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PREFACE

Thetitle of thedissertation s fADynami ¢ competition and co
systemic industr i es The dssataionconsistsadfthethneeer i ment s o
standalonearticles which share one common thr@athat theyall deal with the
original formalization of a realvorld managerial challenge of developing a
multicomponent product in systemic industriéslecommunication, automotive,
aerospace artgchnology intensie consumer electroniese typically classified as
systemidndustriesIn these industries, he products are fAcompl ex sy
composed of several distinct functionally interrelated components. What thakes
industries particularly complexdm a managerial perspectivend thus more
interestingo analyze is the fact each component may have several alternative
solutions that can be more or less compatible with the rest of the sy$tem.
component solutions can be thus recombined intowsiconfigurations with different
functionality and final value to the consuméhe information about the technological
and competitive structure of the industry is public and available for all market
participants, and the residual uncertainty pertagn® avhich firm will manage tgain
control over crucialechnologiesn the industry.

In the proposed model of systemic industriesréafterreferred to agshance
and choice modglmultiple agents compete with each other for control over a limited
setof product components to which they sequentially get access in a randomized
fashion thereby irreversibly Thenmelti ng each o
feature of a model is thate agents are given an option to cooperateishthey are
allowed to fornmbilateral alliance which guaranteboth partners positivecommercial
outcome.The agents are assumed tchibenogenousnonadaptiveand fairly myopic in
that they have identical initial endowments and follow the same decision makisg rule
of naive maximizationEach dissertation chaptexploresdifferentfeatures of the
modelandrelies on different methodologies addressing thposedresearch questions.

The firstc h a pGhance afd choice as origins of firm performance
heterogeneitya posi ti on Vvi ew o0 RautBosedwite Markas i ndustri e
Reitzig, University of Vienna, and Massi mo W
Venice, draws upon the agdmsed simulation model and is essentially concerned with
understanding the rold ohancein engendering firmevel performance heterogeneity

among initially identical entitied'he results demonstrate timaking positional



choices early and repeatedignefits firm performance in technological environments
where excessive competiticeowding may render the prior research efforts obsolete.

The natural question emerges, howewdrether a myopic naiv@aximization
is realisticas a rpresentation of a decisianaking mechanisrm the environments as
complex as systemimnes The second h a pt e r offalliamce fomatioras
uncertainty absorption mechanism in complex environnerdresses this question.
The chapter aims at validating the behaviasgumptions of the original model in the
laboratory.The resultslemonstrat¢hat, when exposed to the tasks of substantial
complexity, peofe try to proactively manage the uncertainty associated with their final
outcome. In doing so, they think few steps ahead of their competitors and forestall their
plans with an aim of prospée¢ cooperationThis finding is interesting not only as a
validity check of the model assumptionsaléosuggestshat in unpredictable
environments alliances may be seen not only as a source of uncertainty, butalso as
viabletool to mitigateit.

The third chaptei Chec k mat e or stal emate: manageri a
i n d u shridges ¢he fields of strategy and experimental psychoBgsed orthe
content analysisfa@oncurrent verbal protocols reportedthg subjects during the
experimentjt revealsthe set of the settingpecificheuristicspeople devise when faced
with an abstract task whose conceptual structure and danksages minic those of the
managerial problem of sequential development of multicomponent conpbels The
implicatons are twofold: first, the results appear instrumental in understanding the
psychological underpinnings of the strategic decisi@king; seconddentifying the
building blocks ofeach heuristiavill help in generating testable predicticasto in

which environments it performs best.
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Abstract

Chance or randomness as a mechanism to induce performance heterogeneity among originally
homogeneous firms has recently been introducdidet resourcénased view of the firm. In this

paper, we demonstrate how chance can engender variation in performance among initially
identical firms even in the absence of filenel capability differences. Departing from the
positional school of strategywe show how and when firms in systemic industries benefit from

the chance of staking positions -@isiis competitors in complex technology landscapes.
Expectedly, the chance of making choices ear
Also,he value of repeated chance is higher dur
than duringits later phasesimportantly, howevethislatter effect is exacerbated lnycreases

in competition.



INTRODUCTION

The question of what explains diversity among firms @sdltingintra-industry
performance heterogeneity is central to the field of strategy, and it has received
considerable attention sgholars over the pafew decades (Nelson and Winter, 1982;
Rumet, 1991 Rumeltet al, 1994; Nelson 1991; Carroll, 199¥cGahan and Porter,
1997. Until today, two schools of thought have dominated the debate as to why
organizations differ in their effectiveness, all else being equal. The positioning school,
on one land, has traditionally attributed the diversity in performance among enterprises
to a firmdébs unique mar ket positi)olhe rel ati ve
resourcebased view (RBV) (Penrose, 1959; Wernerfelt, 1984; Barney, 1986, 1991;
Peteraf1993)on t he ot her hand, has argued that a f
results from its possession of rare and diffitaltmitate resources (Barney, 1986). As
part of their inquiries, researchers in both veins have investigated the antetedeat
emergencef such stable performance differences across firms. Adherents of the
positioning school claim that firfevel heterogeneity arises through a complex
interplay between environmental conditions and managerial choices in a competitive
environment (Porter, 1991), without specifying the latter in much detail, though. On the
contrary, proponents of the RBV, in following the Carnegie tradition (Simon, 1947,
Cyert and March, 1963), have elaborated in more detail on the emergence-fifimter
differencesgmphasizinghe process of resource accumulation (Dierickx and Cool,
1989) and organizational learning over time (Nelson and Winter, 1982; Cohen and
Levinthal, 1990; DosiNelson, and Winte2000; Zollo and Winter, 2002). Yet,
traditionally sclolars in both camps would causally link the origins of performance
differences back texanteasymmetries in market positions, resource bases, or
combinations of the two (Schmidt and Keil, 3Dlattesting to the established wisdom
t hat Afirén dutilhdteydrieenlteecsk t o di fferences i n in
(Nelson, 199165).

Undeniaby, firms are historical entitiethatare affected by their original
endowments of resources and capabilities, the time of their &mthiheir location. As
such, explanations of how firm heterogeneity unfolds conditional on the existence of
such original asymmetries are undoubtedly important. Yet, such investigations only
complement and cannot substitute for inquiries into how original differences may occur

in the first place. As regards the latter question, existing knowdeddele equally



relevant to the theory of stratelyys far scarcer. In fact, the few related insights we
have stem from scholars working in the RBV tradition who recently suggested that
firmsd even wherstarting with identical initial endowmer@snay end up displaying
stable performance differences due to the cumulative effect of randofietssn,
1991 Barney, 1997)More specifically, Denrell (2004), leveraging some classical
results on ragiom walks (Feller 1971), demonstrates that random resource
accumulation processes can generate sustained differences in profitability among
initially identical firms with high probability (see also HendersRaynor, and Ahmed,
2012). Similarly, Zott (20083 by allowing for stochastic retention and selection in a
model of firmsé capability development, arr.i
among originally equally endowed firms.

While representing an important first step towards understanding randoasness
a determinantf original firm-level differences in performance, and notwithstanding
the importance of this finding as a potential explanation forweald phenomena, the
prior models intentionally stop short of investigating the effects of luckrzbtreeir
i mpact on resource accumulation or | earning
(2004) and Zottbdés (2003) work both provide n
researchers to elaborate on their contributions. One of the most obvious elaboratio
appears to be an examination of how randonthéstherto conceived of as a
determinant that indirectly engenders performance differences through inducing
differences in resourc@smore directly affects competitive interactions and managerial
choices, keyenets of the positional school of strategy.

Accordingly, in this paper we take some first steps towards integrating the
ubiquitous notion of randomnesgo the positional school of strategy to examine how
exactlychance competition, and managerial actgojointly induce intefirm
performance differences, all else being equal. To complement earlier works in the RBV
tradition, we deliberately dismiss firmsodo di
for differences arising from resource accumulataty insofar as they restrict
managerial choice sets of equally capable decisiakers. Building on the idea that
good fortune at some point in a fdcal organi
notablyc o mp e ® chbicesets for the future, we examine to what extent
randomized exclusive access to critical resources over time can account for the
emergence of profit differences among initially homogenous firms. Although the

mechanisms that engender diversity among homogehoy capabl e tHai r ms & d e «



we discuss in this paper should apply to a wide rangerapetitivesettings, we
originally introduce them by tying them to a specific industry example. To that end, we
model a systemic industry as a series of (partlylurer value chains (Kretschmer and
Reitzig, 2013) that allow for the production of a variety of combinatory products.
Within this model, firms of equal capabilitieempete tabtain control over product
components required to manufacture systemic g@eatsell, Monroe, and Salonger
1998. More specifically, and being true to the nature of corpd®&D, we model
firmsd access to product compoiipasent s as a seq
raced Reinganum, 198 in which an organization will be able secure unique control
over a product component whenever luck would have it, and not otherwise. At the
beginning of the process, no firm will control any components of the technology
landscapgat the end, all components characterizing the technologgdape will be
owned by either of the firms competing for the best products. Partial modularities
(Baldwin and Clark2000 between components determine the ultimate value of the
(multiple) products that can be produced and offered by the firhese modiarities
are generated randomly in the beginning, and
implement identical decision rules for all agents, assuming thad tivaen it is their
turnd pick the component that maximizes the value of the best productstbsible
to them, corresponding t o a-makinghpdriggic it ake t he
(Gigerenzer and Goldstein, 1996). Bilateral alliances between players are also possible
and, once entered, cannot be dissolved until the end of a given simuldtemodel is
analyzed through computer simulation.
In this setting, we obtain a series of interesting findings. As far as performance
asymmetries are concerned, we show that chance matters, but in differentiated ways.
Expectedly, the chance of making choigea competitive environmesetarly and
repeatedl i ncr eases a Afso, hewélue of pepeated chaack is higher y .
during the early stages oifslaterphasesdustrydéds evo
Importantly, however thelattereffect is exacerbated liycreases in the number of
market péaticipant® a finding that is owed to the specific nature of the type of the path
dependency that randomness engenders in the presence of competitive crowding
In what follows, we develop theory, provide industry context, and formalize our
considerations, éfore presenting and discussion regression results pertaining to data

simulated in accordance with our model.



ON THE ORIGINS OF FI RM-LEVEL HETEROGENEITY IN PERFORMANCE

Why and how firms differ in performance are arguably the two most fundamental
guestionsn strategy research. Yet, whereas scholarly work over the pastdbcades
has theoretically and empirically investigated how such differences unfold among
organizations that are heterogeneous from the beginning (Nelson and Winter, 1982;
Rumeltet al, 1994; Wernerfelt, 1984; Dierickx and Cool, 1989; Cohen and Levinthal,
1990; Henderson and Clark, 1990; Kogut and Zander, 1992; Peteraf, 1993; Teece
Pisano, and Shue@997; Zollo and Winter, 2002), researchers have only recently
started to address theegtion of what engenders such heterogeneity in thepfase

Most of the related work in this domain can be traced back to two different theoretical
contributions, which both invoke a combination of randomness and resource/capability
development overrie to mechanistically explain the origination of performance
differences between firms.

Onearticle is by Denrell (2004), and it presents a simulation model that
explains how sustained competitive advantages can originate among a population of
initialyhomogenous firms. To that effect, Denrel/l
linear and more complex) resource allocation to a classic random walk, leading to
stable inteifirm frequency patterns of abowedustryaverage profitability at the firm
level for lected organizations. Consistent with earlier works (Feller, 1971), path
dependencies engendered by an initial randomization process create the sustained
asymmetric deviations of the firms from the sample profitability mean.

The second article by Zott(@03) shares traits of Denrell 6
firms are originally homogeneous in their endowments and capabilities, and that initial
randomness engenders a path dependency that will lead to sustained performance
differences. Differently from Denrell(®#d) , however, Zottodos (2003) 1
fimsédynami ¢ | earning over ti me, and randomnes
retention of resource configurations, in turn creating variation in ficaysabilities and
hence performance.

Both of theaforementioned papers mark important contributions to our
understanding of how firAevel performance differences may originate in an industry.

Not surprisingly, a series of scholars have followed in their tradition, refining the
notions of how initially bancedriven differences in resources and capabilities lead to

sustained competitive advantage.



Coen and Maritano6esZ qt2t0dsl ) ( 2v0 0 X) rppaseaerbli n
analyze systematic firrperformance differences stemming from dynamic capabilities
of resource allocation, with stochastics entering their model only indirectly. Their
simulation results demonstrate that when initial capability endowments and search
abilities are set equal across firms, fipgrformance differences are levelled out.
Hendersn et al (2012) seek to determine the threshold duration of competitive
advantage exceeding which one can rule out a purely stochastic process as an
explanation for empirically observable superior performance. Their results suggest that
sustained firrmpeformance differences cannot be fully explained by time
homogeneous Markov processes and are most likely attributable to initial differences in
firmsOstarting positions, among other things. Denrell and Liu (2012) model the
behaviors of heterogeneously s agents in unpredictable environments,
demonstrating that higlevel performance does not alldheinferring of capability
levels if the role of luck is significant in achieving extreme success. Finally, Denrell
Fang, and Zha(2013) apply that sameationale to the field of strategic management.

Notwithstanding the importance of the contributions of this stream of research
sparked by Denrell (2004) and Zott (2003), it would appear that important avenues to
understanding the origins of firlavel differences in performance have not been
examined. In fact, elaborating on the key insight by the aforementioned priodworks
that is,the fact that randomness in infem treatment may break initial homogeneity
among organizations and lead to sustained éiffegs between them via path
dependenciés we suggest thaherole of randomness has f&r been singlesidedly
understudied by scholars following the Carnegie tradition (March and Simon, 1958;
Nelson and Winter, 125.

Randomness, so we propose, may egsidnificantly and directly affect other
det er mi nant s o fthafaie deersed cept & thé positioralrscheol of
strategy (Porter, 19809900 not abl 'y firmsé competitive envi
managerial choices firms face as a consequemrdeslse being equal. The impact of
randomness on such positional determinants, so we argue, will be particularly pertinent
to competitive settings in which interactions between organizations are frequent and
varied, and i n whi c h etifive lantiscape qarovagyetitiy Ans on t he

case in point are systemic industries.



SYSTEMIC INDUSTRIESd MODULAR VALUE CHAINS AND STOCHASTIC R&D

Recently, researchers have shown an increased interest in understanding the
interplay bet we en hépattemsd ther B&Dfeffortsnabbonatoa and t
in systemic industries (Ethiraj and Puranam, 2004; Ethiraj, 2007; Kretschmer and
Reitzig, 2013).

Typical examples of systemic industries include telecommunications
(Leiponen, 2008), the automotive sector (Talkiegsd Fujimoto2001), personal
computers (Ethiraj, 2007), and aircraft manufacturing (Brusbal, 20019 to name a
few. Systemic industries can be broadly defined as industries in which firms compete
with products that consist of different complemepntaodules which make up the final
value propositionA system good is thus composed of distifimbctionally interrelated
components that cannot be used in isolation by consumers and that need to be
integrated into a final system product in order to be commerciglzaadell et al,
1998; Somaya, 2003). While the presence of all constituent comisase
indispensable to ensuog the functionality of a systemic product as a whole, several
alternative solutions for each component may exist in parallel. The availability of
heterogeneous options for different product parts coupled with the abilégdambine
them in various ways implies that multiple product configurations can potentially
emergg(Schilling, 2000).

Forillustrative purposeghink of a typical smartphonghatcan be decomposed
into a set of more than 25 distinct hardware and softwargonents includindut not
limited to, memory chips, processors, operating systemsripugameras, connectivity
devices, batteryand touchscreen displays. There are multiple possible solutions
available for most of the smartphone components, howEgeexample, there exist
several display types based on either of the two dominant techndéldgi#3 (liquid
crystal display) and OLED (organic light emitting diodléhat all differ in image
reproduction quality, resolution, weight, power consumption,ussed responsiveness
(Figure 1). Similarly, the range of available solutions within operating system
component spans from the platforms available to all mal@iacemakers under
licensing agreement (Goo@led ndr oi d OS, Mi crosoftds Wi ndows
proprietary solutions incompatible withthila r t y manuf ac(tAiprpelreséds har d\
i OS, Bl ackberry OS, Samsungéb6és Bada OS). Cons

component solutions across all layers of the technological value ohaican



potentially dotain a multitude of different smartphone specifications with similar but

not equal functionality
Insert Figure 1 about here

To the consumer, the value of a system product, however, depends not only on
the quality of individual components but also on heell they fit together (Clark and
Fujimoto, 1990; Baldwin and ClarR000,* or howpartially modular(or partially

complementatyt hey ar e. Di fferent degrees of fAsyner

component solutions will determine both the technologicattionality and the
commercial value of a given product (Baldwin and Clark, 2000; Schilling, 2000;
Schilling and Steensma, 2001).

The extent to which the underlying structure of interdependencies between
component solutions is visible to market particiggattepends on the stage of the focal
industryds evolution. At an early stage of
with the direction of the technology developments renders the technical interrelations
between component solutions extremelyatitéd. As the industry matures and
approaches its market stage, however, a better understafdneggeneral
technological combinatory possibilities emerges, and much of the residual uncertainty
pertains to which actor will be first or best in develogdagticular solutions (Ethiraj
and Puranam, 2004; BruspRrencipe, and Pavjitt001). Thigore-market stage
(Kretschmer and Reitzig, 2013}t least initially bears many similaritie® a sequential
Apat ent r ac &9820 (inRveichmnduatty pamipants concurrently
competitively develop technology for crucial component solutions, but only one is
lucky enoughto patent the invention. As the process unfdidsyeverthe search
patterndor the preferred component solutions nségrt todiverge across players due
to economies of substitution (Garud and Kumaraswamy, 1995), thereby rendering the

notionofair aceapt | es s

1 Often, but not always, network externalities of the systemic good affect customer value, too (Katz and Shapiro,
1985; Matutes and Regibeau, 1988; Schilling, 2002). For the purpose of this paper, however, we abstract from
such externalities to keep our eanodel tractable.

2 Note that the nature of synergies between component solutions does not necessarily need to be defined by the
technical feasibility of integrating several components together. The degree of fit between component solutions

a

may be equallgriven by patent considerations ofthjpda r t y t echnol ogi es and supplie

competitive solutions.



It is this element of luck which creates randomness that is, for the most part,
exogenous to market participants dhdtultimately affects the market positions
competing firms can stake out in a given industry. This randomness, so we argue, can
engender a pattiependency of managerial choi¢katin turn will lead to performance
differences between firmSuch path degndency differs from other hitherto studied
patterns of accumulation insofar as it is centrally codetermined by the competitive
interaction between different players in an industry. Thros-performance
heterogeneity will originate even absent capabdifferences between firms, and even
if managers have identical foresight and are equally affected by environmental
uncertainty. In this paper we explore the contingencies associated with the process of
R&D efforts allocation irthe premarket stage of indury evolution and their influence

on firm performance in different technological and competitive environments.

A MODEL OF R&D ALLOC ATION AND PATENTING IN COMPETITION

Task environment
To quantitatively assess the effects of chance and choice on firm performance
eventually, we formalize the process of R&D resource allocation by firms in systemic
industries within a simulation model. Here, we represent the finite set of emerging
combinateial product possibilities as arfm matrix structuren which the rows
correspond to product components and the columns to component solutions.

In order to distinguish between different industries in terms of total nundsfer
components enterine find product compared to the availability of alternatines
we discern betweelfistee (n > m) andfiflatd (n < m) technological landscapes.
A S q u @ e m)Ghapes serve as reference categories.

In this setupm”™npossible product configurations can be obtained by vertically
combining one of thenalternative component solutions acrassomponents. The
value of each product is determined by the marginal contributions of the individual
component solutions to then&l configuration (Ethiraj, 2007), where these marginal
contributions are quantified as pairwise complementarities between solutions of
adjacent components. The underlying structure of the pairwise complementarities is
generated randomly at the beginnidgnod remains unchanged until the end of each

simulation, where a simulation comprises the population of the entire matrix by



different agents (see further below). Each complementarity value is a random positive
rational number drawn from a uniform distrtibon on an open ]0;1[ interval. The total
valuew of a product is thus calculated as a sum of pairwise complementarities between
its component solutions:

®w B ® , (1)
where® is thecomplementarity betweerkand (k1) component solutions of

a given product

Incomplete configurations (missing a solution in at least one component) do not

constitute products. Figures2rves as an illustration.
Insert Figure 2 about here

More specifically, ligure2d e pi ct s a fisteepod technol ogi ca
products consist of four components dmeke different solutions exist for each
component. The four shaded cells indexed 1, 5, 7, and 12 represent one of the 81
(= 3"4) possible product configurations. TWedueof the product is equal
6 0 0 6 , where the subscripts stand for cell index numbers in the

matrix between which the complementarity is calculated.

Firmsdé goals and behaviors

There are firms endowed with equal foresigtp O2) competing for component

solutions. The patterns of pairwise complementarities as well as the number of
competitors are transparent to all firms, #imely can thus calculate the naive expected
value of all possibl@roducts in the matrix at any givenipt in time Firms seek to
naivelymaximize their utility by obtaining exclusive control over those component
solutions that constitute the product with the highest value to them at any given point in
time. They can obtain such control through patentegtan of an individual

component solutiowhenever chance favors them in the patent fa@ea given

product, firms wild/ Airaceo for the control 0

3 By introducing the modulo operator in the equation, we can calculate the complementérity foas being
the complementarity between the last and the first components solution of a given product. Thus,
complementarities fAwrapodo the | ast and first component



currently available (modeled as the component solution that hagytieshpartial
complementarity within the best product currently accessible to the focal firm).

To mimic the latter, we assume that firms continuously compete for developing
component solutions, and we model their patenting success true to the stochagtic na
of the R&D process (Reinganum, 1982)y subjecting it to chance. The patent race
itself is sequential, and, towards the beginning of a simulation, resembles a standard
race in that all firms compete for the same component solution. Once certaindivens
obtained control over specific component solutions, the race becomes more
differentiated, and not all firms may compete for the same component solutions any
longer. This is because the success of any firm in obtaining control over a component
solutionchanges the patenting landscaaed thereby potentially alters the competition
for all other firms in that they need to adjust their goals. Thus, we assume that players
re-evaluate their R&D allocations (treating prior investments as sunk eastisime
another firm obtains control over a given technology. The sequence of chance events
(patenting successes pertaining to a component solution) ends when all component
solutions are being owned by someone.

Depending on the number of competitors particigatimthe aforementioned
race, and depending on the complexity of the system product, more often tiitan not
may be unfeasible for a single firm to control all components required for a given
product. In those instances, after successfully patenting acestaponent solution, a
focal firm® may try to market a product jointly with an alliance partner.

In the mode, lliance formation takes place automatically between two firms
when it is both (i) possible and (ii) mutually beneficial for therjoio forces It is
possible whenever both firms jointly hold enough component solutions to create a
product, but not before (i,ghere is inbuilt myopiawith regardto the alliance
formation process at an early stage of industry evolution). It is mutually behefici
when, for both firmsprofits shares ithe allianceexceed the naive (expected)

maximum value of what the firms can earn by themselves. To agset®ercondition

4 To simplify matters, we assume that any component solution may onbebeouly once, notably for the

product with the highest value. This logic is in line with a series ofwedd assumptions: (1) on the

production side, a firm may be able to afford to hold the basic patents to a technology, but it may not be feasible

fora firm to mai-mdladtne diappdtiemtt iport folios dedicated t
technology; (2) on the demand side, firms may elect not to reuse certain components across products in order to

avoid cannibalization.

SHere we use the term fAfocal firmo to define a firm t



'l i s being met, we must define and compare
indepardentnaive(expected) solutions available to them.
The share of firmkin an alliance between two firms is calculatedhesum of
thepairwise complementarities betwettse component solutionthatfirm i contributed
to the jointly created product, foalized as follows:
Y B @ : )
where§S is theattributed value of the focal firinin a given alliance produé,

~
g

® stands for theomplementarity betweehek™ and (k+1¥'component
solutions of a given alliance produRtandSis the number of component solutions
owned by the focal firmin a given alliance produét.

Calculations are symmetrical for alliance parfneo that the attributed shares
of both partners alwayadd up to the total value of the alliance proddct Y
"YHh [ j. These relative contributions of alliance partners determine the-giafiseon

percentages:
o — ©)

v — 4
Here,0 is thepercentagshare of the focal firmin a given alliance produé, 0

denotes th@ercentage share of the partner fjrm a given alliance produé&, andv
+0 =1,i [ j. Notably, alliances are irreversible and splits are frozen at the moment of

the alliance formation. Thence, alliance partners share revenues from any subsequently
created productencluding further component solutions they may obtain control over in
the future othatthey may have obtained in the past, and they share profitdaugto
the initially fixed split.

To assess the (expected) maximum value of an integrated product available to a
given firm, the focal organization estimates its (twagiant) chance of obtaining
control over the entirety of component solutions constituting the most valuable and still

acessible product at timeas follows:

00 — (5)8

6 Note that this calculation conservatively biases the value of an alliance relative to the expected value of an
integrated product owned by onenfir onl y. At the initial stage, firmsdé p
component solution coincide and the probability of patenting a particular component solution indeetljgquals



Here,O O denotes thexpected value of the best available individual product for
player'Qu is the value of the best available individual product for pl&Qer is the
total number of the remaining available component solutidisthe number of
missing component solutions for the available individual product with vajwendr)
is the number ofirms.

Consequently, in order for condition Il for alliancerfation to be met,

inequalities (6) and (7) must simultaneously hold true:
00 Td A@ Y (6)

00 Td A@ Y (7)

The time-value of chance in systemic industries
Within the setup descr iebtiondofhavrandoenness he paper 6
affects competitionand thencenanagerial actions and firm performance, becomes
structurally equivalent tmmvestigatingthe timevalue of chance. More specifically, we
wonder how initially homogeneous firms benefit more or lemsifbeing lucky in a
sequential patent race depending on when nature favors them, and for hévallong
else being equal. While it appears trivial that firms should do ever better the more
frequenly they win aleg, determining this time&alue of chance ajars to be more
difficult, and the extant literature to be scant.
One stream of research that studies the sequence of lucky events stems from the
field of judgment and decisiemaking. Scholars in this domain have corroborated that
sequences of lucky eventrigger different reactions within individuélganging from
the gamblerbdés fallacy to the hot hand phenon
Hahn and Warren, 200®)focusing on a distinctly different question than the one we
are concerned with, howevémother body of literature in the domain of cognitive
psychology investigates the effects of delays and interruptions in planned activities
(Marsh, Hicks, and Bryan, 1999; McDanetlal, 2004). It is tangential to our paper,
however, in that it analyzeéle consequences of possible inhibitions through a prism of

memoryd a characteristic that is alien to our agents here. Findilye af work in the

for each firm. As the patent i mgongntrsoludians start o difeiged athds , f i r n
the number of competitors aiming at the particular component solution decreases.



management field has contrasted the value of planning with the value of spontaneous
opportunity recognitiomnd exploitation (Gruber, 2007); howevecholars in that vein
againi nvol ve sets of assumptions on firmsdé | eal
to our setting
Thus, pending any strong priors from the existing literature, we resort to our
own critical thinking in predicting how the timealue of chance unfolds. To that end,
we argue that the effect of luck on performance in systemic industries bears-a stage
specific character, and that patenting crucial technology during an early stage of an
indust y6s evolution wil/ be more valuabl e than
stages (Teecet al, 1997). This effect, so we argue, is exacerbated by the path
dependency that firms create through their own actions. We thus posit:

Proposition 1: Firms benefit from the chance to make early positional choices in

systemic industries, all else being equal.

The val ue of rmakefdecrsions sarlydshaaaetessary toadition
for obtaining an overall superior position in the industry landstdymsvever, an
insufficient one. The largest obstacle to amtag control over a superior product, so it
woul d appear, is the f execotidgtsfiplandgolconmof bei ng i n
crucial elements of its value proposition. Such competitor imearée, so we would
argue, sets firms back, and more so the more often it occurs, as rivals may cross the
firmsd plan of action and invalidate their e
should perform better, all else being equal, the longegpehed during which they can
uninterruptedlymake sequential positional choices that build on one another. We

therefore predict:

Proposition 2: Firms benefit from the chance to make repeated positional

choices in systemic industries without competitteriierence.

DATA AND VARIABLES

Wesi mul ated the process of firmsdé R&D effort
deploying the above agebtaised model. To that end, we defpims, n components

andm component solutions prior generatinghe randomized patenting landscape. For



each possible combination of paramefens, andmwe ran a series of 100 simulations
(= matrix populations), where landscapes varied in their underlying complementarity
structure, leaving us with total 15,000 ipéadent simulation§To assess the effects

of chancé the nonmanipulable parameter in our simulatiowe thence restimate

the coefficients of (repeated) luck on the data we cre@edunit of observation is the
firm, and with the number of observatidias each simulation being equal to the

number of firmg, we eventually obtained 67,500 observatfdos our analysis.

Dependent variable

We use a cardinal dependent variable cdiied-level performancelt captures the
aggregate value of all produc#ned by a firm individually or, ithecase of alliance
formation, the sum of shares held by a firm in jointly owned produbhe variable is
computed at the end of each simulation, and it takes a value of zero if a firm neither
held a product of its omwnor participated in an alliance. Finally, we normalize firm
performance by dividing it by the number of componenis order to facilitate

performance comparisons across different technological landscapes.

Independent variables

First choicedenotes the point in time when a firm succeeds in the sequential patent

race for the first time and obtains control over a component solatitie technology

landscapeWe proxy for entry time by counting the number of component solutions
thathavebeepat ent ed by competitors prior to the
The corner solution of firms never entering the technology landscape areset to

(the total number of component solutions in a given technological landscape

”The parameters for the number of componerftaatrix rows) and the number of solutiomgmatrix
columns) take integer values inlased [3;7] interval, the number of playgrtakes integer values in a closed
[2;7] interval, thus resulting in a total 5*5*6¢ 150 possible parameter combinations. For each parameter
combination we run 100 simulations, which eventually gives us 15i0@@ations.

8 The number of observations for a single fixed combination of paramaterkié calculated as a sum of finite
arithmetic progression of which the terms correspond to possible numbers g firmsimulation’Y

- = 27. Given that there are 25 possible combinations,afi and for each parameter sef iy, p)
simulations are repeated 100 times, yielding 25*27*2®7,500 observations.
9 On the path to patenting the valo@ximizing combination, a firm might imtentionally create byproducts of
inferior value. If at a later stage a new, better product configuration requiring already deployed component

solutions becomes possible, the inferior products are dissolved and their component solutions are reassigned to
the products that yield the higher value.



Un-interferedchoice captures the time span during which a focal firm can
execute its initially envisaged R&D agenda without having to reconsider its plans due
to interim patenting successes by competitorsinterfered choice is measured as the
maximum number of componeswlutions that a given firm obtains control over
consecutively. I n the case of alliance

that of its partners as one with regard to the computation of the variable.

Control variables
To exclude alternativexplanations and to facilitate meaningful comparisons across
simulations with different parameter setg include several control variables at the
level of both industry and firm.

At the industry levelwe first includdandscape sizémeasureds the tota
number of component solutiondm within a given landscape simulation) as a separate
explanatory variable. In doing so, we tease out the effects of firms benefiting from
larger choice sets and increased chances to obtain control over sufficient numbers o
components to produce indepentign

Second, we control for the fact that firms may exhibit different behavior
depending on the shape of the technological landscape. On one hand, increasing the
number of componentsconstrains the feasibility of an irggexted product for a firm
and forces it to anticipate alliance formatiomderunfavorable conditions in order to
secure nofzemo outcomes. On the other haad,the number of possible alternative
component solutions increasesa firm gains more flexibily in creatingbetter
integrated produciss it can leverage existing componspecific assets (Farredt al,

1998) and reap the economies of substitution keq@oying its past investments

f or ma

(Garud and Kumaraswamy, 1995). As a result,

technological landscapes with fewer component solutioreative to the number of
components will be systematically lower, all else being equid that end, and
consistently with the model description above, we introduce two binary vafables
fiflato (1 if m>n, O otherwise) andstee (1 if n > m, O otherwisg with fisquare

being the refererccategoryVarying mandn will also allow us to investigate whether



chance equally engenders ininalustry performance heterogeneity across different
types of landscapes, or nét.

Finally, the presence of multiple firms with similar goals and visioh wil
naturally reduce the probability of a single firm to pioneer a crucial technological
solution and exacerbate the risks of disrupt
plan. We seek to strip off related variance in our dependent variable by cogtfotli
competition strengthwhich is approximated by the number of competitprs,

We also control for a variety @flliance andirm-level effects.

First, we include a binary variable calleliance formatiorthatcaptures
whether a firm entered an allice in a given simulation (1, O otherwise). The variable
is set to zero also for those firms that created no products in a given simulation.

Second, cumulative luck might increase corporate profit due to increased
alliance opportunities, even if the cotalins of staking positions early and seamlessly
in the technology landscape are not fulfilled. We therefore includethlenumber of
chance eventgariable which is measured as the total number of component solutions
held by a given firm by the end afsimulation.

Third, the presence of interruptions dist@fsi r més i ni ti al i ntentic
extent to which these discontinuities in executing an envisaged agenda become
irreversible also depends on the duration of the interruption: the longer ibe per
firm does not succeed in winning a patent race, the more likely it will have to switch to
a different (and inferior) target product eventually. Consequentyinclude the
longestperiod of disruptiorvariable, which counthhe maximum number of times
competitors succeeded in patenting between two nonconsecutive successful positional
choices of the focal firm.

Finally, we include variables that capture the duration of chance at different
points of the landscape populatiotehumber of short / medium / long lucky strikes at
the early stageounts the number of chance sequences accruing to a focalfiran
allows us tocaptue half (three quarters, all) of the component solutions constituting a
product during the first hibf a simulation'! The intuition behind the variable is that

getting a long sequence or alternating series of short leads towards the beginning may

YsSsee ARobustness checkso for further details. In that
estimations on different types of (steep, flat, and square) landscapes.

11 The absolute number of componentutions will differ conditional on the number of componentResults
are rounded off when needed.



granta firm access to the crucial vakmeaximizing components and preclude other

firms from occupying themMoreover, even being inactive on subsequent moves might
not be as harmful because one gets a stronger bargaining position for an alliance. The
number of short / medium / long lucky strikes at later stesyealculated analogically

with the aforementiorteset of variables, but it refers to stages in time when half the
technology in the landscape is already controlled by one firm or another. The basic
rationale is that a | ate series of Aluckyo d
a chance to acenulate enough components for an individual product, or to establish a
bargaining position for an alliance. However, the choice set will be limited, and the
guality of the available remaining products may be inferior. Figure 3 illustrates the
computation bsome of the key variables. Table 1 summarizes the description of the

variables.
Insert Table 1 and Figure 3 about here

RESULTS

Table 2 contains descriptive statistics that allow checki@mternal consistency of

the simulation outcomesas well as othe usefulness of the data for the tests of
Propositions 1 and 2. iMimum and maximum values of manipulable parameters
correspond to expectation. Equally reassuringly, stochastically determined variables
show substantial variation, and correlations betwssameters exceed values of 0.5
only in systematically expected instances. Finally, preliminary indicatibas
relationship as predicted in Proposition 2 emerge (@onrperformanceun-interfered
choicd =0.61,p < 0.01).

Insert Tables 2 and &dFigure 4about here

More interestinglyFigure 4 illustrates one of the key tenets of this paper;

namely that significant intefirm performance differences materialize as a result of the
way we formalized the population of the technology landscape. Ndegfigally,
Figure 4 contrastsanked performance differences (measureavasage aggregate firm
payoffsacross simulations, normalized by the number of componieetween
individual organizations.

Table 3eventuallyprovides results from the multivatgaanalysis of our data

that seeks to corroborate our propositidiiedels 31 through 3 provide upward



tested OLS specifications in which we explain firm performance through an increasing

set of explanatory variables, includitigeir interactionsGiventhatwe draw on

simulated data that bear no path dependency across simulations, and since we do not

mo d e | agentdés |l earning within a simulation,
pooled firntlevel crosssections.

Models 31 and 33 provide baselinparameterizations that include a subset of
our control variables, and against which we compare the explanatory power of the
subsequent models, particularly mode& tBrough 37. Model 34 originally
introduces thdirst choicevariable, confirming our first Proposition that performance
suffers the later a firm is able to make its first positional choice. Notably, the effect
remains robust across all subsequent specifications.

Model 35 provides empirical evidence for Propositi®. The longer the un
interfered sequence of decistoraking a firm enjoys, the higher the profit it attéins
an effect that remains robust across specifications albeit decreasing in size depending
on the inclusion of further controls (see Mod&l)3Modé 3.6 provides a quasi mirror
image of Model 3.5 in that shows that a firrd performancesuffersthe longerthat
chance favors its competitors in a stretch

Finally, models 38 and 39, originally intended to rule out further alternative
explanations foour proposed relationships, reveal interesting insights in their own
right. Namely, adodel 38 suggests, lmcky strike all else being equal, benefits a firm
more during the initial phases of the technology landscape population than during the
later sagest? Pairwise comparisons of coefficients focky strikesof identical
duration during the early and the late stages of the process show significant differences
This effect, so it would appear, is exacerbated by the number of competitors
participatirg in the sequential patent raddddel 39). With the benefit of hindsight, we
thus additionally posit:

Proposition3a The effect described in Proposition 2 is more pronounced during

early than during the late stages of the evolution of an industry

12 Note that the variablan-interfered choicano longer features in models 3.8 and 3.9, as its inclusion would
lead to an ovespecification given the adtbnal explanatory variables.



Proposition3b: The effect described in Proposition 3.a is exacerbated by the

number of competitors in an industry.

Robustness checlé selection issues, boundary conditions, and mechanistic
identification

We carriedout a series of robustness che(@sio exclude that our findings would be
spuriously driven by selecting a particular sample of simulated data, (b) to delimit the
parameter space under which our core results would uphold,randt importantlg

(c) to ascertain that the effects of chance wentepould indeed be driven by the
competing f i r msdanlipeavéhiotr theoretecdl clasnh oi c e s

To address the first issue, and given the nature of our (simulated) data, we
repeatedly estimated models 3.1 through 3.9 on randomly chosen subsaEmples
varying size in a bootstrappidifge manner. Findings were robust with respect to both
coefficient estimates and levels of individual coefficient significance.

With regard to the second point mentioned above, we ran models 3.1 through
3.9 on differensubsets of flat, steep, and square technological landscapes. Expectedly,
un-interfered choice is more visibly related to firm performance in industries
characterized by smatlomponennumber products (i.e., flat landscapes), all else being
equal. This idecause the chance sequences required to obtain a desired product are
shorter, whereas the likelihood of benefiting from such a sequence stays constant. That
said, results do converge across different types of industries.

Finally, in order to provide further evidence for a specific competitelated
mechanism by which chance engenders-femel performance heterogeneity, we
sought to dismiss an obvious alternative explanation for our findings; nameflgeghat
productvalue asymnigies generated by the structafepartial complementaritiaa
our industrylandscapesalone could account for ttesymmetries ifirm performance
we obtain. To that end, we computed the total value generated by firms within an
industryd the value one wdd expect to observe if the firms did not compete for
individual component solutions but, instead, randomly selected from the theoretically

best possible products within a given landscape without competitively crowding one



anotherout!®* Comparing the agggate firmlevel profits that are being generated by

our model with those engendered through such an alternative (reside)n expost

allocation procedurshows that the asymmetries we observe in models 3.1 through 3.9

are indeed characteristicofourtghe y of firmsdé positional <choic

Insert Tabled about here

To that endTableda reportd for selected industriésthe number of
simulations(out of 100) in which the totalalue of the products generatedeach
simulationwithout competitointeractionis identical toor compatible witlthe one
gererated by our modddased simulationSimilarly, Table4b reports thewumber of
cases in which the simulated competitive prodeissrent in our modeajenerates the
maximum feasible number of practsin a given industry when chance is limited to
determining expost allocation of product valudsrom Table 4tiis apparent that the
t wo stochastic processes ipconmpdtibl@casesli sti nctl y
between the two explanatiopseval: in most simulation runghe probability of
obtaining the same distribution of outcomes by th@@st allocation or by simulation
is close to zeroNotably, heindustrystructure may affect the degree of incompatibility
between our modiglg resultsand thealternativeex-post random allocatioprocessin
particular, as competitive pressure loosensntieber ofcompatible cases increase
This reinforces the result of our regression analysis, showing that chansampéaser

more important role ien there are more competitors.

DISCUSSION AND CONCLUSIONS

In this paper, we proposed and demonstrated within the framework of our assumptions
that chance itself can induce performance heterogeneity among iiballggeneous
organizations, even in thesdnce of capability differences betweemth&uch chance

to make early decisions and make choices uninterruptedly, so we proposed and showed,
can irreversibly affect firm@positions in an industry landscape, thereby engendering
significant variation innterfirm profits. Importantly, this type of firrevel

performance difference engendered by competitive crowding significantly differs from

alternative patterns of performance variation between firms that can be generated

BThis alternative stochastic process, while equally generating asymmetries in firm performance, theoretically
differs from the mechanism we propose in that the role of randomness would be limited to a generating a world
of technological opportunities and distributing them among agents.



through simpler stochastic rand@itocation processes. Notably, our model produces
results that would appear to capture empirically observable deadweight losses due to
coordination failures among competing firms better than simpler random allocation
processes could.

We believe our findigs could appeal to a wide variety of scholars in our field
as well as adjacent ones. Strategy scholars, traditionally concerned with identifying and
characterizing the sources of heterogeneity in firm performance, may view our results
as complementary th¢ findings of Denrell (2004) and Zott (2008no earlier argued
that chance introduces variatiomcapabilities between firms, and thence variation in
performance. That said, we are also moderately hopeful that our approach and findings
might also be iteresting to scholars outside the core strategy domain, notably to
colleagues from the field of evolutionary biology, who are equally preoccupied with the
emergence of heterogendityalbeit among organismsot organizations (Rueffler,
Hermisson, and Wagne2012).

Naturally, our work leaves us with at least as many questions as it provided
preliminary answers. Towards the end of the paper, we pick up on those two categories
of questionghat appear most important to us, and that present avenues for fatire w

The first category of open issues relates to the framework of assumptions we
adopted in this paper. For one, we started from the premise that technology landscapes
of the kind we depict are equally visible and accessible to all competitors in thetmark
that they do not change over time, that components are of roughly similar importance,
and that markets can accommodate a variety of different products at a time. In reality,
systemic industries are reseaintensive industries in which different commemnt
technologies may be progressing at different rates (Ethiraj, 2007), and specialization
advantages of individual organizations may exist from the beginning. Equallg, firm
may differentiate between core and peripheral components (BaldwWaodard
2009), dismissing the simple assptionthat all components have the sameanlevel
of importance. And finally, installed base advantages may limit the viability of bringing
out second and third products in a systemic industry after the initial offersnigelea
introduced. Relaxing all these assumptions, and including them in a more
comprehensive modeling approach, may appear worthwhile particularly in those
instances in which scholars or practitioners seek to quantify the effect of chance on

positional agdlantages for a given setting.



Second, and possibly more relevant from a scholarly standpoint, our current
formalizatiord to keep the model tractaldledeliberately stopped short of modeling
a gent s o-makiegdehaviommmore complex ways thhair puraiing of
solutions with the highest naive expected value. Deviations in either difedtion
either endowing managers with more foresight or letting them resort to simpler rules of
thumb (a.k.a. heuristiod)would add a sense of realism to our formalizatitias
should increase the explanat@ower of our chosen approach. Ongoing research of
ours in this paperds vei-makingphelsavia@| abor ates on
examining both the marginal value of deploying seelenel rationality in the presence
of stochastic R&D allocations and the costs of taking decigiaking shortcuts in
probabilistic settings.
Finally, while in this paper we deliberately modeled the emergence of
performance asymmetries among firms with equal starting conditions, future ertensi
may, of course, additionally account for ini
to provide a most nuanced view of the role of randomness in the engendéning of
performance heterogeneity.
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Figure 1. Selected component solutions in the smartphone industry
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Figure 3. Sequence of chance events for a focal firm.

Legend:Chronological order of chance events accrued to firms in a given simulation can be
representeéx-postas an array of lengti*m. The elements of an array correspontht®

f i rindgees (1,2,..pand their positiond to the number of component solutions captured at
any given point in time. The figure illustratesi@glationfor parameter combinatiam= 4,

m =4, andp = 2. Sixteencomponent solutionareavailable [@andscape size 16).The
chancevariablesfor firm 1 as computed as followsirm 16 first choice occurred when no
components were captured by competitfirst(choice= 0). Firm 1 was able to male
maximumof 4 consecutive choicesi-interfered choice= 4), and was losing the patent

race for4 component solutions in a rowofigest period of disruptios 4). Overall, firm 1

was able to capture 8 component sols ¢otal number of chance everts8). In agiven
simulation we seth = 4; thus winning a patent rac2 (3, 4) times in a row allows firmto
capture half (three quarters, all)tbe component solutions required for the complete

product. Depending on whether firéretivity relates to the period before or after the Brst
component solutions are captured, we distinguish between the early and later stages on the
technology landscape population. In the first half of the simulation, firm 2 bades of

short luckystrikes Gumber of short lucky strikes at the early stag2) andl long series
towards the end of the simulatiamufnber of long lucky strikes at later stagé).
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TABLES

Table 1.Description ofvariables.

Variable Definition Expected
sign
. Cardinal variable. Normalized value accumulated by aifirengiven
Firm-level performance . .
simulation
Binary variable; set to 1 for industry landscapes in which the number of
Flat available solutions to each product component exceeds the total numbe +
components, 0 otherwise
Binary variable; set to 1 for industigndscapes in which the number of
Steep available solutions to each product component falls behind the number « -
components, 0 otherwise
Competition strength Count variable denoting the number of firms in a given simulation -
. Count variable capturing the total number of available component solutic
Landscapsaize . . . ; +
in a given simulation
. . Binary variabl noting the f f alliance formation layer lil
Alliance formation ay ariable dg oting the fact of alliance formation by players (base i
no alliance formation occurs)
. . Countvariable denoting the total number of component solutions capture
First choice - ) . ~ . -
competitors prior to a firmés fi
Total number of chance Count variable denoting the total number of component solutions a firm +
events managed to capture by the end of awdation
Longest period of Count variable denoting the maximum number of component solutions tl i
disruption were consecutively captured by a
Count variable denoting the maximum number of component solutions tl
Un-interfered choice were captured consecutively by a firm without being interrupted by +
competitors
Number of short lucky Count variable denoting the number of sequerfe length that
strikes at the early consecutively would allow a firm to get ownership of half of a product in +
(late)stage early (later) stage of the landscape population
Number of medium lucky  Count variable denoting the number of sequenced@fgth that
strikes at the early consecutively would allow firm to get ownership of three quarters of a +
(late)stage product in the early (later) stage of the landscape population
Number of long lucky Count variable denoting the number of sequentaslength that
strikes at the early consecutively would allow a firm to get ownership of all of a product in tt +

(late)stage

early (later) stage of the landscape population




Table 2. Descriptivestatistics andcorrelations

Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Firm-level performance 0.54 0.50 0 470 1.00
2 Landscape size 25 10.20 9 49 0.24 1.00
3 Alliance formation 0.40 0 1 -0.07 0.06 1.00
4 Competition strength 5.15 1.58 2 7 -0.53 -0.00 0.20 1.00
5 Flat 0.40 0 1 024 -0.04 -0.15 -0.00 1.00
6 Steep 0.40 0 1 -0.24 -0.04 0.15 -0.00 -0.67 1.00
7 Total number of chance events 5.76 4.04 0 35 0.75 057 -0.04 -0.55 -0.04 -0.00A 1.00
8 First choice 5.88 8.34 0 49 -0.34 -0.10 -0.09 025 -0.0A -0.02 -0.35 1.00
9 Un-interfered choice 1.94 1.19 0 15 061 0.23 -0.02 -0.51 -0.02 0.02 0.73 -0.33 1.00
10 Longest period of disruption 7.79 4.50 1 43 -0.28 0.46 0.09 0.36 -0.00A -0.02 -0.18 -0.09 -0.21 1.00
11 Number of short lucky strikes at the early stage  0.14 0.39 0 4 036 -0.06 -0.15 -0.25 0.18 -0.16 0.23 -0.14 0.26 -0.14 1.00
12 Number of short lucky strikes at later stage 0.17 0.42 0 4 029 -0.06 -0.02 -0.23 0.7 -0.15 0.23 -0.09 0.27 -0.20 0.13 1.00
13 Number of medium lucky strikes at the early sti ~ 0.07 0.27 0 3 030 -0.12 -0.14 -0.20 0.17 -0.15 0.12 -0.10 0.21 -0.14 0.43 0.09 1.00
14 Number of medium lucky strikes at the late star  0.08 0.28 0 3 025 -0.13 -0.05 -0.18 0.18 -0.15 0.12 -0.07 0.22 -0.19 0.11 0.39 0.15 1.00
15 Number of long lucky strikes at the early stage  0.03 0.18 0 2 035 -0.07 -0.10 -0.24 0.12 -0.10 0.20 -0.08 0.41 -0.14 0.02 0.09 0.03 0.12 1.00
16 Number of long lucky strikes at the late stage 0.03 0.17 0 2 028 -007 -004 -020 0.11 -0.09 0.18 -0.06 0.37 -0.14 0.10 0.00A 0.11 0.02 0.14 1.00

The reported Pearson correlation coefficients are significant at 1%. Correlation coefficients marked with Aare not statistically significant.



Table 3.Modeling firm performancedLS regression estimates)

Model 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Landscape size 0.0127* 0.012% } 0.0117* 0.007** 0.018%* - 0.001  0.001%*

0.012%+ 0.006***

(0.000)  (0.000)  (0.000) (0.000)  (0.000)  (0.000) (0.000)  (0.000)  (0.000)

Alliance formation 0.027** 0.076%* 0.041** 0.048%* 0.047** 0.065"* 0.041™* 0.062** 0.064***

(0.003)  (0.003) (0.002) (0.003) (0.003) (0.003) (0.002) (0.002)  (0.002)

Competition Srength ¢ 179xx g 174%%  0.022%% 0158 0.104%* 0140 0.020%* 0013 0.004**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)  (0.001)  (0.001)

Flat 0.191%* 0.197** 0.180%* 0.182%* 0.204** 0.203"* 0.153%* (.157%*

(0.004) (0.003) (0.004) (0.004) (0.004) (0.003) (0.003)  (0.003)

Steep 0.116** 0.125%* (.124% (.132%* (.115%* 0.127%* 0.088** 0.091**

(0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.003)  (0.003)

Total humber of 0.107*+ 0.085%** 0.069%** 0.069***
chance events

(0.001) (0.001) (0.001) (0.001)
First choice 0.011%++ 0.015%* 0.018%* 0.018%*
(0.000) (0.000)  (0.000)  (0.000)
Un-interfered choice 0.178** 0.034**
(0.002) (0.002)
Longest period of - - - -
disruption 0.033**  0.009*** 0.013** (0.014***
(0.000) (0.000) (0.000) (0.000)
Number of short lucky 0.107**  0.118***
strikes at the early
stage

(0.004) (0.010)
Number of short lucky 0.040**  0.130***
strikes at the late stag

(0.003)  (0.009)

Number of medium 0.176**  0.251***
lucky strikes at the
early stage

(0.005)  (0.014)
Number of medium 0.100***  0.178***
lucky strikes at the late
stage

(0.005) (0.014)
Number of long lucky 0.419***  0.462***
strikes at the early
stage

(0.009)  (0.021)
Number of long lucky 0.236***  0.446***
strikes at the late stag

(0.009)  (0.020)
Competition x Numbet -0.003
of short lucky strikes
at the early stage

(0.002)

Competition x Numbet -
of shortlucky strikes 0.021%**
at the late stage

(0.002)
Competition x Number -
of medium lucky 0.021***
strikes at the early
stage

(0.003)

Competition x Numbetr -
of medium lucky 0.020***
strikes at the late stag

(0.003)
Competition x Number -
of long lucky strikes at 0.020***
the early stage

(0.005)
Competition x Numbetr -
of long lucky strikes at 0.066***
the late stage

(0.005)
Constant 1.110*** 1.076** 0.295** 1.096** 0.510** 1.010*** 0.330*** 0.245** (.207***



(0.009) (0.008) (0.007) (0.008) (0.008) (0.007) (0.008)  (0.007)  (0.007)
Observations 67,500 67,500 67,500 67,500 67,500 65267 65267 65267 65267
Adjusted Rsquared 0.345 0.418 0691  0.449 0.539 0.465  0.691 0.733  0.737

Standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%
Table 4a. Comparing aggregate finbevel profits within different types of industries for

different types of chance mechanisms

Landscape 2 firms 3 firms 4 firms
dimensiongn*m)
4* 3 21 9 1
4* 4 8 2 2
4*5 11 3 1
4*6 8 1 0

Cases (out of 100) in which the total value of the products generated in each run of the simulati@x-gsshg
random allocation) iglentical tothe one geerated by the simulated competitive process.

Table 4b. Comparing the total number of products generated within different types industries
for different types of chance mechanisms

Landscape 2 firms 3 firms 4 firms
dimensiongn*m)
4* 3 32 17 5
4* 4 11 4 3
4*5 14 4 2
4* 6 17 1 1

Cases (out of 100) in which the simulated competitive processaes the maximum feasible number of
products.
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Abstract

The fichance and choiceo mo d e | of -baseds our ce

formalization of managerial decisiemaking process in complex technological environments.
The model has been originally developed to examine how chance, competition and @lanager
choices jointly caletermine performance differences among initially identical agents which
are programmed to fAnai vel yeomimiadual profis evithouh e i r
taking the intentions of their opponents into consideration. In glajger, | am primarily
interested in uncovering the actual decismiaking mechanisms and validating the behavioral
assumptions of the original model through a laboratory experiment. The results suggest that in
perceivably uncertain environments peoplatggically manage uncertainty by hedging the
risks upfront via anticipated alliance formation. In doing so, human subjects consider the future
intentions of their opponents beforehand and maneuver potential partners into positions in
which alliance becomes mutually beneficial choice.
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INTRODUCTION

The fAichance and choiceo model -bakedr esource al
formalization of managerial decisianaking process in complex technological
environments (Arkhipova et al., 2014). In the praggbmodel, multiple agents compete
with each other for control over a limited set of product components to which they
sequentially get access in a randomized fashion thereby irreversibly limiting each
ot herds availabl e choi sasumnatode horAagenousand c hoi c
fairly myopic in that they are progfammed to
term individual profits without taking the intentions of their opponents into
consideration (Levinthal and March, 1993).
The model hasd®en originally developed to examine how chance, competition
and managerial choices jointly-cetermine performance differences among initially
identical agents and was analyzed through a series of computer simulations. Whereas
setting decision rules equatross all agents was essential for isolating the effect of
chance factors on individuédvel performance, this approach casts some doubts on
whether the adopted formalizations adequately portray the decision making strategies
people would actually uséguld they be confronted with a similar resource allocation
task. In this paper, | aim at addressing the aforementioned shortcoming by testing the
decision rules of the simulation model through a laboratory experiment.
Testing in the lab the behaviorakasptions underlying the formal models of
decisionmaking is becoming increasingly widespread in management science
(Knudsen et al., 2012; Billinger et al., 2013; Christensen, 2014). During the experiment,
human subjects are placed in an artificial deoisiaking environment whose problem
structure, available information set, objective function and feedback mechanisms
closely mirror those of the model (Ster man,
actions are defined by a set of thedsrived algorithmsgxperimental subjects make
choices the way they prefer (Sterman, 1987; Scandura and Williams, 2000; Harrison et
al., 2007).
Thegamd i ke structure of the fAichance and chc
to exploration through a laboratory experimentthia simulation model, agents are
allocated the possibility to make choices in a stochastic fashion. On his turn, an agent is
assumed to pick a component with the highest marginal contribution to the most
valuable product configuration still available iidiually, ori should the individual

opportunities be already exhaustetb access missing components by concluding an



alliance with one of the competitors on mutually beneficial terms. In the experiment,

human subjects have no control over the timintheir choice either, but they are not
necessarily following the simple Ainapve maxi
choose and how to interact with one another. Moreover, overwhelming evidence shows

that people may systematically depart from thegples of probability and statistics,

rely on imprecise computations and make choices conflicting with the expected value
maximization (Tverksy, 1975; Simon, 1979; Rabin, 1998; Gigerenzer, 2000). In this

paper, | am primarily interested in uncovering dlotual decisionmaking mechanisms

and validating the behavioral assumptions of the original model.

The paper reports the key findings from the experiment compared to the
simulation with the same parameterization. Whereas the performance differences on
both individual and group levels are virtually nreristent, most of the deviations
pertain as to how people selfganize into emergent coalition structures. The results
suggest that in perceivably uncertain environments people strategically manage
uncertaitty by hedging the risks upfront via anticipated alliance formation. In doing so,
human subjects consider the future intentions of their opponents beforehand and
maneuver potential partners into positions in which alliance becomes a mutually
beneficial chate.

In what follows, | commence by introducing the model and describing the
experimental procedure. Next, | formulate a series of propositions regarding the
differences between simulated and experimental results | expect to observe and compare
experimerdl results against the simulated benchmark. | conclude by discussing the
implication of the results for the management science and outlining potential avenues

for future research.

MODEL DESCRIPTION

In what follows, | shortly summarize the structure aatdyioral assumptions

employed in the original simulation model.

Problem structure

| shall consider a setup where the finite number of agents (representing firms) is
competing for control over the limited number of components that make up an abstract
product (see Arkhipova et al. (2014) for the detailed description). Each component has
several alternative solutions which can be recombined into a variety of different product



configurations perceived as substitutes by consumers. The value of each product
configuration is calculated as an arithmetic sum of the pairwise complementarities
between its constituent component solutions whose values are drawn from a uniform
continuous distribution on a closed (0.2; 1.0) intek¢dlhe number of components

the nuniber of the corresponding alternativeand the matrix of pairwise
complementarities are set exogenously and jointlgetermine the technological
landscape on which the agents operate. The technological landscape can be therefore
visualized as a twdimensional matrix M of sizé&  £. For each elemed of the

matrix M there exist a set of corresponding complementarity valuesvherei andj

stand for the position of the element in the matrix M, landrresponds to the column
index of a compnent solution in the adjacent rowl that enters a product

configuration in question. The total number of potentially feasible product

configurations equals ta™

Behavioral assumptions

The model is analyzed through a series of independent consputdation
rounds (or games). At the beginning of a new simulation round, all component solutions
of the technological landscape are available and the structure of pairwise
complementarities is newly regenerated.

Agents are programmed as myopic expectédiyumaximizers following
identical decisiormaking rules. The uncertain nature of success in the complex
technological environments is operationalized in the model as a sequential randomized
assignment of turns to the agents, thus capturing the car¢hiaiethe availability of
each agentdos choice set at any given point
precedent choices. Upon her turn, a focal agent scans through the entirety of available
individual products and identifies the one with the kighexpected value. In doing so,
she (1) factors in the probability of her turn being drawn sufficient number of times to
obtain the remaining components till the end of a round; and (2) ignores those
component solutions that either have been taken bgoimgetitors or that the focal
agent herself has used in the existing and more valuable products already. After the best
available product is identified, the focal player chooses the constituent component

solution with the highest complementarity value.

1n order to keep the simulation product values consistent with the ones generated in the experiment, the lower
interval boundary was changed with respect to the original model (in Arkhgi@la(2014}he values of
pairwise complementaritiagere drawn from an open interval (0; 1)).



Alternatively, agents are allowed to form disjoint bilateral coalitions with each
other. In the model, agents are assumed to ally only if the aggregate alliance revenues
are large enough to compensate for dropping the potential opportunity to appropriate
full earnings from an individual product. That is, an alliance event occurs if three
conditions are simultaneously satisfied:

(1) when the value of an individual product (expected or actual) is less than the
immediate sum of shares of all possible alliabhasedoroducts;

(2) if the same is true for the other party;

(3) both agents have jointly enough components to create a product immediately.

The intraalliance value division scheme is calculated at the moment of alliance
formation according to the relative contrtton of partners to the best product created
together. The revenues from any subsequently created products are split in the fixed
proportion.

A simulation round terminates when no more components remain available, and
each agent 60s rleustadasanaggregate yald of all preducts awned

individually or as a sum of shares held in alliabesed products.

To sum up, the model represents a dynamic competition problem in which
agents withexanteopposed interests are given an opportutaityoordinate efforts to
their mutual benefit. What makes the model particularly interesting is a special kind of
path dependency between agentds own choices.
actions affect her final payoff not in a strictly cuntiva way: the value of each
component solution is calculated conditional on the type of the solution acquired in the
adjacent component | ayer on a subsequent mov
choice set depends on efthestageip pnpredeetables 6 act i ons
sequence, her initially planned strategies may be inadvertently undercut and therefore
need to be constantly adjusted. Even if all the model ingredients are known and
probability distributions are of common knowledge, duthtopresence of many
Amoving partso it appears highly unlikely th
of solving the problem analytically by backward induction. Simulation allows capturing
the complexity of the system and generating predictions regptidé emerging payoff

and interaction patterns.



MODEL REPLICATION IN THE LAB

Experimental design

The experiment was performed with the fixed set of exogenous parameters which made
the model replication in the lab feasible and yet comparable to theabsgimulation.

The matrix dimensions were fixed to four rows and three columns, and the total number
of players was limited to fodr. The four participants were interacting with each other
through an experimental computerized interface which displayeddttijx-shaped

action space; (2) coldrased complementarity structure between matrix cells; (3)

alliance formation options with other players; (4) game statistics and reporting section
showing individual cumulative payoff and alliance value percentage Epé

Processing programming languaaevv.processing.ofgwas used to code the

experimental softwat& The snapshot of the experimental interface is shown on Figure
1.

[Insert Figure 1 about here]

Matrix -shaped a&tion space
The action space of each participant is represented by a matrix with four rows
and three columns, thus allowing fd+381 theoretically possible product
configuration$’. The turns to act are allocated to the four players sequentially at
random. On her turn, a player can make a choice of a component solution by clicking on
a corresponding matrix cell; the choices of the players are visible to all participants and
areupda ed i nstantaneously. The appropriated
identification number positioned in the center of a cell. Once a cell is occupied, it can

no longer be accessed by other players unless they form an alliance with the player who

15 The combination of the model parametetie matrix dimensionén=4; n=3) and the number of players
(p=4)7 permits to keep a reasonable balance betwe@ageability and complexity of the problem structure,
while at the same timgeneraing sufficientcompetitivecrowding to makéehe effects of mutualependece of
agent s froecobnod encaigh.

16 The source code is accessible in Processing langumtgeextension) via the following link:
https://www.dropbox.com/s/puiiw5go3wnalfu/Experimental%20Source%20Code%20FINAL%20Arkhipova.zip
2dI=0 The excerpts of the source code are also available in the .pdf format:
https://www.dropbox.com/s/qa2sbefgc7pe5pn/Experimental%20interfaceeS6?20Code Arkhipova.pdf?di=

0.

7 The assumption that each component solution can be used once in itsealingzing configuration allows
for the simultaneous eexistence of maximally three distinct products (out of the 81 potentially possible
products).

cel


http://www.processing.org/
https://www.dropbox.com/s/puiiw5go3wnalfu/Experimental%20Source%20Code%20FINAL%20Arkhipova.zip?dl=0
https://www.dropbox.com/s/puiiw5go3wnalfu/Experimental%20Source%20Code%20FINAL%20Arkhipova.zip?dl=0
https://www.dropbox.com/s/qa2sbefqc7pe5pn/Experimental%20Interface_Source%20Code_Arkhipova.pdf?dl=0
https://www.dropbox.com/s/qa2sbefqc7pe5pn/Experimental%20Interface_Source%20Code_Arkhipova.pdf?dl=0

alrealy got hold of the cell in one of the precedent moves. No time pressure is imposed

on experimental subjects.

Color-based complementarities

The idea of the pairwise complementarities is translated in the experiment as the
degree of similarity between théfdrent colors of the matrix celisthe intuition being
that the two component solutions of similar colors work better together, and vice versa.
The eight preselected colors (red, orange, yellow, ligneen, dark green, cyan, dark
blue, purple) are symetrically arranged around a circle (i.e. color wheel), and the
smaller the distance between two colors, the higher is the complementarity between
them?® For simplicity, the complementarity values are assumed to be symmetric, take
eight discrete values ihe range from 0.2 to 1 with 0.2 increments, and correspond to a
fixed set of colors. The combinations of the same colors have the maximum
complementarity of 1. The subjects navigate the interactive color wheel which is
subdivided into eight equidistantloo segments and has a blank inner circle. By
positioning a mouse over a segment of a particular color, a subject is automatically
displayed the values of complementarities with any of the other colors. Thus colors
facilitate the perception of complemeritigis but the subjects still need to use numeric

information to calculate the final product values.

Alliance formation
The alliance formation dialog box is activated automatically when a player has
jointly enough components to form a product with anogtheyer; earlier alliances are
not possible. The program automatically suggests the players which are available for the
alliance formation. A player may send an invitation to ally by clicking on the
corresponding button; the game remains frozen until theearesponds to the request
by either accepting or rejecting the alliance offer. A coalition is named by concatenating
its constituent members in the order which places an initial component owner (or
subsequentdecisiema k er ) f i r st : will heiersg the 8ang dlliarecenofl /A 2 1 0

players 1 and 2, but Al1206 wil/l be displ ayed
1, and vice versa. Similarly to the simulation, the coalitions are binding, the value is

split between pl aydmlsonmutomoto the firsthest aliancen e 6 s mar
't is noteworthy to mention that while in color theo

opponent colors on the diametrically opposed ends of the colorwheel (Judd, 1917), in this paper the neighboring
colors of the color whéare referred to as complementary.



based product and a player cannot quit a coalition until the experimental round is
finished.

Subjects

Experiment participants were recruited from the subject pool of the Laboratory
of Experimental Economics@&a 6 Foscari University of Veni ce
financially rewarded for their participatidf The financial reward consisted of a fixed
part (8 euros) and a variable part, the var.i
cumulative individual prformance over the consecutive 20 rounds (periods) of the
experiment. The individual performance was measured in experimental currency units
that were converted to euros at the end of the experiment. | report the results from 20
experimental sessions witftoups of four participants (total of 80 subjects) that | ran at
the Laboratory of the Experi ment al Economics
Italy in November 2013. Prior to conducting the lasgale experimental series, | have
tested the expenental instructions and computer software, calibrated the rewards in
the four pilot experimental sessions in March 2013. The average participant payoff was
21 euros (SD=2.8).

Procedure
The four subjects were randomly seated in four experimental boathgped
with noiseinsulating headsets and microphones. The booths were isolated from each
ot her with separators, so that participants
or be disturbed by other participants thinking aléUdrior to the experint, they were
shown 10minutes video instructions which contained screenshots arsti@én voice
commentary with explanations of the game objectives and how to navigate the

experimental interfacé- The video instructions were duplicated in a traditiqragler

19 Since the ability to distinguish colors was essential for the successful conducting of the experiment, the
participantswith color vision deficiencies were not admitted

20 The thinking aloud method was used duringekperiment: the subjects were asked to verbalize their
thoughts as they play, and their verbal protocols were recorded. The verbal protocols analysis is out of scope of
the present essay and is reported in chapter 3 of the dissertation.

21 The video instruions in English language are accessible via the following link:
https://www.dropbox.com/s/riicv43akhwh9c2/Instructions%20with%20audio%20ENG%20HDdim®4Phe

decision to use video instructions was inspiredheypilot sessions for which | had used the conventional

printed paper instructions as a default option. The feedback that | have got from the participants was that

instructions were too long focus on reading, and that the actual experiment required lots of interaction with

dynamic elements of the interface which do not lend themselves to the static representation on paper (i.e.
dynamic colorwheel, all i an cawiable alteraativie asmeffcreenVaicd e o fit ut or i
commentary substitutes for experimenterds reading out



https://www.dropbox.com/s/riicv43akhwh9c2/Instructions%20with%20audio%20ENG%20HD.mp4?dl=0

form and were available for the subjects for consultation throughout the experiment.
The subjects were given an opportunity to ask clarification questions before the
experiment. The communication between the subjects during the experiment was not
pemitted (excluding anonymous alliance message exchange stipulated by the

experimental instructions).

EXPERIMENT AND SIMUL ATION BENCHMARK COMPARISON

Operational compatibility
The simulations generate a set of predict
endogenously emerging alliance structures provided that all agents are equally endowed
with the identical naive maximization decisioraking rules. The behavior of the
experimental subjects is then directly compared against the benchmark behavior
observedinder the assumptions of the simulation mé&del
In order to enable meaningful comparisons, the decisiaking context of the
experiment is aligned with the one of the original model. In both instances, the
dimensions of the action space are setidentichlbe pl ayer s6 turns are dr
discrete uniform probability distribution; the combinatorial principles of product
composition and the additive nature of product value calculation are preserved. The
simulation was run 400 times to replicate the expental design of 20 sessions of 20
rounds each.
One of the aspects in which the structure of the experiment departs from the
simulation relates to the type of numeric values we use to define complementarities. In
order to reduce computational costs fog subjects we convert continuous

complementarity values into the set of discrete vafu@ne should keep in mind that

compared to verbal description, and finally, by the time the actual experiment starts, subjectdaaihriiadye
themselves with the experimental interface. To avoid priming the subjects to choose the colors selected in the
demonstration version, | have used two different color schemes for the instructions and the actual experiment.

22]deally, to enat® direct comparison between the experiment and the simulation, one should extract the
stochastically generated paramet@&stgbly, complementarities and turn allocation sequences) for each
experimental round and rerun simulations under the set of expeaihparameters. Althougham planning to
address with issue later on for the publication version, Inelg on the assumption that any discrepancies in
data caused by random number generation are levelled out over the multiple repetitions provideeshreee
drawn from the same distributions.

23| have run a series of checks on whether conversion to discrete values systematically alters the values of the
generated products. The values of the most salient possible products (automatically generatedy an

average in the simulation than in the experiment (3.39 vs. 852;1.21, p<0.01) due to the higher variability

in the composite complementarity values. Similarly, the values of the best actually created products are lower in
the simulation ompared to the experiment (3.15 vs. 3132;-6.24, p<0.01).



whereas the discrete approximation comes at the potential expense of accuracy of the
simulation vs. experiment performance comparistirsemerging behavioral patterns |
am primarily interested in will remain unaffected.

Similarly to their modelled counterparts, human subjects are incentivized to
maximize their payoffs and are provided the same sets of available information. Given
that te timing of component appropriation is out of control of the players, the only
actions human subjects can take full control of relate to positioning on the technological
landscape and to cooperating with other participants. As regards the latter, wihereas
the simulation an alliance is automatically concluded if mutual benefit condition is
satisfied, the experimental design leaves ample space for the discretionary behavior of
the decisiommakers as to whether they decide to enter an alliance or decline to

cooperate.

The summary of the discrepancies and potential assessment of any biases they
can engender is reportedTable Alin the Appendix.

Five dimensions for comparison
In what follows, | formulate a set of propositions about how the actual human
decision making strategies may potentially deviate from the simulation benchmark

along the performaneand the four allianceelated dimensions.

Performance

Theperformancalimension is related to the quantifiable output both on
individual and grouff levds. In the simulation, agents rationalize in terms of expected
value maximization and are endowed with computational ability which at any given
point in time allows them to calculate the value of the best available product
configuration and to evaluate tpeobability of completing it. Numerous studies in
behavioral economics and experimental psychology, however, have demonstrated that
the actual human judgment is biased when it comes to the probability assessments
(Tversky and Kahneman, 1974); and thgb@nforming complex tasks people are
unlikely to carry out the fulfledged computations due to their information processing
limitations (Simon, 1957; Newell and Simon, 1972). The problem structure of the
present model would appear to be sufficiently compbeevoke simplified decisien

24 Group performance is measured as a sum of individual payoffs of all participants in a given round.



making behavior in human subjects. Yet, it still provides abessed formalization of
an uncertain environment, in which statistical reasoning and thorough calculations are

supposed to yield more accurate decisions thaplsiheuristics would do (Artinger et

al ., 2014, Mousavi and Gigerenzer, 2014) .

resort to cognitive simplificatiorisas potentially reflected in erroneous perceptions of

chance and approximate mathematical calmnatin the experimenmay result in

inferior performance compared to the simulation agents. | therefore posit:
Proposition 1: Experimental subjects will exhibit lower performance on both

individual and group levels than their simulation counterparts.

Alliance formation timing

The second dimension describes the temporal aspect of alliance formation. The
model allows any two participants to consider alliances only when they jointly have at
leastn components to create a product instantaneously. In siolatd experiment,
the earliest point in the game when an alliabased product can technically come into
existence is when at leastomponent solutions are occupied. At this point in time,
however, the expected value of any alternative individual @tddu each player may
still exceed the immediate alliance share, and hence-aeigikal agent in the
simulation may opt to pursue an individual solution. Conversely, in the experiment, the
mere fact that the individual outcome is probabilistic in natuag induce subjects to
exhibit more riskaverse behavior (Kahneman and Tversky, 1979). Thus people may
elicit preferences for the immediately guaranteed alliance outcomes and will be willing
to pay a substantial risk premium to reduce the uncertaintyenhto the risky future
individual options. | therefore propose the following:

Proposition 2: Alliance formation will occur earlier in the experiment than in

the simulation.

Alliance experience

The alliance experienaimension investigates how allianimemation behavior
in the experiment evolves over time. In the simulation, agents do not have memory
about their past choices. Conversely, in the experiinant in line with the extant
evidence obtained in repeated games in various laboratory settiaggn subjects
will inevitably look backwards and adapt their future behavior accordingly. In so doing,
people will therefore reinforce actions that either yielded positive results in the past
(Roth and Erev, 1995; Erev and Roth, 1998; Camerer, 2008jatothey regret of not



having undertaken in due time (Ert and Erev, 2007; Marchiori and Warglien, 2008).

Whereas finding a learning model which would best account for the behavior observed

in the laboratory is beyond the scope of the present paperge@@ppatural to assume

that people will initiate alliances more frequently as they get positive reinforcement

from alliance success or | earn that Agoing s
payoffs, as stated in the following proposition:

Propositon 3a: In the experiment, the number of alliance proposals will
increase with experience.

Moreover, once having experienced the regret related to the foregone alliance
opportunities, subjects are likely to display the tendency to accept the proposals more
frequently (and symmetrically, reject less). | therefore conjecture:

Proposition 3b: In the experiment, the number of accepted (rejected) alliances

will increase (decrease) with experience.

Alliance output
The alliance outpudimension provides furthénsights into human reasoning by
examining the values of alliand@msed products. The behavior of agents in the
simulation is assumed to be myopithat is, agents remain negligent about the
opponentsd6 prospective behansdodmakibgpdoont her s o
inasmuch as they reduce the available choice set. In the experiment, subjects are
expected to reason about opponentsd preceden
strategies and take actions in response to these beliefs (CameretG&i4l.\WWhereas
my endeavors to extract the actual beliefs from the experimental subjects are reported in
the next chapter, one might argue that the eventudégelopment of thealient
product could serve as an iemadior.cTagsalienn of t he
product is hereafter defined as the best product in terms of its value out of tiné' total
technically feasible product configurations. Whereas the value of the salient greduct
sedepends solely on the underlying structure of dempgntarities generated in each
round, the actual creation of the salient produee it individually or through an
allianceii mpl i es that the best product created as
was also the best one theoretically possibke given round.
In the simulation, the salient product will be automatically identified by an agent
who gets to make the first choice as a product with the highest expected value, and

hence its constituent component(s) will be occupied in the first irsstanc



In the experimernit due to the colebased complementarity representaticime
salient product would be conspicuous to the eyes of the subjects as it will be made up of
the similar colors, and once a player starts to occupy its constituent compbeents
strategy becomes visually noticeable to her opponents. As a reaction, an opponent who
gets to make the next move is likely to identify the salient product as an opportunity for
coordination, and will deli berebyfedny fAbl ocko
the player into a prospective alliance (Bacharach, 2006). In the simulation, on the
contrary, even if an opponentdés choice inad
the salient product, she will simply switch to the next best produd.rasult, in the
experiment one might expect to observe salient products to materialize through alliances
more frequently than in the simulation. Thus,

Proposition 4: In the experiment, the salient products will be created via

alliances more frequently &m in the simulation.

Alliance composition
The alliance compositiodimension explores the observed irgthance
membership structures at the level of the dyad and examines the underlying motives for
alliance formati on 1 n |dhaactarsticsoTthedpdtiBc par t ner s
rationale behind entering a coalition in the experiment, so | argue, is contingent on how
many of the component solutions a player controls prior to the eventual alliance
formation. In this regard, two cases are possiblst,Fa player may enter an alliance
out ofresource interdependence consideratiaashe lacks components required to
compl ete a desired product. I | abel these p
Alternatively, a player might regard alliance $plas avalueimproving tool at the
moment of alliance formation a player already owns a complete product and is willing
to increase her payoff by creating a more refined product configuration through an
alliance. I refer t oe tphreosdeu cptl aoywenre rtsyop.es as
As it has been repeatedly mentioned above, simulation agents aneutsal
and are programmed to follow the expected value maximization rules and, however the
agentsod6 consi der aexpasirsthesimgahoralliamees willlodys si f i e d
materialize should the three conditions be satisfied simultaneously. Thus, the two
incomplete product owners will form a coalition only if the individual options are
already exhausted for both of them; and a complete product ownetlwidinly if her

share in prospective alliance exceeds the value of the existing individual product.

Vv
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One may expect that in the experiment human subjects are likely to deviate from
the line of behavior predicted in the simulation due to the referenceckéeets (Rabin,
1998). Namely, | conjecture that complete product owners will be subjected to the
status quo biaand thus will be reluctant to lose a share of their own product even if it
might be offset by the resulting overall increase in value of@eseloped product
(Samuelson and Zeckhauser, 1988; Kahneman et al., 1991). This effect is likely to be
exacerbated by the uncertainty associated with the unlikely ability of subjects to
calculate the tradeffs with high precision (Simon, 1957). To thaide | expect to
observe fewer alliances involving complete product owners in the experiment (and,
symmetrically, more alliances between two incomplete product owners), which leads to
the following proposition:

Proposition 5: Alliances involving completeopuct owners will be less

frequent in the experiment than in the simulation.

In line with the resourcbased view, the intuition behind coalition formation in
t he model primarily emphasizes the agentsd n
inaccessil# component technologies (Penrose, 1959; Barney 1986; Haowdnd
Prahalad, 1989; Kogut and Zander, 1992). 1In
decision with whom to ally might be additionally affectedtiust engendered by the
prior history of successful cooperation with a certain partner (Granovetter, 1973; Gulati,
1995; Gambetta, 2000). That is, in the course of several recurrent interactions, two
players may establish interpersonal ties which in turn ndilgase their proclivity to
ally with each other on the subsequent rounds. Consequently, in each experimental
group, coalitions between certain pairs of players will be observed more frequently as
opposed to the simulated benchmark scenario in which aéaare formed between
two oblivious and purely economically motivated agents. The following proposition
concludes this section:
Proposition 6: In the experiment, certain pairs of partners will form alliances
more frequently than in the simulation.

An oveview of the conceptual framework in illustrated on Figure 2.

[Insert Figure 2 about here]



RESULTS

Table 1 provides a comparative summary of the experimental and simulation
result€®. The results demonstrate that simulation agents and experimental subjects
perform similarly in terms of average groyp= 1.0948; p = 0.2739) and individual
level (t= 0.8191; p = 0.4128) payoffs. That is, notwithstanding the fact that

experimental subjects are |ikely to Asati sfi

the experimental performance indicators are quantitatively similar to the predictions of
the simulation model. Similarly, | do not find any significant simulatisrexperiment

di fferences in terms of t%1y0.650004R)Hen u mb e r

tot al number o #1)=d.b4; p=@28)oetse ndmber af ;standesswhen
zero out comes?(1w@39xp=068)t ai ned (6

[Insert Table 1 about here]

Before | proceed to testing the alliarredated propositions, it is useful to start
with descriptive analysis of the types of coalition structures that have emerged.

Coalition structures distributions (see Table 2) demonstrate that the proportion of

rounds in which no alliances were formed (i.e. all products were created individually by

oneor more players) is roughly the same in the simulation (18 %) and in the experiment

(18,25 %). . Major differences are observed with regards to alltauitging behavior.

There are significantly fewer cases when alliabased and individual products-co

exi st in the experiment (26%), generating

simulation (56%). On the contrary, the coalition structures, either when only one
coalition manages to reap all the possible benefits or when all players are allat prev
in the experiment (37% and 18% respectively) compared to simulation (19% and 6%
respectively). Thecks qu ar e d %t139171, 5=0.000) indichtes that there are
significant differences in alliance formation strategies adopted by human sanécts
simulation agents. In what follows | intend to investigate where these differences are

rooted.
[Insert Table 2 about here]

As regards the timing of alliance formation, the results generally support the
claim that human ?=21L937, B0.008). Thelfréquenay ar | i er

of

i h



distributions are plotted in Figure 3, where the horizontal axis shows how much time

has elapsed since the beginning of a round (measured as the number of component
solutions occupied) and the height of the bars corresporls fwoportion of alliances

that were formed at a given point in time. As seen on Figure 3, the distribution for the
experiment is shifted to the left compared to the simulation with allying ori"ttre8e

being a modal choice of the subjects. In the fathens, in no case alliance was formed

in the first half of the game and the modal behavior is to ally on thenb®e (although

it accounts only for 28% of the alliances fornfé€dJhe results suggest that even if

expected value maximizationruleswodld ct ate to form alliances
when one is at risk of earning nothing, people seem to prefer to cooperate upfront, thus

supporting the rislaversion argumentation of the proposition 1.
[Insert Figure 3 about here]

The effects of learning atested only on the experimental data for the obvious
reason that no learning processes are present in the simulation. Figure 4 illustrates the
average number of alliance proposals per round (across 20 experimental groups).
Contrary to the prediction, | dwot find any compelling evidence that subjects use
alliance formation more as they become more experienced: the dynamics of the total
number of alliance proposals remains stable over timé.{t4; p=0.26) implying that
the subjective attractiveness obposing an alliance is not affected by experience
(Figure 4). However, some noticeable learning patterns are revealed with regards to the
total number of accepted alliance proposals. As it can be inferred from Figure 4, there is
a stable upward trend ftlhe number of alliances accepted (z=4.69; p<0.01). Since the
total number of proposals does not change significantly, such upward trend corresponds
to the downward trend for rejections (9=45; p<0.01), thus supporting proposition 3b

[Insert Figure 4 abat here]

In order to test the proposition pertaining to the alliance output, | compare the
proportions (and counts, respectively) of the alliabased salient products obtained in
the simulation to the ones of the experiment. To enable meaningful coomsanisthe

count data, 400 independent simulation rounds were randomly grouped into 20 equal

26| havealso looked at whether behavior changes over time and whether people learn to ally earlier as they gain
more experience but it does not seerbé the case as | obsene visible g/namics on roundby-round basis
(not reported here).

A



sized subsets (hereafter referred to as #Asim
session the observations were randomly assigned a rank from 1 to 20 (hezésafted

to as fAsimulated roundso) to imitate the exp
rounds each. Table 3 reports the remarkable differences: in the experiment, in 47% of

the cases (188 out of the total 400 experimental rounds) the salidotizravere

created via alliances as opposed to only 4.75% (19 out of the total 400 simulated

rounds) i n £4286.64 pa@008Jat i on (G

[Insert Table 3 about here]

The results support the prior conjecture that subjects can prefigure the irgention
of his or her opponent in case the latter pursues the most obvious product configuration.
So far my analysis was restricted to the cases when the two players mutually recognize
each otherds strategies and eventhauvaal | y coope
subjectdés fiblockingo strategy may as wel | re
created salient products. The results in Table 3 provide the additional supporting
evidence: the individually created salient products account only for 9.78% oases
(39 out of 400 experimental rounds) in the experiment as opposed to 21.5% (86 out of
400 simul ated r ouf=db276, pFor000). Thes the resulisisagesto n (6
that in the experiment, unless a player is a-fitsiver and has sufiient number of
consecutive moves to conclude a salient product, he or she is likely to be deliberately
prevented by the opponents from doing%albeit no conclusive inferences can be
drawn from the temporal dynamics of the strategizing behavior dueaibraimber of
observations, the results serve as preliminary indication that the strategizing behavior is
acquired over time by human subjects (Figures 5A and 5B).

[Insert Figure 5A and Figure 5B about here]

2" Thetemporal dynarics of salient alliancéased producteasanalyzed by comparison of the successive
rounds The descriptive analysis (not reported here) suggestsrthbg experiment, in each round, at least half
of salient products are created through alligimeediarr10; IQR= 2), while in the simulation it happens only in
1 out of 20 simulated rounds (median=1; IQR=THe resultshow that the instances of alliadtased salient
productsin the experimenincrease over time (z=3.39; p<0.01). The positive trend isithalation, albeit
statistically significant (z=3.37,p<0.01), is driven solely by the outlier value in simulated rosde2Bigure
5A).

28 Thetemporal dynamics of salient individual produsi@sanalyzed by comparison of the successive rounds.
In eachexperimental round, in 50% of the cases, in at least 3 rounds (out of 20) salient products were created
individually (median=3; IQR=2), while in the simulation in happened more frequ@gndgian=5, IQR=2)The
results demonstrate the stable downward tfenthe experiment (z2.79;p<0.0) and the simulation (2%,72;
p<0.1), which, however, should be interpreted with caution due to the small number of observations.



With regard to the impact of resource coesations on the alliance
membership, the results in the simulation and in the experiment appear to be strikingly
s i mi &=20d; p£086). As seen in Table 4, the majority of alliances occurs between
two incomplete product owners both in the simulatidd®4® and in the experiment
(88%)), pointing to the importance of the strategic resource interdependencies as a
prerequisite for the successful cooperation in a given setting. The proportions of
alliances involving complete product owners in the experimi¥#o] is roughly the
same as in the simulation (9%), thus disconfirming my initial proposition that human
subjects would systematically depart from the economic rationale when valueftiade

are involved.

[Insert Table 4 about here]

Finally, | examinghe role of the recurrent dyadic relationships on the alliance
formation. Naturally, any interpersonal ties leading to trust may only emerge within a
fixed group of subjects. Figure 6 combines the results for 20 experimental groups and is
intended for thgraphical analysis only: the height of each colored bar corresponds to
the number of times (out of total 20 experimental rounds) in which a given pair of
subjects has allied. The preliminary visual data inspection does not suggest that any pair
of subjecthas allied more frequently than the offier
To that end, | subdivide the possible alliance structures into 10 mutually exclusive
categories (6 single alliances, 3 combinations of two alliances and no alliance) and test
the observed distributions for 2@merimental sessions (Table 5A) and 20 simulated
sessions (Table 5B) against the simulated-pquibability benchmark using esguared
test. The fact that the observed distributional differences for the simulated sessions with
knowingly artificial agentsre significant (p<0.01) indicate that given the low

numerosity of observations, the results should be interpreted with caution as

22The final goal is to compare the theoretical uniform distribution of the possible alliances emerging with the
equal probability (which would be obtained by running a large number of simulations with agents not endowed
with memory) with the actually obsemvelistributions in the experiment. The difficulties arise when it comes to
statistically testing if the observed distributional differences are significant. The problem naturally lends itself to
the chisquared goodness-fit test between the eqpirobablity and the observed distributions, but given that

the alliance events are not mutually exclusive and not collectively exhaustive (two alliancesget within

the same round), running ebquared test will not give plausible results.



randomness cannot be excluded as an explanation for the observed¥atteens
irrelevance of the repeated interactionsditimnce formation possibly stems from the

fact that the period of interaction is not prolonged enough for trust to emerge or,
alternatively, may serve as an indication that tangible inputs of partners take precedence

in a given setting.
DISCUSSION AND CONCLUSIONS

The purpose of this study was to test empirically the plausibility of the
behavior al assumptions of the Achance and ch
reconstructed the decisionaking environment in the laboratory and compared the
behavior olhuman subjects against a simulated benchmark. The experimental results
point to several interesting findings.

First, alliances in the experiment are formed earlier than in the simulation. This
result can be naturally explained in terms of-astersion: pople anticipate alliances as
a precautionary measure against the uncertainty. Alternatively, the subjects may
subjectively underestimate their chances to succeed individually and therefore seek to
maximize the aggregate output from the joint coordinatiexit€as opposed to
maximizing the expected value of a single product).

Second, the results suggest that people learn to cooperate more. Although the
exact learning mechanisms cannot be inferred from the data at this stage, several
explanations arise.Othe one handvhereas learning does not seem to affect the
behavior when it comes to proactively initiating an alliance, people tend to adapt their
strategies when they act as passive recipients of alliance invitations. One might
therefore tentatively agecture that people feel less regret in case they have not offered
an alliance themselves as opposed to the case when they have erroneously rejected the
allianceopportunity once it was openly proposed to them (Zeelenberg et al., 2002)
hence will avad repeating the latter mistake on the subsequent ro@mdhe other

hand the positive trend of alliances accepted might be observed due to the fact that

30| have also looked at the temporal aspethetoalition formation albeit decreasing the numerosity of

observations even further, the idea behind this exercise was that, if any trust is emerging, it should develop over

time, which would result in more operative arrangements between the same two players towards the end of the
experiment. To the end, | have split the 20 rounds for each group in two istagefirst 10 rounds and the last

10 roundd and examined the alliance frequency distributionsediffices between them. Based on visual data

inspection (not reported here), | find no evidence of stable coalition formation behavior. On the contrary, the

data might suggest that the distribution of different alliance arrangements becomes more uniferateit t

stage, indicating that the human subjects become mor e
stable preferences.



people learn interactively as thexpostrationalize about the past choices of their
opponentsl(evinthal and March, 1993/archiori and Warglien, 2008).astly, one of
the candidate explanations could be that subjects learn to make qualitatively better
proposals.
Third, the experimentally observed behavior appears to be at odds with the in
built assimption of myopia. Notably, the results substantiate a claim that people tend to
exhibit higher levels of strategic thinking. The essence of the strategy is thus to become
indispensable in the eyes of the opponents by forestalling their most desirabéschoi
This strategy plays out best whiein the absence of possibility to negotiatplayers
can venture correct guessesvicavereaut t heir oppo
I nterestingly, | find no evidencie that su
performance losses or invoke decisinaking biases contradicting the value
maximizing logic. The possible explanations might be that people make reasonable
approximations or, over the course of several repetitions, develop cognitive shortcuts
that conpensate for the lack of computational strength (Gigerenzer and Todd, 1999).
Finally, the findings seem to refute the role of interpersonal trust as an essential
precondition for cooperation in a given setting. Much of the literature emphasizes the
importence of prior relational linkages between partners for coalition formation to the
extent they help to resolve the uncertainty associated with opportunistic behavior
(Williamson, 1991; Parkhe, 1993) and partner
Inthe context of the Achance and choiceo model
found to be of less relevance as alliance agreements are set to be binding and the size of
oneds contributions primarily depends on | uc
Cumulatively, these findings draw a different picture of a decisiaker which
openly challenges the mo-degttaldysasndas sumpti ons of
Amemoryl essnesso about past events. Whereas
alliances only in the wrst case scenario, people use alliances as uncertainty absorption
mechanisms to reduce their exposure to failure. In situations when the long history of
foregone opportunities can set a decisioaker back irreversibly, people tend to hedge
the safe bets advance and jointly exploit more risky opportunities later on. Thus,
cal i brat i ng-making mles@ecordingly willdiing more realism to the
original context and enhance the validity of the conclusions.
The implications of the results mag extended beyond the experimental

context and tangentially contribute to managerial literature on alliance formation.



Broadly speaking, the interfirm collaboration has been traditionally explicated in the
literature by transaction costs arguments (Cae&&7; Williamson, 1991; Dyer, 2002),
learning considerations (Hamel et al., 1989; Hamel, 1991; Khanna et al., 1998), external
pressures for conformity and legitimacy (Hannan and Freeman, 1984; Baum and Oliver,
1991), and social network effects (Gulati9®9Dyer and Singh, 1998; Gulati, 1998).
To my knowledge, whereas the aforementioned streams of literature have repeatedly
acknowledged the importance of managing alliance risks (Das and Teng, 1999; Shah
and Swaminathan, 2008), allianqes seas viable instruments to manage risks and
uncertainty have not received due attention in scholarly research so far {Gomes
Casseres, 2000). One might argue, however, that in the actual business environments
with their inherent complexity and unpredictabigmnamics’ as presumably captured in
the proposed model to some extemanagers will form alliances upfront to gain a
foothold in the industry and mitigate the risks of technological-mak The present
findings indicate that this might be a call fopaeate and more idepth investigation.

One of the possible criticisms | foresee relates to the generalizability of the
observed individual decisiemaking strategies to the reabrld scenarios. To that end,
an additional field study will be requireditoe ve al whet her manager soé c
representations of the like problems bear any similarities to the proposed abstract matrix
structure. Moreover, the analysis of concurrent verbalizations produced by subjects
during the experiment will shed more lightioividual information processing in

perceivably complex environments.
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FIGURES

Figure 1. Snapshot of the experimentaterface
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Figure 2. Analysis framework
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Figure 3. Alliance formation timing

Timing of the first alliance formation
Simulation vs. Experiment
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Figure 4. Alliance experience: dynamics of alliance learning

Dynamics of alliance learning
based on 20 experimental rounds
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Figure 5A. Alliance output: dynamics of alliandeased salient products

Dynamics of the alliance - based salient products
Simulation vs. Experiment
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Figure 5B. Alliance output: dynamics of independent salient products

Dynamics of individual salient products
Simulation vs. Experiment
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Figure 6. Alliance composition: stable alliance formation patterns
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TABLES

Table 1.Comparison of higievel simulation and experimental results

Simulation Experiment Significance
tests
Mean player-level t= 0.82;
performance 1,34 —— p=041
Mean group t= 1.09;
performance 5,37 524 p=0.27
Total number of 732 678 6%(1)=0.65;
products (61%) (57%) p=0.42
Total number of 352 399 G(1)=1.44,
alliances (44%) (50%) p=0.23
Total number of zero 539 599 6%(1)=0.39;
player-level outcomes (34%) (37%) p=0.53

Table 2. Frequency distributions of the emergent coalition structures: simulation vs.
experiment comparison

Simulation Experiment
Frequency Percent Frequency Percent
No alliance 72 18,00% 73 18,25%
One alliance 79 19,75% 150 37,50%
Alliance + 225 56,25% 105 26,25%
Individual
Two alliances 24 6,00% 72 18,00%

Pear %3 n8966, p<0.01

Table 3.The number of allianebased and individually created salient products: simulation vs.
experiment comparison

Simulation Experiment
Frequency Percent Frequency Percent
Alliance-based
. 19 o 188 o

salient (out of 400) 4.75% (out of 400) 4%
products*
Individually 36 39

i 0 0,
created salient (out of 400) 21.5% (out of 400) 9.75%
products**

*  Pe a’(130286.6d4, p<0.01;
* * Pe af(bo06R.766p<0.01



Table 4. Frequency distributions of alliance composition types: simulation vs. experiment
comparison

Simulation Experiment

Frequency Percent Frequency Percent
Incomplete + 318 90% 352 88%
incomplete
Incomplete + > 1% 0 -
complete
Complete + 32 9% 47 12%
complete

Pear 5@ n204, p=0.36



Table 5A. Percentages of the emerging alliance structures based on experimental data

) 12 13 14 No Pearson p-
Alliance structure 12 13 14 23 24 34 & & & alliance @ ©) value
34 24 23
Experimental group 1 5 10 15 10 5 5 0 5) 5 40 52,36 0,000
Experimental group 2 20 10 0 5 15 15 10 0 0 25 63,68 0,000
Experimental group 3 15 10 5 20 10 10 0 15 10 5 136,33 0,000
Experimental group 4 10 10 15 15 10 5 0 5 5 25 19,30 0,023
Experimental group 5 10 10 15 15 5 25 5 5 5 5 46,19 0,000
Experimental group 6 10 15 30 5 15 20 0 0 0 5 53,67 0,000
Experimental group 7 5 15 10 10 25 15 0 5 10 5 75,09 0,000
Experimental group 8 0 10 0 0 10 0 0 10 10 60 216,78 0,000
Experimental group 9 10 20 0 15 20 10 0 5 5 15 36,94 0,000
Experimental group 10 15 30 0 5 10 10 0 5 10 15 80,27 0,000
Experimental group 11 10 0 20 20 10 5 5 5 5 20 37,57 0,000
Experimental group 12 10 0 10 15 0 0 0 10 30 25 465,63 0,000
Experimental group 13 10 10 15 15 5 10 0 0 0 35 27,63 0,001
Experimental group 14 10 25 10 10 5 10 5 5 10 10 61,97 0,000
Experimental group 15 5 10 15 0 15 25 5 5 5 15 54,06 0,000
Experimental group 16 0 10 10 10 15 15 15 10 15 0 238,44 0,000
Experimental group 17 20 ® 10 10 10 5 ® 10 10 15 81,69 0,000
Experimental group 18 25 5 10 10 0 10 0 10 0 30 70,49 0,000
Experimental group 19 25 5 0 10 5 5 15 20 15 0 383,25 0,000
Experimental group 20 15 5 15 5 30 0 5 5 5 15 68,91 0,000
Benchmark 14 13 13 14 11 11 2 2 2 18
Table 5B.Percentages of the emerging alliance structures based on simulated data
) 12 13 14 No Pearson p-
Alliance structure 12 13 14 23 24 34 & & & alliance & ©) value
34 24 23
Simulated group 1 10 20 15 10 5) 0 10 5 0 25 61,8576 0,000
Simulated group 2 5 5 20 25 10 20 0 0 0 15 37,0754 0,000
Simulated group 3 10 20 10 5 15 5 0 0 0 35 38,1729 0,000
Simulated group 4 25 15 0 5 10 10 5 5 5 20 41,6403 0,000
Simulated group 5 5 15 15 10 0 20 0 0 0 35 47,9631 0,000
Simulated group 6 10 20 5 20 0 10 5 0 0 30 39,9975 0,000
Simulated group 7 35 0 20 15 10 5 0 0 0 15 58,2043 0,000
Simulated group 8 20 5 10 10 5 15 0 5 10 20 52,7792 0,000
Simulated group 9 20 5 20 5 20 5 0 5 5 15 39,1858 0,000
Simulated group 10 10 5 20 0 5 20 0 0 5 35 59,0271 0,000
Simulated group 11 10 20 15 20 15 20 0 0 0 0 40,6094 0,000
Simulated group 12 20 10 5 10 15 10 0 5 5 20 22,0973 0,009
Simulated group 13 25 10 5 15 10 10 5 0 10 10 56,567 0,000
Simulated group 14 5 10 5 20 25 15 5 0 0 15 42,2453 0,000
Simulated group 15 10 15 0 25 15 20 0 5 0 10 43,9671 0,000
Simulated group 16 10 20 30 20 0 5 0 0 0 15 50,487 0,000
Simulated group 17 10 15 15 10 20 10 0 5 0 15 19,3556 0,022
Simulated group 18 5 20 20 25 15 15 0 0 0 0 48,8761 0,000
Simulated group 19 35 5 10 5 10 10 5) 0 5 15 54,5829 0,000
Simulated group 20 15 15 10 25 15 0 0 5 0 15 31,1688 0,000
Benchmark 14 13 13 14 11 11 2 2 2 18

Note: Alliance structures categories are kept mutually exclusive and are labelled by
concatenating its members, i.e. 12 denotes the roundsamheplayers 1 and 2 allied, while

12 & 34 refers to the rounds when two alliantd®tween players 1 and 2 and between
players 3 and 4 were formed. Benchmark distribution is generated based on 400 simulation
rounds.



APPENDIX

Table Al. Operational compatibility between simulation and experiment

Misalignment

Simulation Experiment S
description
isi [ Naive profit — .
DeC|§|onmak|ng . p . Subjective strategies NA
algorithm maximization
. Sum of products composed from the sehaif- .
Total payoff calculation p P Fully aligned
overlapping components
Sum of the four pairwise complementarities
Product value . . L . .
(including pairwise complementarity between top Fully aligned

calculation

and bottom row)

Alliance formation
conditions

Alliance takes place if
(a) both plgers have
enough cells jointly to
create a product
immediately (b) if it is
mutually beneficial for
both partners

Alliance can take place
if both players have
enough cells jointly to
create a product
immediately.

Partially aligned, as
accepting or rejecing an
alliance offer remains at
the discretion of each
participant

Alliance rejection

Given behavioral rules,
rejection never occurs:
Alliance takes place

Alliance offer can be

Partially aligned, a
player does not lose
his/her chance to occupy

option automatically iff it is rejected an alternative cell if
mutually beneficial for alliance offer was
both partners rejected
A playerds share in al
Alliance value split rule to the number and quality of cells (sum of .
! vaiue spit ru quairy ( Fully aligned

1

conplementarities of the
contributed the alliance

contributed cells)

Alliance value split rule
2

Alliance share is fixed at

formation and remains fixed till the end of the rou

the moment of alliance

Fully aligned, in case
there are two best
products of equal value
are created, takes the
average of the two

Complementarity
values

Complementarities are
continuous and take any
value between 0.2 and
1.0, endpoints included

Complementarities are
discrete and take any
value between 0.2 and
1.0 (interval 0.2,
endpoints included)

Partially aligned,
simulation product
values may have a
downward bias




Instructions

Welcome to the Symmetry Breaking experiment! Before starting the experiment, please listen to these
short instructions, at the endwhich you will learn:

- What is your task

- What are the rules of the game

- How your financial reward is calculated

- What is thinking aloud method and how does it work

What is your task?

- Your overall goal is to create the best product(s) out of the available components.
- The number of components is limited and you are competing for them with 3 other players.

Your action space is represented by a matrix, the rows of which can be thoaghtamhponents of a
product while the columns represent different possible solutions. In this game, the product will consist
of 4 components and each component will have 3 alternative solutions.

3 componentsolutions

- B U

4 Components

- B

)

A product is considered to be completéd/ou own all 4 components but solutions for each
componenimay be different In other words, you should occupy at least one cell in each row, but the
columns may vary.

- For example, on the first picture all components are in place and all are using the first solution.
The number in the center of a cell is the ID of a player who owns it, this is an example for
player 1.

- The solutions do not need to be in the same column, however, in this case on the second
picture we use the second solution for the last component.

- The soldions do not need to be located in the adjacent columns either. The main thing is to
occupy at least one cell in each row.

- To sum up, you can combine your component solutions in multiple ways, but if at least one
component is missing, your product is notnmpleted and is worth nothing. This case is shown
on this fourth picture in front of you.

So far we have looked at the cases when only one product was created. When you occupy more

than one cell in a row, several product options emerge. On this pictueeatkewo products that



are possible but how do we know which one is better?

Now after we have figured out what is the product in our experiment, we can start thinking about how
one calculates its value.

The value will depend on how well componentsdiaaent rows fit with each other. The degree of fit
depends on the similarity of colors of components: the basic logic iththabmponents of similar
colors work better, conversely, the components of distant colors work worse with each other. A
colorwheel contains information about the level of fit.

When you place a mouse over an segment of the colorwheel, the color of the inner circle changes and
levels of fit with all other colors are automatically shown to you. Where 0,2 is the minimum level of fit
with the opposite color and the 1,0 being the maximum level of fit with the same color.

Letdés have a | ook at our matri x; it became slig
now. And | etds use the col ofthevpreeiets oninad byplayerelr t o ¢ a

In our specific case, the first product consists of three dark blue and one light blue cell. For each
component, we need to calculate the level of fit with a component located in the adjacent row below.
That is, blue wi blue equals 1, again two blue cells equals 1, blu and light blue will give G.8 amah 6 t
forget about the complementarity between the last and the top tbwdit between blue and light blue

is equal to 0.8 as well. We obtain the total value of tieelyoct by summarizing all four values and in

this case it is equal to 3.6.

In a similar vein, we calculate the value of the second possible product containing this green cell and it
is equal to 2.8.



08 0.8

2 3 2 3

5 6 5 6

8 9 8 9

11 12 B 10 11 12 [
V,—=1.0+ 1.010.810.8=3.6 V,=0.6+0.610.8+0.8=2.8

Your payoff will be equal to the value wbur best possible product. In this case, out of the two possible
products you will be rewarded for the one with the largest value which is equal to 3.6.

It may happen that a player has enough cells to create two products out of the distinct components. |
this case, a player will earn the sum of his both products.

1

2 3
1 + Prodotto 1: valore 3.6
5 6
+ Prodotto 3: valore 3.2
1 . ; Il o profito =3.6 + 3.2=6.8
10 11 12

You dondt need to calculate the value of produc
you.

What you need to remember:
- A product is considered to be completed fiflayer owns all 4 components
- Solutions for each component may be different
- The value of the product depends on how well its components fit with each other
- Your payoff is the value of the best product possible
- If you have created several products conggstihdistinct cells, your payoff is the sum of
these products




What are the rules of the game?
You can now see the real experimental interface in front of you and now wedl learn how to
navigate it.

SE LOCAIOEE

LTUCFROFITTO TOTALE: DO

. ELTUOTUSROI

5 F 1 stinn

- When the game round starts, all components are aleilab
- There are four players, but this is a demonstration for 2 players only. Your playerID is shown
the top left corner on the screen
- The turns are assigned randomly between players
- You can pick a component only when it is your turn to play. It is yourttuatt when you see
a green traffic light and the tefT & YOUR TURNbIn a text box located at the bottom left
corner of the screen.
- You pick a component by clicking on it
- When a player picks a component, his player ID appears in the center of aléebecomes
unavailable to the other players. Similarly, when you see that a cell has a humber other than
your player ID, it is no longer accessible to you.
- Please do not click on the cells that are already occupied by other players or already belong to
you
- The round finishes when all cells are occupied, and your payoff is calculated automatically for
you.
- You click on the big red button in order to continue, and the new round begins.
- The game has 20 rounds, you can trace the round number in a téotdiex at the bottom
left corner of the screen.
- Session finishes after 20 rounds, and payoffs of all players are summarized and shown to you
in a table form.
So far we looked only at the cases when the players were creating products individually. Hatvever
the point in the game when two players have jointly enough components to create a product together,
there appears an option to form an alliance.

- You can send an invitation to form an alliance by clicking on a button with an ID of the player
you wish b ally with. You will receive a notification whether your invitation was accepted or
rejected.

- Similarly, when a player offers you to form an alliance, there appear two buttons by clicking
on which you can either accept or reject the offer.

- When you forman alliance with another player, you get access to all cells owned by your
alliance partner. Jointly owned cells are marked with dedigi# number where the first digit
stands for the ID of the player who initially owned them before alliance formatioccapied
them after alliance formation on his/hertufnn e s econd di git stands f ol

- Once you form an alliance, it cannot be dissolved till the end of the round and you share the
values of all products that you have jointly created atingrto the percentage that is fixed till



the end of the round. This percentage is calculated automatically based on quality and quantity
of components you have contributed to the alliance in the first best product that you have
created together with yoatliance and it is shown to you in this box on the FHghihd side.

I_TUC FROFMTTO TOTALE: 0.0
LA TUS QUIOTAL %

What you need to remember:

Turns are allocated randomly between all players
You can pick a cell on your turn only

If you have enough cells jointly to create a product, you can offalliance when it is your
turn

When you form an alliance, all product values will be shared in a fixed proportion till the end
of the round

How your financial reward is calculated

As you know, your total payoff consists of the fixed and variable parts
The fixed part is fixed at 8 euro, this is your sure gain

Your total payoff will define the amount of your variable part.

Your total payoff is measured in experimental units, not EURO equivalent.

In order to obtain your variable reward in euros, you shouide&iyour total payoff by 2
What is thinking aloud method and how does it work

This experiment will be audicecorded
Please as you play the game, try to say everything that goes through your mind

Imagine you are trying to explain to a friend thagiting next to you why you are taking a
certain action

Please say out loud the number of the round each time the new round begins
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Abstract

This exploratory study aims discovering the new types of heuristics peoplel@yrip the

complex environments by simulating the reakld business challenge of developing a
multicomponent product in systemic industries in the experimental lab. Based on the analysis

of the verbal protocold,obtain a series of interesting findingsat contribute to théeld of
behavioralstrategya n d t o -andfer ufigfad st heur i sti cs i n manag:¢
First, the results suggest that in the dynamic environments where the decéers can

reci procally aff eeopleaeedielytoseekicdlabdrationavithdheic e s, p
opponents. Second, the picture that emerges from the verbal data analysis indicates that

subjects use a set of simple heuristics conditional on the state of the environment they face.



AOf ¢ our scansonetmed givesmose accurate results than intuition but usually
itdéds jJjust a | ot of work. Il normally do w
spent thinking is just to doubte h e € Magnius CarlserWorld Chess Champigp2013

INTRODUCTI ON

There has been a resurgent academic interesidyinghow decisionmakers
reason when they make important strategic decigio$doveanu, 2009; Gary and
Wood, 2011; Gary et al., 20L2Much of therecentscholarly workrelated to
managerial decisn-makingrests on the ideas tie Carnegie school, advocatitige
view of aboundedly rationainanager a decisioamaker who adopts simple rules of
thumb, or heuristicsyhenoperating in complex and uncertain environméhtarch
and Simon, 1958; Simo&957 Cyert and March, 1968imon, 1979)

In the field of experimental psychologie notion otheuristicshas been
traditionally associated witthe deviations of humajudgmentdrom the laws of
probability and statistics (Tversland Kahnemanl974. More recentlythefl f arsdt
frugal o0 progeammaspst foiwardan alternative view on heuristics as simple
andyet effective decisiomuleswhich areused adaptivelin their respective
environmentgGigerenzeand Selten, 2002 odd and Gigemezer, 2012 Whereas
jointly thesetwo streans of literaturehavedocumentda substantial variety of
heuristics people use in general decigiaaking contextsthe research aimed at
uncovering a distinct set aianagementelatedheuristicsi with some notable
exceptiond remains at its infancy stage until now.

The existing strategselated research on heuristispredominanthgualitative
in nature ands concerned witlvalidatingthe relevance ahewell-known cognitive
biases to mangerial settingg(Bardolet et al., 2011, Bazermand Moore, 2012
Kahneman and Lovallo, 20p&anddocumenting h e e mer g e nrcuel eosfo fassi nap | e
result oforganizational learningnd domairrelated knowledge accumulation
(Eisenhardt and Sull, 2001; Bingm and Eisenhardt, 201Astebro and Elhedhli, 2006;
Katsikopoulos, 201,1Dane and Pratt, 200Wuebben and Wangenheim, 2008
Notwithstandinghe importance of the aforementioned studies question remains as
to which extent theasebasedevidence obrganizational heuristids generalizable
beyond thesubset of organizationmrticipating in each study

In this paperl venture aralternativeapproach taliscovering thaewtypes of

heuristics people emplag the complex environmentssimulate the business



environment in the laboratarin doing so, draw on the assumptiswof the
information processing theosuggestinghatgeneraldecisioamakingmechanisms
devised in the simplified abstract tasks will share substantial commesatith those
that would have beeamployedn similarly structured-eatworld scenariogNewell and
Simon, 1972; Simon, 1979 the experimenthe humansubjects are exposed to the
computerizednteractive taskvhose features albeit admittedlynconpletelyi mimic
the realworld business challenge déveloping a multicomponent produictsystemic
industries | thenanalyzethe verbal protocd reported bythe experimental subjects
elicit the actuathought processes underlying themandecisionmakingin a given
context

| obtain a series of interesting findinigggat contribute to thdield of behavioral
strategyand to théi f @arsdf r u deuristics in management research agelrilst,
theresults suggest that the dynamic environents where the decisianakerscan
reciprocallya f f e ct echoicés pepplehaesiikély tgeek collaboration with
their opponentsThe psychological underpinnings of this behavior are rooted in iterative
reasoning and pattern recogniti®@econdthe picturethat emergefrom the verbal data
analysisindicates thatsubjects use setof simpleheuristicsconditional on the state of
the environmentheyface Thesedecision rules arthenpresente@s a sequence of
logical stepsand the features of the environment that triggers tenmighlighted

The paper is structured as follows: | start with outlining the nfepiures
pertinent to the manageridécisionmakingchallenge in questioand how they map
onto the abstract pptem representation used in the experimbieixt, | describe the
verbal protocol analysis methodology and the analysis framework | have developed. |

conclude by the discussion of the results and their contribution to the strategy research.

HUMAN PROBLEM SO LVING

As a starting point, briefly summarize theelevantwork that has addressed the
topic of managerial problems complexity aswgnition mechanismmanagers have

devised to cope with it.

Internal and external representations
Manageriaproblemsare rotoriously known for their complexityhich manifests itself
in the presence of multiple conflicting solution paths, imprecise fapdrconnections,

ambiguous or/and timéelayed outcomes amyerall uncertainty associated witie



consequences of oneb6és past actions (March

Fernandes and Simon, 1999).

When faced with complex and computationally intractable problems, managers
will use rules of thurb that are consistent with teemplified mentaimodelsof the
business environments they operate in (Gary and Wood, 2011; Baer et al., 2012;
JohnsorLaird, 1983. Mental models (or internakpresentations) are definedrasntal
organizatios of the problemrelated conceptand their causal relationshipche
information about the environment is stored in individual memory in a form of
knowledgerelated schemasr categoriesDepending on the association that a
particular probleratic situatiortriggers in mind, a special schemsactivated in
memory(Bartlet, 1932;Simon and Chase, 1973mith 199% Schwenk1984. The
activation of a particularategorythen guides the subsequent information retrieval and
thecorrespondingction Dutton and Jackson, 198Zowan, 199))

In thebusinesgontext, having an aarate mental model implies having a
comprehensive understanding of the structural elements of an industry and their
respectivanterdependencies (Gary and Wood, 202k)the knowledgeequiredfor
constructing an accurate internal representasiéor the most parspecifictoo n e 6 s
accumulated experience (Dane and Pratt, 2007), so would Hediseormakingrules
it will invoke

In order tobe able to makmeaningfulgeneralizations in presencethé
idiosyncraticinternalrepresentationandtherespective heuristics evoked thereuplon
drawontheadjacent stream diterature incognitive sciencsuggestinghat themental
modelsandthe subsequent choice of a decisgirategy ar@lsocontingent on the way
the problem igpresented to a prédm-solver (Larkin and Simon, 1987; Jonas and
Schkade, 199%7Zhang, 199Y. More specifically, it was argued that external
representationsf informationi be it verbal, pictorial or numericaktan guide and
determine the pattern tfie behavior directlyi.e. without mediation from memory or
other cognitive processes that involaternalrepresentationszhang, 199Y. Thus,
exposing decisioimakers to an abstract representatiftecting the key featurex a
managerially relevangroblem so | arguewill instantiate decisiomaking processes
that arenot ficontaminated by unnecessary analogies related peesonadomain
related experiencef the decisiormakers Thebusiness challenge gquestion ighe

development of complementatgmponentechnologes insystemic industries

an



Task structure

An important subset of managerial problemghe domain of strategy relates
design and development of multicomponent syst@asud and Kumaraswamy, 1995;
Brusoni et al., 2001; Baldwin and Woodard, 200He selection and prioritization of
R&D goals becomes crucial in technoleigyensive industries where the actions of
aggressively innovating conpopewspectioR&® may r end
effortsobsolete (secalled systemic industriesyystenic industries ar¢husdefined as
multitechnologyindustries in which firms compete with complex ggrdducts
consisting of multiplgoartially modularomponentgKretschmer and Reitzig, 2012)
What makes these industries particularly interestingd mut more challenging for
the manager® operate in is the fact that fothe mostof thecomponentshere exist
several alternate solutionswith different degrees of functional and commercial
compatibility with one anothem.he information about thiaterdependenciesetween
different component solutions is public and availdblall industry participants
(Ethiraj, 2007; Baldwin and Woodard, 200But the residual uncertainty pertains as to
which firmwill be able to develop and conthich componentechnology.To
summarizethemanageriatask of multicomponent product developmenthese
industries appears to be sufficiently complex to invoke heuristics decs&imgand
yetunambiguous enough tebrought into a lab

To that endl regardthe chance and choice moaélsystemic industries
(Arkhipova et al., 2014; Arkhipova, 2014) to be a viable candidatexploring
heuristicsdecisionmaking The core features of the model are expected to invoke
mental models of an environment whosediral elements and causal links capture the

dynamism and the complexity of a reebrid task?.

31 The detailed analysis of to which extent the model abstraction is representative of-theridalystemic

indudries is beyond the scope of this study, but several obvious limitations appear noteworthy. First, in the
reality | expect the number of components (rows) to be much larger and the number of technological solutions
(columns) to vary for each component. &egat, the complementarity structure is more complex in that the
functional interdependencies will involve all components of the system, not just the adjacent ones. The reduced
setup, however, already imposes significant cognitive demands on deuizkemswhen it comes to calculating

the total number of possible product configurations and their respective values in mind. These simplifications
were warranted in the laboratory as subjects were not supposed to be overwhelmed by the environmental
complexity tothe extent they would start randomizing. Finally, the alliance formation anehiliace payoff

division processes are not as straightforward as they are modelled.



LABORATORY EXPERIMEN T

In this section, present a general overview of the laboratory experiment with a
special emphasis dhe aspects of the experimeaviiich matter for the verbal reporting
procedureA complete description of the experiménteported in Arkhipova (20}4

Experimental design

The experiment is a computkased interactive game played for 20 rounds in a
fixed group of four anonymous patrticipts which mimics the managerial problem of
developingproduct components in systemic industrieise problem space is visualized
as a vertically oriented matrix of size 4X3e participants are askeddieate abstract
products bysequentially appropriating amertically combiningheir component
solutionsacross matrix rowslhe choice of a component solution is left at the discretion
of each playeandcan only be effectuatedh en it i s oneds turn
turns are asgned to players in a randomized fashibine completeproducts ar¢hen
sold on dictitious market, andre value of each product configuration depends on the
level of fit between the constituent product componéitis.degree of fits visible to
all participants and depends on the similarity of celbrs The players can either
compete individually or cooperate by forming bilateral alliances which guarantee a non
zero outcomand cannot be dissolved until the end of an ongoing rdAdiigdameround
begnswhen all component solutiomse availableand is terminated whehe whole
matrix is filled The subjects were asked to think aldadthe entire timehey were

playing the game.

Subijects

The subjects were 80 undergraduate studewtsitedfrom the subject pool of
the Laboratory for Experimental Economa&cd  Foscd University of Venice, Italy.
In accordance with the oumon protocol analysis practiaequiringthe subjects to
verbalize their thougktin their native languagg@ericsson andSimon, 198, most of
the participants were native Italian speakers (99%¢ remaining 5% of the subjeéts
which were invited to substitute tshow participanten adhoc basis werenotnative
Italian speakers, and were requested to produce verlaiiz@nonnative language
(English to facilitate the subsequent protocol transcription by the experimé&hiter.

subjects weaz incentivized financially. fie reward was calculated proportionally to their



overall performancémean =21 eurosSD=2.9, butwas unrelated to the quality of the

verbal reports they have produced.

Procedure

Each group of four suegts was allocateal1.5 hourlong time slot; running
experimental sessions with sevegedups at the same time wast permittedUpon
arrival, a sibject wasaskedto be seated in any tiie fourpre-selectedndividual
booths thatvereintentionallylocatedat a considerable distance from one anot&ech
booth was semisolatedfrom the rest of the roonvith aremovableseparating panel
thatmuffled theparticipant§voices angrevenedthe subjectérom lodking at each
ot her 6 sAlllsooths everanegjuipped with the noisesuating headsets and

microphonesAudacity ® (ttp://audacity.soweforge.ned/ free opersource software

was utilized to recordndtranscribehe verbal protocols.

In thefinal part of the 1@minutevideo instructiongduplicated in papeiorm)
the participants were explicitgskedto verbalize everything what godgaugh their
mindswhile performing the experiment. In doing so, they were instructedagine
thatthey are explaining their actions to a person who is sitting next to3¥m.
explicit examples were provided to prevent potential bias in reportingdsvaagiven
exampleThe subjects were expected to produce continuous verbalizdtidiseme
pauses in verbal reporting were allowkthey occurrediuring theperiods of
involuntary inactivity (e.g. when another subjeets takingime to think).Otherwise,
the experimenter prompted the subjgotsesume reportingy showing aneutral

APl ease, keep talkingdo reminder.

Verbal protocols as method

Verbal protocolVP) as a methoébr observing human mental behavior dates
back t01920(Watson, 1920)andhas been used extensively in the domain of
information processing psychologye&plore problem solving processashess
gamegDe Groot, 1965; Newell and Simon, 197&stract puzzkike tasks (Kotovksy
et al., 1985Ericsson, 200K cryptarithmetic and logic tasks (Newell and Simon,

1972).In managemerdnd economisciencea number of studies ha$fectivelyused

32 The request to report the actions in explanatory mode was added to the experimgntdldns after

analyzing the verbal protocols from the pilot sessions. The trial protocols revealed that when asked to think

al oud, some subjects produced simple descriptions of
meaningful infeences could be made on which information was actually attended to.


http://audacity.sourceforge.net/

verbal protocol data texplore the taskelateddecisionmaking processessgenberg,
1986; Highhouse, 1994ernandes and Simon, 199%r and Bazerman, 20p3while
others werenostlyconcerned witlthe applicabilityof the VP methodology(Schweiger,
1985).

The validity of verbal protocol data has been challenged on the grounds of being
uncorrelated with theognitive processes (i.e. epiphenomenal), obtrusive to the task
performance and prone to social and retrospective biases (Nisbett and Wilson, 1977;
Bainbridge and Sanderson, 1995). While the two latter objections are admissible and
have to be considered et drawing inferences based on verbal data, the
epiphenomenality argument was refuted by Ericsson and Simon (1984) who argued that
once a thought was articulated verbally, one might infer that it was actually used in
generating the problem solution. Ineth wor ds, Ai nformation that
i nformation that i s heededo.

Theconcurrentverbal protocol (or thinking aloud) that | use in this stislg
type of verbalizing procedure that requisehjects to report their thoughts directly
during the experimerit. The concurrent reports are known tovi|-suitedfor
estimatingthe frequencies afertaindecision rulesbut there are two important caveats
associated with it. First, subjects might think of sonmethithout actually saying it.
Fortunately, underreporting is likely tmas the results conservatively in that the usage
of aparticular heuristics will be even more frequent tbanld be inferred from the
verbal reportsSecond, subjects might say something without actually doimbus, in
the analysis one should make a clear distinction betwaerb | iatentioastand
actions as such. The extent to which the reported actions actually correspgmnd to
factual ones can be validated by manually mapping the sequence of choices to the

verbal reports.

ANALYSIS FRAMEWORK

I n order to identify and quantitatively eval
reasoningpne should develop@tegoryschemeprior to encoding the datdhe

contents of the ved) data are then mapped onto one or severadgiiaed categories.

33 The second type of the \malization procedure is thetrospectiveeport which is providedfterthe
experiment and is prompted by the specific questions of the experimenter. Thesidisaf retrospective
verbalizations remains out of scope of this paper.



The category schenfer this studywas developednditerativelyrefinedbasedon a

separate subset tfal 16 verbal protocolgeneratd in four pilot sessions

Categories
The categories a@ganizechierarchicallyin three levelgFigure ) and arentended to
correspond to different decision rules which, in turn, are inferred based on the type of
information a subject has attendedTbe categories are not meant to be mutually
exclusive ashesubjects are likely to alternate between different decisiaking
strategiess the gameoundprogresseOn the most general levéldifferentiate
betweemaive maximizatiodecision rules antbrward reasoning(Figure 1 level 1)

Naive maximizatiors a default categoripr the nonstrategic behavior. Thus,
any explicitreferenceso the information that will be naturally heeded a#tesubject
has reacdindunderstod the experimentahstructionswill fall into this category.For
instance, the véal descriptions of how one d¢alculating productvaks( it he pr oduct
with red cel | s) dossultinghttee cdloevehe¢l foyneel Thoew eadbnd or an g
have c¢ompat)iandestimatingg n @efrschanc@$ it her e are still 11
free celld e ¥ willde classified as naive maximizatiorhis category will also include
any vebal evidence that a subjestsolely driven byhe notions otolor-based
complementarities in her decisiomaking procesé il t ake orange because
complerent ar ity wi)andr eteys aonesd abedUdtdo t he opponent sé
the extent they reduce her choice(sde red cell is take so | have to take yellow
one i nMisssmgaliacomplete reports were alswoded as default to keep the
dataset balanced.

Forward reasoningategory on the contraryis usedor the statements
containing the evidence thasubjectthinks strategicallgither bypredictingthe moves
of heropponents obyplanningppone 6 s own str at e(figures keweler al st ep
2). Hence, astatement igategorized as prediction ifdiscusseshe prospective moves
of other playerswithowt x pl i ci tly reasoning about onebs o
(Aplayers 1 and 2 are about to dgreerm an alli a
c e |).ICenverselya statement containingte f or mul at iladoutplan oneds ow
of actions without taking into account what they others would do is classified as
planning( @nmy next turn, | will take a blue cell, then a green cell, guxahl will try

tofooman alliance. with player 30



Albeit subjects produce the statements that unambiguously belong to either of
the level 2 subcategories, they are most likelgdopt strategies which predictiors
and planningare combinedFigure 1 level 3).Based on the pilot study, | have
identified three most prominent decision making strategies which | term as quasi
rationality, anticipated blocking ambninterferenceThe statements are classifiasl
guastrational if they serve aan indicaion that asubjectengages in somerm of
complexiterativereasoning ii f pl ayer 2 gets to play next e
thenl can t&ke a purple cell and he will propose me an alliancénticipated blocking
occurs when a subject prefiguestratgy of her opponent and makedadiberate
move thatonstrains the opponent to ayth her( player 1 payed bluesol also go
for blue in the next row Nbimilywhgentismgher eat e an
norrinterferencestrategya sibject also tries to predict the future choices of her
opponent but prefers t o tagetmganaitarnatveof her oppo
product( lerethe optimal product consists of thkie cells. But they are being
occupi ed bylwi toacateate orghé orange product insteajl
Uncodable orrrelevantstatementselated to thexpressions of emotions and
ex-post reasoningre retained ageneralcomments imiscellaneousategoryand then

discarded

Analysistechnique

To analyzdaheverbal protocols| followed the classitranscription
segmentatiorencodingprocedure described in Ericsson and Simon (1982la stating
point, | have manually transcribed the subjéctsncurrenterbalizations ira raw form
In doing soJ have subdiidedthe protocolsnto segmentsn a level of a single
statement whiclkould cane ina formof complete thoughts, sentences, phraseven
singlewords If subjects produced abrupt verbalizations, then pauses of a certain
duration, intonation changesdactivity switches(e.g. from problenrsolving to
information search) were used to delineate the boundaries of a specific segment (Chi et
al., 1997).Then, each segment was encodettims of ondor severalpf theseven
pre-determined categorieds can be inferred from the concrete exampld able Al
(see Appendix)l have presented the protosgigments (rows) and the list of categories
(columns) in a tabulated form in Microsoft Excel and assigned binary todes
statements that contained expligterences to thieeuristicscategories | am aftéf if

true, O otherwise)



Next, the encodedegments weraggregated on a level of a rouiod each
player. The considerations behind collapsing the dathébottomup fashion are
several. Firstin the proposed dynamic settirtge protocols segmentgthin a single
roundare not independent in that theyydescribe thelements of a more global
strategyof a playerand therefore cannot be analyzedsolation. Secondsubjects may
think of different heuristicsnterchangeably within the same rouiithird, subjectamay
devote equal amount of attentionetithercategoryrelated informatiobut one would
requirericher verbal descriptiorthanthe other. Hencedhe frequencyof explicit
categoryrelevant statements withansingleround may not adequately reflect the
frequency obccurrence of each heuristi€orth, some subjects may produce more
statements than othersteris paribusiue totheinherent individual differences ihe
rates of verbalizatio(Ericsson and Simon, 1984hus, aalyzing the data on round
level brings all verbal protocol&o the common denominatipy treatingmultiple

categoryrelatedsegment®n yes/no basis

RESULTS

Descriptive statistics

Table 1 provides the descriptisammary of the data. Verbatotocols were
transcribed for 80 subjects (20 experimental sessib#8 roundswvith groups of four
participants eadf*. The experimental sessions lastedagarage 64 minutes (SD=16),

resulting in approximately 77 hours,§82 minutes) of the recorded speeciu 8897

transcribed segmentSu bj ect sd pr ot ocol s 93bwerdsemd from 419

length with the average being444 words (SD=676)[he grapical representation of
the verbal activity for the three cagesinimum, average and maximums)reported in
Figures2a, 2b and @ respectivelyTheindividual rates of verbalizatiorranged from 5
worddgminute to61 wordsminutethus reflecting the inhent idiosyncratic differences
in subjecsbability to verbalizetheir thoughtsThe mean rate of verbalizatioh 23
wordgminuteis somewhat lowcompared to theormalcontinuous speegbroducing
150-200 words/miute but is comparable 530 words/minuteobserved ircomplex
anagrarrsolving tasks (Ericsson and Simon, 1984)elower rates of verbalizatioim

the present studgan be explained lthe dynamicand interactivenature of theéask the

34 Out of total 80 verbal protocols, seven were incomplete or missing due to technical reasons or inability of
certain subjects to vocalize their thoughts. The descriptive statisiadgsis therefore excludes the missing VP
data.



need to refocus the attention tre frequentlychangingvisual stimuli may decelerate

the verbalization process.

[Insert Tablel about here]

Content analysis

Table 2 reportshe frequencies of occurrence of eaetristicsand their respective
percentagesjcross all experimentabunds®. The resultslemonstratéhatsubjects
make allusions to the elementsnafve maximization strategy 92 44% of thecases
(1,479instance} Theintensiveusage of the defaufieuristics is ofittle conceptual
interest for this study as gimply indicaes that subjectsere payingsubstantial
attention to the information ithhe experimentainstructionsand, without being
explicitly told to do sowere identifyingthe best availablproductconfiguration ad
were seekingo get controlof the componentwith the highest partial complementarity
first. The chain of reasonirtpusprogresseas follows:

Aél chose the green cell becausematrixéere are m
€ | choose another gr een b e cdeatedehopethatyebowo f t h
will remain available for my next turnéo

Whereas thé&ind of behaviodescribed abovis typical for those who get to
make the opening mo{®, entemng the gameat alaterstagerestricts the number of
possible moves arttiusrequires subjects tget more creativeNotably, he verbal
protocolsprovidesome anecdotal evidence thate entrantsnay prioritize the
positional importance of a component over its potential marginal valuelzdrn (I
label it afill -the-gap heuristic®®), as demonstrated in the following statensent

fié 1 would take the light green cell because there are many of them but now | see that in the
first row there is only one empty cell left, so | need to take it
fié | do not want to be left without a piact so | will take the last cell in the second éotv

Furthermoresubjectsarefoundto comparehe component solutionacross the
same row horizontallyo estimate the quality of theablebackup alternatives in case
the preferresption becomeanavailablgql label it astakethe-irreplaceable

heuristics)

35 A unit of observation is the instance of particular heuristjmscific information being heeded by a subject in a

given round (1 if was heeded, 0 otherwise). The verbal reports of the subjects belonggngame group are

treated as independent observations. There are total 1600 observations (20 sessions x 20 rounds x 4 players), and
the reported frequencies correspond to the total number of rounds in which subjects collectively made explicit
referenceso a particular heuristics.

%The logic of the decision-theubhstoatabal |l whliehds dObsab
to avoid confusion with the takbe-last heuristics discussed in Gigerenzer and Goldstein (1999).



AéThere ar e t hrleeoseghe one in the foueth rbwsbécaustheother rows

there are othegoodp o s si b likkrn ¢ d ecr® b | wtdl gerycompayible avithehe

purpleé 0

NRéThe nice route is purple with dark bl ue, [
first row, so | take the first rowébo

Thetwo aforementionedheuristicsare not claimed to be generalizable provided
the scarcity of the evidence, but theyakemplify how decisionmakes maydeviate
from the naive maximizatiomulesin a nonstrategic wayy performingimmediate

situationspecifictacticalmaneuvers
[Insert Table2 about here]

As regards strategic thinking, the ressiiggestthat subjectapply various
forms offorward reasoningn at leas69.94% of thecaseg959instance} in 52.56%
of the cases (841 instances) naive maximization and forward reasoning were combined
by a single player within the same roufh the one hangubjectamayformulate their
long-term goals and enumerate the series of intermediate steps required to get to the
desired staté.e. planning)

Aé | have tbhadcellnn the thied row ieshy Hope to do the same in the second row

i f it i s fterthat | wikholick onlthe light gréen cell because it would guarantee

hi gher profitsébo

Aié | need to get the yellow and then the |[|ic¢

will take | ight green and ask for alliance t
On the other hanaubjectsmay speculate about the possible reactions and

intentions of their opponen(se. predicting):

Aé | see that player 3 has taken the blue ¢
already has a productand willnotbent er est ed i n allianceébo

Afé Player 1 chooses red, I think that player
form an allianceéo

While the explicit references to either planning or prediction are not uncommon
(9.93 % (159 instances) and 15.69 %l1(2%stances), respectivelyhe nostrecurring
strategy anticipated blocking27.94% 447 instances) blendsthe elements of both
Theessencef the strategy is to look at the game framopponends prospective
prefigure hernext best moveased orer past choiceand prevent her froractually
making it. The ultimate goabf thestratey is thusto disrupttheo p p o npan andcs
constrainherto form an alliance, as can be inferred from the following quotations:

e Pl ayer 3 t tastiow,soh will téké thedlua itime firstinoe hoping to create
product together with himéh

e Player 4 has taken a yell ow, I al so goi ng

f we both follow the same strategyébo

ot



AéPl ayer 4 managed to take the blueé | wild/l
wi | | be asked for an allianceébo

Two things appear notewortlnere  Fi r st , when trying to pr e
strategiesplayerstypically assuméheir opponensg to exhibit less sophisticated levels
of thinking (Camerer et al., 2004)ndto follow simplenaivemaximizationrules.
Secondgdue to their information processing limits playars more likely teengage in
iterative reasonin the situationsvhen makingaacr at e predi cti ons about
strategies is relatively easye. when the gponent is visibly following &ingle
monochromatic combination

Ot her A hy b raie chdch lsess peevdsigEgei elersents of theon
interferencestrategy areonceived of in 6.94% of the cases (111 instan&s)ilarly to
the anticipated blocking, one makes a move conditional on what the future maeves of
opponents might bén doing so, however, one has no intentiohto war t ot her so6 pl
and force oneselfto an alliance eventuallynsteadthe inherentogic behindthe non
interferencestrategy is tareate gpossibly inferior quality product individually while

the attention of the competitors is diverted to the development aidhe p r e mi u mo

compaments:

A é T h e manyparplecells here but they are being taken by playér 2 s o | t ake
yell ow to follow the product with yellow, or
pl ayer 2¢é0

A é Player 2 has chosenl twiel redhoeo®ei bl ue¢ t o
Aié || choose blue color because itéds opposit

Thenortinterferencestrategy ignherently risky as its outcome depends entirely
onchanceThat is, irrespective of the produetlve, one wouldtill require at least four
moves to complete a product individually. The excessive dependence on the external
forces might serve as a candidate explanation of why, despiteappigslinghon
conflicting nature, th@on-interferencestraegy isinfrequentlyconceivedf by
subjects.

Quas-rationalityheuristics (5.44%; 87 instancgeesupposethatsubjects
premeditatesome kind of contingency plasf action in advanceThe building blocks of
the quasrational strategyhusinvolve evaluatingo n e 6 sa nadw o p pswategan t s 6
positiors several moves aheadefiningan array of possible movasd theidikely
consequences

fiél would choose the green one érightflcopldtrery er 3
chooseé the yel | btakethegrednbne asd damchoose the aramgedaier

fié Player 3 has chosen light blue, so he has the same choices as that other player, so they will
choose the purple in the |dbsthegooochoidgedaveéad f or



product only if they do not take the light blue in the lastéowi n t hi s case | wol
dar k direené

Aié I n any case | will take the forth compone!
3 then takes aell in the second row, we can create two products togétber

The cognitive processes underlying guasional strategy are likely to be much
more complex than reported becaase subjeditarts to attend to mamgpects
simultaneouslythe attention raves too fastand the speed of information retrieval

would exceedhe speed of verbalization

Models of heuristics

It has been recently recognized that heuristics research should not limit itself to
the enumeration of the vague decision rules but ratimerd be focused on the
computational models of heuristics that can be tested by computer simulations
(Gigerenzer, 2008)n Table 3 | make the first preliminary attemfu formalizethe
four®’” decision mechanisnisfill -the-gap takethe-irreplaceable, aitipated blocking
and noninterferenceé asan orderedet oflogically connected building block$ It is
noteworthy that while fithe-gap or takethe irreplaceabléeuristicsconstitute single
actions, anticipated blocking and nomerference heurists describe strategies that
require multiple movesThe observable actions dlestratedasstylizedi b e f or e and
a f tesperomental display snapshatsus representing a type of positional allocations
and task structures that are likely to trigger particular decisiaking heuristic¥®
(Table 3)

DISCUSSION AND CONCLUSIONS

Human @cisionmaking inthe complex environmenis likely to take an
intermadiate formbetweerthe two theoretical extreme&t oneextremethere isa
textbook case of rationality mgametheoretical sensa purelyrational agent plasn

several moves ahead aoptimally respondto anymove his opponent(s) mightake.

37 Quastrationality is excluded due to the inherent complexity of the underlying cognitive mechanisms it entails.

38 The formalization of the exact logical steps subjects make when performing a certain type of heuristics will
require more elaborate analysis of taral sequences in which the information was heeded (as opposed to
content analysis), and remains out of scope of the current paper.

39 The author has manually synchronized the transcribed verbal protocols and actual observable actions for the
16 verbal protocols of the four pilot sessions; the results demonstrate substantial concordance between the
actions taken and their correspondingbadizations.







































