’s credentials in a GET or POST request to the website A (messages 1−2).

20 2. Background and Related Work: Web Browsers and Web Sessions

After verifying the user name and password5, a session is established and the server

associates a long random string as session identifier which is stored as cookie c in

the user’s browser (messages 3−4). Later on in the same session, when the user

submits a bank transaction (e.g., paying bills), the browser will include the session

cookie as well and the bank website will verify the user by looking at the session

cookie and hence will assume the action of bank transaction was intended by the

owner of the account (messages 7−8). As described in Section 1.2.2, this normal

browser behaviour can easily be exploited by the attacker.

2.1.5 Reactive System

At the highest level of abstraction, a web browser is modelled as a reactive sys-

tem [19], which is an event-driven state machine that waits for an input, produces

a sequence of outputs in response, and repeats the process indefinitely without

ever getting stuck. Formally, a reactive systems is defined as the following:

Definition 1 (Reactive system). A reactive system is a tuple (C,P , I,O,−→),

where C and P are disjoint sets of consumer and producer states respectively, I and

O are disjoint sets of input and output events respectively. The last component,

−→, is a labelled transition relation over the set of states S , C ∪ P and the set

of labels A , I ∪ O, defined by the following clauses:

1. C ∈ C and C α−→ Q imply α ∈ I and Q ∈ P;

2. P ∈ P, Q ∈ S and P α−→ Q imply α ∈ O;

3. C ∈ C and i ∈ I imply ∃P ∈ P : C
i−→ P ;

4. P ∈ P implies ∃o ∈ O,∃Q ∈ S : P
o−→ Q.

5For simplicity, the user name is omitted.

2.2. Related Work 21

A reactive system is a constrained labelled transition system that transforms

input events into stream of output events. A stream is defined as a coinductive in-

terpretation of the grammar S ::= [] | s :: S ′, where s ranges over stream elements.

A coinductive definition of the grammar defines the set of finite and infinite objects

that can be built with repeated applications of the term constructors, so a stream

is a finite or infinite list of elements [65]. In this dissertation, the attention is lim-

ited only to deterministic reactive systems. Bohannon et al. [19] introduced the

notion of reactive noninterference, which is the classical notion of noninterference

tailored towards reactive systems such as web browsers.

2.2 Related Work

There is a large body of research work on web browsers security in general and

web authentication security in particular. Johns et al. [70] gives an overview of

the attacks on web authentication. The research community has proposed several

solutions against these attacks in the last few years, based on server-side coun-

termeasures [10, 60, 69], stronger web authentication schemes [6, 35, 56, 70], or

purely client-side solutions [21, 40, 100, 41, 90, 91, 106, 71].

Web session security is often addressed at the browser-side as such defences

have a very wide scope and applicability. If a website, for example, does not

comply with recommended security practices and/or is affected by a vulnerability,

web authentication can often be protected by working solely at the browser’s side.

Server side defence mechanisms are clearly important and worth of study, since

they can precisely fix the root causes of the vulnerabilities and prevent usability

issues, but these approaches are considered orthogonal to the endeavours taken in

this dissertation. This section is devoted to include work from the literature on

formal study of the web browsers and web sessions security.

22 2. Background and Related Work: Web Browsers and Web Sessions

2.2.1 Formal Verification

Human analysis can be used to detect potential vulnerabilities [33, 80], however,

analysis by hand is often too difficult and can miss vulnerabilities in the system

that could, otherwise, be captured using formal tools and techniques. Yang et

al. [112] showed that formally verified CompCert is more reliable and robust than

the non-verified compilers such as GCC and LLVM. After such success stories, it is

believed that formal models of web applications and web security mechanisms can

reveal practical attacks and are useful to evaluate alternate designs [7]. Moreover,

the web platforms continue to grow and hence the importance of using formal and

automated tools, to reason about their security properties, increases.

Akhawe et al. [7] built a formal model of web platform and analysed the secu-

rity of several sample web mechanisms and web applications. Bohannon et al. [19]

introduced the notion of reactive noninterference, the classic notion of noninter-

ference tailored towards reactive systems such as web browsers and developed a

bisimulation-based proof technique to prove that the mechanisms to enforce re-

active noninteference are sound. They developed an extensive formalization of

the browser, called Featherweight Firefox, as a reactive system in OCaml [18]

and proved in Coq that the Featherweight Firefox browser model is noninter-

ferent [17]. Bielova et al. [15] defined end-to-end browser security policies for

confidentiality and an enforcement mechanism based on Secure Multi-Execution

(SME) [44, 96, 26] was introduced.

Formal and automated proof methods have also been used to other fields, for

example, to verify security properties of network protocols [24, 13, 36, 37], mobile

applications [27] and web servers [81]. Crafa et al. [34] developed PicNIc: a veri-

fication tool, based on models in π-calculus, that automatically checks qualitative

noninterference for finite systems.

2.2. Related Work 23

2.2.2 Web Browser Security

In the literature, a number of techniques have been proposed to improve browser

security [11, 59, 28], however, work on using formal techniques to web browser

security is included in this section.

To protect against browser-based security attacks launched through JavaScript

exploitation, Yu et al. [114] used program instrumentation to identify and modify

questionable behaviours of untrusted JavaScript and notify the user. They defined

a small imperative language, called CoreScript, with big-step style operational

semantics. The CoreScript supports some basic Browser Object Model operations

(e.g., opening and closing a window) and includes a store of windows and a store

of cookies. Yoshihama et al. [113] further extended the CoreScript model with

other sophisticated features such as and <script> tags to load images and

scripts from remote resources. The model allows fine grained access control in the

web applications to protect mashups and user-generated contents.

In the seminal paper by Akhawe et al. [7], the authors built a formal model of

web platform and analysed the security of several sample web mechanisms and ap-

plications, using three different threat models. The backbone of the formal model

include web browsers, servers, scripts, HTTP, DNS and the ways they interact.

Using model checking tool Alloy, they introduced formal formulation of web session

integrity and found two previously known and three new vulnerabilities. Bansal

et al. [8] developed a ProVerif library, called WebSpi, for modelling browsers and

web applications. As the authenticity properties in ProVerif are modelled through

correspondence assertions, it makes the formal verification of certain security prop-

erties extremely difficult. If web session integrity is defined in these terms, all the

pages of the web server and its authentication goals would need to be defined

explicitly making it difficult to provide integrity guarantees for any authenticated

session.

24 2. Background and Related Work: Web Browsers and Web Sessions

As mentioned above, Bohannon et al. proposed to replace the same-origin

policy with information-flow control policies defined in terms of (reactive) non-

interference. They developed an extensive formalization of the browser, called

Featherweight Firefox, as a reactive system and implemented it in OCaml [18].

Featherweight Firefox is a detailed model of a standard web browser which in-

clude multiple browser windows, pages, cookies, HTTP requests and responses,

simple features of JavaScript, simple model of DOM and basic features of HTML.

The inputs of the model include events such as loading a URL in a new window,

typing text in a text box, receiving network responses and similarly the outputs

include events such as loading and updating a page, displaying error messages

and sending network requests. Bohannon proved in Coq that the Featherweight

Firefox browser model satisfies end-to-end security policies that ensure web script

security [17].

Featherweight Firefox model include most of the necessary machinery relevant

to cookies and operations on them, however, Bohannon proved noninterference

property to ensure web script security rather than web session security. The Coq

version of the Featherweight Firefox allows one to specify information-flow security

policies and reason about them making it an ideal option to specify and reason

about web session security. The research work in this dissertation is built on

reactive noninterference [19], Featherweight Firefox Coq model [17] and reactive

noninterference for the browser [15] (see below). Featherweight Firefox model with

extended features required to formalize web sessions and security policy to protect

against attacks on session confidentiality are discussed in detail in Chapters 3 and

4. The security policies to thwart attacks on session integrity are enforced by

further extending Featherweight Firefox and multi-executing the reactive system

and are discussed in Chapters 7 and 8.

De Groef et al. used a different approach to web security and developed

2.2. Related Work 25

a fully functional web browser FlowFox [38] that supports precise and general

information-flow control policies for web scripts based on the technique of SME.

Devriese and Piessens [44] proved that SME enforcement technique preserves

soundness and precision properties. Later on, Bielova et al. [15] directly applied

the secure-multi execution technique to the Featherweight Firefox model achieving

a browser model that holds the property of noninterference. They applied SME,

in different way than used in FlowFox, to reactive systems such as web browsers:

Bielova et al executed multiple copies of the entire reactive system with one sub-

execution for each label in the security lattice while De Groef et al. executed

each script two times6. Similar to Bohannon, they developed a notion of security

policy but, unlike Bohannon, they enforced the security policies by executing mul-

tiple copies (sub-executions) of Featherweight Firefox model. The information-flow

policies, defined and proved sound by both Bohannon [17] and Bielova et al. [15],

ensure confidentiality but not integrity.

A common approach adopted in all these proposals is the analysis of a model of

the web browser and not the actual implementation. A slightly different approach

was used in OP [59] web browser. The authors of OP built a model of their browser

kernel and formally verified security properties such as the same-origin policy and

address bar correctness using model checker Maude [49]. The design philosophy of

OP web browser is to partition the browser into multiple subsystems and interpose

all of the communication between these subsystems through the browser kernel.

In an effort to fill the formality gap between the theory and implementation,

Jang et al. [66] introduced a browser QUARK with the structure to ensure all their

target security properties. As observed by Jang et al., fully7 formal verification

using a proof assistant is a laborious task and hence is infeasible or tremendously

6In the former, they used a multi-level lattice while a two-level (High and Low) lattice was
used in the later.

7Formalizing the full implementation of a system rather than its model.

26 2. Background and Related Work: Web Browsers and Web Sessions

expensive to verify large and complex software systems such the web browsers. To

give fully formal verification of the browser implementation, they instead built a

small browser kernel where all other browser components were allowed to access

system resources only through the kernel. A similar approach, components access

to system resources mediated by the kernel, has also been used by Android sys-

tems [4]. The QUARK kernel adopts the design strategy privilege separation [95] as

adopted by other popular browsers Google Chrome [11], Gazelle [110] and OP [59].

Through formal shim verification, they formally verified a large system by only

verifying a lightweight shim with guarantees the components are restricted only to

the allowed behaviours. QUARK kernel is implemented and then proved correct

using proof assistant Coq to ensure security properties such as tab non-interference,

cross-domain cookie confidentiality and integrity and address bar integrity.

2.2.3 Web Session Confidentiality

Jang et al. [66] proved inter-domain cookie isolation, however, a tab can leak a

cookie if the cookie domain matches with or is a sub-domain of the tab domain,

making QUARK ineffective against XSS attacks.

A web session may be hijacked by the attacker, exploiting a XSS vulnerability,

by injecting a script at the vulnerable web page that steals the session identifier

value. The actual vulnerability, in this case, resides on the server side and can be

better addressed at the server, for example, by setting the cookie HttpOnly flag.

However, as experimentally verified [21], most of the web developers fail to follow

the recommended practices at the server side: the security flags are not widely

adopted in the web applications. These results are similar to the earlier findings

by other researchers [90, 106].

Apart from the protection mechanisms based on the security flags, there are

HTML security policy systems where the security policy is supplied by the website

2.2. Related Work 27

and enforced by the web browser, such as Content Security Policy (CSP) [105],

BEEP [67] and BLUEPRINT [107]. These security policies are concerned more

about XSS attacks, however, they have performance and security problems [111].

HTML security policies or server-side solutions in general worth study, however,

they are considered only briefly in this dissertation8.

If the web site operator is not willing or able to fix the server-side vulnerability,

a complementary approach would be to protect the user at the browser-side from

XSS attacks. The simple rule proposed by Nikiforakis et al. [90], is to prevent

JavaScript APIs to access session identifier values. They developed a lightweight

mechanism called SessionShield to protect against session hi-jacking. It acts as

a proxy between the browser and the network and strips out incoming session

cookies from HTTP headers and store them in an external database. On later

HTTP requests, the database is queried using the domain of the request as the

key and all the retrieved session cookies are attached to the outgoing request.

The SessionShield protection mechanism is very competent, in particular, the

idea of relying on a heuristic to identify session cookies which is also used, with

slight modifications, in the implementation of CookiExt (Chapter 5). On the other

hand, SessionShield does not enforce any protection against network attacks and

does not support HTTPS, since it is deployed as a stand-alone personal proxy

external to the browser. The idea of identifying session cookies through a heuristic

and selectively applying the HttpOnly flag to them has also been advocated in

Zan [106] – a browser-based solution aimed at protecting legacy web applications

against different attacks. Similarly to SessionShield, Zan does not implement any

protection mechanism against network attackers.

Kirda et al. proposed a client-side Web proxy, called Noxes [75], to prevent

malicious scripts to send cookies by dynamically encoding them in requests to

8Getting policy information from the server result precise policies and is needed for compati-
bility reasons. A proposal for defining such policies is given in Chapter 8.

28 2. Background and Related Work: Web Browsers and Web Sessions

the attacker’s server. Unlike SessionShield, Noxes allows JavaScript to access ses-

sion cookie, but prevents them to leak cookies to the attacker. Noxes rely on

the assumption that requests to external domains generated by JavaScript are

not trustworthy and hence are blocked. It implicitly considers the external links

embedded, such as values of href and src HTML attributes, url identifier in CSS

and local links on a web page, safe with respect to XSS attacks. As observed by

Nikiforakis et al. [90], the policy implemented by Noxes is not compatible with

several web applications and is not complete: an injected HTML tag which stati-

cally references a URL with session identifier value, can leak the session identifier

to the attacker. Moreover, Noxes does not prevent the network attacks such as

intercepting the unencrypted data including the session cookies.

To protect against network attackers, a particularly relevant client-side de-

fence is HTTPS Everywhere [94]. This is a browser extension which enforces

communication with many major websites to happen over HTTPS. The tool also

offers support for setting the Secure flag of known session cookies at the client

side. Unfortunately, HTTPS Everywhere does not enforce any protection against

XSS attacks, hence it does not implement complete safeguards for session cookies.

Moreover, the tool relies on a white-list of known websites both for redirecting

network traffic over HTTPS and to identify session cookies to be set as Secure,

an approach which does not scale in practice and fails at protecting websites not

included in the white-list. Similar design choices and limitations apply to Force-

HTTPS [62], a proposal aimed at protecting high-security websites from network

attacks.

Adida [6] proposed a fascinating approach called SessionLock to protect against

network eavesdroppers. The SessionLock protocol is best suitable for web appli-

cations that offer initial login operation over HTTPS and then delivers the rest of

web pages over HTTP. In this protocol, after the user signs into the website using

2.2. Related Work 29

SSL, a session secret is stored in the browser over HTTPS as the cookie which

is never sent in clear but communicated from the initial login page over SSL to

each subsequent page over HTTP using the URL fragment identifier. Each subse-

quent HTTP request is then timestamped and HMAC’ed with the secret, received

during initial login phase, for authentication. As admitted by Adida, SessionLock

protocol fails against network attacks: an active attacker can trivially inject code

in a plain HTTP URL that can steal the session secret and hijack the session. Fur-

thermore, similar to HTTPS Everywhere, SessionLock protocol does not prevent

XSS attacks.

2.2.4 Web Session Integrity

Akhawe et al. [7] developed an Alloy model of the web platform and defined session

integrity as the property that no attacker is in the causal chain of any HTTP

request belonging to the session. The underlying model does not have a sufficiently

detailed representation of scripts to study other application-level session integrity

issues. Moreover, the property is very syntactic, so it is hard to generalize it

to new settings and carry out a precise comparison with the session integrity

definitions introduced in this dissertation (Chapters 7 and 8). It was observed

that the definition in [7] is only concerned about web attackers entering the causal

chain. It would be difficult to extend the notion to deal with network attackers

as they can enter the causal chain of any transaction which includes at least a

communication over HTTP and trivially violate session integrity. Moreover, the

security properties require browser-server interactions and hence are not amenable

to be enforced at browser side without server interactions.

To prevent CSRF attacks in QUARK, cookies are not included with the request

if the site domain suffix does not match with the tab domain, however, this lead

to major compatibility issues with applications such as Mashups [66]. A similar

30 2. Background and Related Work: Web Browsers and Web Sessions

approach, with the same compatibility problems, was used in RequestRodeo [71]

which selectively removes authentication credentials (e.g., cookies) from outgoing

requests. There are a number of others proposals that share the same idea of

stripping authentication cookies from (selected class of) cross-site requests includ-

ing [40, 100, 82], thus making CSRF attacks largely ineffective.

In the design by Philippe et al. [100], all the session and authentication infor-

mation are stripped out only from the malicious cross-origin requests. They have

designed and implemented an algorithm to precisely identify expected cross-origin

requests and allows the session information with such requests. The algorithm re-

lies on previous collaboration (e.g., requests in the past using POST method) be-

tween the websites. They formally verified, using bounded-scope model checking,

that the algorithm protects against CSRF attacks under the specific assumptions

about the way the sites legitimately collaborate with each other. However, the

algorithm is based on heuristics which eventually is not accurate and the verifica-

tion excludes from the threat model both XSS flaws and network attackers, which

instead are two important aspects that are considered in this dissertation.

Serene [41] is a browser-side solution against session fixation [76, 69] attacks.

The core idea is to instruct the browser to attach to outgoing HTTP(S) requests

only those authentication cookies which have been set via HTTP(S) headers, thus

preventing cookies set by a malicious script from being used for authentication.

Serene does not enforce protection against network attacks, since network attackers

can arbitrarily overwrite any cookie just by forging HTTP responses [9, 20]. The

design of Serene has not been formally validated.

As the HTTP Referer header contains the URL which initiated the request, it

can be used to distinguish the same-site requests from cross-site requests and hence

can be used to defend against CSRF attacks [10]. However, the Referer header may

contain sensitive information (e.g., the search query) violating the privacy of the

2.2. Related Work 31

users [61]. Due to the privacy reasons, the header is sometimes suppressed which

hampers the technique, especially, if the suppression is widespread. To resolve

the issues with privacy, Barth et al. [10] proposed to send an Origin header with

POST requests where the Origin stores the origin that initiated the request. This

technique restricts the use of Referer header by sending the Origin header only

with POST requests and includes only the necessary information (protocol, host

and port) to identify the source. A request with Origin header set to a different

(source) origin than the destination origin is rejected by the server.

Bortz et al. [20] introduced a new HTTP header called Origin Cookie as a

lightweight solution for protecting web sessions, to provide stronger integrity guar-

antees than standard cookies, based on origin isolation. Origin isolation is a sound

security principle, in particular against related domain and network attacks, where

cookies are isolated based on their origins. Using the header Origin Cookie, a

cookie can only be sent with request to an origin set by the response from exactly

the same origin. A cookie, for example, set over HTTP can not be sent with re-

quests over HTTPS. Origin cookies do not solve the problem of protecting the first

authentication step, i.e., when the password is sent from the browser to the server.

Moreover, origin cookies do not directly support mixed HTTP/HTTPS websites

and does not solve all the potential problems affecting cookie-based authentica-

tion: for instance, non-HttpOnly9 origin cookies can still be leaked via XSS. Li et

al. [79] classifies integrity as program correctness and compares information-flow

and access control enforcements for integrity.

9A cookie without HttpOnly flag set.

32 2. Background and Related Work: Web Browsers and Web Sessions

2.3 Web Session Security Using Coq

The Coq [32] development accompanied with this dissertation uses a locksetp un-

winding relation as the definition of web session security, which in turns rely on

the definition of reactive systems and policies. The structure of reactive systems

can be defined using the Coq module systems. A Coq module is a set of definitions

for identifiers and constraints on the terms in the module with the use of keyword

Axiom. One can write down the type (or signature) of a module, which is simply a

set of type declarations for the identifiers that must be present in the correspond-

ing module implementation. Coq can check that a given module respects a given

signature.

A module signature can be used to describe the form of a mathematical struc-

ture (e.g., reactive system) and a module satisfying that signature (ReactiveSystem)

can be used to define a particular instance of that structure. In order to build a

module satisfying a module signature with an axiom, the module must also provide

a proof that the axiom is true for the given definitions of the identifiers. Thus,

defining a module type (signature) is similar to defining a theorem and a module

satisfying that signature is the proof of the theorem [17]. An example Coq module

signature from Featherweight Firefox Coq model (and used in EFF) is given in

Figure 2.2.

Figure 2.2: IOEevents signature

1 Module Type IOEvents.
2 Parameter input_event: Type.
3 Parameter output_event: Type.
4 Definition event := input_event + output_event.
5 End IOEvents.

As a theoretical tool, reactive systems work well, but they can not be directly

defined conveniently as exactly one output can be released in one step taken from

2.3. Web Session Security Using Coq 33

a producer state. The convenient way is to define a system that allow some finite,

possibly empty, sequence of outputs to be produced on each step taken from a

producer state. The multistep reactive systems [17] does exactly that, where one

step of the system corresponds to multiple steps in a standard reactive system. The

same approach as Bohannon is used where a translation from multistep reactive

system to standard reactive system is constructed. This technique is using the

translation from one system to the other that has been defined as a Coq functor.

A reactive system is created that will contain a multistep system and will advance

it one step and stores the outputs in a buffer and then the reactive system will

release the buffered outputs one at a time or will insert a dummy output if the

multistep system produced none.

The accompanying Coq code include definitions of module signatures for I/O

events, policy, reactive system, multi-step reactive system, secure reactive and

secure multi-step reactive systems. Defining a module confirming to the module

signature for secure reactive system will be the proof of reactive system security

and similar approach based on Coq module feature is used to prove the security of

multi-step reactive systems and secure transformation of the later to the former.

34 2. Background and Related Work: Web Browsers and Web Sessions

3

Web Session Confidentiality:

Browser Input Output

The Featherweight Firefox model enforces web script security but not web session

security. Its Coq implementation [17] is very huge (more than 50,000 lines of

code), however, it still misses a number of interesting features. In this chapter, the

original Featherweight Firefox model in Coq is further extended with a number

of features (henceforth called Extended Featherweight Firefox (EFF)) to add the

support for policies to protect client authentication based on session cookies. In

order to support such policies, browser features like support for HTTPS, Secure

and HttpOnly cookie attributes, redirects, Referer header and so on are added.

In the first part of this chapter, the (updated) definitions of input and output

events of the EFF model are included and in the second part of this chapter, the

information-flow security policy to protect session confidentiality is defined.

3.1 Input Events

A web browser interacts with its external environment through input and output

events – it takes inputs both from the user and network and similarly delivers

outputs to the user and network. User inputs come from the user while interacting

with the browser such as clicking a link on a page and network inputs come from

36 3. Web Session Confidentiality: Browser Input Output

the network such as responses to HTTP(S) requests. The type input_event is

inductively defined in Figure 3.1.

Figure 3.1: input_event data type

1 Inductive input_event: Type :=
2 | user_load_in_new_window_event:
3 user_win_id → url → input_event
4 | user_load_in_window_event:
5 user_win_id → url → input_event
6 | user_close_window_event:
7 user_win_id → input_event
8 | user_input_text_event:
9 user_win_id → nat → String.t → label → input_event

10 | network_document_response_event:
11 net_conn_id → user_win_id → resp → input_event
12 | network_script_response_event:
13 net_conn_id → resp → input_event
14 | network_xhr_response_event:
15 net_conn_id → resp → input_event.

The Coq keyword Inductive is used to inductively define data types of some

sort (Type in this case). The first four type constructors represent user input events

(lines 2−9). The constructor user_load_in_new_window_event corresponds to

the event when a user opens a new window and navigates it with a URL or opens

a link in a new window. The overall external structure of input_event is kept as

original except the first constructor for user_load_in_new_window_event event,

where the parent (previous) user window identifier user_win_id is added.

The user_win_id, which wraps a natural number in a record type, refers to a

browser window. It tracks the previous window in case the user opens a link in

a new window, which in turn is needed to track the referrer of the request. For

example, when the user right clicks on a standard HTML link and opens it in a

new window. As EFF include HTTP Referer header, the field user_win_id, which

points to the source (previous) window, is used to extract the URL of the source

window which is used as the referrer of the request. If the user opens a blank

3.1. Input Events 37

window and navigate it to a URL, the referrer is blank. The second input event

user_load_in_window_event represents the user event navigating a window to a

specific URL. This occurs, for instance, when the user types a URL in the address

bar of the existing window or when the user clicks on a standard HTML link on a

page in a window.

The third user input user_close_window_event represents the event when a

user closes an opened window. The event user_input_text_event represents the

user event of typing some text in a text box on a page. Its first parameter is the

window where the text box lies on a page. The natural number represents a text

box number according to its position on that page. The third parameter is the text

user enters into the text box. This, for example, models event when the user types

the password in a login form on the page in the window. The fourth parameter is

the security label1 which represents the user’s intentions for the visibility of this

input event. A similar label is derived for other security critical events (such as

network events discussed below) from the URLs of these events. The definition of

type url is given in Figure 3.2.

Figure 3.2: url data type

1 Inductive url: Type :=
2 | blank_url: url
3 | http_s_url: protocol → domain → req_uri → url.

The two constructors of the type url correspond to the two types blank and

HTTP(S) URLs. To accommodate both HTTP and HTTPS URLs, the parameter

protocol (Figure 3.3) is added to the constructor http_s_url. In EFF, the secu-

rity policy and enforcement mechanisms treat https:URLs and http:URLs isolated

from each other with different security labels and hence with different constraints

1The security label (Figure 3.12) represents the attacker’s capability.

38 3. Web Session Confidentiality: Browser Input Output

on them (Section 3.3). In addition to HTTP and HTTPS protocols, type protocol

also contains about_protocol. As blank_url gets different label, this is needed in

cases (for example in case analysis on url) where the protocol is to be extracted

from the blank_url. No security properties related to about_protocol, however,

are studied in this dissertation.

Figure 3.3: protocol data type

1 Inductive protocol: Type :=
2 | about_protocol: protocol
3 | http_protocol: protocol
4 | https_protocol: protocol.

The second parameter of the constructor http_s_url is the type domain which,

as in original model, is handling atomic domain names without checking for sub-

domains. The req_uri is a record type modelling the path and query string

parts of the URLs. Both the domain and path are used for accessing the cookies

registered for the url.

The last three constructors of input_event represent the three types of net-

work responses corresponding to the three network requests: document, XML-

HttpRequest and script, respectively. All of these network input events include

a net_conn_id: a record type including the type url and a natural number. It

identifies the network connection over which the HTTP(S) request was made to

the URL. As there can be more than one connection to the same URL, the natural

number is used to uniquely identify the connection. In the model, the parameter

net_conn_id of network responses is used to match up the HTTP(S) response to

the corresponding HTTP(S) request. The definition of net_conn_id is shown in

Figure 3.4.

In addition to the domain name and the natural number that refers to the most

recently opened network connection to that domain, the protocol of the URL

3.1. Input Events 39

Figure 3.4: net_conn_id data type

1 Record net_conn_id: Type :=
2 build_net_conn_id {
3 net_conn_id_url: url
4 net_conn_id_value: nat
5 }.

through which network request was made is used to assign security label to the

event. A higher label (https_label d) is assigned to network event over HTTPS

from domain d than to event with HTTP protocol which is assigned (http_label

d) label. This is required to assert in the security policy that in case of encrypted

communication, the attacker needs to be more powerful to decrypt the messages.

The type label is discussed in Section 3.3 in more detail. The other part, req_uri,

of the url in net_conn_id is redundant, however, it is kept as it is part of the

type url.

The event network_document_response_event includes user_win_id which

represents the window into which the content of the response (e.g., web page) is

intended to be loaded. All of the network input events include the type resp

modelling the headers and body of the HTTP responses as shown in Figure 3.5.

Figure 3.5: resp data type

1 Record resp: Type :=
2 build_resp {
3 resp_del_cookies: StringSet.t;
4 resp_set_cookies: StringMap.t cookie_flags_value;
5 resp_redirect_uri: option url;
6 resp_file: file
7 }.

The resp_del_cookies field (line 3) contains an unordered set of strings –

the names (keys) of the cookies that should be removed from the browser’s cookie

40 3. Web Session Confidentiality: Browser Input Output

store. Web sites can store session information as cookie value at the browser using

HTTP Set-Cookie header in HTTP(S) responses modelled as resp_set_cookies

(line 4). The resp_set_cookies field contains a finite mapping from string cookie

names to a record type cookie_flags_value – these are the cookie mappings that

should be added to the browser’s cookie store. Although, the mapping does not

include domain and path information, but cookies must be interpreted as relative

to the domain name and path. Both of these values are taken from the URL that

is used in the request for the resource.

Usually, cookies can be set for domains other than that of the original host [20].

For example, a sub-domain subdom.example.com can set a cookie for the do-

main example.com (e.g., a cookie with domain name example.com). According

to the domain-match [77] rule, this cookie can be then included in requests to

all sub-domains of example.com (such as app1.example.com). In EFF model,

sub-domains are not modelled – a cookie with a domain can only be set if the

cookie domain exactly match with the domain of the response URL. Including

sub-domains would be an interesting addition to reason about related-domains

attackers as described in [20].

The EFF model include HTTP redirects – a feature included in related mod-

els [7, 8] which have been shown to have a significant impact on browser security.

The field resp_redirect_uri in Figure 3.5 (line 5) has value of type option url

which represents an optional redirect URL where the browser is redirected. An

HTTP(S) response has status code, such as codes for content result and redirect,

as modelled in the formal model by Akhawe et al. [7]. In EFF model, however,

the optional resp_redirect_uri filed in the response resp is used to represent

both cases. Despite of different styles, both achieve the same objectives – if the

value of resp_redirect_uri is Some url, it is interpreted as a redirect to URL

url otherwise the response is processed as normal.

3.1. Input Events 41

Figure 3.6: cookie_flags_value data type

1 Record cookie_flags_value: Type :=
2 build_cookie_flags_value {
3 cookie_flags_value_secure: bool;
4 cookie_flags_value_httponly: bool;
5 cookie_flags_value_value: String.t
6 }.

The type cookie_flags_value (shown in Figure 3.6) is one of the important

additions to the model and hence is discussed in more detail. Since EFF sup-

ports HTTPS and JavaScript in the model can now access cookies (Figure 3.9), to

define interesting security policies, the model is extended with cookie attributes

Secure and HttpOnly. The first two fields, cookie_flags_value_secure and

cookie_flags_value_httponly, of type cookie_flags_valuemodels the Secure

and HttpOnly flags, respectively while the third field cookie_flags_value_value

contains the cookie value of type String.

Servers that support TLS/SSL protocols can protect cookies against eavesdrop-

pers and man-in-the-middle attacks by setting cookies with the Secure attribute

(there are tools, though, such as SSLStrip [50] that can pose HTTPS stripping

attacks). The browsers include Secure cookies only with requests over secure

communication. This restriction on cookies in EFF is captured by adding the

facility of cookie flag Secure and accordingly security rules in the security policy

(Section 3.3).

In case of origin cookies [20], the Secure flag is not needed to protect cook-

ies. The authors, instead, enforce the strict same-origin policy for cookies using,

in addition to Cookie, a new cookie attribute Origin using Origin-Cookie header

isolating cookies based on their origins. This mechanism, however, poses com-

patible problems to many applications that share cookies between schemes (use

both secure and insecure communication as in mixed-content websites) and related

42 3. Web Session Confidentiality: Browser Input Output

domains (sub-domains) as their main features.

Similarly, cookies with HttpOnly flags are not included if the cookie-string is

being generated for a non-HTTP API [9, 77]. In other words, JavaScript is not

allowed to access HttpOnly cookies. Hence, the flag HttpOnly can be used as

a partial mitigation for XSS by preventing script from accessing cookies in the

web browsers by setting cookies with HttpOnly flag [1]. Both of these attributes,

Secure and HttpOnly, are of type String [9], however, to make the reasoning

in Coq simple, instead the type bool is used without affecting the security goals

these attributes achieve.

Figure 3.7: file data type

1 Inductive file: Type :=
2 | empty_file: file
3 | html_file: list doc_tree → file
4 | script_file: script → file.

The body of the HTTP(S) response is modelled as a data type file as shown

in Figure 3.7. There are three types of files the browser may receive: an empty file,

a document file, or a script file. The doc_tree data type (shown in Figure 3.8) is

a recursive data type corresponding to the (parsed) HTML document. All of the

document tags include an optional elt_id which corresponds to the id attribute in

HTML. The inl_script_doc corresponds to the HTML <script> tag that is used

to add a script in-line in an HTML document. The rem_script_doc corresponds

to the HTML <script src> tag that is used to include a script into a web page

by instructing the browser to retrieve it from a remote source, typically using

HTTP(S) request. The textbox_doc constructor represents a text box on a web

page that can be updated by the user and the div_doc constructor corresponds

to the HTML <div> tag.

The parameter script, in both file and doc_tree, is one of the most im-

3.1. Input Events 43

Figure 3.8: doc_tree data type

1 Inductive doc_tree: Type :=
2 | inl_script_doc: option elt_id → script → doc_tree
3 | rem_script_doc: option elt_id → url → doc_tree
4 | textbox_doc: option elt_id → String.t → doc_tree
5 | div_doc: option elt_id → list doc_tree → doc_tree.

Figure 3.9: script data type

1 Inductive script: Type :=
2 | null_script: script
3 | nat_script: nat → script
4 | str_script: String.t → script
5 | url_script: url → script
6 | code_script: script → script
7 | app_script: script → script → script
8 | var_script: var → script
9 | fun_script: var → list var → script → script

10 | eval_script: script → script
11 | seq_script: script → script → script
12 | get_cookies_script: script
13 | set_var_script: var → script → script
14 | xhr_script: script → script → script → script
15 | self_script: script
16 | get_win_root_node_script: script → script
17 | new_div_node_script: script
18 | remove_node_script: script → script
19 | insert_node_script: script → script → script → script.

44 3. Web Session Confidentiality: Browser Input Output

portant types and is shown in Figure 3.9. The data type script represents the

abstract syntax of scripting expressions. It does not capture all of the details of the

JavaScript language, however, it contains most of the JavaScript features needed

to put important constraints on the implementation of the model as a whole. It

is further extended with a new script expression get_cookies_script, which is

added in particular to capture XSS attacks and is discussed in more detail below.

The rest of constructors of type script are as original and their detail can be

found in Bohannon’s thesis [17].

As mentioned in the beginning of this section, EFF include Secure and HttpOnly

cookie attributes. To depend against XSS [51, 5] attacks, a cookie is set with

HttpOnly flag and hence can only be accessed through HTML code and no access

to such cookies is given to JavaScript [9, 77]. To capture this notion and prove

related security properties, the script expression get_cookies_script is added to

EFF. Modelling the JavaScript command document.cookie, this script expression

residing on a page from a domain can access all non-HttpOnly cookies registered

for that domain, as permitted by the SOP [99]. The retrieved cookies make up a

string with cookie key-value pairs are separated by semi-colons and the string is

then stored in the str_script expression which may latter be leaked to unrelated

domains using network requests.

3.2 Output Events

The type output_event (Figure 3.10) models the user interface of the browser

model. Like the input event, the first category of events comprises the browser

outputs to the user. They include events of opening and closing a window, loading

and updating a page and displaying a string error message on the screen. The

type rendered_doc_tree represents the elements of the HTML document that

3.2. Output Events 45

are supposed to be visible to the user. For example, it does not not include in-

line and remote script elements. Further details of the user outputs can be found

in [17], however, the last three output events are more important in terms of web

sessions security and hence are explained below.

Figure 3.10: output_event data type

1 Inductive output_event: Type :=
2 | ui_window_opened_event: output_event
3 | ui_window_closed_event: user_win_id → output_event
4 | ui_page_loaded_event:
5 user_win_id → url → option rendered_doc_tree → output_event
6 | ui_page_updated_event:
7 user_win_id → option rendered_doc_tree → output_event
8 | ui_error_event: String.t → output_event
9 | network_document_request_event:

10 user_win_id → net_conn_id → req → output_event
11 | network_script_request_event: net_conn_id → req → output_event
12 | network_xhr_request_event: net_conn_id → req → output_event.

The last three constructors represent network requests for network document,

script and data loaded using asynchronous request. All of the three network out-

put events include net_conn_id and req and each event gets a label depending

on the protocol used in the corresponding HTTP request and the destination

domain of the request. Unlike the input events, the network connection identifier

in output_event is not used to match up the requests with the corresponding

responses but to get the domain and the protocol used for the request to label

it. There are different security labels for HTTP and HTTPS protocols, there-

fore, more sophisticated security policies (Section 3.3) can be defined by putting

constraints on output events based on the protocol used.

The definition of type req is shown in Figure 3.11. It represents the content

of an HTTP request. The first field req_req_uri of type req_uri is the URI

of the requested resource. Similar to Bohannon [17], the theoretical models are

46 3. Web Session Confidentiality: Browser Input Output

Figure 3.11: req data type

1 Record req: Type :=
2 build_req {
3 req_req_uri: req_uri;
4 req_cookies: StringMap.t String.t;
5 req_referer: url;
6 req_body: String.t
7 }.

limited only to the most frequently used request methods GET and POST and are

used interchangeably. Considering a distinction between these methods would be

useful to thwart CSRF attacks [100, 40], however, different approaches (Chapters

7 and 8) are taken in this dissertation to prevent against such attacks. The second

field represents a map from String cookie name to String cookie value, which

corresponds to the Cookie HTTP header [9] used to send the stored cookies to

the server. For an HTTP(S) request to domain, the field req_cookies contain

all the cookies registered for that domain. Note that, web browser include cookies

according to the cookie flag values: for example, the browser does not send Secure

cookies with unencrypted request.

The browsers normally allow to attach cookies to HTTP(S) request to URL

with a host equal to, or a sub-domain of, the cookie’s domain. Similarly, non-

Secure cookies received in clear from http://example.com are included with

encrypted requests to https://example.com. This lack of isolation based on sub-

domains and scheme may result related-domain attacks by compromising session

integrity [20] and hence worth study in future extension of the model.

The third field req_referer is an extension to the model to include HTTP

Referer header. This feature has been included in related models [7, 8] which

have been shown to have a significant impact on browser security. An http_s_url

URL represents the referrer of the request while a blank_url represent empty

3.3. A Confidentiality Policy 47

header. Including information about the referrer in the request might have security

implications and needs to be carefully dealt with. The address of a page having

(source of) a link might be private information or might reveal an otherwise private

information source (for example, Alice might not want the service provider Bob

to know David who had been referred Alice to this service). In such cases, it is

strongly recommended to get the user choice to whether or not the referrer be

revealed [52]. Moreover, the RFC 2616 [52] suggests that the referrer should not

be included in a non-secure HTTP request if the referring page was transferred

with a secure protocol. Such security measures would be trivial addition to the

model though, however, the first one would create many user dialogue messages

which eventually would lead the user to ignore them.

In case of redirects, an interesting question would be whether to keep the

original referrer or replace it with the source of redirect response. For example,

if a user clicks on a link that points to domain X on a page from domain A and

the request is redirected to domain B. In such redirect case, the original referrer

(domain A) is kept. This is not specified in the relevant RFC document [52],

however, most of the browsers (e.g., IE8, Safari4, FF3.6.10 and Chrome5) keep

the original referrer.

The last field req_body of type req represents the actual string message body

of the HTTP(S) request.

3.3 A Confidentiality Policy

After events of the browser are defined, its now time to define a precise confidential-

ity policy over the input and output events of the browser to secure session cookies.

To start with, the attacker is characterized using security labels where higher label

in the lattice accounts for more power. The principals, including attackers, are

48 3. Web Session Confidentiality: Browser Input Output

modelled as parties that can see fragments of the stream of input/output events

to/from the browser and the security label represents the capabilities of the at-

tacker.

Figure 3.12: label data type

1 Inductive label: Type :=
2 | top_label: label
3 | https_label: domain → label
4 | net_label : label
5 | http_label: domain → label
6 | bot_label: label.

The fundamental part of the security policy defined here is the type (set) of

security levels defined as the inductive type label (Figure 3.12). The intuitive

meaning of the label is that the input/output events and data having label

defined on a domain is intended to be shared only between that domain and the

user. The security label used here is much more flexible similar to the decentralized

label model [87]: a model used in Java Information Flow (Jif) (previously known as

JFlow) [86, 88] language to enforce information-flow security policies in a mutual

distrusting environment.

The labels defined over domains (lines 3 and 5) are categorized based on the

protocol of the URL used to communicate with that domain. The domain labels

associated with HTTP protocol are represented with constructor http_label and

those with HTTPS protocol are represented with https_label. Some principals

can only read HTTP traffic sent to a particular domain, while others can read all

unencrypted network traffic. Traffic over HTTPS, on other hand, is only visible

to the most privileged principal (per domain).

The sort label forms a partial order, where the relation label_lt_equiv is

defined in Figure 3.13 as the Coq proposition of sort Prop. Such definitions in Coq

can be read as sets of inference rules, where each constructor corresponds to one

3.3. A Confidentiality Policy 49

Figure 3.13: label_lt_equiv function

1 Inductive label_lt_equiv: label → label → Prop :=
2 | top_label_lt_equiv: ∀ l, label_lt_equiv l top_label
3 | label_lt_equiv_refl: ∀ l, label_lt_equiv l l
4 | net_https_lt_equiv:
5 ∀ d, label_lt_equiv net_label (https_label d)
6 | http_net_lt_equiv:
7 ∀ d, label_lt_equiv (http_label d) net_label
8 | http_https_lt_equiv:
9 ∀ d1 d2, label_lt_equiv (http_label d1) (https_label d2)

10 | bot_label_lt_equiv: ∀ l, label_lt_equiv bot_label l.

rule of inference. The security label (http_label d) corresponds to the standard

view of a web attacker: this attacker controls the web server at domain d, but

has no network capability. A network attacker, instead, resides at level net_label

and is stronger than a web attacker, since it has the ability to inspect the contents

of all the unencrypted network traffic. The label (https_label d) corresponds to

more powerful attacker which may have fully compromised a running web server:

an attacker at this level has all the capabilities of a network attacker and can also

decrypt all the encrypted network traffic sent to the domain d.

Furthermore, two labels associated with different domains are considered in-

comparable in the partial order (for example, http_label d1 is not related to

http_label d2, where d1 6= d2). Finally, there are labels that are not defined on

domains. The bot_label is less than all other labels which is associated with the

content that is public to all principals at any security level. Similarly, the label

top_label is greater than all other labels which is associated to private contents.

To define precise security policies, labels need to be associated with input

and output events. The network input and output events are given labels based

on the destination domain and the protocol in the request/response URL. The

function url_label in Figure 3.14 defines a mapping from URLs to labels. It

50 3. Web Session Confidentiality: Browser Input Output

Figure 3.14: url_label function

1 Definition url_label (u: url): label :=
2 match u with
3 | blank_url ⇒ top_label
4 | http_s_url p d _ ⇒
5 match p with
6 | about_protocol ⇒ top_label
7 | http_protocol ⇒ http_label d
8 | https_protocol ⇒ https_label d
9 end

10 end.

assigns top_label to the URL of a blank page (blank_url). The non-blank

URL can either be with protocol HTTP or HTTPS, representing non-secure and

secure communication, respectively, which are assigned different security labels

based on the protocol. The URL with HTTP protocol is given label (http_label

d) which is below in lattice (Figure 3.13) than the label (https_label d) for

URL with HTTPS protocol. The label top_label is assigned to the URLs with

about_protocol. As noted in Section 3.1, this is needed to ease reasoning when

case analysis on url or protocol is used, where a URL with about_protocol (a

non-reachable case) is treated as the blank_url and is assigned the top_label as

in the model by Bohannon [17].

The intuition of the label is to represent the minimum point of observation. The

components of security policy for confidentiality pertaining to the label represent

the aspects of the input events (e.g., session cookies) that the browser must hide

relative to the points of observation. On the other hand, the policy components

pertaining to the output events describe the aspects of the output streams that

are assumed to be hidden from the points of observation. To elaborate this notion

further, the confidentiality policy for input and output events is defined in the

next subsections.

3.3. A Confidentiality Policy 51

3.3.1 The Policy for Input Events

The most important part of (network) input events to protect is the cookies. After

extending the model with security flags Secure and HttpOnly for cookies, more

interesting information-flow security policies can be defined for input and output

events. The tricky part of security policy for network events is to assign security

labels to cookies. The definition of the function assigning labels to cookies is given

in Figure 3.15.

Figure 3.15: cookie_label function

1 Definition cookie_label (d: domain) (zs zh: bool) : label :=
2 match zs, zh with
3 | false, true ⇒ http_label d
4 | true, true ⇒ https_label d
5 | _, _ ⇒ bot_label
6 end.

The function cookie_label assigns the label (http_label d) to HttpOnly

cookie registered by the domain d. The label for Secure and HttpOnly cookie reg-

istered by the domain d instead is (https_label d) and it is bot_label otherwise.

This sitting does not allow to set Secure cookies using non-secure communication.

A cookie with Secure flag set using unencrypted communication is not secure in

first place, even if the browser include it only with requests over encrypted commu-

nication. Moreover, a cookie with Secure flag is assumed to have always HttpOnly

flag set: this is not specified by the standard and some web applications do not fol-

low this assumption, however, it is adopted to strengthen security. This obviously

results some usability issues which are further discussed in the Chapter 5.

Based on the cookie label, the visibility of the cookie is defined by the predicate

is_vis_resp_cookie in Figure 3.16. The function erase_invis_cookies (Figure

3.17) gets a label, URL of the network input event and a map from String key

52 3. Web Session Confidentiality: Browser Input Output

Figure 3.16: is_vis_resp_cookie function

1 Definition is_vis_resp_cookie (l: label) (d: domain)
2 (ck: cookie_flags_value): bool :=
3 cookie_label d ck.(cookie_flags_value_secure)
4 ck.(cookie_flags_value_httponly) <?= l.

to cookie_flags_value and erases confidential cookies (at the label) from the

network input event. The map represents the Set-Cookie header of the network

response and the record type cookie_flags_value include Secure and HttpOnly

flags and the String cookie value (Figure 3.6).

Figure 3.17: erase_invis_cookies function

1 Definition erase_invis_cookies (l: label) (u: url)
2 (rssc: StringMap.t cookie_flags_value)
3 : StringMap.t cookie_flags_value :=
4 let ′(invalid, d) := match u with
5 | blank_url ⇒ (true, build_domain "")
6 | http_s_url _ d _ ⇒ (false, d)
7 end
8 in if invalid then rssc else
9 StringMap_key_filter (is_vis_resp_cookie l d) rssc.

Figure 3.18: StringMap_key_filter function

1 Definition StringMap_key_filter {A: Type}
2 (f: A → bool) (ckm: StringMap.t A) : StringMap.t A :=
3 StringMapProperties.filter (fun _ ck ⇒ f ck) ckm.

Using the standard notion of noninterference, the confidential part (the invisible

cookies) are stripped away from the input events. The intuition is that whether

or not the input contains confidential data, the observation of the attacker is

unchanged only by looking at the public output. The eraser function removes

cookies, from the Set-Cookie header in network input event, that are not visible

3.3. A Confidentiality Policy 53

at a label according to the definition in Figure 3.16. The eraser could simply be to

replace cookies with constants, however, instead the Coq built-in filter function

(Figure 3.18) is used to filter the visible cookies which is much easier to deal with

in proofs. The function StringMap_key_filter recursively applies the predicate

is_vis_resp_cookie to each value of the cookie map and keeps a cookie only if

the predicate is true, hence only visible cookies are kept.

After defining all the necessary pieces of the security policy, all that remains is

to put these pieces together in the required form. The binary relation same_form_ie

defined in Figure 3.19 combines these pieces in one equivalence relation. This

function states that two input events are in the same form if they are syntactically

identical after invisible cookies are erased and the keys in the corresponding maps

(the cookie maps from String key to cookie_flags_value) are equivalent. User

events are not relevant from cookies’ security point of view, therefore, the relation

same_form_ie does not strip any information away from the non-network input

events (last case of pattern matching).

After defining the functions and relations on cookies and input events, the

two required predicates for input events, vis_ie and sim_ie, are defined. The

visibility predicate for input events, shown in Figure 3.20, is an inductively defined

proposition in Coq. There is just one constructor vis_ie_all representing the rule

for vis_ie that all input events are visible at any label.

The second predicate sim_ie is similarity relation on input events as shown in

Figure 3.21. Similar to vis_ie predicate, it also consists of just one rule which

asserts that two input events are similar at a label if they are in the same form at

that label. The relation sim_ie is also reflexive. It could have been written as an

inference rule of the relation, however, to make it consistent to vis_ie in number

of rules, reflexivity is proved as a separate lemma.

54 3. Web Session Confidentiality: Browser Input Output

Figure 3.19: same_form_ie relation

1 Definition same_form_ie l (ieL ieR: input_event) : Prop :=
2 match ieL, ieR with
3 | network_document_response_event nciL uwiL rsL,
4 network_document_response_event nciR uwiR rsR ⇒
5 nciL == nciR ∧ uwiL == uwiR ∧
6 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
7 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧
8 rsL.(resp_file) == rsR.(resp_file) ∧
9 (∀ k, StringMap.In k (resp_set_cookies rsL) ↔

10 StringMap.In k (resp_set_cookies rsR)) ∧
11 (erase_invis_cookies l nciL.(net_conn_id_url)
12 rsL.(resp_set_cookies) == erase_invis_cookies l
13 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
14 | network_script_response_event nciL rsL,
15 network_script_response_event nciR rsR ⇒
16 nciL == nciR ∧
17 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
18 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧
19 rsL.(resp_file) == rsR.(resp_file) ∧
20 (∀ k, StringMap.In k (resp_set_cookies rsL) ↔
21 StringMap.In k (resp_set_cookies rsR)) ∧
22 (erase_invis_cookies l nciL.(net_conn_id_url)
23 rsL.(resp_set_cookies) == erase_invis_cookies l
24 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
25 | network_xhr_response_event nciL rsL,
26 network_xhr_response_event nciR rsR ⇒
27 nciL == nciR ∧
28 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
29 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧
30 rsL.(resp_file) == rsR.(resp_file) ∧
31 (∀ k, StringMap.In k (resp_set_cookies rsL) ↔
32 StringMap.In k (resp_set_cookies rsR)) ∧
33 (erase_invis_cookies l nciL.(net_conn_id_url)
34 rsL.(resp_set_cookies) == erase_invis_cookies l
35 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
36 | _, _ ⇒ ieL == ieR

Figure 3.20: vis_ie relation

1 Inductive vis_ie (l: label): input_event → Prop :=
2 | vis_ie_all: ∀ ie, vis_ie l ie.

3.3. A Confidentiality Policy 55

Figure 3.21: sim_ie relation

1 Inductive sim_ie (l: label): input_event → input_event → Prop :=
2 | sim_ie_same_form: ∀ ieL ieR,
3 same_form_ie l ieL ieR → sim_ie l ieL ieR.

3.3.2 The Policy for Output Events

The policy for output events is determined by the way these events impact the

outside world. Similar to the input events, there are two predicates, vis_oe and

sim_ie, which form the policy on the output events.

Figure 3.22: vis_oe relation

1 Inductive vis_oe (l: label): output_event → Prop :=
2 | vis_oe_ui_window_opened_event:
3 top_label <= l → vis_oe l ui_window_opened_event
4 | vis_oe_ui_window_closed_event: ∀ uwi,
5 top_label <= l → vis_oe l (ui_window_closed_event uwi)
6 | vis_oe_ui_page_loaded_event: ∀ uwi u rdto,
7 top_label <= l → vis_oe l (ui_page_loaded_event uwi u rdto)
8 | vis_oe_ui_page_updated_event: ∀ uwi rdto,
9 top_label <= l → vis_oe l (ui_page_updated_event uwi rdto)

10 | vis_oe_ui_error_event: ∀ z,
11 top_label <= l → vis_oe l (ui_error_event z)
12 | vis_oe_network_document_request_event: ∀ uwi nci rq,
13 url_label nci.(net_conn_id_url) <= l ∨ net_label <= l →
14 vis_oe l (network_document_request_event uwi nci rq)
15 | vis_oe_network_script_request_event: ∀ nci rq,
16 url_label nci.(net_conn_id_url) <= l ∨ net_label <= l →
17 vis_oe l (network_script_request_event nci rq)
18 | vis_oe_network_xhr_request_event: ∀ nci rq,
19 url_label nci.(net_conn_id_url) <= l ∨ net_label <= l →
20 vis_oe l (network_xhr_request_event nci rq).

The first part of the policy is defined as predicate vis_oe given in Figure 3.22.

It is an inductive type with inference rules one for each output event. To put

security constraints on the way output events should impact the outside world,

significant changes are added to the last three constructors of the relation corre-

56 3. Web Session Confidentiality: Browser Input Output

sponding to network events. Both the encrypted and the unencrypted network

traffic is visible (at least the occurrence of the event) to an attacker at or above

net_label. Additionally, the outputs to the user are visible at top_label.

Figure 3.23: sim_oe relation

1 Inductive sim_oe (l: label): output_event → output_event → Prop :=
2 | sim_oe_same_form: ∀ oeL oeR,
3 same_form_oe l oeL oeR → sim_oe l oeL oeR.

The second part of the policy is a binary relation sim_oe as shown in Figure

3.23. This relation consists of just one rule which asserts that two output events

are similar if they are in the same form. The relation same_form_oe (Figure 3.24)

defined over output events is large but simple to understand.

Two unencrypted network requests or two user output events are in the same

form if they are identical. For encrypted requests, they are in the same form if

they differ only in the confidential cookies. This later condition is enforced through

the function erase_cookies as shown in the Figure 3.25. It erases cookies from

requests over HTTPS such that for any label l, cookies are invisible at l while the

unencrypted requests are unchanged. As every Secure cookie is also marked as

HttpOnly, a request over HTTPS to domain d will only include cookies with both

flags set and hence will get the label (https_label d). Therefore, the request URL

and cookie key-value pairs (without flags) are sufficient to pass as the argument

to the function erase_cookies, which returns only visible cookies.

The intuition of the function erase_cookies is that the attacker is able to

fully analyse any plain output event it has visibility of, while the contents of

an encrypted request can only be inspected by a sufficiently strong attacker (at

or above https_label), who is able to decrypt the message. A randomized en-

cryption scheme is assumed, whereby encrypting the same request twice always

3.3. A Confidentiality Policy 57

Figure 3.24: same_form_oe relation

1 Definition same_form_oe (l: label) (oeL oeR: output_event) : Prop :=
2 match oeL, oeR with
3 | network_document_request_event uwiL nciL reqL,
4 network_document_request_event uwiR nciR reqR ⇒
5 uwiL == uwiR ∧ nciL == nciR ∧
6 reqL.(req_req_uri) == reqR.(req_req_uri) ∧
7 reqL.(req_referer) == reqR.(req_referer) ∧
8 reqL.(req_body) == reqR.(req_body) ∧
9 erase_cookies l nciL.(net_conn_id_url) reqL.(req_cookies)

10 == erase_cookies l nciR.(net_conn_id_url) reqR.(req_cookies)
11 | network_script_request_event nciL reqL,
12 network_script_request_event nciR reqR ⇒
13 nciL == nciR ∧
14 reqL.(req_req_uri) == reqR.(req_req_uri) ∧
15 reqL.(req_referer) == reqR.(req_referer) ∧
16 reqL.(req_body) == reqR.(req_body) ∧
17 erase_cookies l nciL.(net_conn_id_url) reqL.(req_cookies)
18 == erase_cookies l nciR.(net_conn_id_url) reqR.(req_cookies)
19 | network_xhr_request_event nciL reqL,
20 network_xhr_request_event nciR reqR ⇒
21 nciL == nciR ∧
22 reqL.(req_req_uri) == reqR.(req_req_uri) ∧
23 reqL.(req_referer) == reqR.(req_referer) ∧
24 reqL.(req_body) == reqR.(req_body) ∧
25 erase_cookies l nciL.(net_conn_id_url) reqL.(req_cookies)
26 == erase_cookies l nciR.(net_conn_id_url) reqR.(req_cookies)
27 | _, _ ⇒ oeL == oeR

Figure 3.25: erase_cookies function

1 Definition erase_cookies (l: label) (u: url)
2 (cks: StringMap.t String.t) : StringMap.t String.t :=
3 let (prot, d) := match u with
4 | http_s_url prot d ru ⇒ (prot, d)
5 | blank_url ⇒ (about_protocol, build_domain "")
6 end in
7 if (prot =?= https_protocol && !(https_label d <?= l)
8 then StringMap.empty else cks.

58 3. Web Session Confidentiality: Browser Input Output

produces two different cipher texts. Notice that similar output events must be

sent to the same URL, i.e., it is assumed that the attacker is able to observe the

recipient of any visible network event.

3.3.3 Cross-domain Requests

In the modern web framework, most of the web applications are relying on data

and content (e.g., images, CSS and JavaScript code) from third parties. When

the application is being loaded, the web browser implicitly requests resources (for

remote scripts and images) from servers that might be different than the origin

of the application. JavaScript is used by web developers to enhance interactivity

of their sites by loading the work to user’s browser and to improve their sites’

responsiveness and user friendliness. Most of the websites (more than 85%) include

remote scripts offering services such as Web Analytics, Market Research, User

Tracking, Dynamic Ads and Social Networking, from origins different than the

origins of the applications [89, 40]. Although, cross-domain requests are necessary

for proper web applications functionality, unsafe third party script inclusion lead

to a number of security vulnerabilities [89]. Web application may also include

HTML links, pointing to origins different than the application origin, which may

later be clicked by the user. Both explicit and implicit cross-origin requests causes

the popular class of attacks CSRF [40, 100].

Cross-domain requests are, therefore, some time stopped to prevent attacks

such as CSRF [102] or to simply reasoning about other security properties in the

web browsers [17]. To prevent CSRF attacks while allowing cross-domain requests,

the complex and challenging issue of integrity of web sessions must be solved. A

general solution would be to allow cross-domain request but strip away the cookies

from such requests. This would, however, make many web applications, such as

single sign on and e-payment, incompatible. A solution to this problem would

3.3. A Confidentiality Policy 59

be to allow cookies with legitimate cross-domain requests and strip away from

malicious cross-domain requests. The challenge, however, is to find when a request

is malicious. The solution can be based on heuristic to determine if a request is

legitimate (expected) or malicious [100, 40].

Unlike Featherweight Firefox [17], cross-domain remote script requests are al-

lowed in EFF. Web applications can load JavaScript codes remotely from cross

origins as permitted by the same-origin policy, however, can only load contents

from the same origin using AJAX requests. This behaviour does not add any ad-

ditional confidentiality threats to cookies other than existing threats (e.g., XSS)

to session cookies, which are protected by the security policy (Section 3.3) and the

EFF model enforcing this policy is proved secure according to the policy in next

chapter2.

Allowing cross-domain requests, however, can lead to CSRF attacks as men-

tioned before. The model does not include remote image inclusion, however, it

allows to include cross-domain remote scripts. This would be sufficient to rea-

son about the security against CSRF attacks caused by cross-domain requests,

however, such attacks are considered as session integrity problem. The flexibil-

ity regarding cross-domain requests would require consideration of integrity which

would in turn have over complicated the reasoning about other security features in

EFF. Capturing attacks on session integrity in formal setting is quite complicated

and is, therefore, addressed separately in Chapters 7 and 8 using access control

and information-flow control models.

2Third-party script inclusions and HTTP requests initiated by different origins can, however,
increase the surface of these attacks but the proposed defences prevent them.

60 3. Web Session Confidentiality: Browser Input Output

4

Web Session Confidentiality: The

Browser State

In Chapter 3, the input and output events of the model and the information-

flow security policy over these events were defined. Unlike the abstract reactive

systems model [19], the EFF model include a number of stores and small-step

operational semantics for script execution to enforce fine-grained information-flow

security policies. To achieve this, the state of EFF include stores for cookies, win-

dows, pages, open network connections and so on. The detail of these stores that

comprise the state of the browser, the main security theorem and its mechanised

proof are discussed in this chapter.

4.1 Browser State

The web browser is modelled as a (multi-step) reactive system consisting of two

states1: the waiting_state and runnin_state, where both states contain the

same basic information represented the same way. The basic information that

makes the core of the browser state consist of twelve fields as shown in Figure

4.1. Each state include pages, windows, document nodes, activation records, meta

1The terms Consumer and Producer are used for the states in standard reactive systems.
The EFF is modelled as a multi-step reactive system with states and the way they release their
outputs are different than the reactive system states (see section 2.3).

62 4. Web Session Confidentiality: The Browser State

data, cookies and open network connections. There are five stores for windows,

pages, nodes, node forests and activation records that are indexed by dynamically

allocated references.

The references pointing to different kinds of data in the stores are modelled in

Coq as nat, however, to ease its use in finite maps using functors in Coq, they

are placed in module Ref with a field of type nat. In the Coq code, a reference is

referred to as Ref.t (where Ref is a module and t (type) is a member set to type

nat in this case) which is transparently equal to nat. To leverage Coq type classes

to facilitate further operations on references, the finite map from references to a

parametric type are wrapped in record types. There are four such finite parametric

maps (Ref.t A) where the type A is instantiated with types for windows, pages,

nodes and activation records respectively.

In the browser, script expressions may evaluate to windows and document

nodes which may persist indefinitely even after windows and nodes are rearranged.

To identify particular windows and nodes such that their identities remain stable

throughout browsing session, fresh references to windows and nodes are used. The

activation records can be generated dynamically and are associated with fresh

references. Similarly, the data for pages, which represents transient data associated

with windows, are placed in store and assigned fresh generated reference. The last

two fields of type browser, browser_next_w_p_ref and browser_next_n_a_ref,

represent the fresh reference allocation to windows, pages, nodes and activation

records.

One reference allocator would be sufficient, however, having more than one

allocator simplifies the proof. There could be a separate reference allocator for each

of these types, however, it would have duplicated the code unnecessarily. Having

two allocators seems a reasonable choice and hence are kept as in Featherweight

Firefox Coq model. The rest of the fields of type browser are discussed in more

4.1. Browser State 63

detail as the following.

Figure 4.1: browser data type

1 Record browser: Type :=
2 build_browser {
3 browser_open_wins: list win_ref;
4 browser_wins: win_ref_map win;
5 browser_pages: page_ref_map page;
6 browser_nodes: node_ref_map (node_ref * node);
7 browser_node_forest: node_ref_map node_tree;
8 browser_acts: act_ref_map act;
9 browser_cookies: CookieMap.t cookie_flags_value;

10 browser_doc_conns: UrlMap.t (list doc_conn);
11 browser_scr_conns: UrlMap.t (list scr_conn);
12 browser_xhr_conns: UrlMap.t (list xhr_conn);
13 browser_next_w_p_ref: Ref.t;
14 browser_next_n_a_ref: Ref.t
15 }.

4.1.1 Windows

The first field browser_open_wins is the list of references to windows that are

visible to the user. When a new window is opened, it is placed at the head of

this list indexed by the identifier user_win_id. As mentioned above, a window

reference is a number nat but wrapped in the record type win_ref.

Figure 4.2: win data type

1 Record win: Type :=
2 build_win {
3 win_name: option String.t;
4 win_opener: option win_ref;
5 win_page: page_ref
6 }.

The second field browser_wins of type browser is the store for windows: a

mapping from window references to type win (Figure 4.2). This models only a small

64 4. Web Session Confidentiality: The Browser State

subset of DOM window object properties. The fields win_name and win_opener

correspond to the window object properties: name of the window and opener of

the current window. The last field win_page represents a page reference to the

page currently in the window. After the addition of the Referer header, a way was

needed to track the opener of a window when user opens a link in a new window.

For this purpose, the parameter user_win_id was added to the user input event

user_load_in_new_window_event (see Section 3.1). The field user_win_id in

this input event points to the opener (previous) window, containing a page where

the user clicked on a link. The url of the page (win_page) in the opener window,

which is pointed to by the user_win_id, is used as the referrer of the current page

document. When windows are closed, their references are removed from the store,

hence, the opener window and the page in that window can not be retrieved if the

window is closed.

Figure 4.3: page data type

1 Record page: Type :=
2 build_page {
3 page_label: label;
4 page_location: url;
5 page_document: option node_ref;
6 page_environment: act_ref;
7 page_expr_queue: list queued_expr
8 }.

4.1.2 Pages

The third field browser_pages of type browser is the store for pages. It is a

mapping from page reference to type page (Figure 4.3). The field page_label

is the label associated with the page and the field page_location represents the

source URL of the page currently being displayed. Using the function url_label

4.1. Browser State 65

(Figure 3.14), a security label could be associated with the page based on its

source URL, however, the page_label differs from the source URL label when

a window is opened and a document is not yet loaded. A window without page

still holds blank page with URL about:blank, which is assigned the top_label.

This is later changed to the label of HTTP(S) URL when the page is loaded. The

page_document represents the optional root node of the document tree of the page

in the window. Initially, when the window holds a blank page, the root node of the

document tree is set to None. The global environment of the scripts loaded into a

page is stored as an activation record act_ref in the field page_environment.

The scripts loaded for a page are stored in the field page_expr_queue. This

is a list of scripts, including both in-line and remote scripts, corresponding to the

<script> and <script src> tags in the document tree of the page. Remote scripts

must be retrieved through HTTP(S) requests. Scripts are executed, in the order

they appear in the document, soon after the page is loaded. A page in the window

is removed from the store when a different page is loaded in its container window

or when the window is closed.

4.1.3 Document Nodes

The type browser contains two different node stores: the browser_nodes and

browser_node_forest. The first node store is a map from node reference to a

pair of node_ref and node and is used for data associated with the node. The

second store keeps track of the parent-child relationship of nodes and is a map from

node reference to node_tree. The node_ref is the reference to the root node of

the tree where the node is found. The data types node_tree and node are shown

in Figure 4.4 and 4.5.

The DOM views documents as tree structures called node tree and is modelled

as type node_tree with each node referred to by node_ref. Each document node

66 4. Web Session Confidentiality: The Browser State

Figure 4.4: node_tree data type

1 Inductive node_tree: Type :=
2 | node_tree_branch:
3 node_ref → list node_tree → node_tree.

Figure 4.5: node data type

1 Inductive node: Type :=
2 | inl_script_node:
3 option elt_id → script → bool → node
4 | rem_script_node:
5 option elt_id → url → bool → node
6 | textbox_node:
7 option elt_id → String.t → list expr → node
8 | div_node: option elt_id → node.

represents either in-line script, remote script, a text box or an HTML div element.

4.1.4 Activation Records

The field browser_acts is the store for activation records: a map act_ref_map

from activation references to type act. The definition of activation record type act

is shown in Figure 4.6. An activation record represents the execution environment

of a function and is created each time when the function is applied.

Figure 4.6: act data type

1 Record act: Type :=
2 build_act {
3 act_parent: option act_ref;
4 act_depth: nat;
5 act_vars: list (var * expr)
6 }.

The field act_vars is a mapping from the values expr of the function parameter

4.1. Browser State 67

to each of the function’s local variables var. A script may read or update a variable

not in the associated activation record. In such cases, the browser will attempt

variable access from the parent record stored in the field act_parent. The set

of activation records in the browser forms a forest of trees structure. The field

act_depth indicates the number of ancestors that the activation record act has in

the tree structure. The global environment of pages consists of activation records

that forms the roots of these trees. Unlike windows and pages, activation records

are not garbage-collected and hence they are accessible even after their associated

pages are removed from the store.

4.1.5 Cookies

Figure 4.7: cookie_id data type

1 Record cookie_id: Type :=
2 build_cookie_id {
3 cookie_id_domain: domain;
4 cookie_id_path: path;
5 cookie_id_key: String.t
6 }.

The field browser_cookies represents the store of cookies in the browser. It

is a finite map from the type cookie_id to cookie_flags_value. The defini-

tion of type cookie_id is shown in Figure 4.7. In the browser, a cookie store

is a mapping (key-value pairs) from string key to string value. However, the

browser must keep track of cookie mappings for each file path (represented by the

field cookie_id_path) registered by each domain (cookie_id_domain). The field

cookie_id_key of type String is the cookie name (key). In Featherweight Firefox

model, the cookie store is a mapping from the cookie_id to String value. In EFF,

instead, the value of type String is wrapped in a record type cookie_flags_value

68 4. Web Session Confidentiality: The Browser State

(Figure 3.6) with two additional fields for flags Secure and HttpOnly. These flags

are used to define and enforce the information-flow policy (Section 3.3) to protect

attacks on web session confidentiality.

4.1.6 Network Connections

The fields browser_doc_conns, browser_scr_conns and browser_xhr_conns rep-

resent the three different network connection stores corresponding to document,

script and XMLHttpRequest (AJAX) network requests, respectively. Each store is

a mapping form the URL to the list of opened network connections to that URL.

A security label is associated with each network connection based on the proto-

col used in the corresponding network request, therefore, in addition to the domain,

the protocol is also required. Both, the domain and protocol, could be added as

separate fields to these record types, however, instead the type url is used as it

contains both. There is a different store for each kind of network connection in the

browser, each corresponds to the type of the network request (document, script

or AJAX). Similarly, there is a separate handler in the model for each kind of

network input. The URL of the net_conn_id in each network input response is

used to access a list of network connections to that URL. The numerical part of

the net_conn_id is then used to uniquely identify a specific network connection

in that list. This is useful to match-up the response to the corresponding request.

The browser, for example, will not accept a document input from a domain in

response to a script request to that domain.

The network connections for accessing top level HTTP(S) documents are stored

in the field browser_doc_conns. It is a mapping from the URL to the list of

document connections doc_conn. The definition of type doc_conn is shown in

Figure 4.8. The first field of this type is the req_uri which is needed to update

the cookies in the browser through the Set-Cookie header in the network response.

4.1. Browser State 69

Figure 4.8: doc_conn data type

1 Record doc_conn: Type :=
2 build_doc_conn {
3 doc_conn_req_uri: req_uri;
4 doc_conn_page: page_ref
5 }.

The second field is doc_conn_page which stores the reference to the page on which

the document request was originated. This field is added to populate the Referer

header of a redirected document request2. It is either the page where an HTTP(S)

link was clicked or the previous (parent) page in case a link is opened in a new

tab. If a new window (with blank page and blank URL) is navigated to a URL,

there is no parent page and hence blank_url is used as the referrer. Note that,

the blank_url as referrer is interpreted as disabled or no referrer header. The

window into which the document is to be loaded is provided as parameter in the

document response input (Section 3.1).

Figure 4.9: scr_conn data type

1 Record scr_conn: Type :=
2 build_scr_conn {
3 scr_conn_req_uri: req_uri;
4 scr_conn_page: page_ref;
5 scr_conn_node: node_ref
6 }.

The document tree may contain remote script nodes which correspond to the

<script src> DOM tag. Remote scripts are loaded immediately through HTTP(S)

script requests when the page is being rendered. Network connections correspond-

ing to the script requests are stored in the store browser_scr_conns. It is a

2Note that, keeping the original referrer is a common practice used by most of the browsers
and is used in EFF, but it is not recommended by the corresponding RFCs.

70 4. Web Session Confidentiality: The Browser State

mapping from URL to the list of script connections scr_conn (Figure 4.9). The

first field req_uri is the path of the script file. The second field scr_conn_page

stores the page on which the script should be run when it is received. The loca-

tion of this page serves as the referrer when the script requests is redirected. The

field scr_conn_node stores the node of the document tree that triggered the script

request.

Figure 4.10: xhr_conn data type

1 Record xhr_conn: Type :=
2 build_xhr_conn {
3 xhr_conn_req_uri: req_uri;
4 xhr_conn_page: page_ref;
5 xhr_conn_handler: expr
6 }.

The network connections corresponding to the AJAX requests are stored in

the store browser_xhr_conns: a map from URL to the list of AJAX connections

xhr_conn (Figure 4.10) to that URL. Similar to doc_conn and scr_conn, the first

two fields represent the path file and the source page of the request. The field

xhr_conn_handler stores the expression (handler) to handle the AJAX response

on that page if it still exists.

4.1.7 Waiting and Running States

Similar to the Consumer and Producer states of the standard reactive system [19],

EFF accepts inputs in the waiting state and produces a (possibly empty) sequence

of outputs at the producer states. The waiting state of the browser consists of just

the core browser data and the running state include one additional component: a

list of tasks. In the Featherweight Firefox model [17], the security mode is set to

the security level of input event needed to securely execute the scripts in the task

4.1. Browser State 71

list. In EFF setting, all the input events are visible at any label, therefore, the

security mode is not associated with input event and hence is not included in the

running states. The definitions of waiting_state, running_state and state are

given in the Figure 4.11. The infix notations * and + are used to define product

and sumbool types, respectively.

Figure 4.11: waiting and running data types

1 Definition waiting_state := browser.
2 Definition running_state := browser * list task.
3 Definition state := waiting_state + running_state.

The browser in a waiting state steps to a running state with a list of tasks

(scripts) when it receives an input event (e.g., document response). The definition

of type task is shown in Figure 4.12. A task consists of a field for the script expr

that is to be executed in running state and a reference to the window containing

the page where the scripts are to be executed. All the scripts in the list of tasks

must be executed before the browser can return to the waiting state.

Figure 4.12: task data type

1 Record task: Type :=
2 build_task {
3 task_win: win_ref;
4 task_expr: expr
5 }.

The scripts in task list are evaluating using a standard small-step semantics

with the top-level multi-step reactive system progressing to a new running_state

after each step of the evaluation. The small-step semantics for the script evaluation

is defined using Coq function definition. Unlike inductive definition, deterministic3

3Recall that, only deterministic reactive systems are considered in this dissertation.

72 4. Web Session Confidentiality: The Browser State

systems are easy to reason about when defined as functions in Coq. The script

data type is the surface language of scripts defined in the Section 3.1. However,

script evaluation needs to be defined in terms of internal language with syntax

defined by the type expr which contains some expression that are not allowed in

the surface language. The definition of type expr is given in Appendix A.1.

The expr data type has a constructor corresponding to each constructor in

type script plus five additional constructors. The first one is error_expr which

is a string representing a run-time error during expressions evaluation. This er-

ror message is later propagated to the user as ui_error_event output event. The

window and node references are treated as values in the language and the construc-

tors, win_expr and node_expr, are used to convert window and node references

to expressions. The fourth expression is scoped_expr which should be evaluated

in a specific context. The last additional expression is closure_expr which is

resulted from the evaluation of function_expr. It, in addition to the data of the

function_expr, includes a copy of the context in which the function_expr was

evaluated. The application of closures evaluate to a scoped_expr which inherits

its context from the closure.

The expression get_cookies_expr corresponds to get_cookies_script (Sec-

tion 3.1). The addition of this script is very important and hence is discussed

in more detail. As discussed in Section 3.1, the main objective of the expression

get_cookies_expr is to access the non-HttpOnly cookies, registered by the owner

of the document, from the store. Using this expression and the HttpOnly flag,

interesting security policies were defined, enforced in EFF and are proved secure.

When the expression get_cookies_expr is evaluated, it internally executes

a function get_site_cookies_httponly (Figure 4.13) that accesses all the non-

HttpOnly cookies. The function gets the source URL of the page where the script is

residing and the cookies store as the input and returns all the non-HttpOnly cook-

4.1. Browser State 73

Figure 4.13: get_site_cookies_httponly function

1 Definition get_site_cookies_httponly (u: url)
2 (ckm: CookieMap.t cookie_flags_value) : StringMap.t String.t :=
3 match u with
4 | blank_url ⇒ StringMap.empty
5 | http_s_url prot d ru ⇒
6 CookieMap.fold
7 (fun cki ck zm ⇒ if cki.(cookie_id_domain) =?= d &&
8 cki.(cookie_id_path) =?= ru.(req_uri_path) &&
9 !ck.(cookie_flags_value_httponly)

10 then StringMap.add cki.(cookie_id_key)
11 ck.(cookie_flags_value_value) zm else zm)
12 ckm
13 StringMap.empty
14 end.

ies, as a mapping (StringMap.t String.t), registered for that URL. It is using the

Coq function fold which in turn is applying another function to each key-value

pair in the cookie store (a mapping from cookie_id to cookie_flags_value).

The body of the later function is matching the domain and path of the URL

with the domain and path of each cookie in the store. If a match is found and

the HttpOnly flag is not set (in Coq code, type bool is used for flags instead of

string), the cookie is added to the accumulator. As a result, the function returns

all non-HttpOnly cookies registered for that domain as map from cookie name to

value. When the expression get_cookies_expr evaluates, all the returned cookies

are stored as a string expression (see below).

These cookies could have been stored as a mapping (StringMap.t String.t)

as returned by the get_site_cookies_httponly, however, an extra expr con-

structor would be needed to make expression from type (StringMap.t String.t).

Moreover, it is a tedious job to define and prove Coq type class definition and

relation (setoid and equivalence) for the whole type expr with twenty-three con-

structors. To prove that, similar browser states remain in sync if they both get

74 4. Web Session Confidentiality: The Browser State

similar inputs, Coq type classes are used in the proofs to ease rewriting. A setoid

consists (is record) of a type A together with a binary relation (equiv: relation

A) on A and proof (proposition) that this relation is an equivalence relation. The

existing equivalence relation over type expr is defined in terms of equality which

is easy to deal with in Coq. The simple equality relation seems quite restrictive,

however, it behaves similar to the flexible equivalence relation equiv (see Coq code)

for simple types such as nat. On the other hand, the equality is overly restrictive

for maps while in this case flexible relation was needed. For example, two states

with exactly the same data structures but equivalent cookie stores behave exactly

the same in real browsers. Converting the string map to a string of key-value

pairs makes the proof quite easy as equality can be used as the relation required

to define setoid for the type expr.

This conversion requires some effort, though, to prove that two equivalent

(cookie) string maps result equal strings. To achieve this, the string map, returned

by the get_site_cookies_httponly, is converted to a list of strings (key-value

pairs). The list of strings (key-value pairs) are sorted by lexicographic order using

keys. This sorting is not required for functionality reasons but for the proofs. The

sorted list of cookies is then converted to a string of semi-colon separated cookies,

similar to the result of command document.cookie at the console. Finally, it is

proved that for any two equivalent cookie maps, the corresponding sorted strings

of cookies are exactly the same.

4.2 Proof of Session Confidentiality

The input and output events were extended with the additional facilities to sup-

port communication over HTTPS and cookie flags (Section 3.1 and 3.2) to define

meaningful information-flow security policies and the internal data structures of

4.2. Proof of Session Confidentiality 75

the browser model were updated with additional features (Section 4.1) to enforce

these security policies. In Section 3.3, the security policy protecting session cookies

was defined in terms of noninterference. It appears that, the model should now

behave securely as the standard browser according to the protection mechanisms

based on flags Secure and HttpOnly, however, its security guarantees according

to the security policy have not been proved yet. To give mathematical guarantees

of the security, a proof, that the (model of) the browser is secure according to

this security policy, is needed. This is stated in terms of the main theorem as the

following.

Theorem 1. The Extended Featherweight Firefox (EFF) browser model is nonin-

terferent according to the security policy defined in Section 3.3.

Proof. The machine-checked proof of this theorem is given in the accompanying

Coq code.

This theorem is proved using Bohannon’s ID-bisimulation proof technique [19].

Using Coq module system as used by Bohannon [17], the proof of this theorem

would be to build a module that conforms to a signature SecureReactiveSystem

with its components ReactiveSystem and Policy instantiated with the EFF and

the security policy defined in Section 3.3. As web browser is formalized as a

multi-step reactive system, this is achieved by first building a module conform-

ing to the signature of SecureMultiStepReactiveSystem with its components

ReactiveSystem and Policy instantiated with the EFF and the security policy.

To build such a module, similar to SecureReactiveSystem, first the lockstep4

unwinding relation [19] sim is defined and then the five theorems, corresponding

to the five axioms in Bohannon’s ID-bisimulation definition, are proved. This

4A lockstep version of the standard unwinding relation is used where both states always take
step together.

76 4. Web Session Confidentiality: The Browser State

would be the proof of security of multi-step reactive system. The unwinding re-

lation sim is defined as the inductive type sim_wrq (Figure 4.14), which consists

of only two constructors each comparing two states of the same type (two waiting

or two running states). The relation requires that if one state take a step, the

other must also take a step, hence lockstep. After the security of multi-step reac-

tive system is proved, the SecureMultiStepReactiveSystem is transformed to a

SecureReactiveSystem which would be the proof of security of standard reactive

system.

Figure 4.14: sim_wrq relation

1 Inductive sim_wrq (l: label): state → state → Prop :=
2 | sim_wrq_wq_wq: ∀ bL bR,
3 sim_b l bL bR →
4 sim_wrq l (inl bL) (inl bR)
5 | sim_wrq_rq_rq: ∀ bL bR tlL tlR,
6 sim_b l bL bR →
7 bL.(browser_next_w_p_ref) ## tlL →
8 bR.(browser_next_w_p_ref) ## tlR →
9 bL.(browser_next_n_a_ref) # tlL →

10 bR.(browser_next_n_a_ref) # tlR →
11 tlL == tlR →
12 sim_wrq l (inr (bL, tlL)) (inr (bR, tlR)).

The result proved in the Theorem 1 is interesting and important in itself,

however, as it provides a certified guarantee of the effectiveness of the Secure and

HttpOnly flags as robust protection mechanisms for session cookies. Needless to

say, the theorem does not say anything about the security of sessions in existing

web applications, as that depends critically on the correct use of the cookie flags.

The actual adoption of these flags in existing systems needs to be determined and,

if the deployment in existing systems is not satisfactory, countermeasures should

be taken to secure modern web browsers. This is formalized, implemented and

experimentally analysed in the next chapters.

5

Web Session Confidentiality:

Browser-Side Enforcement

The Coq proofs provide certified guarantee of the effectiveness of the native pro-

tection mechanisms, based on Secure and HttpOnly flags, used in modern web

browsers. In the formal browser model, the assumption is that session cookies

have been properly flagged by the web developers. That is, to protect session

cookies, servers set them with both Secure and HttpOnly flags if registered over

HTTPS and only HttpOnly if registered over HTTP, however, this is not happening

in practice. The experiments shows that most of the existing web applications do

not deploy these protection mechanisms properly and hence fail to protect session

cookies.

To fill this gap between the security that these mechanisms can actually provide

and their actual adoption in the web applications in practice, a browser extension

CookiExt is proposed and developed for the Chrome web browser. In this chap-

ter, the experimental results motivating towards client-side protection, are given

(Section 5.2) and then the design and implementation of CookiExt (Section 5.3) is

discussed. At the end of the chapter, CookiExt is evaluated and its effectiveness at

protecting session cookies is discussed (Section 5.4).

78 5. Web Session Confidentiality: Browser-Side Enforcement

5.1 Session Cookies Protection in Existing Systems

To assess the actual adoption of the security flags in existing systems, a survey of

the top 1000 websites of Alexa was conducted. In the survey, all of the cookies,

registered using HTTP headers, were collected from these sites and then a heuristic

was applied to isolate session cookies. The adopted heuristic simply marks a cookie

as a session cookie if it satisfies either of the following two conditions:

1. The cookie name contains the strings ’sess’ or ’sid’.

2. The cookie value contains at least 10 characters and its index of coincidence1

is below 0.04.

The heuristic used is consistent with previous proposals [90] and has been

validated by a manual investigation on known websites. In particular, condition 1

is motivated by the observation that several web frameworks offer native support

for cookie-based sessions and by default register session cookies with known names

satisfying this condition. In addition, it appears that custom session identifiers

tend to include the string ’sess’ or ’sid’ in their names as well. Condition 2, in

turn, is dictated by the expected statistical properties of a robust session identifier,

which is typically a long and random string.

Clearly, there is no a prori guarantee of accuracy for the heuristic used in

CookiExt, however, just after the work was published [21], Calzavara et al. [25]

analysed and compared it with few other solutions and found it with satisfactory

results. Moreover, as will be discussed, however, there are other strong evidences

that the survey is reliable enough.

The heuristic is evaluated using two experiments. The first experiment provides

an estimate of the false positives identified by the heuristic. First, the percentage
1This is a statistical measure which can be effectively employed to understand how likely a

given text was randomly generated [55].

5.2. The Need for Client-side Defence 79

of cookies identified by the heuristic is computed which are weak session iden-

tifiers, i.e., fail to satisfy condition 2 above and thus are probably not used for

authentication purposes. It turns out that only 8.75% contain weak session iden-

tifiers. Interestingly, a manual inspection shows that most of these failures are

concentrated in very few websites (e.g., Amazon), which adopt the string ’sess’ in

an unanticipated way. If only Amazon is excluded, the false positive rate lowers

to 6.01%, which is considered acceptable for the investigation.

The second experiment aims at estimating the false negative rate and counts

the cookies flagged Secure or HttpOnly which are not identified as session cookies

by the heuristic: the intuition here is that cookies which are explicitly protected

by web developers likely contain session information. As it turns out, only 3.21%

cookies ignored by the heuristic have at least one security flag set. Again a manual

inspection reveals that this is a very localized behaviour, typically adopted by some

high-security websites (e.g., PayPal), which seem to enforce very strong protection

for the large majority of their cookies, irrespective of the nature of their content.

Further experimental evaluation of the heuristic on top 100 Alexa websites, where

personal accounts were created, is given in the Section 5.4.

5.2 The Need for Client-side Defence

Table 5.2 provides some statistics which highlight that the large majority (71.35%)

of the session cookies, identified in the experiment, has no flag set. Although, this

percentage may be partially biased by the adoption of a heuristic, it provides clear

indications of a limited practical deployment of the available protection mecha-

nisms. Further evidences are provided by other experiments (Section 5.4).

The HttpOnly flag appears to be adopted much more widely than Secure

(a cookie set with a particular flag is represented with
√

in the table). The

80 5. Web Session Confidentiality: Browser-Side Enforcement

Table 5.1: Statistics about cookie flags
HttpOnly Secure Cookies Percentage√ √

32 2.81%√
× 284 24.96%

×
√

10 0.88%
× × 812 71.35%

conjectured reasons are: first, modern releases of major web frameworks (e.g.,

ASP) automatically set the HttpOnly flag (but not the Secure flag) for session

cookies generated through the standard API; secondly, Secure cookies presuppose

an HTTPS implementation, which is not available for all websites.

Prior research has advocated the selective application of the HttpOnly flag to

session cookies at the client side to reduce the attack surface against session hijack-

ing [90, 106]. This idea is pushed further, by automatically flagging session cookies

also as Secure and enforcing a redirection to HTTPS for supporting websites. To

get a better understanding about the practical implications of this approach, a

simple experiment was conducted to estimate the extent of the actual HTTPS

deployment. The experiment showed that 192 out of the 443 (43.34%) websites

registering at least one session cookie support HTTPS transparently, i.e., they

can be successfully accessed simply by replacing http with https in their URL2.

Notice that the real percentage of websites supporting HTTPS can be possibly

higher, since encrypted variants of existing websites are sometimes hosted on a

different domain and no redirect to this domain is performed when the homepage

is accessed over HTTPS.

Moreover, it was observed that only 8.33% websites set the Secure flag for at

least one session cookie. Remarkably, it turns out that 73.44% of these websites

contain at least one HTTP link to the same domain hard-coded in their homepage,

2In this count, a number of websites which automatically redirect HTTPS connections over
HTTP were excluded.

5.3. CookiExt: Enforcing Session Confidentiality 81

hence session cookies which are not marked Secure are at risk of being disclosed

to a network attacker when navigating these websites. These data suggest that

the Secure flag for session cookies could (and should) be more largely deployed

in practice, which motivates towards the client-side defence proposal, discussed in

the next section.

5.3 CookiExt: Enforcing Session Confidentiality

The implementation of the required protection mechanisms should be designed so

as to minimize their impact on the user experience: this is a difficult task, which

requires careful design based on the search of the best possible trade-off between

security and usability. Moreover, the design should lend itself to an implementation

as a browser extension, to ease its deployment. When that is not possible, it is

important to fine-tune the proposed security mechanisms so that they are still

consistent with the theoretical model.

CookiExt is an extension for Google Chrome aimed at enforcing robust client-

side protection for session cookies. The reason to choose Chrome for the extension

development is that it provides a fairly powerful – yet simple to use – API for

programming extensions. The same solution, however, could be implemented in

any other modern web browser.

In the initial CookiExt proposal [21], it was designed as the following: when

the browser received an HTTP(S) response, CookiExt inspected its headers trying

to identify the session cookies based on the heuristic discussed earlier. If a session

cookie was found, CookiExt behaved as follows:

1. If the response was sent over HTTPS, all the identified session cookies were

marked Secure and HttpOnly.

2. If the response was sent over HTTP, all the identified session cookies were

82 5. Web Session Confidentiality: Browser-Side Enforcement

erased from the HTTP headers.

In both cases, all subsequent requests to the website were automatically redi-

rected over HTTPS, even for sites that were not supporting HTTPS at all. As

the extension was white-listing individual links, it had to redirect each request at

least once to check if HTTPS was supported. Each time, when an HTTP request

was redirected to HTTPS, a small timeout delay was set. If the website, that was

not supporting HTTPS, returned a network error or the timeout expired, it was

added to a white list. The approach of setting a timeout before sending an HTTP

request was not very robust in practice and CookiExt often adopted a fallback to

HTTP when it was not actually required.

Websites such as www.bbcurdu.com redirect HTTPS requests over HTTP au-

tomatically if HTTPS is not supported. Some of these websites, responded with

network error ERR_TOO_MANY_REDIRECTS if the redirected requests exceeded a cer-

tain threshold number3. These redirected requests over HTTPS for non-supporting

sites unnecessarily add to network traffic: for some websites, the browser redirected

more than hundred HTTP requests (e.g., for sub-resources such as images and

scripts) for a single web page, which were redirected back to HTTP by the server.

To address these issues, along with many others, the design of the CookiExt was

further improved with a number of necessary changes and extensive experiments

were carried to analyse many interesting features of the web.

5.3.1 Overview

At a high level, the behaviour of CookiExt can be summarized as follows: when the

browser submits a login form, CookiExt inspects the headers of the corresponding

HTTP(S) response from the remote server, trying to identify the session cookies

3The number varies from site to site but normally it ranges between 50-70

5.3. CookiExt: Enforcing Session Confidentiality 83

based on the heuristic discussed earlier. If a session cookie is found, CookiExt

behaves as follows:

1. If the response was sent over HTTP, all the identified session cookies are

marked as HttpOnly.

2. If the response was sent over HTTPS, all the identified session cookies are

marked as both Secure and HttpOnly. Additionally, all subsequent requests

to the website are automatically redirected over HTTPS.

This simple picture of CookiExt, however, is significantly complicated by a

number of issues which arise in practice and must be addressed to devise a usable

implementation. The extension maintains a number of stores for the record, most

notable of them are the lists of auto-redirect domains, secured cookies and white-

listed URLs. When login operation is successful4 over HTTPS, the base domain

of the request is added to the auto-redirect list. There are two possible scenarios:

1) a site (e.g., linkedin.com) may deliver the login page over HTTPS, but as

soon the login is successful, it immediately redirects the browser over HTTP, or

2) it keeps delivering all the subsequent pages (e.g., facebook.com) or at least

the page following login operation over HTTPS (e.g., yahoo.com). In both cases,

the domain of the request is added to the auto-redirect list so that all of the

subsequent requests to the same domain (or its sub or upper domains) may be

redirected over HTTPS. The reason behind this rule is cookies: a cookie set by a

domain is included with the requests to any of its sub-domain and vice versa.

As the main goal of the CookiExt is to flag session cookies, if they are not

already flagged, to secure them, however, due to usability reasons, this rule can

not be applied all the time. In practice, some times (see below) cookie flags need

to be reverted back to their original values, therefore, the CookiExt keeps track of

4A simple heuristic is used to check if a login operation is successful over HTTPS.

84 5. Web Session Confidentiality: Browser-Side Enforcement

the cookie flags that are altered. The list of secured cookies is used exactly for

this purpose. The list white-listed stores URLs with minimum (or no) constraints

applied by CookiExt on subsequent requests to any URL in this list.

The design of CookiExt and the issues that arises in practice are discussed in

more detail.

5.3.2 Flagging Session Cookies

As mentioned above, whenever a session cookie is identified in HTTP(S) response,

the cookie headers are modified before the cookies are stored in Chrome local store.

The CookiExt is listening through the chrome.webRequest.onHeadersReceived

API for incoming HTTP(S) responses. In chrome.webRequest API, each request-

response pair is represented with a unique identifier requestId which is used to

match-up the response with the corresponding request. The Set-Cookie HTTP

header is parsed and session cookies are identified according to the heuristic dis-

cussed in Section 5.1.

If the response is received in clear (over HTTP protocol), the CookiExt marks

the identified session cookies as HttpOnly and if the encrypted response is re-

ceived (over HTTPS protocol), all the identified session cookies are marked both

as Secure and HttpOnly. In addition, the changed flag values are recorded in the

list of secured cookies.

5.3.3 White-listing URLs

A website may support HTTPS only for some of the requests while delivers

the rest of the contents over HTTP. Redirecting requests over HTTPS for non-

supported parts of the websites will obviously fail. An HTTPS request may

be redirected by the server over HTTP and is intercepted using Chrome API

5.3. CookiExt: Enforcing Session Confidentiality 85

chrome.webRequest.onHeadersReceived or the server returns an TLS/SSL re-

lated network error which is intercepted using chrome.webRequest.onErrorOccurred

API. This way, a website can be checked if HTTPS is supported for the requested

URL. If HTTPS is not supported, the CookiExt falls-back to HTTP to preserve

functionality and adds the request URL to the white-listed URLs. Any future

request to the same URL is not redirected over HTTPS.

In addition, to prevent a network attacker from tapping with outgoing HTTPS

connections and disabling the client-side defence altogether, CookiExt keeps track

of all the pages for which a successful redirection from HTTP to HTTPS has been

performed in the past and notifies the user in case of an unexpected lack of HTTPS

support, possibly, due to malicious activities on the network.

5.3.4 Redirecting HTTP Requests

When the browser sends an HTTP request, the CookiExt redirects it to HTTPS

based on the following rules:

1. If the request is a page, frame or AJAX, it is redirected over HTTPS if

the base domain of the request URL is in auto-redirect list, at least a session

cookie is registered for the request and the URL is not white-listed for HTTP

communication.

2. If the request is for a sub-resource, it is redirected over HTTPS only if the

source page is over HTTPS.

As mentioned before, websites are added to auto-redirect list if the login oper-

ation is successful over HTTPS. This means, the site is listening at port 443 for

HTTPS requests. Now, if at least a session cookie is previously registered for the

request URL, it is upgraded to HTTPS to secure the session cookie. To find if the

86 5. Web Session Confidentiality: Browser-Side Enforcement

request should be redirected and then to redirect it, each HTTP request is inter-

cepted using Chrome API chrome.webRequest.onBeforeRequest listener. The

request to the same URL might have been redirected in the past but had failed

and was added to white-listed URLs. In such cases, redirecting the same request

over HTTPS is useless, therefore, the CookiExt do not redirect requests that are

white-listed for HTTP communication.

If a cookie, with its Secure flag set, is found in the secured cookies, CookiExt

checks if it may be included with the request using the domain-match [9] rule. A

website can register a cookie for itself and for any of its sub-domain and vice versa.

For example, yahoo.com can set a cookie with domain .yahoo.com and the browser

will include it in any request transmitted therein (e.g., to mail.yahoo.com). Such

cookies are informally referred to as domain cookies.

If a website relies on HTTP requests to a sub-domain for session tracking, a

naive implementation of CookiExt would break it. Assume, in fact, that the website

registers a domain cookie over HTTPS to authenticate the user, the CookiExt

will mark this cookie as Secure. Since any request sent to the sub-domain will

be transmitted over HTTP and as the cookie has been marked as Secure, the

browser will not send the cookie to the intended sub-domain. In the CookiExt

implementation, whenever a domain cookie is identified as a session cookie, a

redirection over HTTPS is enforced also for any sub-domain of the interacting

website.

The general rule is that a request is redirected over HTTPS if the login opera-

tion to the same website was successful over HTTPS and at least a session cookie

was registered for the request URL. As the request is upgraded to HTTPS, cook-

ies with Secure flag set are automatically included by the browser from Chrome

cookie store. As mentioned in the Section 5.3.2, a request can only be redirected

to HTTPS if the URL is not white-listed for HTTP communication either by the

5.3. CookiExt: Enforcing Session Confidentiality 87

extension, or the server itself. Note that, sub-domains are not dealt with in the

formal model (Chapters 3 and 4).

The rule for sub-resource requests is simple: if the source page of the request

is loaded over HTTP, the cookies are already exposed in clear and the request

is not redirected, but if it is over HTTPS, resource requests are redirected over

HTTPS to secure the session cookies. If the page was loaded over HTTPS, any

sub-resource request in clear may leak the session cookies as the browser enclose

all the cookies registered by the page domain with request to the same domain.

5.3.5 Challenges in Practice

The security policy adopted in CookiExt seems straight forward, however this sim-

ple picture is complicated by a number of issues in practice. There are many

websites that support HTTPS only for some content and delivers the rest of parts

over HTTP. Some websites need scripts to access cookies for the desired functional-

ity, however, this behaviour conflicts with the security policy enforced in CookiExt.

A website may accept HTTPS requests but redirect them back over to HTTP and

if the extension redirect them to HTTPS, it results into looping. All these different

web behaviours lead to different problems discussed below.

Supporting Mixed-Content Websites Mixed-content websites have support

for HTTPS but make some of their contents available only on HTTP. This website

structure is often adopted by e-commerce sites, which offer access to their private

areas over HTTPS, but then make their catalogues available only on HTTP. These

cases are problematic, as enforcing a redirection over HTTPS for the HTTP portion

of the website would make the latter unavailable. Similarly, even assuming to be

able to detect the absence of HTTPS support for some links, also the adoption

of a fallback to HTTP would eventually break the user’s session. Since session

88 5. Web Session Confidentiality: Browser-Side Enforcement

cookies are by default marked Secure by the extension, they will not be sent to

the HTTP portion of the website.

It was observed that mixed content websites always provide HTTPS support

at least for the initial authentication step, i.e., when the user’s password is sent

from the browser to the server. Thus, any session cookie registered by a mixed-

content website is initially marked as both HttpOnly and Secure. The later flag,

however, is removed when a lack of HTTPS support is detected for a portion

of the website and the session is proceeded over HTTP. Clearly, implementing

this behaviour requires to safely detect when HTTPS is not supported. The key

design choice for ensuring usability is to mark a session cookie as Secure and start

redirecting HTTP requests to HTTPS only whenever the initial login operation

happened over HTTPS. This guarantees that the remote web server is listening on

port 443, thus there is no need to set a timeout and the Chrome API is leveraged

to detect a number of network connection errors which may arise when HTTPS is

not supported.

Preventing Redirection Loops Several websites accept HTTPS requests, but

enforce a redirection over HTTP in the response. This is a bad security practice,

since inattentive users may be fooled in believing to operate over HTTPS even

though the website is actually deployed over HTTP.

In CookiExt setting, however, this may additionally lead to redirection loops

and negatively impact on the user experience, since CookiExt may end-up forcing a

redirection from HTTP to HTTPS for a given website, while the website may con-

versely try to perform a redirection from HTTPS to HTTP. The implementation of

CookiExt breaks these loops by processing incoming redirects and blocking further

redirects. When the destination URL is HTTP and at the same time included in

the list of white-listed URLs, it is not redirected over HTTPS: a URL is added to

5.4. Analysis of CookiExt 89

the white list if the request to that URL is redirected by the server back to HTTP

or a network error related to TLS/SSL is received.

Enabling Web Features As mentioned in the Section 5.3.1, CookiExt sets

HttpOnly flag of every cookie to thwart web attacks by preventing client-side

scripts to access cookies. However, some websites use scripts to access cookies

to track user’s activities (e.g., user chat enable or disable in facebook.com and

gmail.com or displaying user’s name on the page from fifa.com). To enable such

web features, CookiExt allows the user to relax the security policy enforced for that

particular web site only for HttpOnly flag. When the user choose to white-list a

website only for HttpOnly flag, all the altered HttpOnly flags for that website are

reverted back to their original status and no HttpOnly flag is set for that website

in future.

5.4 Analysis of CookiExt

The effectiveness of CookiExt critically depends on the accuracy of the heuristic

for session cookie detection. On the one hand, false negatives lead to failures

at protecting the session cookies of vulnerable websites and on the other, false

positives may hinder the usability of the browser. For instance, if a cookie is

improperly flagged as HttpOnly by the extension, no script may be able to access

it, which may break the website. In this section, the additional protection enabled

by CookiExt as well as its impacts on the user experience are analysed.

5.4.1 Methodology

To study the protection provided by CookiExt and its impact on the user experi-

ence, personal accounts on the top 100 websites from Alexa were created which

90 5. Web Session Confidentiality: Browser-Side Enforcement

provide a private area. After authenticating to each website, an in-depth naviga-

tion was performed to collect data and evaluated the user experience. The data

collection was restricted to the websites of interest to make the analysis more pre-

cise: for instance, third-party cookies or cross-domain requests are not included in

the analysis.

Overall, a total of 733 cookies registered through HTTP(S) headers were col-

lected: 303 of them were marked as session cookies by the heuristics used. For

each session cookie, a record of the original flags as well as of the new flags which

were assigned by CookiExt, was kept. To understand the usefulness of the idea

of redirecting HTTP requests over HTTPS, 32,622 HTTP requests were analysed.

The details of the experiments are reported as the following.

5.4.2 Evaluating Protection

Table 5.2 shows the original flags assigned to the session cookies registered by the

websites that were considered in the experiments. These data are more precise

than those in Section 5.2, since they were collected after authenticating to the

websites and navigating them. Notice, though, that they confirmed a worrying

lack of protection: more than a half (58.1%) of the session cookies had no security

flag set and were vulnerable to web threats and/or network attacks.

Table 5.2: Original session cookie flags
HttpOnly Secure Cookies Percentage√ √

48 15.8%√
× 66 21.8%

×
√

13 4.3%
× × 176 58.1%

To evaluate the protection CookiExt provides, the original flags of the cookies

received over HTTP headers are compared with the new flags which were set

5.4. Analysis of CookiExt 91

(represented with
√
) by the extension. Table 5.3 details which additional flags

were granted by CookiExt with respect to the original website behaviour.

Table 5.3: Secured session cookies
HttpOnly Secure Cookies Percentage√ √

92 30.4%√
97 32.0%√
19 6.3%

reverted 23 3.1%

The improvement in cookies protection is clear from the table. For instance,

30.4% cookies were originally completely unprotected (without any flag set), while

they could be secured against both web threats and network attacks using security

flags. It was noticed that 32.0% cookies were unprotected, but they could be

protected at least against XSS attacks using the HttpOnly flag. Finally, 6.3%

cookies were originally protected against web attacks, but they could be effectively

secured also against network threats by setting the Secure flag. As a side-note

to the table, 3.1% session cookies were originally marked as both HttpOnly and

Secure by the extension, but they were eventually downgraded to HttpOnly when

navigating the website to keep the session alive. There was at least a request

that could not be redirected successfully to HTTPS and hence the session cookie,

with Secure flag set by the extension, could not be included with the request

which breaks the session. For functionality reasons, the cookie is reverted back to

non-Secure cookie and then can be included with requests over HTTP.

To understand the impact of CookiExt in terms of successful HTTPS redirec-

tions, any redirection attempt performed by the extension was logged. The results

are summarized in Table 5.4, where the requests are discriminated based on their

types: main page and sub-resource5.

In these experiments, in total 1344 pages, with 322 page requests originally over
5The Chrome API provides facility to identify these request types.

92 5. Web Session Confidentiality: Browser-Side Enforcement

Table 5.4: Redirected requests
Type Total Redirected Success Percentage
Page 1344 322 166 51.5%

Resource 31278 158 154 97.5%

HTTP, were navigated among which 51.5% were successfully redirected to HTTPS.

This suggests that many websites do not provide their pages over HTTPS, even

though HTTPS support is available. Given the poor deployment of the Secure flag,

these data suggest that many major websites do not provide a satisfactory level

of protection against network attacks on web authentication. It was also observed

that 158 HTTP requests for sub-resources (e.g., images and scripts) were redirected

on HTTPS by CookiExt and only four redirections failed. Interestingly, 138 (87.3%)

of these redirected requests were from the website www.fifa.com. The low number

of sub-resource redirections highlights that web developers (except for a single

website) normally do not include sub-resources in clear from the same website if

the page is delivered over HTTPS. This is a sensible practice as, otherwise, the

sub-resource requests in clear will include the session cookie and will void the

security provided by the secure page.

On further investigating the numbers above, it was found that, with the use of

CookiExt, 10 out of 34 (29.4%) mixed-content websites can be entirely navigated

over HTTPS. For each such website, at least an HTTP request was successfully

redirected to HTTPS and no redirection failed. Such websites mostly benefit from

the use of CookiExt, since they can be completely secured against network attacks.

5.4. Analysis of CookiExt 93

5.4.3 Evaluating the Heuristic

To evaluate the effectiveness of the session cookie detection heuristic, some more

experiments were carried out6. To understand the practical impact of false nega-

tives, the survey of top 100 websites was analysed and the cookies flagged either

Secure or HttpOnly were isolated which were not identified as session cookies by

the heuristic. The intuition here was that cookies which were explicitly protected

by web developers were likely to contain session information and they were deemed

as potential false negatives. Only 62 of the 733 cookies ignored by the heuristic

had at least one security flag set. In addition, 16 of these 62 cookies were already

flagged Secure and HttpOnly, hence missing them was completely harmless.

To further evaluate the security of CookiExt, for each website, all the cookies

which have been marked as session cookies by the extension were deleted: a logout

implied that all the real session cookies had been identified by the heuristic. In 90

out of 100 cases, the user logged out, which indicated that most of the time the

heuristic approximated the real set of session cookies correctly.

Web applications may be produced using web application frameworks (e.g.,

ASP.NET, JavaEE) and off-the-shelf content management systems (e.g., Drupal,

Wordpress). As these frameworks also handle web aspects such as those concerning

session cookies, the heuristics used may not correctly reflect the every day usage

of the average user. It would be interesting to complement the above study with

analysis of the performance of the heuristics when used to identify session cookies

stored by websites developed with these frameworks, however, it is left to future

work.

6In a parallel study, a more systematic analysis was performed. The interested readers are
referred to the work by Calzavara et al. [25] for further information.

94 5. Web Session Confidentiality: Browser-Side Enforcement

5.4.4 Evaluating Usability

To understand the practical impact of the false positives, the CookiExt was tested

and hands-on experience was observed. In these experiments, the most serious con-

cern was about the web session being broken by the security policy applied by Cook-

iExt. While complete sessions break never happened in practice, however, it was no-

ticed that some features of three websites www.facebook.com, www.gmail.com and

www.fifa.com were disabled. For example, the user chat in www.facebook.com

and www.gmail.com, email deletion in www.gmail.com and appearing user’s name

on page from www.fifa.com after the user is logged in, were disabled. On further

investigation, it was observed that each of these sites registered non-HttpOnly ses-

sion cookies through HTTPS (cookies c_user, GMAIL_AT and FIFACom were reg-

istered by www.facebook.com, www.gmail.com and www.fifa.com, respectively)

and the CookiExt set their HttpOnly flags, making them inaccessible to JavaScript

opposed to as intended behaviour.

To enable features such as in these sites, CookiExt allows the user to add such

sites to the list of sites white-listed for HttpOnly cookies and non-HttpOnly cook-

ies received over HTTP(S) are not marked as HttpOnly afterwards. Even though

a slight performance degradation was observed when CookiExt was activated, how-

ever, at the time of this writing, no major usability issue was found in the updated

prototype of CookiExt.

6

Security of CookiExt-Patched

Web Browser

Reading the noninterference result (Theorem 1) carefully, one can argue that it

predicates on (a Coq model of) a standard web browser rather than on a web

browser extended with CookiExt and consequently provides no information about

the soundness of CookiExt. In other words, the noninterference property has been

proved for the Coq model of the browser without the features in CookiExt enabled.

The gap is only apparent, however, as CookiExt does not really alter the browser

behaviour, but rather activates existing protection mechanisms available in stan-

dard web browsers. Indeed, one may view CookiExt just as a filter that applies the

correct flagging to cookies received through network input events, de facto enforc-

ing the similarity condition on the input streams that constitutes the hypothesis of

the noninterference definition. A formal proof of the browser augmented with the

security policy in CookiExt, however, is required to provide mathematical guaran-

tees of the CookiExt-patched web browser. In this chapter, the underlying design

intuition of CookiExt is formalized and then the security of the model patched with

it is proved in Coq.

96 6. Security of CookiExt-Patched Web Browser

6.1 Interpretation of CookiExt in Coq

The behaviour of CookiExt is stateful: that is, the extension dynamically updates

an internal database to keep track of HTTP links that can be rewritten (redi-

rected) to HTTPS and websites that should fall back to HTTP (as HTTPS is not

supported). Moreover, CookiExt generates additional network traffic with respect

to a standard web browser, since HTTP links must be tested to determine if an

HTTPS redirection is supported. On the other hand, it was observed that these

dynamic aspects disappear when the internal database of CookiExt grows large

enough, for example, after the CookiExt user has fully navigated an arbitrarily

large set of known websites. Since users tend to navigate always the same web-

sites, the dynamic aspects described above are abstracted in the proof and the

semantics of CookiExt is defined in terms of a stateless (two-step) translation from

input events to more secure input events. This approach makes the soundness

proof in Coq simpler, modular and more elegant.

For the universe of URLs navigated by the user in the past using a CookiExt-

extended browser, on-going session is supposed to span over a subset of the universe

and the universe of URLs is stipulated to partition into two subsets of working

HTTP and HTTPS URLs, respectively. A domain is fully supporting HTTPS

if any HTTP URL comprised of this domain can be successfully redirected over

HTTPS. In Coq, this is defined as a predicate relation support in Figure 6.1.

Figure 6.1: support relation

1 Definition support (S: DomainSet.t) (d: domain) : Prop :=
2 DomainSet.In d S.

The relation support states that the domain in argument is in the set of do-

mains with full HTTPS deployment.

6.1. Interpretation of CookiExt in Coq 97

6.1.1 Rewriting URLs

The first step of the translation is given by the HTTPS rewriting of an input

event. This translation step corresponds to CookiExt upgrading HTTP requests to

HTTPS for supporting URLs. The rewriting upgrades an HTTP URL to HTTPS,

provided that the latter protocol is supported. The rewriting process is extended

to network connections by performing the HTTPS rewriting of the URL in network

connection and to network responses by performing the HTTPS rewriting of any

URL syntactically occurring in the response (e.g. the scr attributes of the<script>

tags). All these URLs in the response eventually result HTTP requests which

are redirected to HTTPS by the CookiExt if HTTPS is supported. In CookiExt

formalisation, this is modelled as rewriting all the HTTP URLS to HTTPS.

A rewrite function rewrite_url (rewrite_urlo for optional url) just replaces

the http_protocol of the url given as argument with https_protocol. A net-

work response resp may include HTML document list doc_tree which in turn

include remote script nodes rem_script_doc each with url from where the scripts

are to be loaded. The function rewrite_list_doc_tree is defined in the Figure

6.2. It takes the list of document trees list doc_tree, which represent the HTML

document received, and rewrites the HTTP URLs to HTTPS in the remote script

nodes of all the trees.

The script in the response resp may also contain a script url, which is also

rewritten to HTTPS. The function rewrite_script in Figure 6.3 gets the script

as argument and rewrites the url in the url_script.

The body of the response resp_file is modelled as inductive type file (Fig-

ure 3.7), which include HTML document html_file and scripts script_file.

The function rewrite_file (Figure 6.4) takes a file as input and rewrites all

the URLs of type url, in both the html_file and script_file, using functions

rewrite_list_doc_tree and rewrite_script respectively.

98 6. Security of CookiExt-Patched Web Browser

Figure 6.2: rewrite_list_doc_tree function

1 Fixpoint rewrite_list_doc_tree (ldt: list doc_tree)
2 {struct ldt} : list doc_tree :=
3 match ldt with
4 | dt::ldt′ ⇒
5 match dt with
6 | rem_script_doc eio u ⇒
7 rem_script_doc eio (rewrite_url u) ::
8 (rewrite_list_doc_tree ldt′)
9 | _ ⇒ ldt

10 end
11 | _ ⇒ ldt
12 end.

Figure 6.3: rewrite_script function

1 Definition rewrite_script (sc: script) : script :=
2 match sc with
3 | url_script u ⇒ url_script (rewrite_url u)
4 | _ ⇒ sc
5 end.

Figure 6.4: rewrite_file function

1 Definition rewrite_file (f: file) : file :=
2 match f with
3 | html_file ldt ⇒ html_file (rewrite_list_doc_tree ldt)
4 | script_file sc ⇒ script_file (rewrite_script sc)
5 | _ ⇒ f
6 end.

6.1. Interpretation of CookiExt in Coq 99

Finally, the function rewrite_ie (Appendix A.2) takes an input event as ar-

gument and rewrites all the URLs occurring anywhere in the event. This include

the request/response URL (the url parameter in the net_conn_id), redirect URL

(the resp_redirect_uri value), the URLs in the HTML document (such as the

url parameters in the remote scripts rem_script_doc) and the URLs in the script

(url_script).

6.1.2 Updating Cookies

In the second step of the translation, security flags of the cookies in a network

input event are upgraded. This translation step corresponds to the CookiExt set-

ting the correct security flags for incoming (session) cookies (Section 5.3.2): the

cookie flags are set with both Secure and HttpOnly flags if the website is sup-

porting HTTPS, otherwise, only HttpOnly flag is set. The function flag_cookies

defined in Figure 6.5 does exactly that. The network response events set cookies

in the browser through HTTP Set-Cookie header, which is modelled as the field

resp_set_cookies of the type resp (Figure 3.5) representing the body of network

response.

Figure 6.5: flag_cookies function

1 Definition flag_cookies (S: DomainSet.t) (u: url)
2 (rssc: StringMap.t cookie_flags_value)
3 : StringMap.t cookie_flags_value :=
4 match u with
5 | http_s_url prot d p ⇒
6 if support_dec_b S d
7 then StringMap.map (fun z ⇒ set_flags z) rssc
8 else StringMap.map (fun z ⇒ set_httponly_flag z) rssc
9 | _ ⇒ StringMap.empty

10 end.

The function flag_cookies gets the list of cookies (the value of the field

100 6. Security of CookiExt-Patched Web Browser

resp_set_cookies defined as a map) and the URL of the response and sets the

flags if the website is supporting HTTPS. Both, Secure and HttpOnly, flags are

set (the function set_flags at line 7) if the response is received over HTTPS,

otherwise, it sets only the HttpOnly flag (the function set_httponly_flag at line

8). This corresponds to setting the Secure flag only for cookies registered by

websites with full HTTPS support. The HTTPS support checking is modelled as

the proposition support (Figure 6.1) and is checked using the boolean function

support_dec_b (Figure 6.5, line 6).

The function upgrade_cookies_ie (Figure 6.6) updates the flags of the cook-

ies, using the function flag_cookies, received in the Set-Cookie headers of the

network response input event while the user input event is left unchanged.

Figure 6.6: upgrade_cookies_ie function

1 Definition upgrade_cookies_ie (S: DomainSet.t) (ie: input_event)
2 : input_event :=
3 match ie with
4 | network_document_response_event nci uwi rs ⇒
5 network_document_response_event nci uwi
6 (build_resp rs.(resp_del_cookies)
7 (flag_cookies S nci.(net_conn_id_url)
8 rs.(resp_set_cookies))
9 rs.(resp_redirect_uri) rs.(resp_file))

10 | network_script_response_event nci rs ⇒
11 network_script_response_event nci
12 (build_resp rs.(resp_del_cookies)
13 (flag_cookies S nci.(net_conn_id_url)
14 rs.(resp_set_cookies))
15 rs.(resp_redirect_uri) rs.(resp_file))
16 | network_xhr_response_event nci rs ⇒
17 network_xhr_response_event nci
18 (build_resp rs.(resp_del_cookies)
19 (flag_cookies S nci.(net_conn_id_url)
20 rs.(resp_set_cookies))
21 rs.(resp_redirect_uri) rs.(resp_file))
22 | _ ⇒ ie
23 end.

6.2. Confidentiality Policy 101

6.1.3 Translating Input Events

Given the definitions of rewriting URLs and updating cookies, the semantics of

CookiExt is characterized in terms of the two-step translation. The translation

include performing the HTTPS rewriting of any URL syntactically occurring in

network response and updating all the cookies in the response Set-Cookie headers.

This is defined by the function translate_ie in Figure 6.19, which simply is

using the two functions rewrite_ie and upgrade_cookies_ie defined above. The

translation is extended to the stream of events using the function translate_iel

(Figure 6.19).

Figure 6.7: translate_ie function

1 Definition translate_ie (S: DomainSet.t) (ie: input_event)
2 : input_event := upgrade_cookies_ie S (rewrite_ie ie).

Figure 6.8: translate_iel function

1 Fixpoint translate_iel (S: DomainSet.t) (iel: list input_event)
2 : list input_event :=
3 match iel with
4 | nil ⇒ iel
5 | ie::iel′ ⇒ translate_ie S ie::(translate_iel S iel′)
6 end.

6.2 Confidentiality Policy

To generalize the noninterference result in Theorem 1 to a CookiExt-extended

browser, a new similarity relation for input events is introduced. This similar-

ity relation is different than sim_ie introduced in the Figure 3.21 as it does not

depend on the cookie flags, since CookiExt applies them automatically.

102 6. Security of CookiExt-Patched Web Browser

Figure 6.9: cookie_label_plus function

1 Definition cookie_label_plus (S: DomainSet.t) (u: url) :=
2 if support_dec_b S (domain_url u)
3 then https_label (domain_url u)
4 else http_label (domain_url u).

Figure 6.10: erase_invis_cookies_plus function

1 Definition erase_invis_cookies_plus (l: label) (S: DomainSet.t)
2 (u: url) (rssc: StringMap.t cookie_flags_value)
3 : StringMap.t cookie_flags_value :=
4 if cookie_label_plus S u <?= l
5 then rssc else StringMap.empty.

This difference can be seen when labels are assigned to cookies using the func-

tion cookie_label_plus (Figure 6.9). This function, like many others defined in

this chapter, is parametric over the set of websites with full HTTPS support. As

mentioned in the Section 6.1, flags have already been updated in the input trans-

lation phase depending on the URL of the response and the website. A cookie is

assigned https_label if the website which registered it (the domain of the response

url) is fully supporting HTTPS, otherwise, it is assigned http_label. The func-

tion cookie_label_plus only checks if the website is with full HTTPS support and

if it is, then CookiExt must have already been successfully redirected the request

over HTTPS and the cookie flags must have been set to Secure and HttpOnly,

otherwise, to HttpOnly. The function cookie_label_plus is then used in the

function erase_invis_cookies_plus (Figure 6.10) to erase confidential cookies

from the set of cookies received in the response.

After defining the pieces of security policy for CookiExt, all that is needed to

put these pieces together in the required form. An updated version of the binary

relation same_form_ie (Figure 3.19), same_form_ie_plus (Appendix A.3), does

6.2. Confidentiality Policy 103

exactly that by combining these pieces in one equivalence relation. The only

differences between these functions are that the later is parametric over the set of

websites with full HTTPS support and replaces the function cookie_label with

cookie_label_plus to assign labels to the cookies received in the input response.

Figure 6.11: sim_ie_plus relation

1 Inductive sim_ie_plus (l: label) (S: DomainSet.t)
2 : input_event → input_event → Prop :=
3 | sim_ie_same_form: ∀ ieL ieR,
4 same_form_ie_plus l S ieL ieR →
5 sim_ie_plus l S ieL ieR.

Finally, the predicate sim_ie_plus in the Figure 6.11 defines the important

relation on input events. Two input events are considered to be similar if they are

in the same form according to the new definition same_form_ie_plus. In other

words, two input events are similar if they differ only in the confidential cookies

after the cookies have been flagged by the CookiExt. The relation on input events

can be easily extended to similarity on stream of events sim_iel_plus (Figure

6.12). In addition, stream similarity relation over original input events sim_iel is

also added (Figure 6.13).

Figure 6.12: sim_iel_plus relation

1 Definition sim_iel_plus (l: label) (S: DomainSet.t)
2 : list input_event → list input_event → Prop :=
3 Forall2 (sim_ie_plus l S).

It is observed that the relation sim_ie_plus deems as similar much more in-

puts than sim_ie (Figure 3.21) for any label l, hence it can be leveraged to prove

a stronger noninterference result. Specifically, it is easy to find two input events

ieL and ieR such that (sim_ie_plus l S ieL ieR) holds for any label l and set

104 6. Security of CookiExt-Patched Web Browser

Figure 6.13: sim_iel relation

1 Definition sim_iel (l: label)
2 : list input_event → list input_event → Prop :=
3 Forall2 (sim_ie l).

S of websites with full HTTPS support, but (sim_ie l ieL ieR) does not. For

instance, two identical document responses ieL and ieR over HTTP from domain

d, with the only difference that ieL sets the HttpOnly flag on its cookies, while

ieR does not. In this case, for a web attacker l = http_label d, the proposi-

tion (sim_ie_plus l S ieL ieR) holds, but (sim_ie l ieL ieR) does not. The

reason is that in the former case, CookiExt sets the HttpOnly flags of all the cook-

ies in ieR and hence the web attacker at l = http_label d will not be able to

draw a distinction between the corresponding outputs, but in the later case, the

attacker can differentiate between the outputs by providing a script, exploiting a

XSS vulnerability, to read a cookie set by ieR. A similar reasoning applies to the

HTTPS case.

Figure 6.14: ie_no_secure_cookie function

1 Definition ie_no_secure_cookie (ie: input_event) : Prop :=
2 match ie with
3 | network_document_response_event nci uwi rs ⇒
4 rs.(resp_set_cookies) ==
5 StringMap_key_filter_plus (fun b ⇒ !b) rs.(resp_set_cookies)
6 | network_script_response_event nci rs ⇒
7 rs.(resp_set_cookies) ==
8 StringMap_key_filter_plus (fun b ⇒ !b) rs.(resp_set_cookies)
9 | network_xhr_response_event nci rs ⇒

10 rs.(resp_set_cookies) ==
11 StringMap_key_filter_plus (fun b ⇒ !b) rs.(resp_set_cookies)
12 | _ ⇒ True
13 end.

In addition, an axillary function is needed to check that the input event has no

6.2. Confidentiality Policy 105

cookie with Secure flag set. The proposition ie_no_secure_cookie defined in the

Figure 6.14 gets an input event and holds if the Set-Cookie headers in the network

response have no Secure cookie. The function StringMap_key_filter_plus uses

the Coq function filter that erases all the cookies, from the set of cookies received

in the network response, with Secure flags set.

Given the similarity on input events sim_ie (Figure 3.21), a relation with

similar-plus sim_ie_plus can be established. The relation sim_ie_plus is coarser

than sim_ie. As a consequence, showing noninterference property with respect to

sim_ie_plus rather than sim_ie provides stronger security guarantees.

6.2.1 Relation sim_ie Versus sim_ie_plus

To show that the relation sim_ie_plus is actually larger than sim_ie, it was first

observed that the two relations coincide on user input events, as such events do not

set cookies in the browser. As to network events, where the two relations differ,

it can be easily noticed that sim_ie implies that both, ieL and ieR, come from

the same URL (by the definition of sim_ie in the Figure 3.21). In the next two

lemmas, the relation between these two relations on input events is defined and

proved.

Figure 6.15: sim_ie_sim_ie_plus_equiv_https lemma

1 Lemma sim_ie_sim_ie_plus_equiv_https: ∀ l S ieL ieR,
2 sim_ie l ieL ieR →
3 support_dec_b S (domain_ie ieL) = true →
4 sim_ie_plus l S ieL ieR.

The first lemma sim_ie_sim_ie_plus_equiv_https (Figure 6.15) states that

two similar events are similar-plus if the websites (domains) are fully supporting

HTTPS. As the events are similar, this implies their protocols and domains are

106 6. Security of CookiExt-Patched Web Browser

the same, so the hypothesis that the source website of the event ieR is fully

supporting HTTPS can be derived1. As both the events are similar (with the same

domains, protocols and HTTPS support), they will be successfully redirected by

the CookiExt over HTTPS and hence both the flags will be set, implies they will

be similar-plus. This is further elaborated with the following examples.

For an attacker at l = http_level d, two similar events at HTTP contains

the same set of cookies without any or with HttpOnly flags. After redirecting over

HTTPS, the flags of the same set of cookies in both events will change to Secure

and HttpOnly, resulting two similar-plus events. Similarly, for an attacker at l =

https_level d, two similar events will have the same set of cookies regardless of

the flags (as each time the cookie flag will be at or below https_level d), and

with the CookiExt, all the cookies will have all the flags set, again resulting similar-

plus events. The proof is achieved by case analysis on the structure of input event

ieL.

Figure 6.16: sim_ie_sim_ie_plus_equiv_http lemma

1 Lemma sim_ie_sim_ie_plus_equiv_http: ∀ l S ieL ieR,
2 sim_ie l ieL ieR →
3 support_dec_b S (domain_ie ieL) = false →
4 ie_no_secure_cookie ieL →
5 ie_no_secure_cookie ieR →
6 sim_ie_plus l S ieL ieR.

According to the lemma sim_ie_sim_ie_plus_equiv_http in Figure 6.16, two

similar events are similar-plus if the websites are not fully supporting HTTPS

and the events do not contain any Secure cookie. Notice, however, that this

lemma does not involve any loss of generality in practice, since websites without

full HTTPS support do not mark their cookies as Secure (this would break the

session when navigating the HTTP portion of the website as Secure cookies will
1It could be added as an extra hypothesis, but its just a matter of taste and is instead proved.

6.3. Patching the Browser With CookiExt 107

not be attached with HTTP requests).

6.3 Patching the Browser With CookiExt

A CookiExt-patched Extended Featherweight Firefox (EFF+) model is obtained

from the EFF model (Chapters 3 and 4) by applying the translation translate_ie

(Figure 6.19) to any input event before processing it. A proof technique, consisting

of a number of axillary lemmas, is developed to ease the proof of information-

flow security of EFF+ (Section 6.4) with respect to the new similarity relation

sim_ie_plus on input events. The main approach used in this technique is to

prove that given two similar-plus streams of input events, they are similar after

their translation: all the URLs are rewritten and the cookies are updated. The

key to this proof is to prove two lemmas corresponding to these transformations

first.

The first lemma sim_iel_plus_rewrite_equiv (Figure 6.17) corresponding

to URL rewriting, states that two similar-plus input event streams are still in the

same relation after all the URLs in the events are rewritten using the rewrite_ie

function. The Coq function map (lines 3 and 4) maps the input streams by rewriting

each event in the stream using the function rewrite_ie. This lemma is straight-

forward as the corresponding events in both streams before rewriting have the

same protocols by the definition of sim_ie_plus and rewriting their protocols to

HTTPS (if they are HTTP) will keep them in the relation.

Similarly, the second lemma sim_iel_plus_update_cookies_equiv (Figure

6.18) corresponds to updating the cookies in input streams. Two input event

streams related by sim_ie_plus are also related by sim_ie after the cookie flags

of the corresponding individual events in both streams are updated. The function

upgrade_cookies_iel (lines 3 and 4) operating on list is used to update cookies in

108 6. Security of CookiExt-Patched Web Browser

Figure 6.17: sim_iel_plus_rewrite_equiv lemma

1 Lemma sim_iel_plus_rewrite_equiv : ∀ l S IL IR IL′ IR′,
2 sim_iel_plus l S IL IR →
3 IL′ = map rewrite_ie IL →
4 IR′ = map rewrite_ie IR →
5 sim_iel_plus l S IL′ IR′.

the stream instead of map (as used in the lemma sim_iel_plus_rewrite_equiv)

where each element is transformed by applying the translator function. This is

just a mater of enjoying different Coq programming tasts and does not affect the

proof.

Figure 6.18: sim_iel_plus_update_cookies_equiv lemma

1 Lemma sim_iel_plus_update_cookies_equiv: ∀ l S IL IR IL′ IR′,
2 sim_iel_plus l S IL IR →
3 IL′ = upgrade_cookies_iel S IL →
4 IR′ = upgrade_cookies_iel S IR →
5 sim_iel l IL′ IR′.

Finally, the main lemma of input translation cookie_translation (Figure

6.19) relating two relations, the sim_iel_plus and the sim_iel, is proved. It

simply states that two similar-plus event steams can safely be translated into

two similar event streams by rewriting the URLs and updating the cookies in all

events of the streams. This is proved easily by applying the corresponding two

lemmas proved earlier: the lemma sim_iel_plus_rewrite_equiv and the lemma

sim_iel_plus_update_cookies_equiv.

6.4. Proof of Session Confidentiality 109

Figure 6.19: cookie_translation lemma

1 Lemma cookie_translation: ∀ l S IL IR IL′ IR′,
2 sim_iel_plus l S IL IR →
3 IL′ = translate_iel S IL →
4 IR′ = translate_iel S IR →
5 sim_iel l IL′ IR′.

6.4 Proof of Session Confidentiality

The EFF model patched with the model of CookiExt (EFF+) is proved to be

noninterferent to ensure augmenting the web browser with CookiExt still preserves

end-to-end web session security.

Theorem 2. EFF+ is noninterferent according to the security policy defined in

Section 6.2.

Proof. Let I ≈+
l I ′, then by lemma in Figure 6.19 we know that JIKU ≈l JI ′KU ,

where ≈+
l is the relation sim_iel_plus (Figure 6.12), ≈l is the relation sim_iel

(Figure 6.13) and JIKU represents the two-step translation (Figure 6.8). Let EFFinit

be the initial state of the original EFF model, then by Theorem 1 we know that

EFFinit(JIKU) ⇒ O and EFFinit(JI ′KU) ⇒ O′ imply O ≈l O′. Now let EFF+
init

be the initial state of EFF+, by construction we know that EFF+
init(I) ⇒ O and

EFF+
init(I

′)⇒ O′, hence we conclude.

110 6. Security of CookiExt-Patched Web Browser

7

Web Session Integrity: Access

Control Enforcement

There are a number of ways used by the attackers to force the browser to send

authenticated requests to victim website impersonating the user, for example,

through the well-known class of attacks CSRF (Chapter 1). In this chapter, a

formal notion of session integrity is introduced and a security enhanced version of

EFF with a mechanism to enforce session integrity is developed. The integrity se-

curity policy is enforced using access control model where the network connections

and web pages are dynamically tainted. The enforcement mechanism captures at-

tacks on session integrity such as (classic, local and login) CSRF, session fixation,

password theft and reflected XSS attacks. In addition, the design of a prototype

web browser extension is given that uses, in practice, a relaxed version of security

policy enforced in EFF.

7.1 Web Session Integrity

The formal notion of session integrity [23] defines how an attacker can influence

execution traces of the reactive system (browser) and then session integrity is

defined as the property that the attacker has no effective way of interfering with

an authenticated session.

112 7. Web Session Integrity: Access Control Enforcement

Assume a lattice of security labels (L,v), with bottom and top elements ⊥

and >, respectively. With each output event of a reactive system, a label in L

is associated by way of a trust mapping1 τ : O → L where each label in the

lattice corresponds to an interaction point for the reactive system (an origin, in

the context of web systems) and τ(o) = l indicates that o ∈ O is a message output

by the reactive system (the browser) in an authenticated session with l’s endpoint

(e.g., network requests to website A when the user is signed into A). Whenever

o does not belong to any authenticated session (e.g., network requests to website

A when the user is not signed into A), then τ(o) = ⊥ (τ⊥ henceforth). The trust

changes dynamically, noted τ o−→ τ ′, upon certain output (authentication) events

(e.g., output sent after the user is signed into the website). Finally, the O ↓ l

denotes the stream that results from O by considering only the events at trust

level l.

Definition 2 (Session integrity). A reactive system preserves session integrity for

its trace (I, O) iff for all l ∈ L, and all its attacked traces (l, I, O′) one has:

∀l′ 6v l : O′ ↓ l′ is a prefix of O ↓ l′.

Where the stream O′, in the attacked trace, include messages generated by the

attacker at label l. A reactive system preserves session integrity if and only if it

preserves session integrity for all its traces.

Session integrity ensures that the attacker has no effective way to interfere

with any authenticated session within the set of traces. In particular, if the trust

mapping remains constant at τ⊥ along the trace, no authentication event occurs in

O and the attacker may only initiate its own authenticated sessions, at level l or

1The intuition here is that output event to a website A gets different labels depending on
whether or not the user is signed into A. The trust mapping captures this change in trust level.

7.2. Flyweight Firefox Browser Model 113

lower. If instead the trust mapping does change, to include authenticated output

events at level l′ 6v l, then the requirement that O′ ↓ l′ be a prefix of O ↓ l′ ensures

that the attacker will at best be able to interrupt the on-going sessions, but not

otherwise intrude into them.

7.2 Flyweight Firefox Browser Model

Extended Featherweight Firefox model provides precise and faithful abstraction

of current web browsers and just like the browsers it models, it is vulnerable to a

variety of attacks on session integrity. In Chapter 3 and 4, the security guarantees

of the protection mechanisms to protect session confidentiality were proved using

noninterference, however, the model still does not enforce any integrity policy.

Enforcing session integrity in EFF and then proving its soundness according

to those policies would be challenging. There were two choices; 1) extend EFF

with the new features sufficient for defining meaningful integrity policies and the

integrity enforcement mechanism for these policies and then prove its soundness in

Coq; or 2) build a new simplified version of EFF, extend it with security mechanism

and prove its soundness. The first choice is not feasible, as the current version of

EFF model and the confidentiality proofs are very huge (consists of more than

45,000 lines of code). Defining integrity policies, enforcing them in the model and

then proving their soundness appears to be more tedious than the confidentiality.

Adding more complex security policies to a large model would simply have over

complicated the model and would be difficult to close the proof. Therefore, the

later approach was taken and, after carefully choosing the features required to

enforce integrity policies, a lightweight version of EFF called Flyweight Firefox

was introduced [23, 22].

Flyweight Firefox is a core model of a web browser distilled from the Feath-

114 7. Web Session Integrity: Access Control Enforcement

erweight Firefox Coq model [17, 18]. It consists of almost the same features as

EFF but simplified: for example, it consists of fewer scripts than in EFF and in-

clude few new scripts that are required to enforce meaningful integrity policies. A

security-enhanced extension of Flyweight Firefox (FF+) was introduced that pro-

vides a full-fledged enforcement of web session integrity based on access control.

The runtime mechanisms underlying FF+ are robust against both web threats and

network attacks, and the resulting model is concrete enough to be amenable for an

almost direct implementation, while at the same time being fit for a rigorous for-

mal treatment and a security proof. To prove the security of the lightweight model

FF+, unlike the bi-simulation based proof technique [19, 17] as used in Chapters

4 and 8, a simulation based proof technique was introduced.

To describe the integrity policy and the corresponding enforcement mechanism,

the EFF model in Coq was further extended with necessary features fit for enforc-

ing the notion of session integrity. These features and the enforcement mechanism

are exactly the same as used in FF+ but are added to and applied in a detailed

model EFF. This approach is taken to synchronize with Coq formalisms in Chapter

3 and 4 to ease understanding of this dissertation and build the initial foundation

of mechanising session integrity in future. The readers are referred to Bugliesi

et al. [23, 22] for further detail of the formal notion of integrity, FF, its security

enhanced version FF+ and security proofs2.

7.3 Enforcement in EFF

In this section, the design of Extended EFF (EEFF), a security-enhanced exten-

sion of EFF aimed at enforcing web session integrity, is discussed. As with the

Featherweight Firefox model, EFF is also missing some features and contextual

2None of the integrity proofs is mechanized in Coq. The integrity enforcement mechanism in
EFF has not been proved sound and is left to future work.

7.3. Enforcement in EFF 115

information needed to apply a sound security policy for session integrity.

The CSRF attacks may be caused either by the 1) cross-origin requests gener-

ated by the scripts or HTML elements (e.g., <script> tag) with the src attributes

set to a URL of victim website, 2) requests (same or cross-origin) initiated by the

injected scripts or 3) redirecting requests to the victim website [23].

The first case can be easily captured by not allowing session cookies with cross-

origin requests or blocking such requests at all. The latter approach has been used

by Samuel [102] where non-white-listed cross-origin traffic is blocked, however, it

results usability issues and is not used here. Striping cookies from the malicious

cross-origin requests, on the other hand, is one of the popular approaches adopted

to protect against CSRF attacks [40, 100]. The same approach is used here, how-

ever, both the legitimate and malicious cross-origin requests are stripped. Striping

the legitimate cross-origin requests creates usability problems in the third-party

widgets (e.g., the Facebook like button) and collaborative web applications such

as e-payment systems (e.g., PayPal). The problem could be solved by separating

expected (legitimate) and malicious cross-origin requests and then limiting strip-

ping only to the later. This technique has been used in [40, 100], however, it is

heuristic-based and hence needs to be replaced by a more rigorous and precise

method, for example, getting help from server side (see Chapter 8 for a proposal).

Moreover, striping only cross-origin requests is not enough in many cases as the

attacker can also create authentic same-origin requests, for example, by injecting

scripts, an issue addressed in this chapter (see below).

The second case, however, is challenging as the script injected by an attacker

can trigger the same-origin authentic requests. The problem is that the injected

script gets the origin of the page where it is injected according to the same-origin

policy and hence the request generated by that script to the origin of the page is

considered as same-origin, but it is initiated by the attacker. Enforcing a mech-

116 7. Web Session Integrity: Access Control Enforcement

anism to capture such attacks is tricky and hence requires to carefully look at

different ways that may be used to inject a malicious script. In the attack scenar-

ios existed in the literature such as reflected XSS and session fixation and the new

one local CSRF (Figure 1(b), Figure 2(c) and Figure 1(c), respectively in Bugliesi

et al. [22]), the attacker is able to launch the attack by redirecting the requests.

Attacks caused by cross-origin redirection (cause 2 and 3 above) can be cap-

tured by tracking the origin redirecting the requests. The password theft and login

CSRF (Figure 2(a) and Figure 2(b), respectively in [22]) attacks are captured using

different techniques, such as security contexts. The classic CSRF attack (Figure

8.3), however, can be launched without the script injection and is dealt with by

erasing session information from cross-origin requests. Readers are referred to

Bugliesi et al. [22] for the detailed description and encoding of how these attacks

are captured.

The existing EFF model does not have any mechanism to track origin changes

across network requests or capture the password theft attack. In the next sub-

sections, the additional features are discussed that are added to store contextual

information, maintain security contexts, extend scripts to introduce meaningful

security policies and perform secure cookie operations.

7.3.1 Contextual Information

Whenever a network document request is redirected by an origin, the request and

hence the page loaded is influenced by that origin, as the origin can inject script

which upon execution can send authenticated same or cross-origin requests or

the origin can redirect the request to anywhere he wants. Therefore, the simple

strategy is to track the origin that redirects the request.

In EFF, to map each network response to the corresponding request, a network

connection is used which is represented by a record type net_conn_id (Figure 3.4)

7.3. Enforcement in EFF 117

with two fields: the request url and an integer to uniquely identify the connection.

A new filed net_conn_id_taint of type bool as the qualifier is added to the type

net_conn_id to track origin change during a network request. The qualifier of

the network connection changes as the following: when the user navigates the

browser to a URL, a new network connection net_conn_id is created and it is

assigned the qualifier false (untainted). If a cross-origin redirect is received over

the connection, it is given the qualifier true (becomes tainted) and it will never

be restored to an untainted state. The updated definition of net_conn_id is given

in Figure 7.1, with the new field added at line number 4.

Figure 7.1: net_conn_id data type (with qualifier)

1 Record net_conn_id: Type :=
2 build_net_conn_id {
3 . . .
4 net_conn_id_taint: bool
5 }.

Further requests sent over a tainted network connection (net_conn_id with

net_conn_id_taint set to true) will never include cookies to thwart CSRF at-

tacks performed through a redirect: this policy is applied also to the same-origin

requests to prevent local CSRF attacks [22]. When a document response is even-

tually received over the network connection, the connection is closed and a new

page is stored in the browser page store browser_pages.

Figure 7.2: page data type (with qualifier)

1 Record page: Type :=
2 build_page {
3 . . .
4 page_taint: bool
5 }.

118 7. Web Session Integrity: Access Control Enforcement

As the content loaded over a tainted connection is also untrusted, it is necessary

to track the qualifier for the page as well. The page loaded should inherit the

qualifier assigned to the network connection, however, when the page is loaded,

the network connection used can not be retrieved later as it is closed and hence

the qualifier is lost. To track the origin that may have influenced the contents of

the page, a boolean field page_taint as the qualifier is added to the record type

page (Figure 7.2, line 4).

Further constraints are put on setting cookies through network responses re-

ceived over tainted network connections. The cookie store is updated only if the

network connection was marked as untainted. This is needed to prevent the at-

tacker from corrupting the cookies stored in the browser, for instance, by forcing a

redirect on a page of a trusted website which overwrites the existing cookies with

some default values (see secure cookie update operation in Section 7.3.4).

7.3.2 Security Contexts

When the user enters a password into a login form, the script running under the

event handler registered on the page can steal the password and leak it to the

attacker. To prevent password theft, each script is run inside a security context,

i.e., a sandbox represented by a pair: script and the label of execution. This is

modelled as the extended running state of the browser with each script executing

with a label, as defined in the figure 7.3. The added label parameter resembles to

the security mode in Featherweight Firefox, however, is used here for different pur-

pose. When a password is disclosed to a script expression, a new security context

is instantiated which provides EEFF with the information needed to protect the

password. In the implementation of the integrity security policy as the browser

extension SessInt, an internal password manager keeps track of the security context

(Section 7.7).

7.3. Enforcement in EFF 119

Figure 7.3: running_state data type (with context)

1 Definition running_state := browser * list task * label.

For example, when the user enters password into a login form on the page

from URL u = (http_s_url p d ru), the execution label of the script under the

event handler gets the value (url_label u) if the action URL of the login form

matches with the one stored with the password in the internal password manager,

otherwise, the script gets the bot_label. In the first case, the script is allowed

to communicate only with domain d on the protocol p, while in the second case,

the script can not send the password, hence protecting password theft (see Section

7.7).

7.3.3 Extending Scripts

In the session fixation attack, a web attacker can inject a script which registers

a cookie chosen by the attacker [22]. To model such attack scenarios, a script

setting cookie value is needed, however both, the Featherweight Firefox and its

extended version EFF are missing script to set cookie values. To define and then

enforce meaningful integrity policies, the set_cookie_script (Figure 7.4, line 3)

is added to the script (Figure 3.9) type. The set_cookie_script constructor

has two parameters. The first one is of type string which represents the name

of the cookie to be overwritten and the second one is the value – a record type

cookie_flags_value (Figure 3.6), representing the two security flags and a cookie

value.

The login operation is modelled using a new script auth_script (Figure 7.4,

line 4). The first parameter of this script is the password string and the second

parameter is the URL where the password is sent.

120 7. Web Session Integrity: Access Control Enforcement

Figure 7.4: script data type (extended)

1 Inductive script :=
2 · · ·
3 | set_cookie_script: String.t → cookie_flags_value → script
4 | auth_script: String.t → url → script

7.3.4 Secure Cookie Operation

Many attacks [21, 23] against web sessions are enabled by the browser failing to

ensure the confidentiality or integrity of authentication cookies. Updates to the

cookie store in EEFF adopt a strong security policy: as in CookiExt, authentication

cookies received over HTTP are marked HttpOnly, while authentication cookies

received over HTTPS are flagged both HttpOnly and Secure. If a Secure cookie

is sent from the server to the browser over HTTP, which is one of the many

quirks allowed on the Web, it is discarded by EEFF. Moreover, EEFF ensures

that Secure cookies are never overwritten by cookies set through HTTP responses,

thus protecting their integrity against network attacks: this is not guaranteed by

standard web browsers [9].

A web attacker may fixate the session by injecting the script set_cookie_script

to set the non-HttpOnly session cookie to a value already known to the attacker.

The standard procedure employed by the web browsers is to select the cookies to

be attached to a given network request, including those fixated by the attacker.

A secure counterpart of the standard procedure employed by the web browsers is

introduced in EEFF to ensure that no outgoing cookie can have been fixated by

an attacker. For HTTP requests, the protection against web attacks is enforced

by requiring that only HttpOnly cookies are sent to the web server. Since these

cookies cannot be set by a script, they can only be fixated by network attacks.

For HTTPS requests, instead, a higher level of protection is targeted that ensures

7.4. Threat Model 121

that any cookie attached to them cannot have been fixated, even by a network

attacker. Since Secure cookies do provide integrity guarantees against such an

attacker, in EEFF, only cookies which are marked as both Secure and HttpOnly

are attached to outgoing HTTPS requests.

7.4 Threat Model

In the threat model, it is assumed that all HTTPS traffic is signed using trusted

certificates (unsigned HTTPS traffic is represented using HTTP). The attacker’s

power is characterized by a security label, with the understanding that higher

labels provide additional capabilities. A novel aspect of the threat model is the

assumption that the attacker has full control over compromised sessions, i.e., au-

thenticated sessions established using the attacker’s credentials.

If a network request belongs to a compromised session, it is pessimistically

assumed that all the data included in the request are stored by the server in the

attacker’s account and later made available to him: this is useful to capture login

CSRF attacks [10]. For example, search engines including Yahoo and Google allow

users to opt-in to saving search history for later retrieval. As search queries may

contain sensitive details about user’s activities [92], they could be used by an

attacker to steal the secrete data or to spy on the user (e.g., searching the word

’bomb’ can motivate intelligence agencies to spy on the user).

In attacks such as login CSRF where the attacker forges a login request to

an honest site using the attacker’s user name and password at that site [10], the

password submitted identifies the attacker’s account. To model such scenario, an

additional label evil_label is added to the type label as shown in the Figure 7.5

(line 3). The label evil_label represents the password identifying the attacker’s

account: for simplicity, it is assumed that this password can be used to establish

122 7. Web Session Integrity: Access Control Enforcement

authenticated sessions on any website.

Figure 7.5: label data type (extended)

1 Inductive label: Type :=
2 . . .
3 | evil_label: label
4 | bot_label: label.

Formally, the threat model results from instantiating the definitions of inter-

ception, eavesdropping and synthesis. The relation interception is inductively

defined in Figure 7.6. The first argument of the relation is a function that as-

signs security labels to output events. The type event (Figure 7.7) represents

either the input_event or output_event, while the function event_label as-

signs url_label to network events sent or received and top_label to user events.

Figure 7.6: interception relation

1 Inductive interception:
2 (output_event → label) → label → event → Prop :=
3 | ii_net: ∀ tau l evt,
4 event_label evt <= l → interception tau l evt.

Figure 7.7: event data type

1 Definition event := input_event + output_event.

The only rule of the relation states that a web attacker at a label, say http_label

d, can intercept only the network traffic, either in clear or with no trusted cer-

tificates, sent to domain d while a network attacker can intercept all the traffic

over HTTP (and any HTTPS message directed to him). Moreover, a net-level

attacker cannot intercept arbitrary HTTPS traffic: indeed, since signed HTTPS

7.4. Threat Model 123

communication ensures both freshness and integrity [45], the attacker cannot re-

play encrypted messages or otherwise tamper with HTTPS exchanges without

breaking the communication session. Hence, preventing the interception of arbi-

trary HTTPS traffic ultimately amounts just to discarding denial of service attacks,

which is not dealt with in this dissertation.

The definition of the relation eavesdropping (Figure 7.8) consists of two rules.

According to the rule ih_net, an HTTPS exchange can still be overheard by a net-

level attacker. The network attackers are thus aware of all network traffic, even

though they may be unable to access its payload. Finally, rule ih_evil makes

any request sent over compromised sessions available to the attacker, as discussed

above.

Figure 7.8: eavesdropping relation

1 Inductive eavesdropping:
2 (output_event → label) → label → event → Prop :=
3 | ih_net: ∀ tau l evt,
4 event_label evt <= net_label ∧ net_label <= l →
5 eavesdropping tau l evt
6 | ih_evil: ∀ tau l oe,
7 tau oe = evil_label → eavesdropping tau l (inr oe).

The third relation of the threat model synthesis is defined in the Figure 7.9.

There is an additional argument of type messages which is just a list of event

(messages) under the control of an attacker. The relation generate_event (line

5) models the ability of an l-attacker that can generate any name in a name

partition indexed by a label bounded above by l. This relation holds if all the

free names in the event, such as domain names, URL parameters, names in the

script and HTML document and cookie values, can be generated by the attacker

at the label l. Moreover, the attacker may generate the free names of any network

event previously intercepted or overheard, provided that the attacker can inspect

124 7. Web Session Integrity: Access Control Enforcement

its payload. The attacker has the capability to generate any name communicated

over compromised sessions.

Figure 7.9: synthesis relation

1 Inductive synthesis:
2 (output_event → label) → label → messages → event → Prop :=
3 | is_gen: ∀ tau l M ie,
4 event_label (inl ie) <= l →
5 generate_event (inl ie) (event_label (inl ie)) →
6 synthesis tau l M (inl ie)
7 | is_rep: ∀ tau l M evt,
8 List.In evt M →
9 event_label evt <= net_label ∧ net_label <= l →

10 synthesis tau l M evt.

The first rule is_gen models when an attacker can forge an input event. An

l-attacker can forge an input event ie, provided that he can generate all the free

names in ie and the event label of ie is bounded above by l. The latter condition

ensures, for instance, that a net-level attacker cannot forge signed HTTPS traffic

and that a web attacker http_label d cannot provide responses for another web

server at d′. This rule also allows the attacker to send arbitrary output events to

any server, provided that he is able to compose the request contents.

Finally, the rule is_rep allows an attacker with network capabilities (side-

condition net_label <= l) to replay previously intercepted or overheard traf-

fic. Since HTTPS ensures freshness, the side-condition event_label evt <=

net_label similarly guarantees that encrypted traffic cannot be replayed.

7.5 Well Formed Traces

Proving integrity for a session with ill-formed input events is extremely challenging,

therefore, the input events are restricted only to the well-formed input events. A

well-formed input event does not contain names (e.g., cookie values) anywhere in

7.5. Well Formed Traces 125

the input that can be guessed by an attacker. An attacker, however, is not forced

to produce only well-formed inputs.

Well-formed input events are precisely defined by ensuring that the URL, head-

ers and body of the input events do not contain any secret value, except the cookie

values in the Set-Cookie headers which can only be guessed at the level of the

url_label. This property of the contents of the input event is defined in Coq as a

polymorphic inductive proposition guessable (Figure 7.10) which captures in the

model the inability of an attacker to guess the random secrets like passwords and

authentication cookie values. It states that the value of a type A can be guessed

by an attacker at label l, precluding the existence of any secrete value. The type

A is included as an implicit argument which can be instantiated with any other

type of sort Type.

Figure 7.10: guessable relation

1 Inductive guessable {A:Type}: A → label → Prop :=
2 ran: ∀ l u, guessable u l.

As observed by Akhawe et al. [7], the user behaviour needs to be constrained to

ensure his or her password is not sent in clear as the URL parameter, otherwise,

this will make most web security mechanisms ineffective. For this purpose, the

well-formedness of the URLs is checked. A URL is well-formed if its domain is

public and its path can be guessed by the attacker at or below url_label. The

relation wf_url in Figure 7.11 defines well-formed URL. Well-formedness ensures

that the URL carries no secret values (e.g., password) with it.

The body of the network response input contain in-line scripts and HTML

document. JavaScript code may also be loaded as remote files from third-parties

or from the same origin. In either case, they are checked to ensure they do not

contain any secret values. The recursive function wf_script in Figure 7.12 checks

126 7. Web Session Integrity: Access Control Enforcement

Figure 7.11: wf_url relation

1 Definition wf_url (u: url) : Prop:=
2 guessable (url_domain u) bot_label ∧
3 (∃ l, l <= url_label u → guessable (url_path u) l).

each parameter of each script constructor with at least one parameter. For the rest

of scripts with no parameters (e.g., null_script), the proposition always holds

(returns True). This seems abusing the use of True as in such scripts, there is no

content and hence can not be guessed, however, the well-formed property ensures

that the scripts do not contain any secret values which is always true for type

constructors with no parameters. The same approach is adopted for constructors

in other types as well such as empty_file in Figure 7.14.

Figure 7.12: wf_script relation

1 Fixpoint wf_script (e: script) (l: label) : Prop :=
2 match e with
3 | nat_script n ⇒ guessable n l
4 | str_script z ⇒ guessable z l
5 | url_script u ⇒ wf_url u
6 | code_script e ⇒ wf_script e l
7 | app_script e1 e2 ⇒ wf_script e1 l ∧ wf_script e2 l
8 | var_script v ⇒ guessable v l
9 | fun_script v vl e ⇒

10 guessable v l ∧ wf_list vl l ∧ wf_script e l
11 | eval_script e ⇒ wf_script e l
12 | seq_script e1 e2 ⇒ wf_script e1 l ∧ wf_script e2 l
13 | set_cookie_script z cfv ⇒ guessable z l ∧ guessable cfv l
14 | auth_script z u ⇒ guessable z l ∧ guessable u l
15 | set_var_script v e ⇒ guessable v l ∧ wf_script e l
16 | xhr_script e1 e2 e3 ⇒
17 wf_script e1 l ∧ wf_script e2 l ∧ wf_script e3 l
18 | get_win_root_node_script e ⇒ wf_script e l
19 | remove_node_script e ⇒ wf_script e l
20 | insert_node_script e1 e2 e3 ⇒
21 wf_script e1 l ∧ wf_script e2 l ∧ wf_script e3 l
22 | _ ⇒ True
23 end.

7.5. Well Formed Traces 127

The network document response consists of HTML document, represented as

list of document trees list doc_tree, with HTML elements for in-line and remote

scripts, text boxes and the HTML <div> elements. The relation wf_doc_tree in

Figure 7.13 ensures that the body of the HTML document is well-formed, by check-

ing each HTML element of the document. The constructor div_doc of the type

doc_tree (Figure 3.8, line 5) has one parameter list doc_tree that recursively

refers to itself. To check that the doc_tree in the input event is well-formed,

two mutually depended proposition functions are required: functions that call each

other. In programming languages, defining such functions is tricky as the function

defined earlier has to make a call in its body to the function defined after it.

Figure 7.13: wf_doc_tree data type

1 Inductive wf_doc_tree : doc_tree → label → Prop :=
2 | wf_inl_script_doc: ∀ eio e l,
3 (guessable eio l ∧ wf_script e bot_label) →
4 wf_doc_tree (inl_script_doc eio e) l
5 | wf_rem_script_doc: ∀ eio u l, (guessable eio l ∧ wf_url u) →
6 wf_doc_tree (rem_script_doc eio u) l
7 | wf_textbox_doc: ∀ eio z l, (guessable eio l ∧ guessable z l) →
8 wf_doc_tree (textbox_doc eio z) l
9 | wf_div_doc: ∀ eio ldt l,

10 (guessable eio l ∧ wf_list_doc_tree ldt l) →
11 wf_doc_tree (div_doc eio ldt) l with
12 wf_list_doc_tree: list doc_tree → label → Prop :=
13 | wf_nil_doc_tree: ∀ l, wf_list_doc_tree nil l
14 | wf_cons_doc_tree: ∀ x tl l,
15 wf_doc_tree x l ∧ wf_list_doc_tree tl l →
16 wf_list_doc_tree (x::tl) l.

In Coq, a proposition relation can be defined as an inductive type. This

solves the complexity of mutually dependent proposition functions by defining

mutually depended inductive types: types that refer to each other. The type

wf_doc_tree in Figure 7.13 refers to another inductive type wf_list_doc_tree

(line 10), which in turn is referring to the parent type at line 15. The (induc-

128 7. Web Session Integrity: Access Control Enforcement

tive) type wf_list_doc_tree (line 12) is defined internal to the inductive type

wf_doc_tree using the with keyword. Both of these types can be separately

referred to from inside other types (as in Figure 7.14).

The body of the network response event is represented using the type file (Fig-

ure 3.7): an inductive type with constructors for empty, scripts and HTML doc-

ument files. The well-formed property of the file is checked in relation wf_file

(Figure 7.14) by combining the well-formed properties of the list doc_tree

(HTML file) and the script (script file), using the corresponding well-formed

relations wf_list_doc_tree (at line 3) and wf_script (at line 4) respectively.

Figure 7.14: wf_file relation

1 Definition wf_file (f: file) (l: label) : Prop :=
2 match f with
3 | html_file ldt ⇒ wf_list_doc_tree ldt l
4 | script_file e ⇒ wf_script e l
5 | _ ⇒ True
6 end.

The headers and body of the network response event are represented by the

type resp (Figure 3.5), which is a record type with fields for the set of cookie

names to delete, Set-Cookie header representation, optional redirect URL and the

body (script and HTML document) of the response. The relation wf_resp (Figure

7.15) defines the well-formed property of the resp type of the input_event. It

uses an axillary function wf_resp_cookies that ensures that cookie values in the

response can only be guessed by the domain that registered them (at url_label

of the response URL). For the path of the redirect URL (if there is any), there

exists a label at or below the response url_label at which it is guessable. The

rest of the components of the response (scripts and HTML document) in the file

are public and can be guessed at the bot_label – that is, they contain no secrete

values.

7.5. Well Formed Traces 129

Figure 7.15: wf_resp relation

1 Definition wf_resp (rs: resp) (u: url) : Prop :=
2 wf_resp_cookies rs.(resp_set_cookies) u ∧
3 guessable (url_domain u) bot_label ∧
4 (∃ l′, l′ <= (url_label u) →
5 guessable (urlo_path rs.(resp_redirect_uri)) l′) ∧
6 wf_file rs.(resp_file) bot_label.

Figure 7.16: wf_input_event relation

1 Inductive wf_input_event: input_event → Prop:=
2 | wf_load_new_win: ∀ uwi u, wf_url u →
3 wf_input_event (user_load_in_new_window_event uwi u)
4 | wf_load_win: ∀ uwi u, wf_url u →
5 wf_input_event (user_load_in_window_event uwi u)
6 | wf_close_win: ∀ uwi,
7 wf_input_event (user_close_window_event uwi)
8 | wf_text: ∀ uwi k pwd l u,
9 guessable pwd (text_input_label pwd u) →

10 wf_input_event (user_input_text_event uwi k pwd l)
11 | wf_doc_resp: ∀ nci uwi rs,
12 wf_url nci.(net_conn_id_url) →
13 guessable nci.(net_conn_id_value) bot_label →
14 wf_urlo rs.(resp_redirect_uri) →
15 wf_resp rs nci.(net_conn_id_url) →
16 wf_input_event (network_document_response_event nci uwi rs)
17 | wf_scrip_resp: ∀ nci rs,
18 wf_url nci.(net_conn_id_url) →
19 guessable nci.(net_conn_id_value) bot_label →
20 wf_urlo rs.(resp_redirect_uri) →
21 wf_resp rs nci.(net_conn_id_url) →
22 wf_input_event (network_script_response_event nci rs)
23 | wf_xhr_resp: ∀ nci rs,
24 wf_url nci.(net_conn_id_url) →
25 guessable nci.(net_conn_id_value) bot_label →
26 wf_urlo rs.(resp_redirect_uri) →
27 wf_resp rs nci.(net_conn_id_url) →
28 wf_input_event (network_xhr_response_event nci rs).

130 7. Web Session Integrity: Access Control Enforcement

After defining the well-formed propositions for each individual component of

the resp and url types, what is needed now is to combine all of these relations in

one relation wf_input_event as shown in Figure 7.16. This relation is defined as

inductive type proposition with constructors one for each input event. The first

two constructors (lines 2−5) correspond to user input navigating a URL in a new

window or in an existing window. Both of these events are well-formed if the URL

is well-formed – it ensures that the user never types in the address bar a URL

containing a password (or an authentication cookie value) which should not be

disclosed to the remote server. The user input closing a window (lines 6−7) does

not contain any value entered by the user and hence is always well-formed.

The wf_text constructor at lines 8−10 rules out text inputs containing names

conflicting with authentication cookie values. In other words, the assumption is

that the user always enters either a password or some public data. The function

text_input_label (line 9) models the internal password manager (Section 7.7)

which gets two parameters: the password entered in a login form and the page

source URL. It returns the url_label if the action URL of the login form matches

with the corresponding action URL stored in the manager for the entered password,

otherwise, bot_label is returned.

The rest of three constructors (lines 11−28) correspond to the last three net-

work responses of the type input_event (Figure 3.1). They ensure that cookies

set by an honest server are picked from the correct name partition and only occur

in the standard HTTP header. Furthermore, it is required that confidential data

never appear in the body of a response or in the cookie names. Enforcing session

integrity whenever any of the previous constraints fails would require the browser

to implement a full-fledged information flow control policy [38], so as to identify

secret data inside a web page or in the address bar and prevent their leakage.

Notice that it is not assumed that the intruder is forced to produce well-formed

7.5. Well Formed Traces 131

inputs.

Figure 7.17: wf_input_stream function

1 Fixpoint wf_input_stream (lie: list input_event) : Prop :=
2 match lie with
3 | x::tl ⇒ wf_input_event x ∧ wf_input_stream tl
4 | _ ⇒ True
5 end.

The definition of well-formed input event in Figure 7.16 is extended to input

streams using the function wf_input_stream defined in Figure 7.17. To leverage

the security definitions, defined so far to enforce integrity, to stream of events,

the data type trace (Figure 7.18) is defined, which is a pair of input and output

event streams [19, 23]. The definitions of trace and well-formed input streams

are combined together to define well-formed trace relation wf_trace as shown in

Figure 7.19.

Figure 7.18: trace data type

1 Definition trace := (list input_event * list output_event).

Figure 7.19: wf_trace relation

1 Definition wf_trace (tr: trace) : Prop :=
2 match tr with
3 | (lie, loe) ⇒ wf_input_stream lie
4 end.

132 7. Web Session Integrity: Access Control Enforcement

7.6 Proof of Session Integrity

Theorem 3. Flyweight Firefox Plus (FF+) enforces session integrity for any well-

formed trace (with respect to the threat model in Section 7.4).

Proof. Complete proof of this theorem is given in the technical report [22]3.

The proof of this integrity result is very challenging. It draws on a label-indexed

family of simulation relations, which connect the original trace and the attacked

trace (original trace with attacker added messages). The nature of the simulation

is non-standard, due to the significant differences which may arise between the two

traces.

7.7 SessInt: Enforcing Session Integrity

SessInt is a proof-of-concept implementation of the integrity enforcement mecha-

nisms in FF+4 as a browser extension for Google Chrome. The formal model FF+

and the soundness proof of the integrity policy enforced in it, as discussed (by

describing the mechanism enforced in EFF) in the previous sections, gives prov-

ably sound browser-based enforcement mechanisms of web session integrity. In

this section, their enforcement into real web browser is discussed, however, their

implementation as a browser extension is challenging due to the usability issues.

The design of SessInt is based on the same mechanisms as adopted in CookiExt,

however, there are some notable additional features added to enforce the integrity

policy enforced in FF+. Similar to CookiExt, it redirects HTTP requests over

HTTPS if the login operation is successful over HTTPS and fall-back to HTTP

3The proof of correctness of Theorem 3 has not been mechanized and is left to future work.
4The term EEFF is used to refer to the description of enforcement mechanism in Coq and

FF+ to the enforcement in Flyweight Firefox with proofs. As the enforcement mechanisms used
in both are exactly the same, they can be used as synonyms when referring to the mechanism.

7.7. SessInt: Enforcing Session Integrity 133

for the parts of the website that does not support HTTPS, such as in mixed-

content websites. In this later case, the set of cookies is extended with those

upgraded by the extension (with Secure flags set) to keep the session alive for

usability reasons, compromising the security of such cookies. Following are the

major additional features adopted in the design of SessInt.

7.7.1 Pages and Network Connections Stores

To thwart CSRF attacks, in particular those caused by cross-origin redirects,

SessInt maintains stores for the pages and network connections similar to those

as described in the formal model EFFF. The network connection is tainted if a

cross-origin request is sent over it and the page loaded over tainted connection in-

herits the value of the connection taint. A conservative policy is then adopted for

the requests sent over a tainted connection or from a tainted page. The essence of

such policy will be highlighted in the next subsections when cookies and network

requests are discussed.

7.7.2 User Clicks

When the user follows a link by clicking it, this action by the user is not trusted.

The rationale here is that, such actions might have been performed by malicious

JavaScript code injected on the page. Moreover, it is unrealistic to assume that

the users carefully check the link and decide whether or not to follow based on

the URL and its parameters. Therefore, to prevent cross-origin forgeries by mali-

cious scripts, a more conservative policy is used and all authentication cookies are

stripped before sending cross-origin requests.

As an example, suppose the user is signed into a website www.example.com

and opens a vulnerable website www.vulnerable.com where the attacker is able

to inject a link pointing to www.example.com. When the user clicks the link, a

134 7. Web Session Integrity: Access Control Enforcement

cross-origin request is sent to www.example.com and, in the absence of SessInt, the

browser will automatically attach all the cookies (including session cookies) with

the request and will be successfully authenticated by the server. As the SessInt

strips all the session cookies from such requests, the attack will fail.

7.7.3 Implicit Loads

Modern web applications load third-party contents such as JavaScripts, images

and styles using HTML elements with the source src attributes set to the remote

URLs. When the HTML document is loaded, these remote resources are implicitly

loaded from third parties and the same origin. A similar attack as described above

can be launched, for example, by including a <script> tag with src attribute set

to the URL pointing to www.example.com. To counter such attacks, SessInt also

strips cookies from cross-origin requests initiated by implicit loads.

Session cookies are stripped from all the (same or cross-origin) requests, orig-

inated through implicit loads or user clicks, from a tainted page. There is an

exception when the request URL is in the white-list for HTTP communication.

7.7.4 Passwords

When the user receives a login page and enters the password in the login form

in the page, the password becomes part of the DOM and any script on the page

can access it and leak it to the attacker, for example by changing the action

URL of the login form. To protect passwords, the login form is sand-boxed into

an isolated pop-up window without scripts and an internal password manager is

implemented by the SessInt. The password manager checks if the entered password

is correct before sending it. When the user enters the password for the first time,

the manager asks the user for confirmation that the password is being sent to an

unknown URL. If the user confirms the operation, the manager stores the password

7.7. SessInt: Enforcing Session Integrity 135

and is associated with the page and the action URL of the login form to enforce

the runtime discipline adopted by FF+.

Next time when the user enters the password for the same site, if the action

URL is modified by the malicious script, it will be detected by the password

manager and hence the password will not be sent. This corresponds to the function

text_input_label in the formal model (EEFF) which returns bot_label in this

case. The input is treated with low integrity and hence more restrictive policy is

adopted and the password is not sent with the request. In case, the action URL of

the login form where the password is entered matches with the one stored in the

password manager, the password is sent only if the page is not tainted.

A user may use the same password for many websites, which is a bad but

common practice by many users. In such cases, the password entered for one site

can be sent by the script to the other website and it will be not detected by the

password manager as the fabricated action URL is also associated with the same

password. However, as the password is already known to the later website, it can

not be considered as a failure of the SessInt protection mechanism.

An ideal way would be to check the action URL of the login form before the

scripts are executed when the page is being loaded, however, the Chrome API does

not allow to inspect the page content before in-line scripts are executed. However,

if these scripts modify the action URL before the extension creates the sand-boxed

form, the password manager will detect it by a comparison with the stored action

URL and will warn the user before proceeding.

7.7.5 Cookies

A request received over the tainted connection is not trustworthy, hence cook-

ies received with such requests are not stored. As in FF+, cookies are only up-

dated if they are received over an untainted network connection. Similar to Cook-

136 7. Web Session Integrity: Access Control Enforcement

iExt, SessInt marks any authentication cookie received by the browser on HTTP

connections as HttpOnly. Authentication cookies received over HTTPS, instead,

are marked as both HttpOnly and Secure. This prevents leakage by malicious

JavaScript programs and protects cookies in case HTTP links are injected into

HTTPS websites.

To preserve functionality, SessInt forces a redirection on HTTPS for the en-

tire website when a login form is submitted over HTTPS. Indeed, if the website

contains some hard-coded HTTP links, marking some authentication cookies as

Secure would break the session when navigating these links. As done by other ex-

tensions including CookiExt [21, 41, 91], authentication cookies are detected based

on standard naming conventions (e.g., PHPSESSID) and a heuristic that measures

the degree of entropy of the cookie value. In a recent paper by Calzavara et al. [25],

the authors show how the authentication cookie detection process can be improved

significantly using machine learning techniques.

For every cookie in the response header, the extension checks if the same cookie

exists in the store and whether or not its Secure flag was set by the extension.

Cookie originally with Secure flag set (its Secure flag is not set by SessInt but

HttpOnly may be set by it) over HTTPS has high integrity and hence is not

overwritten with the cookie received over HTTP (low integrity). If a Secure cookie

gets expired, the browser automatically removes it and hence the new cookie will

be added to the store.

A non-Secure cookie received over HTTPS could be assumed of low integrity

than the corresponding cookie in the store with Secure flag set. However, this

rule will break some scenarios where the website updates a Secure cookie with a

non-Secure over HTTPS. For example, when the user logs into www.yahoo.com,

a cookie Y is registered with Secure flag set. Later on, when the user tries

to login again to www.yahoo.com, during the login phase, the response received

7.7. SessInt: Enforcing Session Integrity 137

from the URL https://login.yahoo.com/config/login sets the same cookie

with the same value over HTTPS but without Secure flag. If the new cookie

is not added, it does not create any problem in this case (as the values are the

same) and the user will be logged into www.yahoo.com successfully. However,

sometimes unpredictably, the new cookie value received with the response from

https://login.yahoo.com/config/login is different than the one already in

the store, invalidating the existing cookie. If the existing cookie is not updated

with the new one, the browser will attach the old one with the request while the

website is expecting the new value and hence the login operation will fail.

As SessInt sets the flags anyway, the policy adopted in SessInt, therefore, con-

siders two cookies of different flags of the same integrity. Hence a cookie with

originally Secure flag set is replaced with a new cookie (possibly originally non-

Secure but secured by SessInt) cookie regardless of the value. If the cookie is

non-Secure and is received over HTTPS, it is protected during transmission, and

as the SessInt sets its Secure flag, it is protected from network attackers by not

including it with subsequent requests in clear.

7.7.6 Protection vs Usability

The security policy adopted in FF+ is very strict and there are a few situations

where it would break too many websites, hence the policy is slightly relaxed in

SessInt. Some websites only support HTTPS for a subset of their pages. If some

portions of the website do not provide support for HTTPS, as in CookiExt, SessInt

selectively allows a fall-back to HTTP, with the proviso that cookies which have

been previously promoted to Secure by the extension must be included to preserve

the session. If an HTTPS connection times out, SessInt do not force fall-back, to

prevent a network attacker intercepting HTTPS traffic from forcing SessInt into

leaking over HTTP authentication cookies of websites normally providing HTTPS

138 7. Web Session Integrity: Access Control Enforcement

support. In such cases, it cannot provide session security against network attacks

for websites which only partially support HTTPS and the user is warned when

this is the case.

Many websites redirect the browser to HTTPS when an HTTP access is re-

quested and set the cookies at the browser by the redirect response over HTTP

which are endorsed by including them with redirected request over HTTPS. How-

ever, SessInt would not include authentication cookies upon HTTPS redirection,

since this redirect could as well be exploited by a network attacker to point the

browser to a sensitive HTTPS URL and carry out a forgery. This cookie strip-

ping breaks many websites, e.g., Facebook. To regain functionality, in the specific

case of a protocol redirection with unmodified URL (when the URLs differ only

by protocols), the user is asked (once for each site) to confirm that the redirec-

tion is expected, so that authentication cookies can be sent to the website. If the

redirection looks suspicious, the user can block it.

It is common to find websites where HTTPS login forms are embedded (e.g.,

as iframes) into HTTP pages. This is insecure, as the attacker can change the

HTTP page so as to redirect forms to a server that he controls, but since this is

a very common practice, it is permitted and the SessInt warns the user when this

happens. Additionally, the password manager will give an extra warning in case

the password is going to be sent to a URL that is not yet known (as the modified

action URL will not match with the one associated with the password stored in

the password manager). The combination of these two warnings should make the

user well aware of a possible attack.

The extension SessInt deals the event, typing a URL in the address bar and

loading a page, with the highest integrity and hence the least restrictive policy

is used. Network requests, triggered by typing in the address bar, are dealt with

according to the normal browser behaviour – HTTP requests are not redirected

7.7. SessInt: Enforcing Session Integrity 139

over HTTPS and cookies are included. Chrome API (by the time of this writing)

does not allow to differentiate between a redirect, possibly caused by JavaScript

and request triggered by the user typing in the address bar. As a temporary

solution used in SessInt, the user has to add a special character ’g’ before inserting

the URL, which is captured by the Chrome omnibox API and detect that the URL

has been typed in the address bar.

Secure sessions may be linked to sub-domains (e.g., www.login.yahoo.com

and www.yahoo.com) or to external sites such as in e-payments systems (e.g.,

Paypal) or single sign on web applications. To avoid breaking websites, cookies

are not stripped when moving into a sub-domain, though, this could sometimes be

exploited by a web attacker with scripting capabilities in the sub-domain [20, 41].

The external sites scenarios are tricky to deal with, in particular, identifying

legitimate and malicious cross-origin requests is challenging. Stripping cookies

from cross-origin requests would simply break a number of web applications such

as Paypal. To accommodate such applications, a simple idea might be to include

a white list of trusted sites, e.g., for e-payments, that are needed to be reached

by other websites, so that when the navigation comes back to the original site,

authentication cookies are correctly sent and the session is preserved. Another

option could be to use a heuristic-based approach as suggested by Philippe et

al. [100] to differentiate between legitimate and malicious cross-origin requests

and then strip cookies from the malicious requests. As this approach is based on

heuristic, a more precise approach would be to get help from the server, such as

through using Content Security Policy (CSP) headers. A proposal based on the

later approach is given in Chapter 8.

The testing results of SessInt on existing vulnerable web applications, such

as OWSAP Mutillidae [3] and Damn Vulnerable Web Application [2], confirms

that even the relaxed security policy can prevent significant examples of attacks.

140 7. Web Session Integrity: Access Control Enforcement

Consider the classic CSRF attack: a link to domain A on a page from a different

domain E, that performs an action inside an active session with A. If the user is

signed in to A and clicks the link to A on page from E (or opens a page from E

which sends implicit request to A (Figure 8.3)), the attack will be launched. In

the presence of SessInt, as the request is cross-origin, all the authentication cookies

are stripped and the action will have no effect.

The policy adopted in SessInt, however, result compatibility issue with a num-

ber of web applications. Moreover, the enforcement of session integrity as access

control model does not provide end-to-end security. In order to enforce integrity

policies in a more precise and rigorous way and to make the collaborating web ap-

plications compatible, information-flow control model and content-security policy

headers are considered in the next chapter.

8

Web Session Integrity:

Information-Flow Control

Enforcement

In the previous chapter, web session integrity was formalized and enforced using

access control/tainting mechanism and as a proof-of-concept, a Chrome extension

was designed and developed to enforce web session integrity at the client side.

In this chapter, an information-flow control technique is designed to enforce web

session integrity in a more permissive and fine-grained way than access control

mechanisms. A prototype of the enforcement mechanism is implemented as an

extension to the FlowFox web browser.

8.1 Session Protection at Different Layers

Web sessions can can be attacked at the network layer through network sniffing or

man-in-the-middle attacks breaking the confidentiality or integrity of web sessions.

This is a well-understood problem with well-understood solutions: by appropriate

use of transport level security techniques such as encrypting the communication

using TLS/SSL protocols, these attacks can be stopped. At the session imple-

mentation layer, script injection or again network level attacks can be used to

142 8. Web Session Integrity: Information-Flow Control Enforcement

steal a session cookie and hijack the session or to impose a session cookie on a

client already known to the attacker (called session fixation attack [41, 69]). Such

attacks can be prevented by ensuring that session cookies are submitted only us-

ing TLS/SSL, prohibiting script access to session cookies (by setting the Secure

and HttpOnly attributes on session cookies) and enforcing renewal of a session on

authentication. The extensions CookiExt and SessInt as discussed in previous chap-

ters are used to protect against attacks at the network and session implementation

layer.

In addition to the attacks at the network and session implementation layer, web

sessions can also be attacked at the application layer. Since cookies are attached

to HTTP requests by the browser automatically, without any web application

involvement, any page in the browser can send malicious requests (for example,

by including <script> tags) to any of the servers that the browser currently has a

session with, and that request will automatically get the session cookie attached

and hence will be considered as part of a (possibly authenticated) session by the

server. If the page sending the malicious request is from a different origin, such

attacks are called CSRF attacks [10]. Malicious requests can also be sent by

scripts included in or injected by an attacker into a page from the same origin.

Since both inclusions of third-party scripts [89] and script injection vulnerabilities

are common [68], these are important attack vectors.

The formal model given by Akhawe et al. [7] is an excellent definition for

the purpose of studying CSRF attacks and countermeasures, but the underlying

model does not have a sufficiently detailed representation of scripts to study other

application-level session integrity issues. The formal notion of session integrity

defined and enforced in Chapter 7 is browser-centric and amenable for client-side

enforcement, however, the enforcement at the client side is based on access con-

trol/tainting mechanism. To enforce session integrity in a more permissive and

8.2. Login History Dependent Noninterference: Definition and Enforcement 143

fine-grained way than access control, an information-flow technique needs to be

designed to enforce session integrity. For this purpose, the session integrity defini-

tions in Chapter 7 are refined to a classical noninterference property. The underly-

ing assumption, however, is that appropriate defences against both network-level

and cookie-level attacks are put in place.

8.2 Login History Dependent Noninterference: Def-

inition and Enforcement

A common way to formalize integrity properties, such as the one given in Figure

1.2, is based on the concepts from information-flow security. One defines a partially

ordered set of security labels that represent integrity levels (in the simplest case,

two labels > and ⊥ for high and low integrity, respectively). All inputs and outputs

from the program under consideration (in this case, the browser) are labelled.

Inputs are labelled > if they come from a trustworthy source and ⊥ otherwise.

Outputs, on the other hand, are labelled > if their integrity is important and ⊥

otherwise. A program is information-flow secure (noninterferent) if low integrity

inputs do not influence high integrity outputs (i.e. no information flows from low

integrity sources to high integrity targets).

A complication in the case of web session integrity, however, is that both the

set of integrity labels, as well as the labelling function, evolve over time as the

user logs into more sites. The same message sent by site E to site A (for instance

if the page from E sends a request to load a resource from A) will be of low

integrity level if the browser is currently not logged into A, and it will be of a

higher integrity level if the browser is logged into A. Exactly this kind of login

history-dependent noninterference is formalized and then instantiated to the web

context in the following sections.

144 8. Web Session Integrity: Information-Flow Control Enforcement

As in Chapters 3, 4 and 7, the browser is modelled as a general notion of

reactive systems (Section 2.1.5) and then the property of login history-dependent

reactive noninterference and an enforcement mechanism for it, is introduced.

Assume given a set of web domains D, and the set of input events I contains

an event login(d) for all d ∈ D. This event models a successful login of the browser

into domain d. It is further assumed that the set of output events O contains

an event • that represents a silent output, i.e. an internal computation step of

the reactive system. A stream is defined by the coinductive interpretation of the

grammar S ::= [] | s :: S ′, where s ranges over individual stream elements. Unlike,

Bohannon et al. who defines the behaviour of a reactive system in a state Q as

a relation between input and output streams, the reactive behaviour, instead, is

defined here as a relation between input streams and event streams where the later

contain both input and output events, appropriately interleaved. This approach is

needed, in particular, to handle the noninterference that is dependent on the login

history.

Definition 3 (Reactive behaviour). A reactive system state Q generates the event

stream S from the input stream I if the judgment Q(I) S holds, where this

judgment is coinductively defined by:

C([]) []

C
i−→ P P (I) S

C(i :: I) i :: S

P
o−→ Q Q(I) S

P (I) o :: S

8.2.1 Login History Dependent Noninterference

The lattice of possible integrity levels L has elements > (highest integrity), ⊥

(lowest integrity) and d for all d ∈ D (integrity level of authenticated communica-

tion with domain d). Since higher integrity information can flow to lower integrity

8.2. Login History Dependent Noninterference: Definition and Enforcement 145

levels but not vice-versa, the ordering relation on L is defined as > ≤ d ≤ ⊥, and

for different d and d′, d and d′ are incomparable.

The key idea of login history dependent noninterference (LHDNI) is to make

the labelling function that assigns integrity levels to events dependent on the login

events that have occurred. Initially, all network events are low integrity (⊥), but

after a login(d) event, network communication with d will have level d. This models

the behaviour of a web browser: because of the automatic attaching of cookies

(including the session cookie), the integrity of network communication to domain

d becomes more important after a login to d. It also models the assumption that

the server will be more careful with HTTP(S) responses for authenticated sessions

(integrity level of these responses is higher).

The login history is represented as a finite sub-lattice L of L, where L is initially

{>,⊥}, and L evolves with inputs processed as follows (where L ⊕ d is written

when L is extended with element d):

(τ -LOGIN)

i = login(d)

L
i−→ L⊕ d

(τ -NIL)

i 6= login(d)

L
i−→ L

In words, whenever the user logs into a domain d, the label d is added to the

set of integrity labels L.

The function lblL(e) : I] O → L, that labels events, depends on the login

history L. The intuition is that interactions that belong to a session with a do-

main d will get label d iff d ∈ L, otherwise, they get label ⊥ (i.e. once logged

into d, the user cares about the integrity of messages to d). It is stipulated that

lblL(login(d)) = d for any d. The notation L|l is used for the list of labels l′ ∈ L

such that l ≤ l′ and L|l for the list of labels l′ ∈ L such that l′ ≤ l. For an input

146 8. Web Session Integrity: Information-Flow Control Enforcement

i, for simplicity, L|lblL(i) is written as just L|i.

The LHDNI is defined in terms of the relation LHD-similarity, which defines

when two streams look the same to an observer at level l while taking the login

history into consideration.

Definition 4 (LHD-similarity). Under login history L, two streams S and S ′ are

LHD-similar at level l (l-similar) if the judgement L ` S ≈l S ′ holds, where this

judgement is coinductively defined by:

(LHD-NIL)

L ` [] ≈l []

(LHD-LOGIN)

s = login(d) d ≤ l L⊕ d ` S ≈l S ′

L ` s :: S ≈l s :: S ′

(LHD-SIM)

s 6= login(d) lblL(s) ≤ l L ` S ≈l S ′

L ` s :: S ≈l s :: S ′

(LHD-L)

lblL(s) 6≤ l L ` S ≈l S ′

L ` s :: S ≈l S ′

(LHD-R)

lblL(s) 6≤ l L ` S ≈l S ′

L ` S ≈l s :: S ′

Now, a state is LHDNI if l-similar inputs lead to l-similar outputs. Formally,

this is defined as the following:

Definition 5 (LHDNI). A state Q of a reactive system is LHDNI if Q(I) S

and Q(I ′) S ′ imply that ∀l ∈ L, ∅ ` I ≈l I ′ ⇒ ∅ ` S ≈l S ′.

Notice that it is important that S and S ′, the event streams that contain inter-

leaved input and output events, are compared because of the history dependence

of the definition of LHD-similarity. If only the output events were considered, as

classic noninterference definitions do, then there would be no login event present

8.2. Login History Dependent Noninterference: Definition and Enforcement 147

in the output streams; but login events need to be kept there as they influence the

labelling function.

8.2.2 Enforcement

An enforcement mechanism based on secure multi-execution [44, 15, 96] is built

to enforce the security policy defined in terms of LHDNI. The basic idea is to

construct a new reactive system that is a wrapper [15] around multiple copies (sub-

executions) of the original reactive system, one for each level in the login history

L. When the wrapper consumes an input event, it is passed to the copies at or

higher than the level of the input. When a sub-execution produces an output, if

its level matches the level of the execution, the output is produced by the wrapper,

otherwise it is suppressed.

A state of the wrapper is a triple (L,R, Lq), where

• L is the login history,

• R is a function mapping security labels in L to states, i.e. R(l) is the sub-

execution at level l, and

• Lq is a waiting queue of levels that still need to process the last input con-

sumed. It is initially empty and when an input is consumed it is set to

all levels that should process this input. These labels are ordered from low

integrity to high integrity such that the sub-execution at the low integrity

(label ⊥) is always executed first.

States (L,R, []) are consumer states and states (L,R, Lq) with Lq 6= [] are

producer states. The initial state of the wrapper is a state ({>,⊥}, R, []) with

R(>) and R(⊥) being the initial state of the original reactive system.

The semantics is shown in Figure 8.1. The main extension with respect to

standard SME for reactive systems [15] is the way in which login events are handled:

148 8. Web Session Integrity: Information-Flow Control Enforcement

Figure 8.1: Basic semantics for secure multi-execution of a reactive system

(LOGIN)

i = login(d) d 6∈ L L′ = L⊕ d Lq = L′|d R(l)
i−→ Pl

R′(d) = P> R′(l) = Pl for l ∈ Lq \ {d} R′(l) = R(l) for l 6∈ Lq
(L,R, [])

i−→ (L′, R′, Lq)

(LOAD)
i 6= login(d) ∨ (i = login(d) with d ∈ L)

R(l)
i−→ Pl Lq = L|i R′(l) = Pl for l ∈ Lq R′(l) = R(l) for l 6∈ Lq

(L,R, [])
i−→ (L,R′, Lq)

(OUT-P)

R(l)
o−→ P lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l 7→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l 7→ C], Lq)

(DROP-P)

R(l)
o−→ P lblL(o) 6= l

(L,R, l :: Lq)
•−→ (L,R[l 7→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C lblL(o) 6= l

(L,R, l :: Lq)
•−→ (L,R[l 7→ C], Lq)

these update the login history L, and hence also the number of sub-executions in

the wrapper, and (implicitly) the labelling function lblL. Note how the newly

created sub-execution at level d is initialized: P> is the resulting state after giving

i to R(>), i.e. essentially the sub-execution at level > is cloned and the event i

is fed to it. This is the right thing to do as the newly created sub-execution must

have seen all the events of higher integrity than d. The [LOAD] rule handles other

input events than initial login events. It essentially feeds the input to all sub-

executions with a level ≤ lblL(i), by updating the appropriate sub-executions in R

to a state where they have received i and by setting the waiting queue to contain

all levels that have to process this input event. The other four rules implement

the SME output rules, making sure that output of level l is only performed by

8.2. Login History Dependent Noninterference: Definition and Enforcement 149

the execution at level l. They also make sure that, as sub-executions return to a

producer state, the next sub-execution in the waiting queue gets a chance to run.

These rules effectively block all cross-origin requests to authenticated domains.

For instance, if a page received from an unauthenticated domain (a ⊥ event)

loads an image from an authenticated domain d, the corresponding HTTP(S)

request (a d-level event) will be suppressed (by either of the rules [DROP-C] or

[DROP-P]). However, substantially better can be achieved: instead of dropping

such requests, the session cookie is stripped from the request as in other client-side

CSRF protection systems [23, 100]. Assume a function stripL(o) exists, that for

any o with lblL(o) = d (for some d) strips the session cookies from o, and for all

other o returns o.

To erase session cookies from the requests, the projection functions πLl is defined

as follows:

πLl (o) =

strip
L(o) if l = ⊥

o otherwise

The assumption is that the event labelling function lblL checks for the presence

of authentication cookies to deem a network output as a high integrity event. As

the projected output event does not include any authentication cookie, it is deemed

of low integrity, hence lblL(stripL(o)) is always ⊥.

The basic semantics (Figure 8.1) released an output o from a sub-execution at

label l only if lblL(o) = l. This concept is now generalized: a sub-execution at

label l can release πLl (o) if the following predicate holds:

releaseL,l,Lq(o) = lblL(o) = l ∨ (l = ⊥ ∧ lblL(o) 6∈ Lq)

That is, an output is released from a sub-execution if its label matches the

label l of the sub-execution, or when l = ⊥ and there is no sub-execution at the

150 8. Web Session Integrity: Information-Flow Control Enforcement

Figure 8.2: Semantics for secure multi-execution of a reactive system (updated)

(OUT-P)

R(l)
o−→ P releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)
−→ (L,R[l 7→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)
−→ (L,R[l 7→ C], Lq)

(DROP-P)

R(l)
o−→ P ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
•−→ (L,R[l 7→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
•−→ (L,R[l 7→ C], Lq)

label of the output in the waiting queue. Since the sub-executions are processed in

the order from low integrity to high integrity, this means that this output is being

sent in response to an input that was not of level lblL(o), and hence is a cross-

domain request to an authenticated domain. Starting processing sub-executions

from the one at the low integrity (at ⊥ label) implies all the cross-origin requests

(requests with no sub-execution in the queue to release them) are released from

the execution at ⊥ label. As such requests are projected, hence session cookies are

erased1. The updated rules are shown in Figure 8.2.

If the predicate releaseL,l,Lq
(o) does not hold, then the output is suppressed

(not released by the wrapper) from the sub-execution at level l. An output is

suppressed from a sub-execution if its label l does not match the domain of the

output. There is an exception to this rule: the output from sub-execution at ⊥

level is suppressed only if there exists a sub-execution at the label of the domain

of the output. That is, the output is suppressed if the following predicate holds:

suppressL,l,Lq
(o) = lblL(o) 6= l ∧ (l 6= ⊥ ∨ lblL(o) ∈ Lq)

These two predicates are mutually exclusive, that is ¬releaseL,l,Lq
(o) ⇐⇒

suppressL,l,Lq
(o). Let P stands for the proposition lblL(o) = l, Q for l = ⊥

1This will make a number of web applications incompatible, an issue addressed in Section 8.4.

8.2. Login History Dependent Noninterference: Definition and Enforcement 151

and R for lblL(o) ∈ Lq, then the predicate releaseL,l,Lq
(o) can be rewritten as

P ∨(Q∧¬R). The implication ¬releaseL,l,Lq
(o)⇒ suppressL,l,Lq

(o) can be proved

as the following:

¬releaseL,l,Lq
(o) ⇒ ¬(lblL(o) = l ∨ (l = ⊥ ∧ lblL(o) 6∈ Lq))

⇒ ¬(P ∨ (Q ∧ ¬R))

⇒ ¬P ∧ ¬(Q ∧ ¬R) (DeMorgan’s Law (negating OR))

⇒ ¬P ∧ (¬Q ∨R) (DeMorgan’s Law (negating AND))

⇒ lblL(o) 6= l ∧ (l 6= ⊥ ∨ lblL(o) ∈ Lq)

⇒ suppressL,l,Lq
(o)

8.2.3 Security

The enforcement mechanism defined above provides session integrity, however, this

claim has not been proved yet. It is now necessary to prove that this enforcement

mechanism guarantees LHDNI.

Theorem 4 (Security). All the initial states of the wrapper are LHDNI.

Proof. The proof of this theorem is given in the Appendix ??.

The theorem is proved using Bohannon’s ID-bisimulation proof technique [19].

It suffices to prove that there exists an ID-bisimulation ≈l such that for every

state of the wrapper (L,R, Lq), we have (L,R, Lq) ≈l (L,R, Lq). The proof of

security consists of two steps: first the relation ≈l is defined and then it is shown

that this relation is indeed an ID-bisimulation relation. Note the overloading of

the ≈l notation. When used between streams, it is interpreted as LHD-similarity

(Definition 4), when used between reactive system states, it refers to the definition

below.

Definition 6 (l-similarity relation ≈l). The state (L1, R1, Lq1) is l-similar to the

state (L2, R2, Lq2) (written (L1, R1, Lq1) ≈l (L2, R2, Lq2)) iff:

152 8. Web Session Integrity: Information-Flow Control Enforcement

• L1|l = L2|l, and

• R1 ≈l R2, meaning ∀l′ ≤ l: R1(l
′) = R2(l

′), and

• Lq1|l = Lq2|l.

Lemma 1. The l-similarity relation is an ID-bisimulation relation.

Proof. The proof of this lemma is given in the Appendix ??.

8.3 Instantiation to Web Session Integrity

In this section, it is shown by example how LHDNI protects browsers from typical

attacks on session integrity. Recall that the best practices for session security (i.e.

the use of TLS/SSL and the use of the Secure and HttpOnly attributes on session

cookies) are assumed in place. Assume the login events are recognizable by the

browser: they are triggered for instance by a bookmarklet or password manager [23]

and the response page of the site that one is logging into is shown in a separate

top-level frame (tab) in the browser. The browser should enforce that logins to

these known and trusted domains must happen through these bookmarklets, to

avoid attacks such as login CSRF [10].

The examples show how remaining attacks such as classic CSRF and malicious

script inclusion are countered by the enforcement mechanism defined in Section

8.2.2. A similar example can be constructed for client-side or reflected XSS.

Applying the enforcement mechanism described by the semantics in Figure 8.2

to web browsers requires to define the sets of input and output events for a browser.

The events are limited to a simple set that can model the attacks considered in

this dissertation. These events are described in Table 8.3 (the first four events are

input events and the last four are output events). The table also shows the value

of the security label assigned by the lblL function. All these events are standard

8.3. Instantiation to Web Session Integrity 153

browser events and easy to recognize by the browser (for the login(d), recall the

assumptions made above).

Table 8.1: User actions, input/output events and their labels

User actions I/O events lblL
d ∈ L d 6∈ L

typing URL to domain d in the address bar ui_load(d) > >
network response from domain d with header h net_resp(d, h) d ⊥
clicking link on the page from domain d ui_link_click(d) d ⊥
entering password on the page from domain d login(d) d d
network request to domain d (including cookie) net_req(d) d ⊥
network request to domain d (no cookie) net_req(d) ⊥ ⊥
loading a page at the screen ui_page_loaded ⊥ ⊥
dummy • ⊥ ⊥

8.3.1 CSRF

Figure 8.3 gives a schematic overview of a classic CSRF attack2. The user signs

into website A (messages 1−4) and opens a page in another tab from malicious

website E (messages 5−8), which implicitly sends a cross-origin request to load

remote content (e.g., an image) from A (message 9). As the browser will attach

all the cookies with this request to A, it will lead to a CSRF attack on A.

Figure 8.4 shows an encoding of this attack in the browser model and shows

how the enforcement mechanism stops the attack. Each line of the encoding is

of the form (E, [Rule]) : (L,R, [])
n−→ (L′, R′, Lq), where E is the input or output

event, Rule is the semantics rule (Figure 8.2), (L,R, Lq) represents the state of the

wrapper and n is the message number in the corresponding interaction diagram

figure. Outputs are shown slightly indented, so that it is easy to see by which input

event they are caused. To simplify, L0 is written for the set {⊥,>} and LA for the
2It is exactly the same figure 1.2 but re-sketched here.

154 8. Web Session Integrity: Information-Flow Control Enforcement

Figure 8.3: Classic CSRF

Origin8A

User

Browser Origin8E

10:8hidden8response

9:8hidden8request

7:8page

6:8open8page

3:8success

2:8login

8:8page

4:8success

5:8open8page

1:8login

set {⊥, A,>}. For simplicity, the finite list l1 :: l2 :: [] is denoted with l1 :: l2. If a

specific component of the browser state is not taken care of, _ is instead used.

Events and semantics rules corresponding to each event in Figure 8.3 are shown

in Figure 8.4. In this scenario, using a standard web browser, the attack would

happen in message 9, where the request to A (initiated in response from E) would

include cookies. However, under the wrapper, the attack is prevented. Specifically,

the basic semantics in Figure 8.1 would drop the request, since a low integrity

sub-execution is not allowed to send A-labelled requests; the updated semantics

in Figure 8.2, instead, would strip the cookies from the request for the very same

reason. Both options are secure, but the second option will break less existing

websites.

8.3.2 Malicious Script Inclusion

Figure 8.5 gives a schematic overview of a script inclusion attack. The user signs

into the website A (messages 1−4) and then opens a page (messages 5−6). This

8.3. Instantiation to Web Session Integrity 155

Figure 8.4: Classic CSRF attack encoding and prevention

1. (login(A), [LOGIN]): (L0,_, [])
1−→ (LA,_,⊥ :: A)

2. suppress (net_req(A), [DROP-C]): (LA,_,⊥ :: A)
•−→ (LA,_, A)

2. release (net_req(A), [OUT-C]): (LA,_, A)
2−→ (LA,_, [])

3. (net_resp(A, h), [LOAD]): (LA,_, [])
3−→ (LA,_,⊥ :: A)

4. release (ui_page_loaded, [OUT-C]): (LA,_,⊥ :: A)
4−→ (LA,_, A)

4. suppress (ui_page_loaded, [DROP-C]): (LA,_, A)
•−→ (LA,_, [])

5. (ui_load(uE), [LOAD]): (LA,_, [])
5−→ (LA,_,⊥ :: A :: >)

6. release (net_req(E), [OUT-C]): (LA,_,⊥ :: A :: >) 6−→ (LA,_, A :: >)
6. suppress (net_req(E), [DROP-C]): (LA,_, A :: >) •−→ (LA,_,>)
6. suppress (net_req(E), [DROP-C]): (LA,_,>)

•−→ (LA,_, [])
7. (net_resp(E, h), [LOAD]): (LA,_, [])

7−→ (LA,_,⊥)
8. release (ui_page_loaded, [OUT-P]): (LA,_,⊥)

8−→ (LA,_,⊥)
9. release without cookies (net_req(A), [OUT-C]): (LA,_,⊥)

9−→ (LA,_, [])

page includes a script tag that will include a third party script from E. When the

page from A is being rendered (messages 7−8), the remote script is loaded from

the website E (messages 9−10). The script can then, for instance, install an event

handler that will trigger an (authenticated) request to A at a later time.

This example is encoded in Figure 8.6. The response input from E (message

10) gets a ⊥ label, hence is fed only into the low integrity sub-execution. All

the requests to A initiated by the user (in the context of A) or directly by input

from A are released from the sub-execution at level A and hence are not affected

by the script injected to the sub-execution at ⊥. Requests released from the ⊥

sub-execution, on the other hand, may be affected but as those outputs do not

include cookies, they are safe. In the example, the request to A (message 12) as the

result of the user input (message 11) is released from the execution at ⊥, (release

message 12). The sub-execution at A label never received the script from E, so it

will not react to the link click and just output a silent event (•).

156 8. Web Session Integrity: Information-Flow Control Enforcement

Figure 8.5: Script inclusion attack

8.4 Extensions

The enforcement mechanism described by the formal semantics in Figure 8.2 en-

forces security policies to protect against attacks on session integrity, but by doing

so it does break some common web scenarios that technically violate session in-

tegrity, but do so without malicious purposes. These scenarios can be handled

in the approach adopted (Section 8.2) (by means of endorsement (the integrity

variant of declassification [96, 109]).

Endorsements will typically have to be declared by the website that the browser

has an authenticated session with. In the two approaches below, these declarations

are done by means of request headers, similar to how Content Security Policy

(CSP) [105] policies are communicated to the browser.

8.4. Extensions 157

Figure 8.6: Script inclusion attack encoding and prevention

1. (login(A), [LOGIN]): (L0,_, [])
1−→ (LA,_,⊥ :: A)

2. suppress (net_req(A), [DROP-C]): (LA,_,⊥ :: A)
•−→ (LA,_, A)

2. release (net_req(A), [OUT-C]): (LA,_, A)
2−→ (LA,_, [])

3. (net_resp(A, h), [LOAD]): (LA,_, [])
3−→ (LA,_,⊥ :: A)

4. release (ui_page_loaded, [OUT-C]): (LA,_,⊥ :: A)
4−→ (LA,_, A)

4. suppress (ui_page_loaded, [DROP-C]): (LA,_, A)
•−→ (LA,_, [])

5. (ui_link_click(A), [LOAD]): (LA,_, [])
5−→ (LA,_,⊥ :: A)

6. suppress (net_req(A), [DROP-C]): (LA,_,⊥ :: A)
•−→ (LA,_, A)

6. release (net_req(A), [OUT-C]): (LA,_, A)
6−→ (LA,_, [])

7. (net_resp(A, h), [LOAD]): (LA,_, [])
7−→ (LA,_,⊥ :: A)

8. release (ui_page_loaded, [OUT-P]): (LA,_,⊥ :: A)
8−→ (LA,_,⊥ :: A)

9. release (net_req(E), [OUT-C]): (LA,_,⊥ :: A)
9−→ (LA,_, A)

8. suppress (ui_page_loaded, [DROP-P]): (LA,_, A)
•−→ (LA,_, A)

9. suppress (net_req(E), [DROP-C]): (LA,_, A)
•−→ (LA,_, [])

10. (net_resp(E, h), [LOAD]): (LA,_, [])
10−→ (LA,_,⊥)

release (•, [DROP-C]): (LA,_,⊥)
.−→ (LA,_, [])

11. (ui_link_click(A), [LOAD]): (LA,_, [])
11−→ (LA,_,⊥ :: A)

12. suppress (net_req(A), [DROP-C]): (LA,_,⊥ :: A)
•−→ (LA,_, A)

12. release (•, [OUT-C]): (LA,_, A)
•−→ (LA,_, [])

158 8. Web Session Integrity: Information-Flow Control Enforcement

8.4.1 Endorsing Script Inclusions

A first, simple and common kind of endorsement is for script inclusion. The script

inclusion example in Figure 8.5 is commonly not an attack: website A includes

the script from E intentionally and trusts it to influence the session. While some

scripts can be usefully included without having the possibility to influence the

session (e.g., analytics scripts), inclusion of other scripts is only useful when these

scripts have the right to influence the session (e.g., the jQuery library).

Fortunately, endorsing script inclusions is straightforward. The server A de-

clares in an HTTP header which origins can provide trusted scripts and the browser

uses this information to label outgoing and incoming requests to these white-listed

origins from A’s pages as being of level A. One could even argue that this should be

the default interpretation of the CSP policy directives that allow script inclusions

(e.g., the script-src directive).

8.4.2 Endorsements for Collaborating Applications

Endorsements are also required for collaborating web applications such as e-payment

systems (e.g., Paypal). Consider, for example, a user who wants to buy an airline

ticket at website A and pay via www.paypal.com (Figure 8.7).

In this example, the user opens a page from website A where he clicks the buy

button and then confirms the payment on the paypal.com website. Messages 3−4

and 15−17 of Figure 8.7 are encoded in Figure 8.8 using the semantics. Assume

the user is logged into both A and P (PayPal), i.e. L contains both A and P . The

message 17 (GET: confirmed) at label A is a cross-origin request to A in response

to the input at label E from website E and hence the wrapper will release it from

the execution at ⊥ (as there is no sub-execution in the queue at label A). As all

the session cookies are erased, the payment operation will fail.

8.4. Extensions 159

Figure 8.7: E-payment scenario [100]

PayPalOriginEABrowser

User

15:EdispatchEpage

13:Eredirect

9:EpaymentEpage

7:Eredirect

14:EGET:Edispatch

12:EPOST:Econfirm

8:EGET:EpaymentEpage

6:EPOST:EclickedEbutton

17:EGET:Econfirmed

16:EdispatchEpage

10:EpaymentEpage

4:ErenderEpage

2:EGETErequest

11:Econfirm

5:EclickE2buyEnow2

3:EGETEresponse

1:EloadEpage

To support such collaborating web applications, endorsement is needed. For

these cases, the use of a response header is proposed which is used by the website

to specify allowed entry points from different origins. A website s (source of

white-list) sends a list of URLs url pointing to s specifying that another site w

(white-listed site) is allowed to send cross-origin requests to these URLs, by setting

a connect-destination (cd) header <cd: {W:w,U:url}> in the response.

The wrapper will keep track of these headers by updating a set ω of key-

value pairs of the form (w, url), where w is the white-listed website (the who

part) and url is the list of URLs (the how part) specified as the allowed entry

points white-listed for the w. The list of URLs url can also include URLs with

wildcard character ∗ such as s.com/∗, where the website w can send cross-origin

(authenticated) requests to any URL of the site s.com.

160 8. Web Session Integrity: Information-Flow Control Enforcement

Figure 8.8: E-payment application encoding

3. (net_resp(A, h), [LOAD]): (L,_, []) 3−→ (L,_,⊥ :: A)

4. release (ui_page_loaded, [OUT-C]): (L,_,⊥ :: A)
4−→ (L,_, A)

4. suppress (ui_page_loaded, [DROP-C]): (L,_, A) •−→ (L,_, [])

...
(user clicks "buy" button, and confirms payment)

...

15. (net_resp(P, h), [LOAD]): (L,R, []) 15−→ (L,_,⊥ :: P)

16. release (ui_page_loaded, [OUT-P]): (L,_,⊥ :: P)
16−→ (L,R,⊥ :: P)

17. release w/o cookies (net_req(uA), [OUT-C]): (L,_,⊥ :: P)
17−→ (L,R, P)

16. suppress (ui_page_loaded, [DROP-P]): (L,_, P) •−→ (L,_, P)
17. suppress (net_req(uA), [DROP-C]): (L,_, P) •−→ (L,_, [])

As a simple example, assume two websites A and B send the endorsement

headers <cd: {W:P, U:[a.com/∗]}> and <cd: {W:P, U:[b.com/u1, b.com/u2]}>

in their responses. Initially, when the response from A is received, the wrapper

will store in ω an entry (P, [a.com/∗]) and when the other response from B is

received, it will add the two URLs to the value bound to P , hence ω will become

(P, [a.com/∗, b.com/u1, b.com/u2]). The URL a.com/∗ represents all the URLs of

website A.

Now all the required information exists to decide if a cross-origin request should

be endorsed. After receiving the example headers above, an output from P to any

URL of A or to any of the two URLs b.com/u1 and b.com/u2 of website B should

include cookies. On receipt of an input event i with label d, the wrapper will

compute the set of URLs that d is allowed to send cross-origin requests to by

looking it up in ω. Let us call the resulting set Ui.

The release predicate is generalized so that it takes Ui into account. An output

is released from a state if 1) its label matches the label l of the current sub-execution

or, 2) when l = ⊥ and there is no sub-execution at the level of the output and

8.4. Extensions 161

the request URL is not white-listed, or 3) when l 6= ⊥ and the request URL is

white-listed. The predicate releaseL,l,Lq
(o, u, Ui) is defined as follows:

l = lblL(o) ∨ (l = ⊥ ∧ lblL(o) 6∈ Lq ∧ u 6∈ Ui) ∨ (l 6= ⊥ ∧ u ∈ Ui).

It is now shown how the PayPal example (Figure 8.7) works by encoding (Figure

8.9) using the model. (The ω and Ui is shown as the third and fourth component

of the tuple representing the extended browser state.)

Assume the site A sends the header <cd: {W:P, U:[a.com/∗]}> in the response

input (Figure 8.7, message 3) and the wrapper creates the entry ω = (P, [a.com/∗]).

Later on, when the input in message 15 is received from P , the corresponding list

of URLs for P is retrieved, that is, Ui = [a.com/∗]. The encoding in Figure

8.8 will now change as shown in Figure 8.9. The GET: confirmed cross-origin

(legitimate) request to website A is now sent from the sub-execution at label P

with its authentication cookie.

Figure 8.9: E-payment application encoding (updated)

. . .

15. (net_resp(P, h), [LOAD]): (L,_, ω, [], []) 15−→ (L,_, ω, [a.com/∗],⊥ :: P)
16. release (ui_page_loaded, [OUT-P]):

(L,_, ω, [a.com/∗],⊥ :: P)
16−→ (L,_, ω, [a.com/∗],⊥ :: P)

17. suppress (net_req(uA), [DROP-C]):
(L,_, ω, [a.com/∗],⊥ :: P)

•−→ (L,_, ω, [a.com/∗], P)
16. suppress (ui_page_loaded, [OUT-P]):

(L,_, ω, [a.com/∗], P) •−→ (L,_, ω, [a.com/∗], P)
17. release (net_req(uA), [OUT-C]):

(L,_, ω, [a.com/∗], P) 17−→ (L,_, ω, [a.com/∗], [])

162 8. Web Session Integrity: Information-Flow Control Enforcement

8.5 Implementation

The prototype implementation3 is constructed as a modification of the FlowFox

browser [38, 39]. Crucial for the implementation is the ability to keep track of all

sites a user is logged into and to make sure that the labelling of JavaScript API

calls can be dependent on this login history.

The biggest modification to FlowFox’s core is the addition of a shared state

variable, shared between all browser windows. This variable contains the login his-

tory log of the browser which is a list of strings and contains all domain names for

which the browser has established an authenticated session. In the prototype, au-

thentication to a web site has to happen by means of a bookmarklet that interacts

with this login history log to add authenticated domains. The second modification

is in the policy library that comes with FlowFox. This library now offers an API

to query the login history log so that the labelling of JavaScript API calls can

depend on this information.

The current prototype is just a proof-of-concept and has important limita-

tions. The most important one is that FlowFox only performs multi-execution of

JavaScript code and hence no policies can be enforced on network requests that

are not triggered by scripts. If attacker.com tries to influence the session with

mail.com via other means, e.g., an embedded image tag, thereby not relying on

any JavaScript code, there is no way to intercept this in FlowFox. Removing this

limitation is possible by multi-executing the entire browser, as proposed by Bielova

et al. [15], but that would require a major overhaul of FlowFox and hence a sub-

stantial implementation effort. Despite this limitation, the prototype is evidence

of the feasibility of the proposed mechanism in real browsers.

3Available online at http://distrinet.cs.kuleuven.be/software/FlowFox/.

http://distrinet.cs.kuleuven.be/software/FlowFox/

Conclusion

In this dissertation, the formal verification of web sessions security in web browser

and some browser-side mechanisms for enhancing this security were investigated.

The security of web sessions was defined, both, in terms of information-flow prop-

erty called noninterference and using access control model. The enforcement mech-

anisms defined for security policies are amenable to be enforced at the client side

without requiring any help from the servers. Moreover, as the proof-of-concept,

Chrome extensions were designed and implemented to enforce the relaxed versions

of the security policies for protecting confidentiality and integrity of web sessions.

The relaxed versions were carefully chosen to establish trade-offs between usability

and security of web applications. The security policies and the level of protection

they provided were analysed using extensive experiments on real life web applica-

tions while the extensions developed were installed in the Chrome browser.

8.6 Protecting Web Sessions

Web sessions can be attacked at network, session implementation and application

layers. At the network layer, network sniffing or man-in-the-middle attacks can

break the confidentiality or integrity of web sessions. This is a well-understood

problem with may solutions and protection mechanisms proposed in the literature,

for example, by appropriate use of transport level security techniques such as

TLS/SSL, these attacks can be stopped. At the session implementation layer,

script injection or again network level attacks can be used to steal a session cookie

and hijack the session, or to fixate a session cookie on a client. Again, ensuring that

164 Conclusion

sessions only run over TLS/SSL, prohibiting script access to session cookies and

enforcing renewal of a session on authentication, are appropriate countermeasures

to such attacks.

Web sessions can be attacked at the application layer: since cookies are at-

tached to HTTP requests by the browser automatically – without any web appli-

cation involvement – any page in the browser can send malicious request to any of

the servers that the browser currently has a session with, and that request will au-

tomatically get the session cookie attached and hence will be considered as part of

a (possibly authenticated) session by the server. If the page sending the malicious

request is from a different origin, such attacks are called CSRF (cross-site request

forgery) attacks. But malicious requests can also be sent by scripts included in – or

injected by an attacker into – a page from the same origin. Since both inclusions

of third-party scripts and script injection vulnerabilities are common, these are

important attack vectors.

The attacks at these three layers are roughly categorized as attacks on web

session confidentiality and integrity. In the former category, the session cookie is

either stolen using a JavaScript injected onto the page or intercepted in transit

when sent in clear. In the later category, the attacker can force the browser to

send malicious requests (e.g., by including a <script> tag or injecting a script) to

any of the servers that the browser currently has a session with.

8.6.1 Protecting Attacks on Session Confidentiality

To tackle the attacks on confidentiality of web sessions, first a detailed survey was

carried to assess the protection that the existing mechanisms, based on Secure

and HttpOnly flags, provide to the web applications. The experiments showed

that the actual adoption of these protection mechanisms was not satisfactory and

hence suggested to 1) carry a formal analysis of the protection these mechanisms

Protecting Web Sessions 165

can actually provide assuming they have been properly used by the web developers,

and 2) then flag those sessions cookies at the client side which are not protected

by the developers without breaking the web applications.

In the formal part [21], the web browser was modelled as a reactive system [19]

by extending an existing model Featherweight Firefox [17] in the proof assistant

Coq [32] and the security policy protecting web session confidentiality was defined

in terms of reactive noninterference – the classical notion of noninterference but

tailored towards reactive systems. Using the Coq facilities, the (model) of the

web browser was proved secure according to the security policy. The noninter-

ference security property proves strong security guarantees against, both implicit

and explicit, information flows.

A prototype browser extension CookiExt [21] was developed to enforce the con-

fidentiality policy at the client side. The extension first identifies session cookies

using a heuristic and then set them with both Secure and HttpOnly flags if the

websites are supporting TLS/SSL protocols and only HttpOnly for websites that

do not support TLS/SSL protocols. Setting the flags with HttpOnly will protect

them from JavaScript and the Secure flag will ensure their security in communi-

cation – all the subsequent requests over HTTP are redirected over HTTPS for

supporting websites.

In the formal part, the security of the browser without the CookiExt is installed

was proved, however, one may question the security of the CookiExt-patched web

browser as the security guarantees of the browser without CookiExt does not ensure

the security of the browser with CookiExt installed. A model of the browser patched

with a model of the CookiExt was formalized in Coq and proved it secure according

to a stronger security policy defined in terms of noninterference property.

166 Conclusion

8.6.2 Protecting Attacks on Session Integrity

Addressing the integrity of web sessions formally was much more challenging than

confidentiality, in particular, using a detailed model as was used for proving con-

fidentiality. However, a different approach was taken: a new lightweight browser

model, called Flyweight Firefox [23], was built and extended with the enforcement

mechanism for a security policy to protect session integrity against a number of

already-known attacks and a new one. The security policy was enforced using

access control model based on tainting network connections and pages loaded over

tainted connections. Tainting network connections capture origin change during

the network requests and responses. As the web pages may later initiate authenti-

cated requests, the network connection taint is inherited to the page downloaded

over it and hence a different security policy is adopted for the requests initiated

from the tainted pages. The enforcement mechanism used in Flyweight Firefox

was mathematically proved sound using a simulation-based technique.

Similar to CookiExt, a browser extension SessInt [23] was designed and imple-

mented as the proof-of-concept of the enforcement mechanism used in the Fly-

weight Firefox. The experiments on real life web applications, when SessInt was

installed, showed that it can provide protection against attacks on web session

integrity and password theft.

To prove the session integrity in a more rigorous and precise way, web session

integrity was formalized using information-flow model. As the trust level of net-

work requests change while the user is surfing the web (e.g., when the user logs

into a website), it was even more challenging to define information-flow policies

based on noninterference. To track origin change when the user logs into web-

sites, a login history-dependent reactive noninterference [73, 74] was defined and

enforced using the secure multi-execution [44, 26] technique. The security of the

enforcement mechanism was proved using the bi-simulation technique as was used

Future Work 167

in the proof of session confidentiality.

8.7 Future Work

The formal web browser models are detailed enough to define interesting security

policies and the enforcement mechanisms are based on, both information-flow con-

trol and access control, and the security policies can be enforced at the browser side

without requiring server support. Similarly, the implementation as the browser ex-

tensions protect web sessions without breaking too many web applications. How-

ever, there is still room for further improvement, both, in the theoretical and

implementation parts.

Both of the extensions, CookiExt and SessInt, are identifying session cookies us-

ing a heuristic. Although, the false positive and false negative rates are acceptable,

however, the existing heuristic needs further refinement. A possible choice would

be to integrate it with machine learning techniques as proposed by Calzavara et

al. [25] in their recent work. Moreover, the effectiveness of the heuristic should

also be analysed when used against web applications developed with web appli-

cations frameworks and content management systems. As these frameworks also

handle aspects concerning session cookies, such analysis will help understanding

the performance of the heuristic when used with applications that reflect correctly

the everyday usage of the average user.

A further reasonable design improvement would be to combine both, CookiExt

and SessInt, into a single browser extension. Both extensions enforce security

policies that are not compatible with a number of applications such as collaborative

web applications using SessInt. Although, a technique based on CSP headers

was proposed [73], but that needs to be adopted by web applications which is

not in practice now. To support such existing applications, the extensions (in

168 Conclusion

particular SessInt) need to be further reworked to solve the usability issues, without

or minimum user intervention.

The security policy to protect web session integrity was enforced in a lightweight

model Flyweight Firefox and was not directly mechanized in Coq. To ease the de-

scription in this dissertation, instead, the integrity security policy and enforcement

mechanism was formalized in Coq as extension to the Extended Featherweight

Firefox, however, the proofs were not carried mechanically. In future, carrying

the proof in proof assistant Coq would be a nice contribution towards mechaniz-

ing web session integrity. The downside would be that it will require more effort

than proving confidentiality but on the positive side, the existing Coq formalisa-

tion as extension of Featherweight Firefox (without proof) would provide the basic

knowledge required to formalize integrity in proof assistants.

The integrity enforcement using the secure-multi execution is more precise and

rigorous than the access control, however, it either misses or abstracts away a

number of features needed to captures attacks (e.g., local CSRF attack). The

initial investigation suggests that adding these features would be simple, however,

it may further complicate the proof of login history-dependent noninterference.

Furthermore, in the existing work, the security of the enforcement mechanism

has been proved but not the precision. This later property would ensure that the

enforcement mechanism change the behaviour of the web browser only in a sensible

way.

A

Code Listings

A.1 expr Data Type

1 Inductive expr: Type :=
2 | error_expr: String.t → expr
3 | scoped_expr: context → expr → expr
4 | null_expr: expr
5 | nat_expr: nat → expr
6 | str_expr: String.t → expr
7 | url_expr: url → expr
8 | closure_expr: context → var → list var → expr → expr
9 | win_expr: win_ref → expr

10 | node_expr: node_ref → expr
11 | code_expr: script → expr
12 | app_expr: expr → expr → expr
13 | var_expr: var → expr
14 | fun_expr: var → list var → expr → expr
15 | eval_expr: expr → expr
16 | seq_expr: expr → expr → expr
17 | get_cookies_expr: expr
18 | set_var_expr: var → expr → expr
19 | xhr_expr: expr → expr → expr → expr
20 | self_expr: expr
21 | get_win_root_node_expr: expr → expr
22 | new_div_node_expr: expr
23 | remove_node_expr: expr → expr
24 | insert_node_expr: expr → expr → expr → expr.

A.2 Rewriting Input Event

1 Definition rewrite_ie (ie: input_event) : input_event :=

170 A. Code Listings

2 match ie with
3 | user_load_in_new_window_event uwi u ⇒
4 user_load_in_new_window_event uwi (rewrite_url u)
5 | user_load_in_window_event uwi u ⇒
6 user_load_in_window_event uwi (rewrite_url u)
7 | network_document_response_event nci uwi rs ⇒
8 match rs.(resp_redirect_uri) with
9 | Some u ⇒ network_document_response_event

10 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
11 nci.(net_conn_id_value)) uwi
12 (build_resp rs.(resp_del_cookies) rs.(resp_set_cookies)
13 (Some (rewrite_url u)) (rewrite_file rs.(resp_file)))
14 | None ⇒ network_document_response_event
15 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
16 nci.(net_conn_id_value)) uwi (build_resp rs.(resp_del_cookies)
17 rs.(resp_set_cookies) None (rewrite_file rs.(resp_file)))
18 end
19 | network_script_response_event nci rs ⇒
20 match rs.(resp_redirect_uri) with
21 | Some u ⇒ network_script_response_event
22 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
23 nci.(net_conn_id_value))
24 (build_resp rs.(resp_del_cookies) rs.(resp_set_cookies)
25 (Some (rewrite_url u)) (rewrite_file rs.(resp_file)))
26 | None ⇒ network_script_response_event
27 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
28 nci.(net_conn_id_value))
29 (build_resp rs.(resp_del_cookies) rs.(resp_set_cookies)
30 None (rewrite_file rs.(resp_file)))
31 end
32 | network_xhr_response_event nci rs ⇒
33 match rs.(resp_redirect_uri) with
34 | Some u ⇒ network_xhr_response_event
35 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
36 nci.(net_conn_id_value))
37 (build_resp rs.(resp_del_cookies) rs.(resp_set_cookies)
38 (Some (rewrite_url u)) (rewrite_file rs.(resp_file)))
39 | None ⇒ network_xhr_response_event
40 (build_net_conn_id (rewrite_url nci.(net_conn_id_url))
41 nci.(net_conn_id_value))
42 (build_resp rs.(resp_del_cookies) rs.(resp_set_cookies)
43 None (rewrite_file rs.(resp_file)))
44 end
45 | _ ⇒ ie
46 end.

A.3. same_form_ie_plus Relation 171

A.3 same_form_ie_plus Relation

1 Definition same_form_ie_plus l (S: DomainSet.t) (ieL ieR: input_event)
2 : Prop :=
3 match ieL, ieR with
4 | network_document_response_event nciL uwiL rsL,
5 network_document_response_event nciR uwiR rsR ⇒
6 nciL == nciR ∧
7 uwiL == uwiR ∧
8 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
9 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧

10 rsL.(resp_file) == rsR.(resp_file) ∧
11 (forall k, StringMap.In k (resp_set_cookies rsL) ↔
12 StringMap.In k (resp_set_cookies rsR)) ∧
13 (erase_invis_cookies_plus l S nciL.(net_conn_id_url)
14 rsL.(resp_set_cookies) == erase_invis_cookies_plus l S
15 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
16 | network_script_response_event nciL rsL,
17 network_script_response_event nciR rsR ⇒
18 nciL == nciR ∧
19 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
20 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧
21 rsL.(resp_file) == rsR.(resp_file) ∧
22 (forall k, StringMap.In k (resp_set_cookies rsL) ↔
23 StringMap.In k (resp_set_cookies rsR)) ∧
24 (erase_invis_cookies_plus l S nciL.(net_conn_id_url)
25 rsL.(resp_set_cookies) == erase_invis_cookies_plus l S
26 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
27 | network_xhr_response_event nciL rsL,
28 network_xhr_response_event nciR rsR ⇒
29 nciL == nciR ∧
30 rsL.(resp_del_cookies) == rsR.(resp_del_cookies) ∧
31 rsL.(resp_redirect_uri) == rsR.(resp_redirect_uri) ∧
32 rsL.(resp_file) == rsR.(resp_file) ∧
33 (forall k, StringMap.In k (resp_set_cookies rsL) ↔
34 StringMap.In k (resp_set_cookies rsR)) ∧
35 (erase_invis_cookies_plus l S nciL.(net_conn_id_url)
36 rsL.(resp_set_cookies) == erase_invis_cookies_plus l S
37 nciR.(net_conn_id_url) rsR.(resp_set_cookies))
38 | _, _ ⇒ ieL == ieR
39 end.

172 A. Code Listings

B

Proofs

B.1 Proof Technique

To prove our main result, we adapt Bohannon’s ID-bisimulation proof technique [19]

to support LHDNI. In the next definition, let C, C ′ range over wrapper consumer

states of the form (L,R, []); P , P ′ range over wrapper producer states of the form

(L,R, Lq) with Lq 6= []; Q, Q′ range over arbitrary wrapper states. Given a wrap-

per state Q, let LQ represent the login history of Q.

Definition 7 (ID-bisimulation). An ID-bisimulation on a reactive system is a

label-indexed family of binary relations on states (written ∼l) with the following

properties:

(a) if Q ∼l Q′, then Q′ ∼l Q;

(b) if C ∼l C ′ and C
i−→ P and C ′ i−→ P ′ and lblLC

(i) ≤ l, then P ∼l P ′;

(c) if C ∼l C ′ and C
i−→ P and lblLC

(i) 6≤ l, then P ∼l C ′;

(d) if P ∼l C and P o−→ Q, then lblLP
(o) 6≤ l and Q ∼l C;

(e) if P ∼l P ′, then either:

1. P o−→ Q and P ′ o
′
−→ Q′ imply o = o′ and Q ∼l Q′, or

2. P o−→ Q implies lblLP
(o) 6≤ l and Q ∼l P ′, or

174 B. Proofs

3. P ′ o
′
−→ Q′ implies lblLP ′ (o

′) 6≤ l and P ∼l Q′.

Lemma 2. All the following properties hold true:

1. if C i−→ P with i 6= login(d), then LP = LC;

2. if C i−→ P with i = login(d), then LP = LC ⊕ d;

3. if P o−→ Q, then LQ = LP ;

Proof. By a case analysis on the transition step in the antecedent.

All the next results only hold true assuming some mild, implicit syntactic re-

strictions on the format of the history-dependant labelling function for input/out-

put events. These restrictions are formalized in the next definition and assumed

throughout all the proofs.

Definition 8 (Well-formed labelling function). A labelling function lbl is well-

formed if and only if all the following properties hold true:

1. ∀L : ran(lblL) ⊆ L;

2. ∀L, d, s : lblL⊕d(s) 6= lblL(s)⇒ lblL⊕d(s) = d ∧ lblL(s) = ⊥;

3. ∀L,L′, d, s : lblL⊕d(s) = d⇒ lblL′⊕d(s) = d;

4. ∀L : lblL(•) = ⊥.

Lemma 3. Both the following properties hold true:

1. if L ` S ≈l S ′ and d 6≤ l, then L⊕ d ` S ≈l S ′;

2. if L⊕ d ` S ≈l S ′, then L ` S ≈l S ′.

Proof. Both the points are proved by coinduction, exploiting the well-formation

assumption for the labelling function (points 1 and 2 of the Definition 8).

B.1. Proof Technique 175

Lemma 4. Suppose that Q ∼l Q′, and that Q(I) ; S and Q′(I ′) ; S ′. Then

LQ ` I ≈l I ′ implies LQ ` S ≈l S ′.

Proof. We prove the result by coinduction. As both states, Q and Q′, can be either

consumer or producer states, we have four cases:

1. Assume the states are producer states, i.e., for some P and P ′, we have

Q = P and Q′ = P ′. By Definition 7, item (e), there are three cases:

• By inverting the assumption that P (I) ; S, we have P o−→ Q1 for some

Q1 such that Q1(I) ; S1 and S = o :: S1. By inverting the assumption

P ′(I ′) ; S ′, we have P ′ o′−→ Q′1 for some Q′1 such that Q′1(I ′) ; S ′1

and S ′ = o′ :: S ′1. By the assumption in this case, we know o = o′

and Q1 ∼l Q′1. By Lemma 2, we know that LQ1 = LP , hence by the

coinduction hypothesis we get LP ` S1 ≈l S ′1. Since o = o′, either

lblLP
(o) ≤ l and lblLP

(o′) ≤ l, or lblLP
(o) 6≤ l and lblLP

(o′) 6≤ l. In

the first case, the conclusion follows using [ID-SIM], while in the second

case, the conclusion follows using [ID-L] in sequence with [ID-R].

• By inverting the assumption that P (I) ; S, we have P o−→ Q1 for some

Q1 such that Q1(I) ; S1 and S = o :: S1. By the assumption in this

case, we know lblLP
(o) 6≤ l and Q1 ∼l P ′. By Lemma 2, we know that

LQ1 = LP , hence by coinduction hypothesis we get LP ` S1 ≈l S ′. The

conclusion then follows using [ID-L].

• Same as above, but using [ID-R] to conclude.

2. Assume Q = P and Q′ = C ′ for some producer and consumer states P and

C ′ respectively. By inverting the assumption P (I) ; S, we have P o−→ Q1

for some Q1 such that Q1(I) ; S1 and S = o :: S1. According to the item

(d) in Definition 7, we know that lblLP
(o) 6≤ l and Q1 ∼l Q′. By Lemma 2,

176 B. Proofs

we know that LQ1 = LP , hence by using the coinduction hypothesis we get

LP ` S1 ≈l S ′. The conclusion then follows using [ID-L].

3. Assume Q = C and Q′ = P ′ for some consumer and producer states C and

P ′ respectively. Using the symmetry case (Definition 7, item (a)), this case

becomes similar to the case (2) above.

4. AssumeQ = C andQ′ = C ′ for some consumer states C and C ′. By inverting

the assumption LC ` I ≈l I ′, we have five cases:

• I = I ′ = []. Using inversion on C([]) ; S and C ′([]) ; S ′, we have

S = S ′ = [], and hence the case is closed using [ID-NIL].

• I = i :: I1, where lblLC
(i) 6≤ l and LC ` I1 ≈l I ′. By inverting

the assumption that C(i :: I1) ; S, we have C i−→ P for some P

such that P (I1) ; S1 and S = i :: S1. By Definition 7, item (c), we

know that P ∼l Q′. If LP = LC , by the coinduction hypothesis we get

LC ` S1 ≈l S ′ and we conclude by using [ID-L]. Otherwise, by Lemma 2,

we have LP = LC ⊕ d for some d such that i = login(d). By the first

point of Lemma 3, observing that lblLC
(i) = lblLC

(login(d)) = d 6≤ l by

hypothesis, we know that LC ` I1 ≈l I ′ implies LP ` I1 ≈l I ′. Hence,

we can appeal to the coinduction hypothesis to get LP ` S1 ≈l S ′.

By the second point of Lemma 3, we then get LC ` S1 ≈l S ′ and we

conclude LC ` S ≈l S ′ by using [ID-L];

• I ′ = i :: I ′1, where lblLC
(i) 6≤ l and LC ` I ≈l I ′1. This is analogous to

the case above, except it is closed by using [ID-R].

• I = i :: I1 and I ′ = i :: I ′1, with lblLC
(i) ≤ l, i 6= login(d), LC ` I1 ≈l I ′1.

By inverting the assumption that C(i :: I1) ; S, we have C i−→ P

for some P such that P (I1) ; S1 and S = i :: S1. By inverting the

B.2. Proof of the Main Result 177

assumption that C ′(i :: I ′1) ; S ′, we have C ′ i−→ P ′ for some P ′ such

that P ′(I ′) ; S ′1 and S ′ = i :: S ′1. By the item (b) in Definition 7, we

know that P ∼l P ′. By Lemma 2, we know that LP = LC , hence we

get LC ` S1 ≈l S ′1 by the coinduction hypothesis. We then conclude by

using [ID-SIM].

• I = i :: I1 and I ′ = i :: I ′1, where lblLC
(i) ≤ l, i = login(d) and

LC ⊕ d ` I1 ≈l I ′1. By inverting the assumption that C(i :: I1) ; S,

we have C i−→ P for some P such that P (I1) ; S1 and S = i :: S1.

By inverting the assumption that C ′(i :: I ′1) ; S ′, we have C ′ i−→ P ′

for some P ′ such that P ′(I ′) ; S ′1 and S ′ = i :: S ′1. By the item (b)

in Definition 7, we know that P ∼l P ′. By Lemma 2, we know that

LP = LC ⊕ d, hence we get LC ⊕ d ` S1 ≈l S ′1 by the coinduction

hypothesis. We then conclude by using [ID-LOGIN].

Theorem 5 (Noninterference). Let Q be an initial wrapper state. If Q ∼l Q for

all l, then Q is LHDNI.

Proof. By a direct application of Lemma 4.

B.2 Proof of the Main Result

We first recall that the wrapper is intended to protect deterministic reactive sys-

tems, according to the following definition.

Definition 9 (Determinism). A reactive system is deterministic iff:

• for all P ∈ ProducerState, (P o−→ Q ∧ P o′−→ Q′)⇒ (o = o′ ∧Q = Q′)

• for all C ∈ ConsumerState, (C i−→ P ∧ C i−→ P ′)⇒ P = P ′

178 B. Proofs

Lemma 5. Let L1, L2 be two login histories such that L1|l = L2|l. If lblL1(s) ≤ l

for some event s, then lblL2(s) = lblL1(s).

Proof. By exploiting the well-formation assumption for the labelling function. In

particular, by point 2, we observe that the presence of a domain d in L1 may only

be relevant to assign a level d to some event s. Let then lblL1(s) = d ≤ l: given

that L1|l = L2|l, we know that d belongs also to L2. Hence, lblL2(s) = d by point

3 of the Definition 8.

Lemma 1. The l-similarity relation is an ID-bisimulation relation.

Proof. To prove the result, we show that the five properties in Definition 7 hold

true for the l-similarity relation in Definition 6.

a) We want to prove that, if (L1, R1, Lq1) ≈l (L2, R2, Lq2), then we have

(L2, R2, Lq2) ≈l (L1, R1, Lq1).

Since (L1, R1, Lq1) ≈l (L2, R2, Lq2), we have L1|l = L2|l and ∀l′ ≤ l, R1(l
′) =

R2(l
′) and Lq1|l = Lq2|l by definition of l-similarity, hence (L2, R2, Lq2) ≈l (L1, R1, Lq1)

by the symmetry of equality.

b) We want to prove that, if (LC1 , RC
1 , []) ≈l (LC2 , RC

2 , []) and (LC1 , R
C
1 , [])

i−→

(LP1 , R
P
1 , L

P
q1) and (LC2 , R

C
2 , [])

i−→ (LP2 , R
P
2 , L

P
q2) and lblLC

1
(i) ≤ l, then we have

(LP1 , R
P
1 , L

P
q1) ≈l (LP2 , RP

2 , L
P
q2).

Before we start the proof, we observe that (LC1 , R
C
1 , [])

i−→ (LP1 , R
P
1 , L

P
q1) and

(LC2 , R
C
2 , [])

i−→ (LP2 , R
P
2 , L

P
q2) must be derived by the same rule. Indeed, if i 6=

login(d), then only rule [LOAD] is available. Assume instead that i = login(d):

since lblLC
1
(i) = d ≤ l, we know that d ∈ LC1 iff d ∈ LC2 , given that the assumption

(LC1 , R
C
1 , []) ≈l (LC2 , R

C
2 , []) implies LC1|l = LC2|l. Hence, rule [LOGIN] is either

applied to both the input transitions or to none.

Since (LC1 , R
C
1 , []) ≈l (LC2 , RC

2 , []), we have LC1|l = LC2|l and ∀l′ ≤ l, RC
1 (l
′) =

RC
2 (l
′), therefore, (LP1 , RP

1 , L
P
q1) ≈l (LP2 , RP

2 , L
P
q2) because:

B.2. Proof of the Main Result 179

• There are two cases: either the reduction steps are triggered by [LOGIN] or

they are triggered by [LOAD]. In the first case, we have LP1 = LC1 ⊕ d and

LP2 = LC2 ⊕ d. Since d ≤ l, we have LP1|l = LC1|l ⊕ d and LP2|l = LC2|l ⊕ d,

hence LP1|l = LP2|l from the assumption LC1|l = LC2|l. If instead the applied rule

is [LOAD], no new label is added to the sets LC1 and LC2 , hence the login

histories upto level l are still the same, that is LP1|l = LC1|l = LC2|l = LP2|l.

• There are two cases: either the reduction steps are triggered by [LOGIN] or

they are triggered by [LOAD]. We show the first case in detail, the second

one is easier. Let then i = login(d) with d 6∈ LC1 and d 6∈ LC2 . Recall that

∀l′ ≤ l, RC
1 (l
′) = RC

2 (l
′). Since the original reactive system is deterministic,

∀l′ 6= d : l′ ≤ l, RC
1 (l
′)

i−→ P and RC
2 (l
′)

i−→ P ′ imply P = P ′, hence

∀l′ 6= d : l′ ≤ l, RP
1 (l
′) = RP

2 (l
′). For d ≤ l, since RC

1 (>) = RC
2 (>) and

the original reactive system is deterministic, we have RC
1 (>)

i−→ P> and

RC
2 (>)

i−→ P>, hence RP
1 (d) = RP

2 (d). Therefore ∀l′ ≤ l, RP
1 (l
′) = RP

2 (l
′),

i.e., we have RP
1 ≈l RP

2 .

• both of the lists, LPq1 and LPq2, are populated by the same input i. As LC1|l =

LC2|l and lblLC
1
(i) ≤ l, we know that lblLC

2
(i) = lblLC

1
(i) by Lemma 5. Hence,

both lists LPq1|l and LPq2|l are populated with the same labels l′ such that

lblLC
1
(i) ≤ l′ ≤ l and, regardless of the rule applied, we have LPq1|l = LPq2|l.

c) We want to prove that, if (LC1 , RC
1 , []) ≈l (LC2 , RC

2 , []) and (LC1 , R
C
1 , [])

i−→

(LP1 , R
P
1 , L

P
q1) and lblLC

1
(i) 6≤ l, then (LP1 , R

P
1 , L

P
q1) ≈l (LC2 , RC

2 , []).

Since (LC1 , R
C
1 , []) ≈l (LC2 , RC

2 , []), we have LC1|l = LC2|l and ∀ l′: l′ ≤ l, RC
1 (l
′) =

RC
2 (l
′). We show the three required conditions for similarity:

• There are two cases: either of the rules [LOGIN] or [LOAD] applies. If rule

[LOGIN] is applied, then for i = login(d) with lblLC
1
(i) 6≤ l, domain d 6≤ l is

added, that is LP1 = LC1 ⊕ d, hence LP1|l = LC1|l = LC2|l from the assumption

180 B. Proofs

LC1|l = LC2|l. If rule [LOAD] is applied, the login history does not change,

hence LP1|l = LC1|l and we have LP1|l = LC1|l = LC2|l.

• there are two cases: either of the rules [LOGIN] or [LOAD] applies. In both

cases, since lblLC
1
(i) 6≤ l, the input i can only add new sub-executions at

l′ 6≤ l, hence ∀ l′: l′ ≤ l, RP
1 (l
′) = RC

1 (l
′) = RC

2 (l
′), which implies RP

1 ≈l RC
2 .

• by definition, LPq1 contains levels l′ such that lblLC
1
(i) ≤ l′ and since we know

that lblLC
1
(i) 6≤ l, we have LPq1|l = [].

Combining the information above, LP1|l = LC2|l and RP
1 ≈l RC

2 and LPq1|l = []

imply (LP1 , R
P
1 , L

P
q1) ≈l (LC2 , RC

2 , []).

d) We want to prove that, if (LP1 , RP
1 , L

P
q1) ≈l (LC1 , RC

1 , []) and (LP1 , R
P
1 , L

P
q1)

o−→

(LQ1 , R
Q
1 , L

Q
q1), then lblLP

1
(o) 6≤ l and (LQ1 , R

Q
1 , L

Q
q1) ≈l (LC1 , RC

1 , []).

We start by proving that lblLP
1
(o) 6≤ l. Since (LP1 , R

P
1 , L

P
q1) ≈l (LC1 , RC

1 , []), we

have LP1|l = LC1|l and ∀ l′: l′ ≤ l, RP
1 (l
′) = RC

1 (l
′) and LPq1|l = []. In particular, this

implies that l 6= ⊥: indeed, assume by contradiction that l = ⊥. Then we have

LPq1|⊥ = LPq1 and we know that LPq1|⊥ = LPq1 6= [] by definition of producer state,

which contradicts the assumption that LPq1|⊥ = []. Having established this fact,

we perform a case distinction on the rule applied to produce the output event: if

either [DROP-P] or [DROP-C] is used, the dummy output • is released and we

know that lblLP
1
(•) = ⊥ 6≤ l for any l 6= ⊥. Otherwise, either [OUT-P] or [OUT-C]

is used and a regular output o is released. Since LPq1|l = [], there is no sub-execution

at or below l, hence the output o must have been released by a sub-execution at

l′ such that l′ 6≤ l. Since the label of the sub-execution is the same as the label of

the output, this implies lblLP
1
(o) 6≤ l.

To prove the second part of the property, as before, the three parts of the

relation ≈l are proved one by one:

• we observe that (LP1 , RP
1 , L

P
q1)

o−→ (LQ1 , R
Q
1 , L

Q
q1) can be derived by [OUT-P],

B.2. Proof of the Main Result 181

[OUT-C], [DROP-P] or [DROP-C], but none of these rules changes the login

history LP1 , so L
Q
1 = LP1 implies LQ1|l = LP1|l = LC1|l by hypothesis.

• we observe that (LP1 , R
P
1 , L

P
q1)

o−→ (LQ1 , R
Q
1 , L

Q
q1) can be derived by [OUT-

P], [OUT-C], [DROP-P] or [DROP-C]. In the first two cases, the output is

released by a sub-execution at level l′ = lblLP
1
(o) 6≤ l. Otherwise, the output

is dropped from a sub-execution at level l′, where l′ is the head of LPq1, but

recall that LPq1 does not contain any level which is bounded above by l, since

we know that LPq1|l = []; hence, also in this case we know that l′ 6≤ l. Thus,

the original reactive system state RP
1 (l
′) at l′ 6≤ l may change, but any state

of a sub-execution at or below l will remain the same, which allows us to

conclude that RQ
1 ≈l RC

1 from the hypothesis RP
1 ≈l RC

1 .

• when any of the rules [OUT-P] or [DROP-P] is used, the list of upper integrity

levels does not change − that is LQq1 = LPq1 implies LQq1|l = LPq1|l = []. In

the other case, when the output is released/dropped using rule [OUT-C] or

[DROP-C] from a copy RP
1 (l
′) such that l′ 6≤ l, then the level l′ is removed

from the list of levels LPq1. However, as l′ 6≤ l, the list of levels bounded above

by l will not change − that is LQq1|l = LPq1|l = [].

By combining all the information above, we get (LQ1 , R
Q
1 , L

Q
q1) ≈l (LC1 , RC

1 , []).

e) We want to prove that, if (LP1 , RP
1 , L

P
q1) ≈l (LP2 , RP

2 , L
P
q2), then either

1) (LP1 , R
P
1 , L

P
q1)

o1−→ (LQ1 , R
Q
1 , L

Q
q1) and (LP2 , R

P
2 , L

P
q2)

o2−→ (LQ2 , R
Q
2 , L

Q
q2) implies

o1 = o2 and (LQ1 , R
Q
1 , L

Q
q1) ≈l (L

Q
2 , R

Q
2 , L

Q
q2), or else

2) (LP1 , R
P
1 , L

P
q1)

o−→ (LQ1 , R
Q
1 , L

Q
q1) implies lblLP

1
(o) 6≤ l and (LQ1 , R

Q
1 , L

Q
1) ≈l

(LP2 , R
P
2 , L

P
q2), or else

3) (LP2 , R
P
2 , L

P
q2)

o−→ (LQ2 , R
Q
2 , L

Q
q2) implies lblLP

2
(o) 6≤ l and (LP1 , R

P
1 , L

P
q1) ≈l

(LQ2 , R
Q
2 , L

Q
q2).

182 B. Proofs

Since (LP1 , R
P
1 , L

P
q1) ≈l (LP2 , RP

2 , L
P
q2), we have LP1|l = LP2|l, ∀ l′: l′ ≤ l, RP

1 (l
′) =

RP
2 (l
′) and LPq1|l = LPq2|l. Notice that LPq1 6= [] and LPq2 6= [] because (LP1 , R

P
1 , L

P
q1)

and (LP2 , R
P
2 , L

P
q2) are producer states.

CASE e).1. We match this case whenever LPq1 = l1 :: L1 and LPq2 = l2 :: L2

with l1 ≤ l and l2 ≤ l. Given that LPq1|l = LPq2|l, we know that l1 = l2 ≤ l. We

observe that one of the rules [OUT-P], [OUT-C], [DROP-P] or [DROP-C] applies

to the first system. Assume for instance that [OUT-P] is used, then the output o is

released by a sub-execution at l1, that is RP
1 (l1), such that l1 ≤ l and lblLP

1
(o) = l1.

Since l1 ≤ l, we know that RP
1 (l1) = RP

2 (l1), hence also RP
2 (l1) can fire the same

output o, which is actually the only available output, being the underlying reactive

system deterministic. Observe now that lblLP
2
(o) = lblLP

1
(o) by Lemma 5, since

lblLP
1
(o) ≤ l and LP1|l = LP2|l. Hence, rule [OUT-P] applies also to the second system

and we emit the same output event. The cases where either [OUT-C], [DROP-P]

or [DROP-C] is applied are analogous.

To show that (LQ1 , R
Q
1 , L

Q
q1) ≈l (L

Q
2 , R

Q
2 , L

Q
q2), we first observe as before that

the same output rule must be used in both systems. We then notice that: (1) none

of the output rules changes the login history, (2) the two sub-executions at l1 ≤ l

evolve in the same way, since the underlying reactive system is deterministic, and

(3) either the upper integrity lists do not change or they are changed in the same

way by removing l1 ≤ l.

To ease the proof of cases e).2 and e).3, we will use parameters i, j: substitution

i = 1, j = 2 proves e).2 while substitution i = 2, j = 1 proves e).3.

CASE e).2, e).3. We match this case whenever LPqi = l′1 :: Li with l′1 6≤ l. Since

l′1 6≤ l, we know that l 6= ⊥. We observe that one of the rules [OUT-P], [OUT-C],

[DROP-P] or [DROP-C] applies to the system i to produce an output oi. If rule

[DROP-P] or [DROP-C] applies, the output is • and hence lblLP
i
(oi) = ⊥ 6≤ l, since

l 6= ⊥. If rule [OUT-P] or [OUT-C] applies, then lblLP
i
(oi) = l′1 6≤ l.

B.2. Proof of the Main Result 183

To show that (LQi , R
Q
i , L

Q
i) ≈l (LPj , RP

j , L
P
qj), we notice that: (1) none of the

output rules changes the login history, (2) the evolving sub-execution is at level

l′1 6≤ l, hence it cannot break l-similarity, and (3) either the upper integrity list

does not change or it is changed by removing l′1 6≤ l.

Lemma 6. For any state (L,R, Lq), we have (L,R, Lq) ≈l (L,R, Lq).

Proof. Immediate by Definition 6.

Theorem 4 (Security). All the initial states of the wrapper are LHDNI.

Proof. Let ({⊥,>}, R, []) be an initial state of the wrapper. By Lemma 6, we

have ({⊥,>}, R, []) ≈l ({⊥,>}, R, []) for any l. Since ≈l is an ID-bisimulation by

Lemma 1, the conclusion follows by Theorem 5.

184 B. Proofs

Bibliography

[1] Mircosoft: Mitigating cross-site scripting with HTTP-only cookies.

[2] Damn vulnerable web application. http://www.dvwa.co.uk/, 2013.

[3] Owsap consortium. http://www.owasp.org/, 2013.

[4] The android project (source code and SDK). http://source.android.

com/, 2014.

[5] Malicious HTML tags embedded in client web requests. CERT Advisory

CA–2000–02, February 2000.

[6] Ben Adida. Sessionlock: securing web sessions against eavesdropping. In

Proceedings of the 17th international conference on World Wide Web, pages

517–524. ACM, 2008.

[7] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitechell, and Dawn

Song. Towards a formal foundation of web security. In Proceedings of

the 23rd IEEE Computer Security Foundations Symposium, pages 290–304.

IEEE Computer Society, 2010.

[8] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. Discovering

concrete attacks on website authorization by formal analysis. In Computer

Security Foundations Symposium (CSF), 2012 IEEE 25th, pages 247–262.

IEEE, 2012.

http://www.dvwa.co.uk/
http://www.owasp.org/
http://source.android.com/
http://source.android.com/

186 Bibliography

[9] A. Barth. HTTP State Management Mechanism. RFC 6265 (Proposed

Standard), April 2011.

[10] Adam Barth, Collin Jackson, and John C Mitchell. Robust defenses for

cross-site request forgery. In Proceedings of the 15th ACM conference on

Computer and communications security, pages 75–88. ACM, 2008.

[11] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The security

architecture of the chromium browser, 2008.

[12] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathe-

matical foundations. Technical report, DTIC Document, 1973.

[13] Giampaolo Bella and Lawrence C Paulson. Kerberos version IV: Inductive

analysis of the secrecy goals. In Computer Security—ESORICS 98, pages

361–375. Springer, 1998.

[14] Kenneth J Biba. Integrity considerations for secure computer systems. Tech-

nical report, DTIC Document, 1977.

[15] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens.

Reactive non-interference for a browser model. In Proc. of the International

Conference on Network and System Security, pages 97–104, 2011.

[16] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens.

Reactive non-interference for the browser: extended version. CW Reports,

2011.

[17] Aaron Bohannon. Foundations of webscript security. PhD thesis, University

of Pennsylvania, 2012.

[18] Aaron Bohannon and Benjamin C. Pierce. Featherweight Firefox: formaliz-

ing the core of a web browser. In USENIX Conference on Web Application

Bibliography 187

Development (WebApps), pages 1–12, Berkeley, CA, USA, 2010. USENIX

Association.

[19] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich,

and Steve Zdancewic. Reactive noninterference. In ACM Conference on

Computer and Communications Security (CCS), pages 79–90, 2009.

[20] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies: Session

integrity for web applications. Web 2.0 Security and Privacy (W2SP), 2011.

[21] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan.

Automatic and robust client-side protection for cookie-based sessions. In

Engineering Secure Software and Systems, pages 161–178. Springer, 2014.

[22] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and

Mauro Tempesta. Provably sound browser-based enforcement of web ses-

sion integrity (full version). http://www.dais.unive.it/~calzavara/

csf14-full.pdf.

[23] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and

Mauro Tempesta. Provably sound browser-based enforcement of web session

integrity. In Computer Security Foundations Symposium (CSF), 2014 IEEE

27th, pages 366–380. IEEE, 2014.

[24] Michael Burrows, Martin Abadi, and Roger M Needham. A logic of authen-

tication. Proceedings of the Royal Society of London. A. Mathematical and

Physical Sciences, 426(1871):233–271, 1989.

[25] Stefano Calzavara, Gabriele Tolomei, Michele Bugliesi, and Salvatore Or-

lando. Quite a mess in my cookie jar!: leveraging machine learning to protect

web authentication. In Proceedings of the 23rd international conference on

http://www.dais.unive.it/~calzavara/csf14-full.pdf
http://www.dais.unive.it/~calzavara/csf14-full.pdf

188 Bibliography

World wide web, pages 189–200. International World Wide Web Conferences

Steering Committee, 2014.

[26] Roberto Capizzi, Antonio Longo, VN Venkatakrishnan, and A Prasad Sistla.

Preventing information leaks through shadow executions. In Computer Se-

curity Applications Conference, 2008. ACSAC 2008. Annual, pages 322–331.

IEEE, 2008.

[27] Avik Chaudhuri. Language-based security on android. In Proceedings of the

ACM SIGPLAN fourth workshop on programming languages and analysis

for security, pages 1–7. ACM, 2009.

[28] Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jack-

son. App isolation: get the security of multiple browsers with just one. In

Proceedings of the 18th ACM conference on Computer and communications

security, pages 227–238. ACM, 2011.

[29] David D Clark and David R Wilson. A comparison of commercial and mili-

tary computer security policies. In 2012 IEEE Symposium on Security and

Privacy, pages 184–184. IEEE Computer Society, 1987.

[30] World Wide Web Consortium et al. Document Object Model (DOM) level

3 core specification. 2004.

[31] World Wide Web Consortium et al. Cascading style sheets level 2 revision

1 (CSS 2.1) specification. 2011.

[32] The Coq Development Team. The Coq Reference Manual, version 8.3, De-

cember 2011. Available electronically at http://coq.inria.fr/distrib/

V8.3pl5/files/Reference-Manual.pdf.

http://coq.inria.fr/distrib/V8.3pl5/files/Reference-Manual.pdf
http://coq.inria.fr/distrib/V8.3pl5/files/Reference-Manual.pdf

Bibliography 189

[33] Francisco Corella and K Lewison. Security analysis of double redirection

protocols. Technical report, Pomcor Technical Report, 2011.

[34] Silvia Crafa, Matteo Mio, Marino Miculan, Carla Piazza, and Sabina Rossi.

PicNIc-pi-calculus non-interference checker. In Application of Concurrency

to System Design, 2008. ACSD 2008. 8th International Conference on, pages

33–38. IEEE, 2008.

[35] Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor.

One-time cookies: Preventing session hijacking attacks with stateless authen-

tication tokens. ACM Transactions on Internet Technology (TOIT), 12(1):1,

2012.

[36] Anupam Datta, Ante Derek, John C Mitchell, and Arnab Roy. Protocol

composition logic (PCL). Electronic Notes in Theoretical Computer Science,

172:311–358, 2007.

[37] Anupam Datta, Ante Derek, John C Mitchell, Vitaly Shmatikov, and Math-

ieu Turuani. Probabilistic polynomial-time semantics for a protocol security

logic. In Automata, Languages and Programming, pages 16–29. Springer,

2005.

[38] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

FlowFox: a web browser with flexible and precise information flow control. In

Proceedings of the 2012 ACM conference on Computer and communications

security, pages 748–759. ACM, 2012.

[39] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

Secure multi-execution of web scripts: Theory and practice. Journal of

Computer Security, 2014.

190 Bibliography

[40] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and

Wouter Joosen. CsFire: Transparent client-side mitigation of malicious

cross-domain requests. In Engineering Secure Software and Systems, pages

18–34. Springer, 2010.

[41] Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and

Wouter Joosen. Serene: self-reliant client-side protection against session

fixation. In Distributed Applications and Interoperable Systems, pages 59–

72. Springer, 2012.

[42] Dorothy E Denning. A lattice model of secure information flow. Communi-

cations of the ACM, 19(5):236–243, 1976.

[43] Dorothy E Denning and Peter J Denning. Certification of programs for

secure information flow. Communications of the ACM, 20(7):504–513, 1977.

[44] Dominique Devriese and Frank Piessens. Noninterference through secure

multi-execution. In Security and Privacy (SP), 2010 IEEE Symposium on,

pages 109–124. IEEE, 2010.

[45] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC

5246, updated by RFCs 4366, 4680, 4681, 5746, 6176.

[46] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by

RFCs 5746, 5878, 6176.

[47] Tim Dierks. The transport layer security (TLS) protocol version 1.2. 2008.

Bibliography 191

[48] ECMA Ecma. 262: Ecmascript language specification. ECMA (European

Association for Standardizing Information and Communication Systems),

pub-ECMA: adr,, 1999.

[49] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The maude

LTL model checker. Electronic Notes in Theoretical Computer Science,

71:162–187, 2004.

[50] Jordan Elks. Man in the Middle Attack: Focus on SSLStrip. 2011.

[51] David Endler. The evolution of cross site scripting attacks. Technical report,

2002.

[52] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft

Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

[53] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media, Inc.",

2002.

[54] M. Foundation. Public suffix list: Learn more about the public suffix list.

http://publicsuffix.org/learn/, 2013.

[55] William F. Friedman. The index of coincidence and its applications to crypt-

analysis. Cryptographic Series, 1922.

[56] Ben SY Fung and Patrick PC Lee. A privacy-preserving defense mechanism

against request forgery attacks. In Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th International Conference

on, pages 45–52. IEEE, 2011.

[57] Joseph A. Goguen and Jose Meseguer. Security policies and security models.

In IEEE Symposium on Security and Privacy, pages 11–20. IEEE, 1982.

http://publicsuffix.org/learn/

192 Bibliography

[58] David Gourley and Brian Totty. HTTP: the definitive guide. " O’Reilly

Media, Inc.", 2002.

[59] Chris Grier, Shuo Tang, and Samuel T King. Secure web browsing with the

OP web browser. In Security and Privacy, 2008. SP 2008. IEEE Symposium

on, pages 402–416. IEEE, 2008.

[60] Jeremiah Grossman. XSS Attacks: Cross-site scripting exploits and defense.

Syngress, 2007.

[61] Elliotte Rusty Harold. Privacy tip# 3: Block referer head-

ers in Firefox, october 2006. http://cafe.elharo.com/privacy/

privacy-tip-3-block-referer-headers-in-firefox/.

[62] Collin Jackson and Adam Barth. Forcehttps: protecting high-security web

sites from network attacks. In Proceedings of the 17th international confer-

ence on World Wide Web, pages 525–534. ACM, 2008.

[63] Collin Jackson, Andrew Bortz, Dan Boneh, and John C Mitchell. Protecting

browser state from web privacy attacks. In Proceedings of the 15th interna-

tional conference on World Wide Web, pages 737–744. ACM, 2006.

[64] Jeffrey C Jackson. Web Technologies: a computer science perspective.

Prentice-Hall, Inc., 2006.

[65] Bart Jacobs and Jan Rutten. A tutorial on (co) algebras and (co) induction.

Bulletin-European Association for Theoretical Computer Science, 62:222–

259, 1997.

[66] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Establishing browser

security guarantees through formal shim verification. In Proceedings of the

http://cafe.elharo.com/privacy/privacy-tip-3-block-referer-headers-in-firefox/.
http://cafe.elharo.com/privacy/privacy-tip-3-block-referer-headers-in-firefox/.

Bibliography 193

21st USENIX conference on Security symposium, pages 8–8. USENIX Asso-

ciation, 2012.

[67] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection

attacks with browser-enforced embedded policies. In Proceedings of the 16th

international conference on World Wide Web, pages 601–610. ACM, 2007.

[68] Martin Johns. On JavaScript Malware and Related Threats - Web Page

Based Attacks Revisited. Journal in Computer Virology, 4(3):161 – 178,

August 2008.

[69] Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. Re-

liable protection against session fixation attacks. In Proceedings of the 2011

ACM Symposium on Applied Computing, pages 1531–1537. ACM, 2011.

[70] Martin Johns, Sebastian Lekies, Bastian Braun, and Benjamin Flesch. Bet-

terAuth: web authentication revisited. In Proceedings of the 28th Annual

Computer Security Applications Conference, pages 169–178. ACM, 2012.

[71] Martin Johns and Justus Winter. RequestRodeo: Client side protection

against session riding. In Proceedings of the OWASP Europe 2006 Confer-

ence, 2006.

[72] Bill Kennedy and Chuck Musciano. HTML & XHTML: The Definitive

Guide. O’Reilly, 2002.

[73] Wilayat Khan, Stefano Calzavara, Michele Bugliesi, Willem De Groef, and

Frank Piessens. Client side web session integrity as a non-interference prop-

erty. In International Conference on Information Systems Security.

[74] Wilayat Khan, Stefano Calzavara, Michele Bugliesi, Willem De Groef, and

Frank Piessens. Client side web session integrity as a non-interference prop-

194 Bibliography

erty: Extended version with proofs. Available at http://www.cs.kuleuven.

be/publicaties/rapporten/cw/CW674.abs.html.

[75] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.

Noxes: a client-side solution for mitigating cross-site scripting attacks. In

Proceedings of the 2006 ACM symposium on Applied computing, pages 330–

337. ACM, 2006.

[76] Mitja Kolšek. Session fixation vulnerability in web-based applications. Acros

Security, page 7, 2002.

[77] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC

2109 (Historic), February 1997. Obsoleted by RFC 2965.

[78] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC

2965 (Historic), October 2000. Obsoleted by RFC 6265.

[79] Peng Li, Yun Mao, and Steve Zdancewic. Information integrity policies.

In In Proceedings of the Workshop on Formal Aspects in Security & Trust

(FAST. Citeseer, 2003.

[80] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. OAuth 2.0 threat

model and security considerations. 2013.

[81] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. Trace-based verifi-

cation of imperative programs with i/o. Journal of Symbolic Computation,

46(2):95–118, 2011.

[82] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site request forgery

attacks with browser-enforced authenticity protection. In Financial Cryp-

tography and Data Security, pages 238–255. Springer, 2009.

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW674.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW674.abs.html

Bibliography 195

[83] John McLean. Security models and information flow. In Research in Security

and Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium

on, pages 180–187. IEEE, 1990.

[84] Eric A Meyer. CSS: The Definitive Guide: The Definitive Guide. " O’Reilly

Media, Inc.", 2006.

[85] Anthony D Miyazaki. Online privacy and the disclosure of cookie use: Effects

on consumer trust and anticipated patronage. Journal of Public Policy &

Marketing, 27(1):19–33, 2008.

[86] A. C. Myers. JFlow : Practical mostly-static information flow control. In

Proc. 26th ACM Symp. on Principles of Programming Languages (POPL),

pages 228–241, Jan. 1999.

[87] Andrew C Myers and Barbara Liskov. Protecting privacy using the de-

centralized label model. ACM Transactions on Software Engineering and

Methodology (TOSEM), 9(4):410–442, 2000.

[88] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and

Nathaniel Nystrom. Jif: Java information flow. software release, 2001.

[89] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.

You are what you include: Large-scale evaluation of remote javascript in-

clusions. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 736–747. ACM, 2012.

[90] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter

Joosen. SessionShield: Lightweight protection against session hijacking. In

Engineering Secure Software and Systems, pages 87–100. Springer, 2011.

196 Bibliography

[91] Nick Nikiforakis, Yves Younan, and Wouter Joosen. Hproxy: Client-side

detection of ssl stripping attacks. In Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 200–218. Springer, 2010.

[92] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In

InfoScale, volume 152, page 1. Citeseer, 2006.

[93] Steven Pemberton. XHTMLTM 1.0 the extensible hypertext markup

language (second edition). W3C recommendation, W3C, August 2002.

http://www.w3.org/TR/xhtml1/.

[94] Tor Project and the Electronic Frontier Foundation. HTTPS Everywhere.

https://www.eff.org/https-everywhere, 2014.

[95] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege

escalation. In USENIX Security, volume 3, 2003.

[96] Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: fine-

grained, declassification-aware, and transparent. In Computer Security Foun-

dations Symposium (CSF), 2013 IEEE 26th, pages 33–48. IEEE, 2013.

[97] Dave Raggett, Arnaud Le Hors, Ian Jacobs, et al. HTML 4.01 specification.

W3C recommendation, 24, 1999.

[98] Vijay Raghvendra. Session tracking on the web. Internetworking, 2000.

[99] Jesse Ruderman. The same origin policy, 2001. URL: http: // www.

mozilla. org/ projects/ security/ components/ same-origin. html ,

5(2):7–2.

[100] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Au-

tomatic and precise client-side protection against CSRF attacks. In European

Symposium on Research in Computer Security (Esorics), 2011.

https://www.eff.org/https-everywhere
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

Bibliography 197

[101] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow

security. Selected Areas in Communications, IEEE Journal on, 21(1):5–19,

2003.

[102] J. Samuel. Requestpolicy 0.5.20. https://www.requestpolicy.com/, 2011.

[103] Kapil Singh, Alexander Moshchuk, Helen J Wang, and Wenke Lee. On the

incoherencies in web browser access control policies. In Security and Privacy

(SP), 2010 IEEE Symposium on, pages 463–478. IEEE, 2010.

[104] Geoffrey Smith. Principles of secure information flow analysis. In Malware

Detection, pages 291–307. Springer, 2007.

[105] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with

content security policy. In Proceedings of the 19th international conference

on World wide web, pages 921–930. ACM, 2010.

[106] Shuo Tang, Nathan Dautenhahn, and Samuel T. King. Fortifying web-based

applications automatically. In ACM Conference on Computer and Commu-

nications Security (CCS), pages 615–626, 2011.

[107] Mike Ter Louw and VN Venkatakrishnan. Blueprint: Robust prevention of

cross-site scripting attacks for existing browsers. In Security and Privacy,

2009 30th IEEE Symposium on, pages 331–346. IEEE, 2009.

[108] Anne Van Kesteren et al. Cross-origin resource sharing. W3C Working Draft

WD-cors-20100727, 2010.

[109] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and

Tamara Rezk. Stateful declassification policies for event-driven programs.

In CSF, 2014.

https://www.requestpolicy.com/

198 Bibliography

[110] Helen J Wang, Chris Grier, Alexander Moshchuk, Samuel T King, Piali

Choudhury, and Herman Venter. The multi-principal OS construction of the

gazelle web browser. In USENIX Security Symposium, volume 28, 2009.

[111] Joel Weinberger, Adam Barth, and Dawn Song. Towards Client-side HTML

Security Policies. In HotSec, 2011.

[112] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-

standing bugs in C compilers. In ACM SIGPLAN Notices, volume 46, pages

283–294. ACM, 2011.

[113] Sachiko Yoshihama, Takaaki Tateishi, Naoshi Tabuchi, and Tsutomu Mat-

sumoto. Information-flow-based access control for web browsers. IEICE

transactions on information and systems, 92(5):836–850, 2009.

[114] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. JavaScript

instrumentation for browser security. In ACM SIGPLAN Notices, volume 42,

pages 237–249. ACM, 2007.

[115] Michal Zalewski. The Tangled Web: A Guide to Securing Modern Web Ap-

plications. No Starch Press, 2012.

	Preface
	Introduction
	Key Concepts
	Threats to Web Sessions
	Attacks on Confidentiality of Web Sessions
	Attacks on Integrity of Web Sessions

	Contribution
	Confidentiality of Web Sessions
	Integrity of Web Sessions

	Methodology
	Structure of the Thesis

	Background and Related Work: Web Browsers and Web Sessions
	Overview of Web Browser
	Web Technologies
	Web Security Policy
	Security Policy for Cookies
	Web Session
	Reactive System

	Related Work
	Formal Verification
	Web Browser Security
	Web Session Confidentiality
	Web Session Integrity

	Web Session Security Using Coq

	Web Session Confidentiality: Browser Input Output
	Input Events
	Output Events
	A Confidentiality Policy
	The Policy for Input Events
	The Policy for Output Events
	Cross-domain Requests

	Web Session Confidentiality: The Browser State
	Browser State
	Windows
	Pages
	Document Nodes
	Activation Records
	Cookies
	Network Connections
	Waiting and Running States

	Proof of Session Confidentiality

	Web Session Confidentiality: Browser-Side Enforcement
	Session Cookies Protection in Existing Systems
	The Need for Client-side Defence
	CookiExt: Enforcing Session Confidentiality
	Overview
	Flagging Session Cookies
	White-listing URLs
	Redirecting HTTP Requests
	Challenges in Practice

	Analysis of CookiExt
	Methodology
	Evaluating Protection
	Evaluating the Heuristic
	Evaluating Usability

	Security of CookiExt-Patched Web Browser
	Interpretation of CookiExt in Coq
	Rewriting URLs
	Updating Cookies
	Translating Input Events

	Confidentiality Policy
	Relation sim_ie Versus sim_ie_plus

	Patching the Browser With CookiExt
	Proof of Session Confidentiality

	Web Session Integrity: Access Control Enforcement
	Web Session Integrity
	Flyweight Firefox Browser Model
	Enforcement in EFF
	Contextual Information
	Security Contexts
	Extending Scripts
	Secure Cookie Operation

	Threat Model
	Well Formed Traces
	Proof of Session Integrity
	SessInt: Enforcing Session Integrity
	Pages and Network Connections Stores
	User Clicks
	Implicit Loads
	Passwords
	Cookies
	Protection vs Usability

	Web Session Integrity: Information-Flow Control Enforcement
	Session Protection at Different Layers
	Login History Dependent Noninterference: Definition and Enforcement
	Login History Dependent Noninterference
	Enforcement
	Security

	Instantiation to Web Session Integrity
	CSRF
	Malicious Script Inclusion

	Extensions
	Endorsing Script Inclusions
	Endorsements for Collaborating Applications

	Implementation

	Conclusion
	Protecting Web Sessions
	Protecting Attacks on Session Confidentiality
	Protecting Attacks on Session Integrity

	Future Work

	Code Listings
	expr Data Type
	Rewriting Input Event
	same_form_ie_plus Relation

	Proofs
	Proof Technique
	Proof of the Main Result

	Bibliography

