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ABSTRACT

Cluster analysis (Clustering) is the process of finding group of objects where, objects

in the same group will be similar (related) to one another and dissimilar from objects

in other groups. The fundamental and major problem in cluster analysis is how many

clusters are appropriate for the description of a given system, which is a basic input for

many clustering algorithm. In this thesis we build a new method called ”On Determin-

ing the Number of Dominant-Set Clusters” for automatically estimating the number of

clusters in unlabeled data sets, based on the Motzkin-Straus theorem. Motzin-strauss

were able to show a connection between clique number (ω(G)) and the global optimal

value of a certain quadratic function over the standard simplex. Moreover, they have

used the definition of stability number and have shown that this maximization is equal

to stability number in unweighted scenario.

In our work, we have inspired by this theorem so we have extended to the weighted

case to detect the number of maximal cliques (clusters). Finally we came to design a

two step method to determine the number of clusters. In the first step, we use dissim-

ilarity matrix as an input and by minimizing it with replicator, we are able to detect

the minimum number of clusters based on our defined stability number. And then, we

examine the existence of undetected cluster based on the idea of ”Efficient-out-of-sample

extension of dominant-set clusters” paper.

After determining the number of clusters(cluster representatives) in order to check

whether our approach determine the right number of clusters or not we propagate the

class labels using graph transduction ,a popular semi-supervised learning algorithm, to

unlabeled instances and we evaluate the accuracy of clusters formed.
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In order to test the effectiveness of our approach, we have conducted an experiment

on different toy, generated using different matlab functions, real, download from UCI

machine learning page, datasets. We also tested our approach using some social network

data sets to further extend our work. The experiments which has been performed on

these datasets shows a good and promising results.
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Chapter 1

Introduction

Cluster analysis (clustering) is the process of finding groups of objects where, objects in

the same group will be similar to one another and dissimilar from objects in other groups.

As the main goal of cluster analysis is to assign objects in a dataset into meaningful

classes, it can be applied in different area of specialization holding different function-

alities. For example in sociology, it can be used to recognize communities within large

groups of people, in image segmentation, it can be used to divide a digital image in to

distinct regions for border detection or object recognition and other in areas like, image

processing, computer vision, bioinformatics, signal processing and medical imaging.

Clustering is an unsupervised learning which learns by observation rather than using

labels. Since there is no prior knowledge about the classes at the beginning of an in-

vestigation, it signifies the fact that the classification of the observed data into classes

is only determined by the information provided by the given data. There are different

types of clustering algorithms that differs in their notion of what their constituent is

and the type of technique they use to find the right cluster in an efficient way. Some

of widely used algorithms are; Partitional clustering algorithm, Hierarchical clustering

algorithm, Spectral clustering algorithm, Density Based algorithm and Grid algorithm.

Each of them has their own advantages and disadvantages.
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A fundamental problem of applying most of these clustering approaches is that the num-

ber of clusters needs to be pre-specified before the clustering is conducted. However, the

clustering results may heavily depend on the number of clusters specified. Thus, it is

necessary to provide educated guidance for determining the number of clusters in order

to achieve appropriate clustering results. At the current stage of research, there are

different methods of determining the number of clusters even if, none of them is com-

pletely satisfactory. The gap method, which is proposed by Tibshirani, et al.[TWH00],

is one of those methods used to compare the within-cluster dispersions in the observed

data to the expected within-cluster dispersions assuming that the data came from an

appropriate null reference distribution. Even though, the simulation results reported by

Tibshirani, et al. indicated that the gap method is a potentially powerful approach in

estimating the number of clusters for a dataset, recent studies have shown that there

are situations where the gap method may perform poorly. For instance, when the data

contain clusters which consist of objects from well separated exponential populations it

doesn’t work properly. Another well-known approach for determining number of clus-

ter is the method proposed by Duda and Hart [DH73]. In their method [DH73], the

null hypothesis that the mth cluster is homogeneous is tested against the alternative

that it should be subdivided into two clusters. Motivated by the above statement, we

proposed a new approach which is based on the concept of Motzkin-Strauss theorem,

Massimiliano Pavan and Marcello Pelillo [PP04].
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Our proposed method is a two-step process where, in the first step we used dissimilarity

matrix as an input and by minimizing it with replicator we were able to detect the

minimum number of clusters based on our defined stability number. In the second step,

we examined the existence of undetected cluster based on the idea of ”efficient-out-of-

sample extension of dominant-set clusters”. Finally, to visualize whether our approach

determines the number of clusters correctly or not, we used graph transduction which

is one of the well known semi-supervised learning algorithms. We recovered the whole

cluster structure and evaluate the accuracy of the recovered clusters.

The rest of the thesis is organized as follows: the next chapter explains basic concepts

of graph theory, cluster analysis, graph transduction. Chapter three is about the very

notion of a cluster based on dominant set, how we can identify dominant set using

replicator dynamics and how we can predict cluster membership of out sample instances

(unseen instances). Chapter four covers related works done by different scholars on

determining number of clusters. In chapter five our proposed approach will be presented

with experimental results using toy, real and social network datasets. Finally, we will

discuss about some applications, future works and conclude our work.
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Chapter 2

Background Concept

2.1 Basic Graph Theory Definition and Notations

A graph G is a set of pair (V,E); where V is a set of vertices(nodes) and E is a set

of links called edges which connect the vertices. The vertices in the graph represent

the objects(data points) where as, the edges represent the relationship (dis(similarity))

between the objects. The values assigned to edges is referred as edge weight. Based on

the direction and weights of edges, there are different category of graphs. The graph

is undirected if all the edges are bidirectional and directed if the edges points only in

one direction. In other words; the graph is directed if the edges have a direction and

undirected if the edges have no direction. The graph is called unweighted if the edge

weight value is represented in terms of either 1 or 0 (there exist edge or not) and weighted

otherwise. The number of vertices is the order of the graph, whereas the number of edges

is its size. Graph G = (V,E) is complete if all its vertices are pairwise adjacent, i.e. ∀i, j

∈ V, (i, j) ∈ E. A clique C is a subset of V such that G(C) is complete. The maximum

clique problem ask for a clique of maximum cardinality or maximum weight in case of

weighted graph.

Complement Graph(Ḡ): The complement graph of G = (V,E) is the graph Ḡ =

(V, Ē), where Ē= (i, j)|i, j ∈ V, i 6=j and (i, j)/∈E.

Complete subgraph: a complete subgraph is a subgraph in which all pairs of nodes

are connected by an edge. It will be maximal complete subgraph when it is not contained
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in any other complete subgraph.

Clique: in a graph G = (V,E) clique is a subset of the vertex set C ⊆ V , such that

every two vertices in C is adjacent to each other ;i.e. there exists an edge connecting

any two vertices of C. It also referred to as a maximal complete subgraph, where all

vertices are connected.

Maximal clique: is a clique that can’t be extended by including additional adjacent

vertex. In other words, it’s a clique which does not exist exclusively within the vertex

set of a larger clique.

Maximum clique: is a clique of the largest possible size in a given graph.

Clique number: for a graph G clique number is the order of the largest clique in the

graph and denoted by ω(G).

Independent set(Stable set): An independent set(stable set, vertex packing) is a

subset of V , whose elements are pairwise non-adjacent. The size of a maximum inde-

pendent set is called the stability number of graph and denoted by α(G). The maximum

weight independent set problem asks for an independent set of maximum weight.

For example in figure 2.1, we have the following vertices(V ):

V=A,B,C,D,E,F,G, Then:

� (A,B,D),(D,E,F),(E,F,G),(D,F,G),(D,E,F,G); are the possible cliques.

� Maximal cliques= (A,B,C),(D,E,F,G)

� Maximum cliques = (D,E,F,G); since it is the clique with the highest number of

vertices.

� The set (D,E,F),(D,E,G), (E,F,G) and (D,F,G); are not the maximal clique be-

cause they are the subset of maximum clique (D,E,F,G), and

� the Cliqe number(ω(G))=4
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Fig. 2.1: A graph with 7 1-vertex cliques (its vertices), 10 2-vertex cliques (its edges), 5

3-vertex cliques (ABC,DEF,EFG,DEG,DFG) and 1 4-vertex cliques (DEFG).

2.2 Cluster Analysis

Cluster Analysis or Clustering is the process of finding a group of objects where; Ojects

in the same group will be similar(related) to one another and dissimilar from objects

in a different group. Cluster analysis has been used in different application areas like;

image processing, computer vision, bioinformatics, signal processing, medical imaging

and etc. The goal of cluster analysis is to partition a given input(a set of n objects

organized as nxn matrix) into different similar groups based on a given condition. In

general there are two types of clustering problems based on the input data type; referred

to as Central(feature based) and Pairwise Clustering.
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2.2.1 Central Clustering:

In this variation of clustering the objects to be clustered represented in terms of feature

vectors. This means, the input set to the clustering algorithm is the n-dimensional

feature vector. The K-Means is the well known feature based clustering algorithm.

2.2.1.1 K-Means Algorithm

Let X={xi}, i = 1,...,n be the set of n d-dimensional points to be clustered into a set

of K clusters, C={ck, k = 1, ..., K}. The algorithm finds a partition where the distance

between the empirical mean of a cluster and the points in the cluster is minimized. In

other words the algorithm searchs for a compact cluster. Let us assume µk is the mean

of the kth cluster, Then the squared error(euclidean distance) between µk and the points

in cluster ck is defined as:

J(ck) =
∑

xi∈ck
‖ xi - µk ‖2

The goal of K-Means is to minimize the sum of the squared error over all the K clusters,

J(C) =
K∑
k=1

∑
xi∈ck

‖ xi - µk ‖2

K-Means starts with an initial partition with K number of clusters and assigns pat-

terns to clusters to reduce the squared error. The main steps of the algorithm is given

below[JD88]:

1. Select k points as initial centroids

2. Repeat
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3. Form k clusters by assigning all points to the closest centroid.

4. Recompute the centroid of each cluster

5. Until the centroids don’t change

2.2.2 Pairwise clustering:

In many real-world applications there are situation where the feature vectors represen-

tation of a data is not easy to obtain. However, it is often possible to obtain a measure

of the (dis)similarity between objects. The classical example is when the objects to be

clustered are represented in terms of a graph. Pairwise clustering can be utilized in such

type of situations.

Unlike central clustering, the pairwise clustering approach accepts the similarity matrix

as input. Based on this similarity matrix it will try to partition the data points according

to a set of coherence criteria. Dominant-set and pairwise clustering, and Normalized-Cut

can be mentioned as Pairwise clustering types.

2.2.2.1 Normalized Cut

Normalized Cut is a method in which we cut a graph into two components to estimate

the cost of the cut as a small fraction of the total affinity within a group.

NCut(A,B)= Cut(A,B)
assoc(A,V )

+ Cut(A,B)
assoc(B,V )

The score of the cut is denoted by the above equation, where V is a weighted graph and

decomposed into two components A and B. Cut(A,B) is sum of weights of all edges in

V that has one end in A and other in B. The assoc(A, V ) and assoc(B, V ) are sum of

weights of all edges with one end at A and B respectively.
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The NCut essentially searches for the minimum(min) value of the criterion inNCut(A,B).

The min value signifies cutting the graph between two components or regions which has

less edge weights between them and high internal edge weights[SM97].

2.3 Graph transduction

Among the machine learning community, Graph Transduction is the main topic while

speaking of semi-supervised learning. Graph Transduction is a method which operates

by propagating class membership information from labeled nodes to unlabeled nodes.

The propagation works using the similarity between the nodes on the environment

where only labeled nodes and unlabeled nodes exist. Usually the output of a graph

transduction algorithm is the class assignment computed for the unlabeled nodes. when

we see it from information theoretic point of view, the labeled nodes are the ones with

zero entropy. This means; when initially their class is known the information they hold

is with out any uncertainty, on the other hand the unlabeled nodes are the ones with

maximum entropy because there is high rate of uncertainty to determine their class

memebership.

Classical graph transduction algorithms initially assumes an unlabeled node’s class

might be any of the classes which exist in the current frame work with a uniform

probability distribution. For example, if we are dealing with classification where there

exists three classes, the initial prior probability for the unlabeled node to belong to one

of the classes will be 1/3.

In a more formal way, assume there is a graph denoted by G = (V,E), where V represent

the total number of nodes(i.e the labeled and the unlabeled nodes together) and E

represent the pairwise edges between nodes weighted by the similarity between the

corresponding pairs of points. Then the data points are grouped as:
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Labeled data : {(X1, X1) , ..., (XL, YL)} and

Unlabeled data : {XL+1,...,Xn}

In many cases the number of labeled nodes(L) are less than the total existing nodes(n);

i.e L < n and if the edge between two nodes has high magnitude it means they have

high degree of similarity and as a consequence they tend to be in the same class(or they

belong to the same cluster). This concept is similar to the homophily analogy in social

network analysis.

Finally the goal will be to propagate the information available at the few labeled nodes

to the greater number of the unlabeled nodes in a consistent fashion.[EP12]
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Chapter 3

Dominant sets

3.1 Dominant Set Clustering

Usually when we deal with the pairwise clustering processes, we represent the objects to

be clustered as an undirected edge weighted graph where the n given points are repre-

sented by the vertices, and our similarities are the weights of the neighbour similarities

(edges). This graph is then represented as an n by n similarity matrix where the value

of the matrix are the weights that determines the corresponding similarity of the points

of the corresponding column and row. That is if our similarity matrix is W, then the

value of wi,j represent the similarity between the vertex i and the vertex j(which is the

edge weight). Since there is no edge that connect a vertex to it self the main diagonal

of the matrix is set to zero.

If we start from a very simple case, the binary case, our matrix becomes a (0,1) combi-

nation matrix that means an intermediate value is not allowed for the similarity(either

they are similar or dissimilar). Here the graph is an undirected unweighed graph.The

sort of structure in this graph that satisfy both the internal and external criteria is from

a very classic notion of graph theory which is the notion of a Maximal Clique 2.1.

Before looking in detail the notion of dominant set let’s see some definitions and ideas

that leads them to the main definition of the notion of the dominant set.
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Let G=(V,E,w) be an undirected weighted graph where V is the set of vertices, E is the

set of edges and w is the edge weights which represent the similarity between pairs of

linked points.

Definition: let S ⊆ V be a nonempty subset of vertices and ip∈S is a point in S,average

weighted degree of a point ip with respect to S is defined as the sum of edge weights which

connects ip to all points in S divided by the cardinality of S and denoted by AWDS(ip).

Mathematically, the average weighted degree of a point ip with respect to a set of vertices

S is expressed as

AWDS(ip) = 1
|S|
∑
p∈S

wip,p (2.1.1)

Where wip,p is the weight(the similarity) between the two points

Fig. 3.1: Average weighted degree of point ip

This is the average weighted similarity between the point p and the other points in the

set S.

The relative similarity,φS(ip, op), between two objects,ip and op(i and o to indicate the

points inside and outside), with respect to the average similarity between node ip and

its neighbours is described as the difference between the absolute similarity between ip

and op (wip,op) and the average weighted similarity AWDS(ip)

12



φS(ip, op) = wip,op − AWDS(ip) (2.1.2)

This φS(ip, op) can be positive or negative based on the value of the absolute similarity

and the average weighted similarity. If the absolute similarity is greater than the average

weighted similarity, it is positive, otherwise it becomes negative.

Fig. 3.2: Relative similarity between two objects

Using this result of φS(ip, op) it is possible to have the following recursive definition

that allows us to assign a weight to a node. This is the main definition which allows us

to give the main definition of dominant set. If the cardinality of the set S is 1 then by

definition WS(ip) = 1. Otherwise we have to sum up all the relative similarities between

i and all other points in the set S, and this tells us how similar is point ip on average

with respect to all other points in the set S except ip.

WS(ip) =
∑

p∈S\{ip}
φS\{ip}(ip, p)WS\{ip}(p) (2.1.3)

Then the weight of the set S is the sum of each weights WS(ip). We know WS(ip) the

measure of how much tightly a vertex is coupled with other set of vertices in S. In other

word it tells us whether we have to add or not a point ip to the set S.

Definition, Pavan and Pelillo [PP07]: A non-empty subset of vertices S ⊆ V such

that W (T ) > 0 for any non-empty T ⊆ S, is said to be dominant if:

1. WS(i) > 0 for all i ∈ S (2.1.4)

2. WS∪{i}(i) < 0 for all i /∈ S (2.1.5)
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These two conditions are exactly the same condition of the clustering criteria, so both

criteria for a cluster are satisfied. Here we can say the notion of a cluster coincides with

the notion of dominant set. If we know they coincide, how can we calculate dominant

set? or how can we partition a set of data in to dominant set? Pelillo and Pavan,

instead of using a standard algorithm to find dominant set,they transform the purely

combinatorial problem of finding a dominant set in a graph in to a pure quadratic

optimization problem and to solve the problem they used evolutionary game theory

dynamical system.Using this algorithm it is possible to select out the identified dominant

set from the graph and continue until the stopping criterion which checks if we have an

empty set of vertices.

3.2 Identifying Dominant Sets With Replicator Dy-

namics

Pavan and Pelillo [PP07] showed the relationship between the notion of a cluster and

dominant sets. In their paper they characterized the notion of dominant set in terms

of continuous optimization problem. They stated that the notion of a cluster and its

relationship to dominant sets were mathematically equivalent by formulating the opti-

mization problem as a standard quadratic programme where

f(x) = XTAX (2.2.1)

is maximized subject to the constraint that X lies on the standard simplex4 = {x ∈

RnX ≥ 0 and
∑

n xn = 1}. A in this case is defined as the similarity matrix of the

graph and x is defined as the weighted characteristic vector and it is defined in terms of
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the subset of vertices S,

xS =


wS(i)
W (S)

if i ∈ S;

0 otherwise.
(2.2.2)

where W (S) =
∑

i∈sws(i) is the total weight, which must be greater than 0. Pavan

and Pelillo [PP07] proved that by using this definition of x, the maximization of the

objective function is the same as finding dominant sets. Further details of this proof can

be found in [PP07]. To find a local solution of the objective function f, a method taken

from evolutionary game theory, called replicator dynamics was used. The first-order

replicator equations are defined as

xi(t+ 1) = xi(t)
(AX(t))i

X(t)TAX(t)
(2.2.3)

And are applied to all nodes in the network in turn. Since A is symmetric, the replica-

tor equations provide a strictly increasing update to the characteristic vector x, which

converges upon the local solution of f. By taking the support or non-zero indices of

the final x, we identify the elements of the graph that are a dominant set. That is,

the solution of the replicator equations converges exactly on a characteristic vector that

conforms exactly to conditions 2.1.4 and 2.1.5. In practice, x is initialized with uniform

weights, which corresponds to the centroid of the standard simplex.

Since the replicator equations only converges on most dominant set of a particular graph,

an effective way of identifying further clusters in the network is to apply a peeling

strategy [PP07]. This involves finding a dominant set(cluster) using equation 2.2.3,

removing the vertices in the cluster from the similarity graph, and then re-applying

the replicator equations to the remaining vertices’s. In practice, the elements of the

characteristic vector rarely converged to exactly zero so a threshold was used to identify
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numbers that were extremely close. The same threshold was also used to ensure that

if the value of the maximized objective function was too small. We considered that all

the remaining nodes in the graph were singletons.
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3.3 Predicting Cluster Membership for Out-of-Sample

Data

Dominant-set is efficient and novel graph-based clustering method, even if it has the

problem of working efficiently in big data sets and in a dynamical situation; where

the data set needs to be updated continually. Segmenting high resolution image and

spatio-temporal data as well as applications like document classification and database

visualization is the classical examples such type of problems.

To resolve this problem, pavan and pelillo proposed a new solution on their paper

”Efficient Out-of-Sample Extension of Dominant-set Clusters” [PP04]. Given a dataset

to be clustered, instead of doing the clustering for the whole dataset or repeating the

whole clustering process when the new point is added; it is expensive in terms of cost.

The authors basically propose to take some percent of the data set in case of static big

data set or take the initial data set in case of dynamic situations, then performing the

clustering process. Then for each new unseen instance(the instance not a member of

the initial sample or new point to be added) they calculate the similarity between the

unseen instance and the cluster detected previously and assign the point to the cluster

which has highest positive weight(similarity) with the point.

They also stated in their paper in case if the weight between the unseen instance(point

not clustered) and the entire cluster detected previously is negative it means that there

exist a new unseen cluster.

The original idea the authors[PP04] stated in their paper is given below:
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Assume we are Given a graph G = (V,E,w) where V,E,w denotes the set of points to be

clustered, the edges between the points and edge weight between the points respectively.

Let S⊆V be a subset of vertices which is dominant in the original graph G(which formed

clusters previously), V̂ the set of unseen instances and let i ⊆ V̂ \V a member of unseen

instances V̂ . In order to add(assign) the new point i ⊆ V̂ to the dominant set(cluster)

S; first we have to calculate W s∪{i}(i) and then we have to examine the sign of result.

According to their proposal [PP04] if the sign of W s∪{i}(i) is positive it indicates that

the point is tightly coupled with the vertices’s in S where as; if the sign is negative it

indicates that the point is loosely coupled to the vertices in S. Finally, they proposed

the following rule for predicting cluster membership of unseen data:

if Ws∪{i}(i) > 0, then assign vertex i to cluster S . (6)

According to rule 6 the point assigned to the cluster which has positive weight with

it. Note that, according to this rule the same point can be assigned to more than

one class, thereby yielding a soft partition of the input data. However, to get a hard

partition they recommend to use the cluster membership approximation measures. They

also mentioned that it can also happen for some instance i where no cluster S satisfies

rule(6), in which case the point gets unclassified(or assigned to an ”outlier” group). This

should be interpreted as an indication that either the point is too noisy or the cluster

formation process was inaccurate. We will use this concept in the second step of our

approach.
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Chapter 4

Related works

The fundamental problem in cluster analysis is to know how many clusters are ap-

propriate for describing a given system. It is also the basic input for many clustering

algorithms. Different scholars proposed a variety of methods on how to estimate the

number of clusters. Gordon [Gor99] groups the approaches for determining the number

of clusters into global and local methods. The global method evaluates some measure

over the entire dataset and optimize it as a function of the number of clusters. Where

as the local consider individual pairs of clusters and test whether they should be merged

or not.

The drawback of most global method is that there is no direction for whether the data

should be partitioned (best number of cluster is greater than 1) or not. However, it will

not be a problem if users have good reasons to believe that there are clusters present

in the data. The local methods are intended to test the hypothesis that a pair of

clusters should be merged or not. They are suitable for assessing only hierarchically-

nested partitions. According to Gordon comments, the significance levels should not be

interpreted strictly since multiple tests are involved in the procedure.
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4.1 Global methods

Calinski and Harabasz’s method

Calinski and Harabasz’s [CH74] in their work proposed a method for determining num-

ber of clusters based on an index called calinski harasbansz’s (CH(g)). Which is defined

as follows:

CH (g)=
B(g)
/
(g−1)

W (g)
/
(n−g)

Where; B(g) and W(g) are between-cluster and within-cluster sum of squared errors,

for g clusters. The mathematical formulation for B(g) and W(g) is defined as follows:

Suppose we have a multivariate data containing n objects in p dimensions. Each object

can be expressed as xi=(xi1, xi2, ..., xip)
′
, i = 1,..., n. The dispersion matrix for each

group is defined as:

Wm =
nm∑
l=1

(xml − x̄m) (xml − x̄m)′ ,m = 1, ..., g.

Then the pooled within-group dispersion matrix W is defined by:

W =
g∑

m=1

nm∑
l=1

(xml − x̄m) (xml − x̄m)′

The between-group dispersion matrix is defined as:

B =
g∑

m=1

nm (x̄m − x̄) (x̄m − x̄)′ , x̄ = 1
n

n∑
i=1

xi

Calinski and Harabasz’s stated that, the value which maximizes the CH(g) over g is the

optimum number of the clusters.

According to the comparative study conducted by Milligan and Cooper [MC85] on 30

methods of determining the number of clusters in data, this method generally outper-

formed the others[Yan05].
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Hartigan’s method

Hartigan [Har75] proposed a method which is based on the following index:

Har (g) =
[

W (g)
W (g+1)

- 1
] /

(n− g = 1)

In their work, [Har75] proposed to calculate the value of Har(g) starting from g=1 and

adding the cluster if the value of Har(g) is significantly large. A more simple decision

rule suggested by Hartigan is to add a cluster if Har(g) is greater than 10 [Yan05]. For

more detail it is advisable to refer [Har75].

Silhouette statistic

In order to estimate the optimum number of clusters of a dataset Kaufman and Rousseeuw

[Rou87] proposed the silhouette index. The definition of the silhouette index is based

on the silhouettes introduced by Rousseeuw [Rou87], which are constructed to visualize

graphically how well each object is classified in a given clustering output. To plot the

silhouette of the mth cluster, for each object in Cm, it calculate s(i) in the following way:

S (i)= a(i)−b(i)
max{a(i),b(i)}

where:

a(i)=average dissimilarity of object i to all other objects in the mth cluster.

b(i) = min
C 6=Cm

d(i, C)

d(i,C)=average dissimilarity of object i to all other objects in cluster C; C 6= Cm

Then we calculate the average of s(i)(S̄(g)) for all objects in the data which is also called

the average silhouette width for the entire data set. This value reflects the within-cluster

compactness and between-cluster separation of a clustering.

Compute S̄(g) for g = 1, 2,...(for all number of clusters which is assumed to be optimum)
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and select the one which maximizes S̄(g). According to [Rou87] the value of g which

maximizes the average silhouette index(S̄(g)) is the optimum number of cluster of a

dataset. [Yan05]

Optimumnumberofcluster(Ĝ) = arg maxgS̄(g)

Gap method

Tibshirani et al. [TWH00] proposed an approach for estimating the number of clus-

ters(k) in a data set via the gap statistic. The main idea of the gap method is to

compare the within-cluster dispersions in the observed data to the expected within-

cluster dispersions assuming that the data came from an appropriate null reference

distribution. The best value of k is estimated as the value k̂, such that log(W(k̂ )) falls

the far below its expected curve. The formulation for the gap method is defined as:

Gapn (k) = E∗nlog(W (k))− log(W (k))

Where, E∗nlog(W (k)) indicates the expected value of log(W(k)) under the null distribu-

tion. The value of k which maximizes Gapn(k) is the optimum number of clusters, k̂.

For detail explanation look [TWH00]

22



4.2 Local methods

In this section we will discuss two local methods used for estimating the number of

clusters, which are among the top 5 best performing algorithms according to the com-

parative study of milligan and cooper’s [MC85]. The first one is proposed by Duda and

Hart [DH73], in their method the null hypothesis that the mth cluster is homogeneous is

tested against the alternative that it should be subdivided into two clusters. The test is

based on comparing the within-cluster sum of squared errors of the mth cluster; J2
1 (m)

with the within-cluster sum of squared distances when the mth cluster is optimally di-

vided into two J2
2 (m). If the mth cluster contains nm objects in p dimensions, then the

null hypothesis will be rejected if:

J2
1 (m)

/
J2
2 (m) < 1− 2

/
(πp)− z

[
2(1− 8

/
(π2p))

/
(nmp)

] 1
2

Where z is the cutoff value from a standard normal distribution specifying the signifi-

cance level[Yan05].

The second method proposed by Beale [Bea69] tests the same hypothesis with a pseudo-

F statistic. Which is given by:

F ≡
(

J2
1 (m)−J2

2 (m)

J2
2 (m)

)/((
nm−1
nm−2

)
2

2
p − 1

)
The homogeneous cluster hypothesis is rejected if the value of the F statistic is greater

than the critical value from the Fp, (nm − 1)p distribution. In both tests given the

rejection of the null hypothesis, it follows that the subdivision of the mth cluster into

two sub clusters is significantly better than treating it as a single homogeneous cluster

[Yan05].

23



In addition to the approaches stated above, Broom et al [CVoSDoPS92] proposed an

approach for determining the greatest possible number of local maxima that a quadratic

form can have when the vector is constrained within the unit simplex. The quadratic

program has the following form:

V=pTAp

where: (p1, p2, ...pn) ∈ 4n = {x∈ Rn:xi ≥ 0,
∑

i xi = 1 and A=(aij) is a real, symmetric

matrix. for detail explanation refer to [CVoSDoPS92]
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Chapter 5

Our contribution

5.1 The Proposed Approach

To achieve our objective, we implement a two-step approach where in the first step, we

tried to detect the (minimum)number of cluster automatically, in the second step we

cross checked if there exists a structure which has to be clustered but not yet detected

in the first step. Finally, after meeting our objective, in order to check whether our

approach determines the right number of clusters we propagated the class labels using

graph transduction to unlabel instances and to analyze the corresponding output. The

steps are explained in detail as follows:

Step 1:Detect Number of Cliques

Let G = (V ;E) be an undirected graph without self-loops, where V = 1, 2, ..., n is the

set of vertices and E ⊆ V × V the set of edges. We define the order of a graph G

as the cardinality of V . Two vertices u, v ∈ V are adjacent if (u, v) ∈ E. A subset

C of vertices in G is called a clique if all its vertices are mutually adjacent. It is a

maximal clique if it is not a subset of other cliques in G. It is a maximum clique if it has

maximum cardinality. The cardinality of a maximum clique of G is also called clique

number and denoted by w(G), It should be mentioned that the number of maximal

clique and stability number are not always equal. more precisely, stability number is

lower or equal to the number of maximal clique
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The adjacency matrix of G is the n× n symmetric matrix AG = (aij), where aij = 1 if

(i, j) ∈ E, aij = 0, otherwise . Ā is defined as dissimilarity matrix .

The adjacency matrix of an undirected graph can be regarded as the similarity matrix of

a clustering problem and compliment of a graph G (disimilarity) is defined as Ā = 1−AG

for unweighted case therefore our framework can be used to find the stability number.

Consider the following constrained quadratic program derived from weighted Motzkin-

Strauss formulation.
1

w(G)
=minimize xT (Ā+ αI)x

subject to X ∈ 4 ⊂ Rn

(5.1)

With 4 = (x ≥ 0 and eT = 1)

where n is the order of G, I the identity matrix, α is a real parameter and 4 is the

standard simplex of the n-dimensional Euclidean space.

In 1965, Motzkin and Straus [MS65] established a connection between the maximum

clique problem with α = 0. Specifically, they related the clique number of G to global

solutions x∗ of the program through the formula w(G) = (1 − f0(x∗))−1, and showed

that a subset of vertices C is a maximum clique of G if and only if its characteristic

vector xC ∈ 4 is a global maximizer of f0 on 4 . Pelillo and Jagota [PJ95], extended

the Motzkin-Straus theorem by providing a characterization of maximal cliques in terms

of local maximizers of f0 in 4 .

A drawback of the original Motzkin-Straus formulation is the existence of spurious

solutions, maximizers of f0 over 4 that are not in the form of characteristic vectors.

This was observed empirically by Pardalos and Phillips [PP90] and formalized later

by Pelillo and Jagota [PJ95]. In principle, spurious solutions represent a problem,

while providing information about the order of the maximum clique, does not allow us

to easily extract its vertices. Fortunately, there is a straightforward solution to this
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problem which has been introduced by Bomze [Bom97] . He, indeed, suggested to add

a constant α on the diagonal of the adjacency matrix of the graph and basically proved

that for 0 < α < 1 all local maximizer of 5.1 are strict and in one-to-one correspondence

with the characteristic vectors of the maximal cliques of G. In our case as reported in

the paper of Pelillo and Jagota [PJ95], α sets to a value close to 1.

In the weighted case, compliment Graph or weighted disimilarity matrix is calculated

by

Āij = exp(−||F (i)− F (j)||2

σ2
) (5.2)

Equation 5.1 is designed for unweighted matrices by motzkin-strauss. We have extended

their work to the weighted version. We have observed that in this way the minimum

number of maximal cliques can be obtained.

Fig. 5.1: cluster representatives detected at step 1

27



Step 2:checking the existence of new unseen cluster

As we have seen from multiple execution outputs on different computer generated

datasets, of the first step we analyzed that there is a situation where we could not

be able to detect all cluster representatives. For example if there exist a cluster between

clusters. In order to detect such type of clusters we have implemented the idea of Effi-

cient Out-of-Sample Extension of Dominant-Set Clusters which enables us to indirectly

detect if there exists new (unseen) cluster representative. As stated in the paper [PP04]

while predicting the class membership of new instances of the dataset, if the instances

do not have positive similarity weight (W(s)i) with one of the cluster which is already

known it means that the classification is inaccurate or there is a cluster which is unseen.

Fig. 5.2: cluster representative detected using step 2

Note: the black dot over the figure is the cluster representative detected by applying

the idea of Efficient Out-of-sample Extension of Dominant-Set
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5.2 Why Efficient Out-of-Sample Extension of Dominant-

Set Clusters?

As we can see from the above figure, efficient-out-of-sample serves our purpose very well.

It answers one of our basic question ”is there any new unseen cluster or not?”. As it has

been explained in the paper [PP04], in order to predict the class membership of new

instance (node), which is unseen, we have to check the sign of the weight of the node to

be added to the existing cluster. While the node with positive weight is added to the

its corresponding cluster, the cluster which gives the highest weight to it, the node with

negative weight is considered as either an outlier or a representative for other unseen

cluster group. For detail explanation we refer the reader to [PP04].

5.3 Experiments and Experimental Results:

In order to test the effectiveness of our approach, we have conducted an experiment

on different toy, generated using different Matlab functions, real, downloaded from UCI

machine learning page, ics.uci.edu/ml/datasets.html and social network datasets.

For all the datasets our framework is compared against well known clustering algorithms:

Normalized Cut and K-Means, and the results are very encouraging. While our first

part of the experiment covers the experiments done on toy datasets, the second part

consists the real dataset descriptions and the experiments done on real datasets. The

last part consists of social network dataset descriptions and experiments done on them.

For those datasets that have ground truth, the label which help us to know how much

our framework is accurate, we first remove their labeling information before doing any

experiment.
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In all parts of our experiment, we have tried to show the detail procedure of the exper-

imental process and their outputs, summarized in different tables. The algorithm, to

find dominant set clusters, follows easy steps: It first identifies the number of clusters,

it then use graph transduction to get the whole clustering result which we used to show

effectiveness of our approach by comparing it against K-Means and Normalized Cut

algorithms.

The datasets used to test the performance of our approach are summarized below.

Data sets

Data source

Computer generated

Name Instances Features number of clusters
FG 500 2 5

Banana 500 2 2
TGC 450 2 3
SG 700 2 7

UCI

Iris 150 4 3
Ionosphere 351 33 2

Pima 768 8 2
Ecoli 272 7 2

Soybean 136 35 4
Liver 345 6 2

Haberman 306 3 2

social network

Karate 34 - 2
Dolphins 62 - 2

Food 45 - 7
Collaboration 235 - -
Jazz Musician 198 - -

Table 5.1: List of datasets used for testing our approach

When we come to our first part of the experiment, as we have discussed above, our

first move is to test our framework on different toy datasets generated by ourselves. For

this purpose we have generated three different multivariate normal distribution datasets

with three, five and seven cluster groups each and one elongated banana shaped dataset.
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Our first trial was on the first toy dataset which is a multivariate normal distribu-

tion data, with five cluster groups, generated using Matlab mvnrnd() function with

means(mu1=[0 9],mu2=[-7,-5], mu3=[17 4], mu4=[4 1], and mu5=[12 -6]), and covari-

ance of [1 0; 0 1]. Each of the five clusters has 100 instances and 2 features. In order to

investigate the result of our approach we have done several experiments.

Five Multivariate Gaussian dataset(FG)

Fig. 5.3: five gaussians dataset generated using matlab mvnrnd() function

As we have discussed above, to clarify our experimental part in an easy way, we have

tried to show outputs of different parts of the algorithm. In the first step, the algorithm

identifies the farthest points detected which are cluster representatives. As we may not

find all the cluster representatives in the first step, we have done a second step as de-

scribed in 5.1.
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Step 1: Identifying the farthest points,

Fig. 5.4: Cluster representatives detected by applying step 1 on FG data set

As we can see in the figure the four red dotes plotted over the cluster are the farthest

points detected using first step (5.1) of our algorithm, the first step can’t get the whole

cluster representatives.

Step 2:

From fig 5.4 we can see that there is one cluster representative which is not detected in

the first step of our approach. So, in order to detect such a cluster representative, we

apply the second step of our approach (i.e. 5.1). The result is shown in fig 5.5

From fig 5.5 we can see that our approach is able to determine the right number of

clusters for five multivariate Gaussians datasets. After determining number of cluster

(i.e after getting the cluster representative points) we use graph transduction to get the

whole cluster structure. The result is plotted as shown in figure 5.6.

From this figure, we can see that our approach determines the right number of cluster

and a very encouraging clustering result.
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Fig. 5.5: Cluster representatives detected by applying step 2 on FG data set; the black dot over

the cluster are the cluster representative detected by applying step 2 on FG dataset

Fig. 5.6: clusters recovered using graph transduction for Five Gaussians (FG) dataset
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Seven Multivariate Gaussian data set(SG)

Below is experimental result of applying our approach on seven Gaussians dataset

Fig. 5.7: Seven Gaussians dataset generated using matlab mvnrnd() function

The second toy dataset, as of the first is a multivariate normal distribution data but with

seven cluster groups and different mean and variance, is also generated using mvnrnd()

Matlab function with means(mu1=[2 3],mu2=[-2,-3], mu3=[6 7], mu4=[-2 5], mu5=[6

-2], mu6=[2 -5], mu7=[-2 1]), and covariance of ( SIGMA1 = [0.1 0; 0 0.1], SIGMA2 =

[0.2 0; 0 0.2],SIGMA3 = [0.1 0; 0 0.1], SIGMA4 = [0.2 0; 0 0.2],SIGMA5 = [021 0; 0

0.2], SIGMA6 = [0.2 0; 0 0.2],SIGMA7 = [0.2 0; 0 0.2] ) for cluster 1 to 7 respectively.

The dataset has seven well separated clusters. Each of them has 100 instances and 2

features. We have done several experiments on this data set and have got the following

results. As of the previous experiment, we have tried to show the detail of each steps:
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Step 1: Finding the farthest points

Fig. 5.8: Cluster representatives detected by applying first step of our algorithm on seven

gaussians(SG) dataset, the red dot over the figure is the cluster representatives detected by

applying step 1 on seven gaussians(SG) dataset

From the figure we can see five red dotes plotted over the clusters, these points are the

cluster representatives detected by applying the first step ( 5.1) of our algorithm.
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Step 2:

As we can see in the figure 5.8 there are two clusters representatives that are not detected

in first step of our approach. So, in order to detect such cluster representatives, we

applied the second step of our approach and we got the result shown in fig 5.9.

Fig. 5.9: Cluster representatives detected by applying second step of our algorithm on SG

dataset, the black dot over the figure is the cluster representatives detected by applying step 2

on the SG dataset

From fig 5.9 we can see that, as of the first experiment, our approach is able to determine

the right number of clusters for the SG datasets. This cluster representatives are used

as a label for the graph transduction algorithm which help us get the final clustering

result. The result of the second toy is plotted as shown in fig 5.10. We can see from

this figure our approach, using the label information and graph transduction, is able to

determine the right number of cluster and we get almost the same cluster structure as

of the original one (fig 5.7)

36



Fig. 5.10: Cluster structure recovered using graph transduction for seven gaussians (SG)

dataset

Three clusters close to each other

The third toy dataset is generated to show how much powerful our framework is for a

very near cluster groups and some overlaps as noise. The result of the experiment is

shown in fig 5.11.

From fig 5.11 b, we can see that our approach is able to determine the right number of

clusters for clusters closed to each other. From fig 5.11c we can see that by applying

graph transduction we are able to get the cluster structure which are almost similar to

the original one(fig 4.11 a), which is on the other hand the proof of our prediction.
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a b c

Fig. 5.11: an example of determining the number of cluster automatically and forming the

cluster by labeling using graph transduction. a)original cluster structure generated using matlab

mvnrnd() function b)cluster representatives detected by applying our approach. note: the red

dot is the one detected in first step and black dot is the one detected in second step. c)cluster

structure recovered using graph transduction

Elongated cluster

In this first part of our experiment using toy datasets, our last trial was on elongated

structure. For this purpose we have considered the banana shape dataset from PRTools,

http://prtools.org. The data generated is a 2-dimensional 2-class dataset of banana

shaped with a uniform distribution of the data along the elongated structure.

For our purpose, we have generated the banana shaped data with a variance of 0.5 and

250 instances. We have done several experiment on this data set and the results are

tabulated.
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Fig. 5.12: Banana structure dataset generated using matlab gendatb() function

Step 1:

Fig. 5.13: Cluster representatives detected by applying first step of our algorithm on banana

data set, the red dotes over the figure is the cluster representatives detected by applying step 1

on banana data set

From the output of the above figure we can see that all the cluster representatives are

identified in the first step.

Step 2:

Although, it is trivial to see from fig 5.13 that there is no unseen cluster, to see what

will happen in such a situation we run the second step.
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Fig. 5.14: Cluster representatives detected by applying second step of our algorithm on banana

data set

From this result we can also conclude that the second step of our approach detects the

cluster representatives only if there exist unseen cluster from the first step.

After getting the clusters representatives, we use graph transduction to diffuse the in-

formation and get the whole cluster structure. The result is plotted below.

Fig. 5.15: Cluster structure recovered using graph transduction for banana dataset

From this experiment we can conclude that our approach is also effective for elongated

structures.

To see the stability of our framework, we have run the algorithm different number of

times on all toy datasets and see how many times it detects the correct number of clus-

ter representatives. The result, which is really promising and interesting, is tabulated
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below and we can see from the table most of the time our algorithm predict the number

of clusters correctly.

dataset name no of true cluster no of run no of times correctly predicted

FG 5

10 10
50 48
100 95
200 190
500 480

Banana 2

10 10
50 50
100 100
200 200
500 500

TGC 3

10 10
50 48
100 94
200 195
500 482

SG 7

10 10
50 46
100 94
200 195
500 484

Table 5.2: Performance test of our approach on toy datasets(FG, SG, banana, TGC)
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In the next part of our experiment we are going to see the performance of our algorithm

on real datasets from UCI. Before doing an experiment on the UCI datasets listed in

Table 5.1 on page 30 it is better to give the description of them, it helps the reader to

know the performance of the framework very well.

Iris dataset: this dataset contains 3 classes of 50 instances each, where each class refers

to a type of iris plant. One class is linearly separable from the other two which are not

linearly separable from each other. Attribute Information:

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class:

� Iris Setosa

� Iris Versicolour

� Iris Virginica

To say more about this dataset, many people have been using it as a test case for many

classification and clustering techniques in machine learning. When we see it as two

cluster (based on the linearly separable regions) one of the clusters contains Iris Setosa,

while the other cluster contains both Iris Virginica and Iris Versicolor and is not sepa-

rable without the species information. Here is the 3D plot of the dataset with the first

three columns as points in the feature space and the fourth column as colour.
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Fig. 5.16: Iris Dataset Plot

Wine Dataset. This dataset is the results of a chemical analysis of wines grown in

the same region in Italy but derived from three different cultivars. It consists of three

different varieties of wine and the analysis determined the quantities of 13 constituents

found in each of the three types of wines. The dataset can be used in many classification

and clustering analysis. Attribute information:

1. Alcohol

2. Malic acid

3. Ash

4. Alcalinity of ash

5. Magnesium

6. Total phenols

7. Flavanoids
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8. Nonflavanoid phenols

9. Proanthocyanins

10. Color intensity

11. Hue

12. OD280/OD315 of diluted wines

13. Proline

14. class:

� class 1

� class 2

� class 3

Ecoli dataset: This dataset is a dataset used for protein classification. It includes

336 instances. Each of the attributes used is a score(between 0 and 1) corresponding

to a certain feature of the protein sequence. The higher the score is, the more possible

the protein sequence has such feature. In this dataset, seven features(attributes) are

used: mcg, gvh, lip, chg, aac, alm1, alm2. Proteins are classified into 8 classes: cyto-

plasm(cp), inner membrane without signal sequence(im), perisplasm(pp), inner mem-

brane with uncleavable signal sequence(imU), outer membrane(om), outer membrane

lipoprotein(omL), inner membrane lipoprotein(imL), inner membrane with cleavable sig-

nal sequence(imS). Before applying our algorithm on this dataset we remove instances

which belong to class outer membrane (om), outer membrane lipoprotein (omL), in-

ner membrane lipoprotein (imL), inner membrane with cleavable signal sequence (imS)

which has 20, 5, 2, 2 instances respectively.
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Let’s say something about other datasets from UCI used on our experiment. The dataset

Pima is the result of diabetes test on at least 21 years old females pima heritage indians.

This data is used to classify whether the person is diabetes positive or not based on 8

different factors. The other dataset is the Haberman which contains cases from study

conducted on the survival of patients who had undergone surgery for breast cancer and

it has two classes. The two classes are if the patient survived 5 years or longer or if

he died within 5 year. The Ionosphere dataset, is dataset for classification of radar

returns from the ionosphere. The radar data was collected by a system in Goose Bay,

Labrador. This system consists of a phased array of 16 high-frequency antennas with a

total transmitted power on the order of 6.4 kilowatts. The targets were free electrons

in the ionosphere. ”Good” radar returns are those showing evidence of some type of

structure in the ionosphere whereas, ”Bad” returns are those that do not; their signals

pass through the ionosphere.

A similar step-by-step experimental analysis, as on the toy dataset, have been conducted

on the real datasets: Cluster representatives are identified by the two step processes and

the information we got are diffused to the rest of the samples using graph trasduction

technique which help us get the final clusterings which we have used to compare against

other well known clustering algorithms: Normalized Cut and K-means. The result is

table or shown in fig 5.19:
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dataset name no of true cluster no of run no of times correctly predicted

Iris 3

10 9
50 47
100 95
200 190
500 480

Ionosphere 2

10 10
50 48
100 97
200 195
500 485

Haberman 2

10 10
50 48
100 94
200 195
500 482

Pima 2

10 10
50 46
100 94
200 195
500 484

liver 2

10 9
50 49
100 47
200 180
500 454

Ecoli 3

10 10
50 46
100 94
200 195
500 484

Soybean 4

10 10
50 45
100 90
200 185
500 480

Table 5.3: Performance test of our approach on real data set(UCI) i.e. Iris, Ionosphere,

Pima, Haberman, Wine, Ecoli, Soybean and Liver dataset
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In the last part of our experiment we evaluated our algorithm on social network data

set from UCI network repository, http://www-personal.umich.edu/~mejn/netdata/.

Before doing an experiment on the social network dataset listed in Table 5.1 we think

it is better to make the reader familiar at least with some of them .

Karate: is the data set of zachary’s network of karate club members [Zac77], a well-

known graph regularly used as a benchmark to test community detection algorithms.

It consists of 34 vertices, the members of a karate club in the United States, who were

observed during a period of three years. Edges connect individuals who were observed

to interact outside the activities of the club. At some point, a conflict between the club

president and the instructor led to the fission of the club in two separate groups, sup-

porting the instructor and the president, respectively (indicated by blue and red circles

in fig 5.17). [For10]

Fig. 5.17: Zachary’s karate club network
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Dolphins: is the data set of the network of bottlenose dolphins living in Doubtful

Sound (New Zealand) analyzed by Lusseau. There are 62 dolphins and edges were set

between animals that were seen together more often than expected by chance. The

dolphins separated in two groups after a dolphin left the place for some time (squares

and circles in the figure,fig 5.18). Lusseau’s dolphins’ network, like Zachary’s karate

club, is often used to test algorithms for community detection. [For10]

Fig. 5.18: Lusseau’s network of bottlenose dolphins.
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A similar step-by-step experimental analysis, as on the toy and real dataset, have been

conducted on the social network datasets: Cluster representatives are identified by the

two step processes and the information we got are diffused to the rest of the samples

using graph transduction technique, which help us get the final clusterings. However,

in this case the accuracy of final clustering result is compared only against Normalized

Cut since, K-means does not support dataset represented in terms of graph. The final

result is tabulated in fig 5.19:

Fig. 5.19: Overall Experimental result: this table shows the number of cluster determined by

our approach and the accuracy of cluster formed by graph transduction , K-Means and N-Cut

for toy, real and social network datasets.

To sum up, as can be seen from all the experimental results, our framework performs

very well for all types of datasets, specially for the social
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Chapter 6

Conclusion and Future work

We presented a system which performs automatic determination of number of cluster

using the concept of Dominant set approach as stated on the papers of Massimiliano

Pavan and Marcello Pelillo [PP07]and [PP04]. We showed qualitative and quantita-

tive output results of our algorithm by making tests on different computer generated

datasets, UCI repository datasets and social network datasets and we got an interesting

and promising result.

Social network analysis is the study of relationship among entities in a certain society.

It aims at extracting group of entities called communities, which have high relation-

ship among each other and less with the others. In the last decade, numerous classic

graph clustering methods have been adapted for community detection which are namely:

random walks, spectral clustering, modularity maximization, differential equations and

statistical mechanics. One of the main drawbacks exhibited in most of the methods

for community detection is that, the number of community k should be specified in

advance. Therefore as a future work we want to extend our approach for detecting the

number of communities or cluster before the community detection process takes place.

To see the effectiveness of our future work, we have done a preliminary experiment on

karate dataset(zachary’s network of karate club members) and dolphin dataset(network

of bottlenose dolphins) ,social network datasets, and we got promising result.
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