

Corso di Laurea magistrale
in Informatica

Tesi di Laurea

Design of an optimized compiler
for Casanova language

Relatore
Chia.mo Prof. Agostino Cortesi
Correlatore
Dr. Giuseppe Maggiore

Laureando
Francesco Di Giacomo
Matricola 831569

Anno Accademico
2013/ 2014

Abstract

Making games is a complex, time-consuming and expensive task, since a
game is made of several inter-operating components. For this reason devel-
opers having few resources at their disposal (i.e. researchers or independent
developers) are discouraged in developing such games using standard lan-
guages (such as C++) and libraries (DirectX, OpenGL or XNA in .NET
environment). The aim of this work is defining a language oriented to de-
veloping games which allows the aforementioned category of developers to
realize a game or a real-time simulation in a short amount of time, with a
more synthetic code and in a more expressive way, with a good trade-off on
performances. We will start examining the older version of Casanova, which
is interpreted, and we will examine its flaws and present an improvement.
Then we will present the structure of the compiler itself, based on F# com-
piler. Our work shows the execution time improvement with respect to the
older Casanova version, as well as the expressiveness and conciseness of the
code with respect to an alternative implementation in the older version of
Casanova 1.0.

3

4

Contents

1 Introduction 7

2 Casanova: a language for video games 11
2.1 Structure of a computer game 11
2.2 Synchronization and state machines 15
2.3 General structure of Casanova 18
2.4 Rule implementation . 21

2.4.1 Active Patterns . 21
2.4.2 Unoptimized traversal 23
2.4.3 Continuation passing style 24
2.4.4 Continuation Passing Style cached traversal 25

2.5 Coroutine implementation . 27
2.5.1 Monads . 28
2.5.2 Coroutine monad . 32

2.6 From Casanova 1.0 to Casanova 2.0 37
2.7 Casanova 2.0 language definition 38

2.7.1 Unifying rules and coroutines 38
2.7.2 Object orientation . 40
2.7.3 Language syntax and semantics 44

2.8 Coroutine operators in Casanova 2.0 47

3 Casanova compiler 51
3.1 Casanova lexer . 52
3.2 Casanova parser . 53
3.3 State machine . 57

3.3.1 Wait state machine . 59
3.3.2 Wait Until state machine 60
3.3.3 Yield state machine . 61
3.3.4 Foreach state machine 62
3.3.5 While state machine 65
3.3.6 If state machine . 66

5

6 CONTENTS

3.3.7 Let bindings and atomic blocks 68
3.4 Shadowing . 70

4 Case study and evaluation 73
4.1 Implementing a game in Casanova 2.0 73
4.2 A simulator for projectile dynamics 79

4.2.1 Experimental results 84
4.3 Case study and evaluation . 85

5 Conclusions and future works 87

Chapter 1

Introduction

Video game industry is a ever growing sector, whose profits have recently
surpassed those of movies and music industry [5][1]. From this statement
we could infer that the video game field is that of entertainment. However,
video games are used as simulations in several serious environments, such
as defence, education, scientific exploration, health care, emergency man-
agement, city planning, engineering, and politics [12]. Indeed, there exists
a large documentation of the usage of games for serious purposes since the
beginning of the 20th century, for example see [16].

Developing a game requires a large budget, which often is not available
for small developers such as those of independent games, which are games
sold generally at a lower price, and serious games [17]. The need of a large
amount of funding comes from the fact that games are made of components
called game engines. These engines are large and powerful tools which are
hard to make and maintain over time[7]. This has brought game developers
to implement their own game engine, and then re-use it for their next pro-
ductions. This causes several issues, among which games developed by the
same company tend to be very similar to each other, and successive versions
of the same game at most extend the existing engine to implement a small
number of new features[2].

For example, the game engine built for Neverwinter Nights, features a
script language based on an extension of C, which is compiled by the game
editor. This script system, however, does not allow the parallel execution of
multiple scripts except in pre-defined situations. These scripts are called in
parallel by events defined in the level file of the game, which are limited in
numbers, such as a periodic execution every 1 second, when a player enters
or exits an area,etc. The same engine has been used, with few modifications,
in the next title Newerwinter Nights 2 [3].

Casanova is a language whose main aim is to ease the programmer from

7

8 CHAPTER 1. INTRODUCTION

implementing a game engine from scratch, by providing primitives in the
language such as time and synchronization statements, and an interface to
a drawing engine. Indeed implementing such engines often requires to im-
plement specific components, such as state machines described in Section
2.2, or writing boiler plate code to perform specific actions in the game.
For example Casanova provides a generalized pattern for defining Real-Time
Strategy Games[4], a script language defined using monads and a way to
express continuous events as an approximation of differential equations[14].

In this thesis work we will face the problem of improving the current
version of Casanova, which is interpreted, by building a compiler to achieve
better performances. We will also design the new version of the language to
extend its syntax with constructs typical of Object-Oriented languages, and
we will try to simplify the internal scripting language, maintaining at the
same time the same expressiveness.

We started by collecting feedback on programmers who used Casanova
1.0 to create video games samples (such as reproductions of tetris and pac-
man). We identified Casanova 1.0 main flaws in having too many overlapping
concepts, such as rules and scripts [12] (see Sections 2.1 and 2.2). We noticed
that several users neglected the use of one of these components in favour of
the other ”abusing” of their function. We realized that we could merge these
overlapping components into a single component having both functionalities.
Based on this idea we redesigned Casanova 2.0 introducing interruptible rules,
adding also some Object-Oriented structures equivalent to those available
in the most widespread languages, such as Java, C++ and C#. We then
identified that the main performance drawback was caused by the script
language, implemented in Casanova 1.0 with monads, and by the fact that
the language was interpreted. We decided to build a compiler based on the
open-source version of the F# compiler for the following reasons:

• We can compile Casanova code in .NET byte code which is compatible
with several game development libraries, such as XNA, Unity 3D or
Monogame.

• Taking advantage of the similarity between Casanova and F# syntax
definition, we can modify the lexer and parser to generate Casanova
AST, and then simply translate it into F# AST. In this way we will
not have to implement a type checker and a code generator because the
back-end of F# will accept the translated AST.

• We can support interoperation between third-party .NET libraries and
Casanova (see 4.1 for an example of a game using a .NET library to
manage file input/output).

9

Our work shows that Casanova 2.0 achieves better performances than
Casanova 1.0 in presence of a high number of game entities and manages a
lot of time-consuming operations, such as detecting collisions among physi-
cal bodies, maintaining at the same time a high frame rate, while Casanova
1.0, even with optimizations through indices on queries not yet implemented
in Casanova 2.0 fails to manage even a moderate amount of such events.
Besides Casanova 2.0 has the same expressive power as Casanova 1.0, while
the code complexity is reduced having merged scripts and rules in a common
structure with the same properties and functionalities.

In Chapter 2 we will analyse in detail the first version of Casanova, in-
troducing its main architecture and internal structure. Then we will expose
its flaws and try to propose a new design eliminating them. We will present
an informal overview of Casanova 2.0 and then give its formal syntax and
semantics definition.

In Chapter 3 we will examine the compiler architecture, which is based on
F# open-source compiler, describing the lexer/parser component, and finally
an implementation of a state machine to manage the internal script engine.

In Chapter 4 we will show a fully-fledged game in Casanova 2.0, and then
show a comparison between the benchmark sample written in Casanova 1.0
and Casanova 2.0.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Casanova: a language for video
games

Casanova 1.0 is a language thought to relieve programmers of dealing with the
time and synchronization issues described below and to manage the drawing
phase of the game. It uses the RSD (Rules-Scripts-Drawing) pattern: first
we update the continuous component of the game through rules, then we
manage the discrete component through scripts or coroutines and then we
draw the scene.

In this chapter we will introduce the main components used in modern
computer games and simulations. We start by giving a general overview on
how these components are implemented in the language as rules and corou-
tines, and how they are used in a Casanova 1.0 program, by summarizing the
more detailed work of G. Maggiore’s PHD thesis [12] and article on monadic
scripts [14]. We will then analyse their flaws and introduce the ideas behind
Casanova 2.0, its main differences from its first version, the reasons behind
the new language structure and finally the grammar definition and semantic
rules. Since Casanova 1.0 rule and coroutine implementations use constructs
typical of functional programming languages, we will briefly introduce them
below in order to allow the reader to fully understand the technical details.

2.1 Structure of a computer game

A computer game is a real-time application which simulates a virtual envi-
ronment. The user can interact with this environment and modify it through
a set of actions. The game is usually made of two main components: the logic
engine, which updates the entities and rules of the game, and the graphics
engine which draws them after the previous update. These two components

11

12 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

are called by a structure called game loop. Each iteration of the game loop
is called frame.

The game loop keeps invoking the update function, which updates the
game logic, and the draw function, which draws the game components. The
update phase is made to reflect changes due to game logical rules (such as
physics or user-uncontrollable entity interactions) or to user input interac-
tions. The draw phase re-draws the game entities to reflect the changes made
at the previous step (update). We know from multimedia video rendering
techniques [10] that several times the next frame can be computed differ-
entially with respect to the previous frame, in order to save computational
time (and in this case also memory space). This method is based on the
assumption that, in a video, there are only small changes between the cur-
rent frame and the previous one if the sampling is high enough (excluding
the case where objects pop up instantly in the next frame, but they rarely
occurs). In computer games this assumption does not yield since we have
several entities moving across the screen or special effects created to respond
a user input (for instance in games with destructible environments, when a
wall is destroyed, the fragments of the wall are actually entities ”spawned”
by the game engine and made fly around giving them a physical impulse), so
keep tracking of which entities must be re-drawn is only a waste of compu-
tational time. For this reason it is used a method called immediate mode[9],
where all the scene is re-drawn at every frame.

From the previous considerations, we can define the game structure in a
F# -like syntax as follows1:

type Game =
{

Update : f l o a t −> Unit
Draw : Unit −> Unit

}

The game loop will be a function which takes as input a value of type Game

and keeps invoking the Update and Draw functions at each iteration.

l et game loop (game : Game) : Unit =
l et rec main loop (t : f l o a t) : Unit =

l et t ’ = getTime ()
l et dt = t ’ − t
do game . Update dt
do game . Draw ()

1Unit is a value used in functional programming which has a semantic similar to that
of the void keyword used in imperative languages such as C or Java.

2.1. STRUCTURE OF A COMPUTER GAME 13

do main loop t ’
do main loop (getTime ())

From this definition we can infer that a change on a property of a game
entity (such as its velocity, acceleration) could be expressed as a differential
equation whose solution is numerically computed by subdividing the domain
into intervals of size h = ∆t and using one of the several numerical algorithms
to solve Ordinary Differential Equations (ODE).

For instance, let us consider a car accelerating at K m/s2, with velocity
function v(t) and position function p(t). The game loop updates the position
and velocity at time t = 0, t = h, t = 2h, ... The dynamics are described by
the following system of differential equations:

dp(t)

dt
= v(t)

dv(t)

dt
= K

(2.1)

We can solve the previous system using the forward Euler method[15]. This
method approximates the first derivative with the forward difference scheme,
that is

df(t)

dt
= δ+(t) =

f(t+ h)− f(t)

h
(2.2)

Substituting (2.2) in (2.1) we obtain (reminding that we set h = ∆t):
p(t+ ∆t)− p(t)

∆t
= v(t)

v(t+ ∆t)− v(t)

∆t
= K

p(t+ ∆t) = p(t) + v(t) ·∆t

v(t+ ∆t) = v(t) +K ·∆t

From the previous example we can infer that the update phase of the game
loop consists of solving the following Cauchy problem:

dw(t)

dt
= f(t, w(t))

w(t0) = w0

(2.3)

14 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

where w(t) is a function representing the state of the game, or world, at time
t, and w0 its initial state (i.e. the state generated when the data structure
representing the world is created). From (2.3) we can write a pseudo-code
for the car example updating its physical properties. The World contains
the car position, velocity and acceleration (indeed our game is made of just
one entity, which is our car). The update function will exploit the previous
approximation updating the fields of our entity as follows:

type World =
{

CarPos : Vector2
CarVel : Vector2
CarAcc : Vector2

}

l et update (world : World) (dt : f l o a t) =
world . CarPos = world . CarPos + world . CarVel ∗ dt
world . CarVel = world . CarVel + world . CarAcc ∗ dt

Euler method is very simple and computationally not expensive but it is not
very accurate. In some situations it might be required that more accurate
methods are employed, such as Ralston’s method which is a 3-staged RK-
method, whose formula is the following:

K1 = y(t)

K2 = y(t) +
1

2
∆tK1

K3 = y(t) +
3

4
∆tK2

y(t+ ∆t) = y(t) +
2

9
∆tK1 +

1

3
∆tK2 +

4

9
∆tK3

(2.4)

Method (2.4) is more accurate than Euler’s but it is computationally more
expensive, since at each frame it must compute Ki, i = 1, 2, 3 and then up-
date the function y(t). This may cause the game loop to process less frames
per second, resulting in a less smooth game rendering and causing a phe-
nomenon called stuttering, where the user experiences an abrupt update of
the frame. Usually a trade-off between precision and accuracy must be per-
formed depending on the situation: if the simulation does not require a high
numerical precision but a smooth rendering then we opt for simpler but faster

2.2. SYNCHRONIZATION AND STATE MACHINES 15

numerical methods, while if the simulation requires a high numerical preci-
sion we choose more accurate numerical methods but the processed frames
per second might be much lower. Usually I/O-bound simulations, such as
Real-Time Strategy games or other kinds of games where the response to
user inputs must be quick, favour higher frame rates instead of accuracy,
while non-interactive simulations (such as a simulator which simulates the
flow of a liquid inside a pipe) where just small adjustments are made favours
precision instead of frame rate. More generally one should choose a less com-
putationally expensive method as long as the visual artefacts, due to a rough
approximation of differential equations, are not perceivable by the user.

2.2 Synchronization and state machines

The previous section showed how a game deals with continuous events, such
as physical laws related to the behaviour of one or more entities. Games are
also made of discrete events, which are triggered when a specific condition is
verified or a certain amount of time has passed.

Let us consider a simple example where a user can activate a light in the
world: the light is turned on if the user press key1 and key2 in sequence
within 0.3 seconds. The first naive attempt to code this into the Update

function could be implemented by a busy waiting technique, where the func-
tion indefinitely loops until the user presses key1, register the time when
exiting the loop, then starts looping again waiting for key2 to be pressed,
measuring the time again after this condition is satisfied, and finally checking
if the time difference is less than 0.3 seconds.

while (i s k e y u p (key1)) do s l e e p (0)
l et t = getTime ()
while (i s key down (key2)) do s l e e p (0)
l et t ’ = getTime ()
l et dt = t ’ − t
i f dt < 0 .3 then

do l i g h t o n ()

This solution has a major flaw due to the fact that the game loop is locked
inside a while loop until a user performs the combination of those two keys.
This will cause the rendering to stop because the update function will not
terminate until the input allows it to break out of the loops. An attempt to
improve this solution might be using a thread for each waiting conditions.
Unfortunately, in a general case where the waiting conditions are not only 2
but arbitrary, the thread generation and management would waste too much

16 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

memory and CPU time.
The traditional solution to this problem is to build a state machine, for-

malized by the following

Definition 2.1. A State Machine is a tern M = (S, F,G) where

• S = {s1, s2, ..., sn} is a finite set of states.

• F = {fi,j : i, j = 1, ..., n} is a set of transition functions from si to sj
whose output determines the next state of the machine.

• G = {gi : i = 1, ..., n} a set of functions executed at the state si.

Informally, a state machine is made of a finite number of states, each pair of
states is associated to a function which determines when the machine changes
its state from si to sj, and at each state transition, a function related to the
current state is executed.

Going back to the previous example, our state machine will be made of 4
states: the first state is the one related to the first waiting condition (key1
is pressed), the second one is related to the second waiting condition (key2
is pressed within 0.3 seconds) and it is parametric with respect to time. The
third and fourth are respectively Success or Fail, which represent the fact
that the user manages successfully to hit the key combination within the
given time. A F# pseudo-code implementation is given below:

type StateMachine =
| Wait1
| Wait2 of f l o a t
| Success
| Fa i l u r e

The state machine is updated in the following way:

l et t r a n s i t i o n (sm : StateMachine) (dt : f l o a t) =
match sm with
| Wait1 −>

i f i s key down (key1) then Wait2 (0 . 3)
else Wait1

| Wait2 (t) −>
i f t <= 0.0 then Fa i l
else i f i s key down (key2) then Success
else Wait2 (t − dt)

| Success −> Success
| Fa i l −> Fa i l

2.2. SYNCHRONIZATION AND STATE MACHINES 17

l et s t a t e f u n c t i o n (sm : StateMachine) =
match sm with
| Success −> do l i g h t o n ()
| −> ()

As we can see from the code above, coding a simple statement such as
”To activate the light press key1 then key2 within 0.3 seconds” is actually
a very hard task. Besides, the logic of the program itself is hidden behind a
very complex structure such as a state machine. Furthermore, the pseudo-
code above makes use of syntactical structures, such as Discriminate Unions,
which are available only in functional languages. Writing the definition of
the state machine in an imperative language, such as C++ or C#, would
be much more difficult. Indeed one might think that discriminate unions
are equivalent to enumerations, available in C++,Java and C#, but they
are much more expressive: an enumeration binds an integer to a ”name”, a
discriminate union allows multiple parametric constructors for the same data
type (such as in the case of Wait2 wich takes a float as argument).

One way to implement a discriminate union in an object-orientated im-
perative language would be through enum and class variables. For example,
the following Java-like pseudo-code implements the state machine:

public class StateMachine
{

enum State {Wait1 , Wait2 , Success , F a i l } ;

State s t a t e ;
double t ;

public void t r a n s i t i o n (f loat dt)
{

switch (s t a t e)
{

case Wait1 :
i f (i s key down (key1))
{

s t a t e = Wait2 ;
t = 0 . 3 ;

}
break ;

case Wait2 :
i f (t <= 0 . 0)

s t a t e = Fa i l ;
else i f (i s key down (key2))

s t a t e = Success ;
else

18 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

t = t − dt ;
break ;

default :
return ;

}
}

public void s t a t e f u n c t i o n (Light l i g h t)
{

switch (s t a t e)
{

case Success :
l i g h t . l i g h t o n () ;
break ;

default :
return ;

}
}

}

Furthermore we might need to run concurrently two different tasks and
terminate their execution as soon as one of them ends. This leads to an
even more complex state machine, since we need to keep executing their
code at each frame until one of them terminates and suspend the execution
of the other one. As we will see in Section 2.5, this problems are usually
solved implementing a scripting language which supports synchronization
and waiting primitives.

2.3 General structure of Casanova

The formal grammar definition and semantics of Casanova language will be
presented in Section 2.7 for its new version. Here we will give a brief and
informal overview of the structure of a Casanova program, in order to better
understand the implementation choices.

Casanova 1.0 is implemented in F#, thus it is not compiled, rather inter-
preted. Casanova uses the Rule-Script-Drawing pattern (RSD):

• rules manage the continuous aspects of the game.

• scripts manage the discrete (or irregular) aspects of the game.

• The drawing engine draws the scene after rules and scripts have been
run in the current frame.

2.3. GENERAL STRUCTURE OF CASANOVA 19

In the considerations below, we will analyse the mechanism to update
rules and run scripts, but we will not consider the draw function which is
implemented using an external graphics library and it is not in the scope of
this thesis.

A Casanova program is made of a data structure called world, which is a
container for all the elements and data used in the game. This data structure
is unique, i.e. there cannot be more than one world. The elements of the
game are called entities.

World and entities are implemented in F# using the record data structure.
A record is made of a set of fields and possibly methods associated with it,
as follows:

type R =
{

F1 : T1
F2 : T2
. . .
Fk : Tk

}
member t h i s .M1(a11 , a12 , . . . , a1m1}) =

//body of M1
member t h i s .M2(a21 , a22 , . . . , a2m2) =

//body of M2
. . .
member t h i s .Mn(an1 , an2 , . . . , anmn) =

thus, the world and entities can be defined in the same way

type World =
{

// world record d e f i n i t i o n
}

type Entity1 =
{

// e n t i t y 1 record d e f i n i t i o n
}

. . .
type EntityN =
{

// e n t i t y N record d e f i n i t i o n
}

20 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

Rules can be implemented as methods of the record representing the entity
(or world). In order to distinguish rules from standard methods, Casanova
uses the convention that a rule must have the name of the field it modifies
followed by Rule. Besides, each rules takes 3 input parameters: world, self,
and dt, that are respectively the instance of type World, the instance of the
entity whose field is being updated, and the discretization step seen in Section
2.1. For example if a rule modifies the field Fi of an entity, its definition must
be:

s t a t i c member FiRule (world , s e l f , dt) = . . .

Rules are also associated to a data container implementing the double buffer-
ing technique. This technique employs two copies for a value, called v and
v′. To avoid race conditions and all the other conflicts arising from the par-
allel execution of multiple functions, each rule reads from v and writes in v′.
Thus, fields associated to a rule must have type Rule<’a> or RuleList<’a>
(in the case of a collection).

Assuming we have a field of type Rule<int>, updating a Rule container
is done in the following way:

s t a t i c member FiRule (world , s e l f , dt) = s e l f . Fi + 1

If we have a RuleList<int> then the update must be done using a List
Comprehension in the following way:

s t a t i c member FiRule (world , s e l f , dt) =
[for x in s e l f . Fi do

y i e l d x + 1]

The important thing to remember is that the return value of a rule must
be of the same type of the field it is updating. So in the case of Rule<’a>

the return type must be ’a, in the case of RuleList<’a> the return type
must be List<’a>. That is why, in the case of a RuleList, we use a list
comprehension to build a list from the current one with the updated values.
Note that, in the previous examples, we used neither the world nor the dt

arguments, because we just wanted to increment by 1 the value of the field
at each frame, but updating the velocity of an entity requires the following
code:

s t a t i c member Ve loc i tyRule (world , s e l f , dt) = s e l f .
Ve loc i ty + s e l f . Acc e l e r a t i on ∗ dt

Furthermore, the interpreter makes use of attributes to distinguish world and
entity records from standard F# records. The syntax is the following:

2.4. RULE IMPLEMENTATION 21

type [<CasanovaWorld>] World = . . .
type [<CasanovaEntity>] Ent i ty I = . . .

A Casanova program consists of a set of world and entity definitions. The
program entry point (main function) takes as argument a world record and,
using the interpreter, updates the rules. Besides, in this function is also
possible to run coroutines (or scripts) to manage the discrete events of the
game (such as inputs, events associated to a specific condition, etc.). In the
following sections we will describe how the interpreter updates rules and runs
scripts.

2.4 Rule implementation

The updating mechanism for rules makes use of Reflection to read the struc-
ture of the world and entity definitions and update its fields. Reflection is a
set of libraries available in some languages (including F#) which allows to
examine and modify the structure and behaviour of a program at runtime.
Using reflection we can start from the World record and recursively examine
its fields and update them if they are marked as rule containers. If one of the
field is an atomic type then we have reached a leaf of the recursion tree and
we stop the recursion. Otherwise we recursively decompose the non-atomic
types and inspect their structure in search of other rules to update. the
traversal scheme is shown in Figure 2.1.

We will start examining a naive version of the traversal, which, at each
frame, traverses all the game structures and updates the rules accordingly.
We then present an optimization of this method. Since both solutions make
use of F# active patterns, which we will briefly introduce below.

2.4.1 Active Patterns

In functional programming languages we have a more expressive version of
the standard switch statement. This structure called match allowed to test
not only a condition on an integer (such as in Java or C++) but also on
object constructors such as in Discriminate Unions, as shown in Example
2.1.

Example 2.1. Let us suppose we want to implement a weekly calendar,
where each day is paired with a string defining a memo. Appointments can
be assigned only in a work day (i.e. not Saturday or Sunday). We can define
it as a list of Day defined through discriminate unions, which are objects
supporting multiple constructors:

22 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

Figure 2.1: Scheme of Casanova traversal

type Day =
| Monday of s t r i n g
| Tuesday of s t r i n g
| Wednesday of s t r i n g
| Thursday of s t r i n g
| Friday of s t r i n g
| Saturday
| Sunday

type Calendar = Day l i s t

we want to implement a function returning the appointment contained in
the string contained in the discriminate union. We can use the match case
to see which day is the one we passed as argument:

l et get appointment (day : Day) : s t r i n g =
match day with
| Monday(s)
| Tuesday (s)

2.4. RULE IMPLEMENTATION 23

| Wednesday (s)
| Thursday (s)
| Friday (s) −> s
| Saturday
| Sunday −> ”No appointments during ho l i day s ”

Active Patterns allow to define named partitions to subdivide input data
as in the case of discriminate unions. Example 2.2 shows the use of active
patterns to determine if an integer is even or odd.

Example 2.2. Let us suppose we want to implement a function which tells
us if a number is even or odd. We could of course return a boolean which is
true if the number is even, false otherwise. A more elegant way of doing
this in F# is using active patterns.

l et (| Even |Odd |) input =
i f n % 2 = 0 then Even else Odd

As we can see the function return a value Even if the number is even, Odd
otherwise. We can use a switch statement to print the answer in the following
way:

l et TestNumber input =
match input with
| Even −> p r i n t f n ”%d i s even” input
| Odd −> p r i n t f n ”%d i s odd” input

2.4.2 Unoptimized traversal

The traversal function takes as input the World type and traverses its fields,
and recursively all the fields of the entities, by using reflection. When we
encounter a type we traverse its components in turn. When we encounter
a Casanova record (a drawable component or a user-defined entity) we in-
voke on casanova record function which either executes draw operations or
evaluates and executes the rules. This function makes use of active patterns
on the input type as described in Section 2.4.1 to hide reflection operations
(that are actually executed inside the active pattern).

l et rec t r a v e r s e e n t i t y
(t s e l f : Type)
(world : ’ world) (s e l f : obj) (dt : f l o a t <s>)
on casanova record =

match t s e l f with

24 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

| RefType (arg) −> ()
| VarType (arg) | RuleType (arg) −>

do t r a v e r s e e n t i t y arg world ! s e l f dt on casanova record
| ListType (l i s t a r g) −>

for x in s e l f do
do t r a v e r s e e n t i t y l i s t a r g world x dt

on casanova record
| UnionType (ca s e s) −>

l et case , parameters = g e t c a s e s e l f
for parameter , parameter type in parameters do

do t r a v e r s e e n t i t y parameter type world parameter dt
on casanova record

| CasanovaDrawable −>
do on casanova record world s e l f dt

| CasanovaEntity () −>
do on casanova record world s e l f dt
for f i e l d , f i e l d t y p e in g e t r e c o r d f i e l d s s e l f do

do t r a v e r s e e n t i t y f i e l d t y p e world f i e l d dt
on casanova record

| −> ()

The main drawback of this solution is the amount of time taken to execute
reflected operations. Indeed, getting a field or a method structure using
reflections is computationally very expensive, and the result is the game
spends most of the time executing reflected invocations instead of updating
the game logic itself. An optimization of this naive function is obtained
from the following consideration: the world structure does not change during
the program execution, indeed only the values of world or entity fields are
changed, but not their definition. Therefore it is useless to keep executing
reflected operations at every frame, because their result is always the same. If
we can somehow pre-cache their result, we will save a considerable amount of
computation time. This optimization can be achieved employing a functional
programming technique known as Continuation passing style, which will be
introduced below.

2.4.3 Continuation passing style

The Continuation Passing Style (CPS) employs a continuation function to
save the result of the previous recursive step and passing it to the current
step to assemble their result. Let us consider, for instance, a function which
computes the factorial of n. We recall that

n! =

{
1 n = 0, 1
n · (n− 1)! n > 1

2.4. RULE IMPLEMENTATION 25

Using CPS, when n = 0, 1 we pass the continuation function the value 1,
which is the result, otherwise we compute the factorial of n − 1 and we use
the continuation function to assemble the result of the previous recursive
step with the current one. This is obtained multiplying the argument of the
continuation function by the current number n.

l et rec f a c t c p s n f =
i f (n <= 1) then f 1
else f a c t c p s (n − 1) (fun r e s −> f n ∗ r e s)

Since we just want the continuation function to return the result, it will
be the identity function:

l et f = fun r −> r

The following example shows an execution of the CPS factorial:

Example 2.3. Let us compute the factorial of 5:

f a c t c p s 5 (fun r e s −> r e s) =
f a c t c p s 4 (fun r e s −> (5 ∗ r e s) −> 5 ∗ r e s) =
f a c t c p s 4 (fun r e s −> 5 ∗ r e s) =
f a c t c p s 3 (fun r e s −> 5 ∗ 4 ∗ r e s) =
f a c t c p s 2 (fun r e s −> 5 ∗ 4 ∗ 3 ∗ r e s) =
f a c t c p s 1 (fun r e s −> 5 ∗ 4 ∗ 3 ∗ 2 ∗ r e s) =
5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120

This example should clarify the general structure of the Continuation
Passing Style: at each recursive step we compute the result of the previous
recursive step (that is, n − 1), and we pass it to the continuation function
which eventually assembles the final result.

2.4.4 Continuation Passing Style cached traversal

From the considerations seen in Section 2.4.3 we can infer that a way cache
the reflected operations on the program structures can be implemented using
CPS in the following way:

• We build a function which is able to traverse and update the current
entity fields (which is the previous recursion step).

• We build a function which updates the current entity and invokes the
function built at the previous step.

26 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

This can be seen as a CPS function which builds a continuation perform-
ing the real exploration of the game world. Since the reflected operations
are done within the active pattern, the result will be a function which con-
tains the pre-cached traversal operations, obtained by reflection, and which
updates the world entities. The reflected operations are invoked dynamically
calling the update function generated at the previous step through CPS. The
following program implements the cached traversal described below:2

l et rec t r a v e r s e e n t i t y
(t s e l f : System . Type)
(k : Ref<’world −> obj −> ’ b −> Unit>)
on casanova record =

match t s e l f with
| RefType (arg) −> ()

| VarType (arg) | RuleType (arg) −>
l et k aux = r e f (fun w s dt −> ())
do t r a v e r s e e n t i t y arg k aux on casanova record

t y p e p r e d i c a t e
l et k aux = ! k aux
l et k ’ = ! k

l et value = t s e l f . GetProperty (”Value”)
l et v a l u e g e t = value . GetGetMethod ()

do k := fun world s e l f dt −>
k ’ world s e l f dt
l et f = v a l u e g e t . Invoke (s e l f , [| |])
do k aux world f dt

| ListType (l i s t a r g) −>
l et k aux = r e f (fun w s dt −> ())
do t r a v e r s e e n t i t y l i s t a r g k aux on casanova record

t y p e p r e d i c a t e
l et k aux = ! k aux
l et k ’ = ! k
do k := fun world s e l f dt −>

k ’ world s e l f dt
for x in s e l f do

do k aux world x dt
| UnionType (ca s e s)−>

l et t a g r e ad e r = precompute tag reader (t s e l f)
l et un ion reade r s =

[| for case in ca s e s do y i e l d pre compute reader (case) |]

2The ! operator in F# is equivalent to the * operator in C/C++ and it is used to
access the value of a pointer.

2.5. COROUTINE IMPLEMENTATION 27

l et p a r a m e t e r t r a v e r s a l s =
[|

for case in ca s e s do
y i e l d

[
for parameter in case . Parameters do

let k aux = r e f (fun w s dt −> ())
do t r a v e r s e e n t i t y parameter k aux

on casanova record t y p e p r e d i c a t e
y i e l d ! k aux

]
|]

l et k ’ = ! k
do k := fun world s e l f dt −>

k ’ world s e l f dt
l et tag = t ag r e a de r s e l f
l et parameters = un ion reade r s . [tag] s e l f
for p , k in Seq . z ip parameters p a r a m e t e r t r a v e r s a l s

. [tag] do
k world p dt

| CasanovaDrawable −>
do on casanova record t s e l f k

| CasanovaEntity (f i e l d s) −>
do on casanova record t s e l f k
for f i e l d in f i e l d s do

let k aux = r e f (fun w s dt −> ())
do t r a v e r s e e n t i t y f t y p e k aux a t y p e p r e d i c a t e
l et k aux = ! k aux
l et k ’ = ! k
do k := fun world s e l f dt −>

k ’ world s e l f dt
l et f = f i e l d . Get (s e l f)
do k aux world f dt

| −> ()

2.5 Coroutine implementation

The discrete component of the game is managed by coroutines, which im-
plements the required synchronization and waiting primitives satisfying the
requirements introduced in Section 2.2. Indeed games generally implements
a scripting language to solve synchronization problems related to discrete
events. These languages are usually interpreted and updated by a Finite
State Machine. In Casanova we used a different approach since we took ad-

28 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

vantage of Monads, which are a typical functional language construct. They
are often used, as in our case, to define Domain Specific Languages (DSL).
Below we will introduce the Monads and show how they are used to create
a DSL with a simple example. Then, we will give a model based on Monads
to implement a scripting language.

2.5.1 Monads

In pure functional languages (such as Haskell, F# is a hybrid imperative-
functional language) the computation is thought as evaluating expressions.
There is not a concept of state or variables, as in imperative languages.
The first issue with this model is that procedural operations such as open-
ing a file or writing an output on a console cannot be treated as expression
evaluations[8]. Monads are used to solve this problem in functional pro-
gramming languages. Indeed, thanks to their properties, it is possible to
implement Domain Specific Languages to simulate a change of state.

Formally we defined a Monad as follows:

Definition 2.2. A Monad is a tern formed by:

• A Monadic type M<’a>.

• A unary function return (x:’a):M<’a>.

• A binary function bind (m:M<’a>) (f:’a -> M<’b>) -> M<’b>, usu-
ally denoted with the >>= operator.

The unary operator can be seen as a function which takes a value of type
’a and builds a Monad containing that value. The binary operator can be
seen as a function which extracts the value of a Monad, applies the given
function to it and returns a new Monad containing the result of the function
application.

The Monad must also satisfy the following axioms:

Definition 2.3 (Monad axioms). A Monad is well-defined if it satisfies the
following axioms

• m >>= return ≡ m.

• return x >>= f ≡ f x.

• (m >>= f) >>= g ≡ m >>= (fun x -> f x >>= g)

2.5. COROUTINE IMPLEMENTATION 29

The first axiom states that if you bind a value to a return function we
get the element itself. The second axiom states that binding a function f to
the result of a return is equivalent to apply the function itself to the return

argument itself. The third axiom is the associativity of the bind operator.
Optionally a Monad can also have the following properties:

• (zero): mzero >>= f ≡ mzero,m >>= (fun x -> mzero) ≡ mzero

• (sum): mplus (m1:M<’a>) (m2:M<’a>):M<’a>

The following example shows how Monads are used to build Domain
Specific Languages: let us consider the following imperative code

v1 = 5 ;
v2 = −3;
x = v1 ;
y = v2 ;
v1 = x + 1 ;
z = v1 ;
return x + y ∗ z ;

Now we want to use Monads to write the same code in a functional pro-
gramming language. We recall that, as stated above, functional programming
languages are stateless, thus there is no concept of variable. Let us assume
for simplicity that our state is made of only two integer locations. A state-
ment in this DSL will be a function which, given as input the current state,
applies a function to the state and returns the modified state as result and
the result of the function itself. So we define a statament as follows:

type Monad<’a ∗ (i n t ∗ i n t)> = i n t ∗ i n t) −> ’ a ∗ (i n t ∗ i n t))

A Statement is thus a function which takes the current state and returns a
value of type ’a (which is the computation result) and the updated state.

We now define a step function, which is a function that, given a statement
executes it on the given input:

l et s tep (s : Monad<’a ∗ (i n t ∗ i n t)>) : ’ a ∗ (i n t ∗ i n t)) = fun
m −> s m

Now let us implement the unary operator. According to the axioms, the
return function must take a value of type ’a and build a monad containing
that value. In our case it must build a Statement containing that value as
result:

l et Return (x : ’ a) = Monad(fun m −> (x ,m))

30 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

The bind operator is implemented using the state passing logic used before:
given a statement and a function k, we must pass k the current state, apply
k obtaining a new value, and finally build a new statement containing the
result of k and the updated state. To get the current state we can use the
function step defined above.

l et Bind (p : Monad<’a ∗ (i n t ∗ i n t)>)
(k : ’ a −> Monad<’b ∗ (i n t ∗ i n t)>) :
Monad<’b ∗ (i n t ∗ i n t)> =

fun s −> fun m −>
l et (a , n) = step s m in s tep (k a) n

l et (>>=) p k = Bind p k

Let us examine in detail what this function does:

1. We obtain a pair containing the value to modify a and the current state
s using the function step.

2. We apply the function k to a.

3. We apply step to the result of the previous step to build the new state.

Now we can implement the functions which allow us to set and get the value
of the state. The function to get a variable should return as result the value
of the variable itself but should not alter the current state.

l et v1 = fun (s1 , s2) −> (s1 , (s1 , s2))
l et v2 = fun (s1 , s2) −> (s2 , (s1 , s2))

The function which sets the value of a variable should not return a value
(we use Unit), but it alters the current state.

l et s e t v 1 n = fun (s1 , s2) −> (() , (n , s2))
l et s e t v 2 n = fun (s1 , s2) −> (() , (s1 , n))

At this point we can rewrite the imperative code above using the bind
operator and the function to get and set variables, and to return the final
value:

s e t v 1 5 >>=
fun −> s e t v 2 −3 >>=
fun −> v1 >>=
fun x −> v2 >>=
fun y −> s e t v 1 (x + 1) >>=
fun −> v1 >>=
fun z −> r e turn (x + y ∗ z)

2.5. COROUTINE IMPLEMENTATION 31

The code above does not look very similar to the imperative one. Fortu-
nately F# allows us to map the bind operator into the following syntax: p

>>= (fun x -> ...) ≡ let! x = p ..., thus the code above becomes:

l et ! = s e t v 1 5
l et ! = s e t v 2 −3
l et ! x = v1
l et ! y = v2
l et ! = s e t v 1 (x + 1)
l et ! z = v1
return (x + y ∗ z)

which is much more similar to the imperative one. Furthermore, one could
define a Combine function which discards the result of the Bind, that is

l et Combine (p , k) = Bind (p , fun −> k)

The syntax mapping for Combine is do! k x, so the code above becomes

do ! s e t v 1 5
do ! s e t v 2 −3
l et ! x = v1
l et ! y = v2
do ! s e t v 1 (x + 1)
l et ! z = v1
return (x + y ∗ z)

F# implements monads using a class which contains all the monadic function
as methods. A full implementation of the state monad is given below:

type Monad<’a ∗ (i n t ∗ i n t)> = i n t ∗ i n t) −> ’ a ∗ (i n t ∗ i n t))
l et s tep (s : Monad<’a ∗ (i n t ∗ i n t)>) : ’ a ∗ (i n t ∗ i n t)) = fun

m −> s m
l et v1 = fun (s1 , s2) −> (s1 , (s1 , s2))
l et v2 = fun (s1 , s2) −> (s2 , (s1 , s2))
l et s e t v 1 n = fun (s1 , s2) −> (() , (n , s2))
l et s e t v 2 n = fun (s1 , s2) −> (() , (s1 , n))

type Sta teBu i lde r () =
member t h i s . Return (x : ’ a) = Monad(fun m −> (x ,m))
member t h i s . Bind

(p : Monad<’a ∗ (i n t ∗ i n t)>)
(k : ’ a −> Monad<’b ∗ (i n t ∗ i n t)>) :
Monad<’b ∗ (i n t ∗ i n t)> =

fun s −> fun m −>
l et (a , n) = step s m in s tep (k a) n

member t h i s . Combine (p , k) = t h i s . Bind (p , fun −> k)

32 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

l et s t a t e = StateBu i lde r ()

When we require to use monadic code we just write a function building the
StateBuilder:

l et m code (a1 , a2 , . . . , an) =
s t a t e {

//monadic code
}

Note that the state monad can be easily generalized using a generic type ’s

for the state instead of a pair of integer values.

2.5.2 Coroutine monad

From what described in Section 2.5.1, monads are ideal to create Domain
Specific Languages. This is our situation, where we have to implement a
scripting language to code the discrete behaviour of a game. Our solution
comes from the fact that, as seen in Section 2.2, implementing an ad-hoc
state machine produces a code which is not flexible, is hard to maintain, and
the semantics of the program is lost in a swithc (or match) structure. Let us
define an atomic element characterizing our script: a step, which represents
the state of a script. The state of the script can be either Done, meaning
the script has ended its execution, or Next. In the latter case the step must
embed a continuation marking the next operation to perform. A script will
be a function which takes no arguments and returns a step:3

type Scr ipt <’a> = Unit −> Step<’a>
and Step<’a> = Done of ’ a | Next of Scr ipt <’a>

We immediately note the similarity with the state monad: in the state monad
with return the result of the application of a function as a value of type ’a,
here the returned value can be either Done or Next. The continuation (Next)
can be used to store the world, allowing the script to modify the state of the
world, and contains the current state of the script. Note that, with this defi-
nition, a script is suspended at every bind and returns a continuation, which
is the remaining part to be executed. Furthermore, note that the definition
of the script monad is slightly different from the state monad because we do
not return a new state at each step. This is due to the fact that the field

3The keyword and is used in F# to mark mutually recursive type definitions

2.5. COROUTINE IMPLEMENTATION 33

of the world and entities are mutable, thus we can directly modify their val-
ues, while in the state monad we had considered the situation of a stateless
programming language (such as Haskell).

According to Definition 2.2, we now have to define the return and bind

operators. Returning a value does not require any further computational
steps, so we just have to wrap the result of the last step within the Done

constructor of Step.

l et Return (x : ’ a) : Scr ipt <’a>
fun () −> Done x

When we want to execute a statement, we have to try to execute the first
statement: if it is Done x, then we perform the binding and continue with
the rest of the program. If it is Next s’ then we cannot invoke the next step
yet. We will build a continuation of the script containing the invocation to
the binding from where it has stopped at the current step.

l et rec Bind (p : Scr ipt <’a>,k : ’ a −> Scr ipt <’b>) : Scr ipt
<’b> =

fun () −>
match p () with
| Done x −> k x ()
| Next p ’ −> Next (bind (p ’ , k))

We can now define a script which forces a suspension within the current
frame:

l et y i e l d : Scr ipt<Unit> =
fun () −> Next (fun () −> Done ())

This script is a function which takes no arguments and return a continuation
which does nothing (returning a Done() is like doing nothing, since the script
will not return a value, nor perform any operations).

Example 2.4. Let us consider the following code snippet (we will use the F#
monad syntax as above). Besides assume we have implemented the Combine

function as in the state monad, that the monad constructor is co, and that
s1 and s2 are other coroutines defined elsewhere:

l et example =
co{

l et ! a = s1
i f a < 5 then

do ! s2

34 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

r e turn 0
else

r e turn a
}

The code above will be mapped (using the bind operator >>= for brevity):

s1 >>= fun a −>
i f a < 5 then

s2 >>= fun −> r e turn 0
else

r e turn a

Using this monad we can implement a DSL featuring several concurrent
operators typical of threaded programs, as shown below.

PARALLEL:

The parallel operator takes two coroutines and waits until both of them has
ended their execution, returning their value as a pair.

l et rec (&&) (s1 : Scr ipt <’a>) (s2 : Scr ipt <’b>) : Scr ipt <’a ∗ ’
b>

match s1 () , s2 () with
| Done x , Done y −> Done(x , y)
| Next s1 ’ , Next s2 ’ −> Next (s1 ’ && s2 ’)
| Next s1 ’ , Done y −> Next (s1 ’ && (return y))
| Done x , Next s2 ’ −> Next (re turn x && s2 ’)

The parallel operator executes the current statement of the scripts:

• if both are done then it returns Done(x,y).

• If both return a continuation then it returns a continuation containing
the invocation of the parallel operator over the remaining part of both
scripts.

• if one is done and the other returns a continuation it returns a contin-
uation containing the invocation of the parallel operator on the script
which still has to terminate and the return of the one which has ter-
minated.

2.5. COROUTINE IMPLEMENTATION 35

CONCURRENT:

The concurrent operator executes both scripts concurrently and returns the
result of the first one to terminate.4

l et rec (| |) (s1 : Scr ipt <’a>) (s2 : Scr ipt <’b>) : Scr ipt<Choice
<’a ∗ ’b>> =

match s1 () , s2 () with
| Done x , −> Done(Choice1of2 x)
| , Done y −> Done(Choice2of2 x)
| Next s1 ’ , Next s2 ’ −> Next (s1 ’ | | s2 ’)

The code snippet shows that, if one of the scripts is returning a value, than
the operator returns that value discarding the other one. If both return a
continuation, we call the operator on the continuation of both scripts.

GUARD:

The guard operator takes two scripts and executes the second one only when
the first one returns a value.5

l et rec (=>) (s1 : Scr ipt<Option<’a>>) (s2 : Scr ipt <’b>) :
Scr ipt <’b> =

co{
l et ! x = s1
match x with
| None −> re turn ! s1 => s2
| Some v −> re turn ! (s2 v)

}

The code snippet shows that if the first script does not return a value, then
we run the operator again on the same pair of scripts. If the first script
returns a value, then we run the second script, passing the result of the first
one as argument, and then return its result.

REPEAT:

This operator takes a script and keeps executing it forever.

l et rec repeat (s : Scr ipt<Unit>) : Scr ipt<Unit>
co{

do ! s
r e turn ! (repeat s)

}

4The type Choice<’a,’b> is a type which can have either type ’a or ’b.
5The type Option<’a> is a discriminate union which can be either None (no value)

or Some x (some value x). Also, the keyword return! is a F# shortcut for let! x =

v1;return x.

36 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

WAIT:

This script interrupts the current script for the amount of seconds taken as
argument.6

l et wait (i n t e r v a l : f l o a t 3 2) : Scr ipt<Unit> =
co{

l et ! t0 = time
l et rec w a i t r e c u r s i o n () =

s c r i p t {
l et ! t = time
l et dt = (t − t0) . TotalSeconds |> f l o a t 3 2
i f dt < i n t e r v a l then

do ! y i e l d
re turn ! w a i t r e c u r s i o n ()

}
do ! w a i t r e c u r s i o n ()

}

Note that we have to call yield to allow the script to interrupt itself in
order to make the timer advance.

CONDITIONAL WAIT:

This script interrupts the current script until the predicate taken as argument
is satisfied.

l et rec w a i t c o nd i t i o n (p : Unit −> bool) : Scr ipt<Unit>
=

co{
i f p () then r e turn ()
else

do ! y i e l d
re turn ! w a i t c o nd i t i o n p

}

As for wait, we need to call yield to stop the current script execution,
otherwise the script will keep looping within the current frame.

Let us now consider the example introduced in Section 2.2. Expressing
such behaviour with our monadic DSL becomes very straightforward:

6We assume that we have defined a script time elsewhere, which returns the current
time.

2.6. FROM CASANOVA 1.0 TO CASANOVA 2.0 37

l et l i g h t o n () =
co{

do ! w a i t c o nd i t i o n (fun () −> i s key down (key1))
l et ! x = (w a i t c o nd i t i o n (fun () −> i s key down (

key2)) | | (wait 0 . 3 f))
match x with
| Choice1of2 −>

do l i g h t o n ()
re turn ()

| Choice2of2 −> r e turn ()
}

The script waits until key1 is pressed and then invokes a concurrent operator
over a script which waits for key2 to be pressed and a script which waits for
0.3 seconds. If the returned value belongs to the first script it turns the light
on, otherwise it does nothing.

2.6 From Casanova 1.0 to Casanova 2.0

Casanova 1.0 has been evaluated deeply by making students build some
games with it and by building several samples on our own. The language has
revealed to be more synthetic (less lines of code for the same sample) and
faster than scripts made in Python, Lua and C#. In particular Python and
Lua suffer a performance drop, possibly due to dynamic lookups to access the
game state [12]. This loss of performance is, of course, accentuated in actual
games, where the game state is a very complex structure. Tests on students
showed that Casanova is appreciated for its expressiveness and easiness to
manipulate complex entities. In particular the rule system has shown to be
able to express complex dynamics in a very synthetic and straightforward
way. Besides, the drawing part does not require deep knowledge of geometry
and linear algebra, as in the case of programming a graphics engine from
scratch, so even 1st year students were able to implement their samples and
draw them with almost no mathematical knowledge about transformation
matrices, vector operations, etc.

Casanova 1.0 however suffers of some flaws:

• A loss of performance in scripts due to the monadic implementation.

• An overlapping semantics between rules and scripts.

38 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

• Advanced users want easier integration with better libraries.

• Advanced users want better code reuse mechanisms in line with their
knowledge of Object-Oriented languages.

The first point is due to the fact that, as we explained above, monads
require a heavy usage of anonymous functions or lambda abstractions (called
fun in F#). The F# compiler converts these functions into classes, which
contains an invoke method to run the actual body of the function. Of course
this implies that, for each bind, the program must access the object layout
and then access the dispatch vector to run the method. This point can be
solved implementing an actual compiler for our language to get rid of the
monadic class.

The second point comes from the student evaluation: we noticed that the
rules and scripts are used almost in an exclusive way by each test subject.
Many students use scripts just when they have to code behaviours depending
on a user input, but in several cases even discrete time events where modelled
as rules implementing an internal counter.

The main challenge of designing Casanova 2.0 will be focused around
defining a new language structure unifying rules and scripts, and add Object-
Oriented features to the new version of the language.In Section 2.7 we will
redesign the language to reflect the feedback we received from our test sub-
jects, in Chapter 3 we will describe the compiler architecture.

2.7 Casanova 2.0 language definition

We will define our new languages covering the following steps:

1. Removing the separation between rules and scripts.

2. Adding Object-Oriented code structures.

3. Supporting declarative SQL-style queries on entities.

2.7.1 Unifying rules and coroutines

Unifying rules with scripts requires to take the expressive power of Casanova
and reproduce it with a smaller set of primitives. Besides the unification
process does not simply consist in taking what we already have in Casanova
and putting it inside rules, rather in reducing it inside rules. This is due to
the fact that rules appear to be the most intuitive and expressive construct
of Casanova.

Our new design will allow:

2.7. CASANOVA 2.0 LANGUAGE DEFINITION 39

• rules over multiple fields.

• interruptible rules as scripts were in Casanova 1.0.

• overlapping rules: multiple rules will be able to update the same fields.

This means that if a single entity can be updated according to multiple logics,
then these logics are stored separately.

Let us consider the case of a physical body without rotation. This body
has a position and a velocity updated according to the approximation of
the kinematics differential equations shown in Section 2.1. A physical body
also tracks colliders, which are those bodies colliding with the current entity.
When a collider is found, then a new rule updating both position and velocity
is run. The following code snippet describes this behaviour:7

e n t i t y Body =
{

Pos i t i on : Vector2<m>
Ve loc i ty : Vector<m/s>
Radius : f l o a t32<m>
r e f C o l l i d e r s : L i s t<Body>

r u l e Pos i t i on = y i e l d s e l f . Po s i t i on + s e l f . Ve loc i ty ∗ dt
r u l e Ve loc i ty = y i e l d s e l f . Ve loc i ty + G ∗ dt
r u l e C o l l i d e r s =

l et cs =
from b <− ∗
where b <> s e l f && c o l l i d e s (s e l f , b)
s e l e c t b

y i e l d cs
r u l e Pos i t ion , Ve loc i ty =

w a i t u n t i l (C o l l i d e r s . Length > 0)
//compute the dynamics of the c o l l i s i o n s t o r i n g i t in P

and V . . .
y i e l d P,V

}

In the code above the statement yield is used to tell the rule to update
the field Colliders (it has a similar semantics as a return statement in
imperative languages).

7Note that, for brevity, we have omitted the fact that Casanova supports units of
measure associated to constant values. A unit of measure is specified in this way: let v

= l<m>, where l is one of the constant literals available in F# and m is a defined unit of
measure. Also, note that the keyword ref marks a field which is not touched during the
world traverse, but just defined in the current entity to be readable.

40 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

The new features can immediately be seen in the previous example: we
have a SQL-like statement to perform a query over an entity 8.We have a
joint rule which modifies two fields at the same time. The same rule is also
an interruptible rule since it has a wait until statement in its body.

2.7.2 Object orientation

A first feature typical of Object-Oriented languages available in Casanova
2.0 is inheritance. Let us suppose we want to build a game with ships which
behaves like the physical body described in Section 2.7.1. We can simply
inherit the Body entity and just define the code to update its additional
fields9

e n t i t y Ship =
{

i n h e r i t Body
S p r i t e : S p r i t e

r u l e S p r i t e . Po s i t i on = s e l f . Body . Pos i t i on ∗ 1<p i x e l
/m>

}

Let us suppose we want to add a new entity Shipyard, which behaves like a
physical body as well. We will write

e n t i t y Shipyard =
{

i n h e r i t Body
. . .

}

Thanks to the inheritance, we can reuse the code defined in Body to simulate
the same behaviour also for Ship and Shipyard. Note that Casanova 2.0
supports constructor for entities using the keyword create:

e n t i t y Body =
{

Pos i t i on : Vector2<m>
Ve loc i ty : Vector<m/s>

8Actually a similar statement was available in Casanova 1.0, although it was not part
of the language itself, in the sense it was not part of the syntax, since the language uses
F# syntax and such statement is not available. For further information see [?]

9A Sprite is a data structure used to draw entities by the graphics engine, which is
not in the scope of this work.

2.7. CASANOVA 2.0 LANGUAGE DEFINITION 41

Radius : f l o a t32<m>
r e f C o l l i d e r s : L i s t<Body>

r u l e Pos i t i on = y i e l d s e l f . Po s i t i on + s e l f . Ve loc i ty ∗ dt
r u l e Ve loc i ty = y i e l d s e l f . Ve loc i ty + G ∗ dt
r u l e C o l l i d e r s =

l et cs =
from b <− ∗
where b <> s e l f && c o l l i d e s (s e l f , b)
s e l e c t b

y i e l d cs
r u l e Pos i t ion , Ve loc i ty =

w a i t u n t i l (C o l l i d e r s . Length > 0)
//compute the dynamics of the c o l l i s i o n s t o r i n g i t in P

and V . . .
y i e l d P,V

c r e a t e (x , y , r) =
{

Pos i t i on = Vector2 . Create (x , y)
Ve loc i ty = Vector2 . Zero
Radius = r
C o l l i d e r s = []

}
}

A constructor can also be used with inheritance:

e n t i t y Ship =
{

i n h e r i t Body(x , y , r)
S p r i t e : S p r i t e

r u l e S p r i t e . Po s i t i on = s e l f . Body . Pos i t i on ∗ 1<p i x e l /m>

c r e a t e (x , y , r , t ex tu re) =
{

S p r i t e . Create (// arguments of s p r i t e c r ea t i on , i n c l u d i n g
tex ture . . .)

}

}

The language supports multiple inheritance, since for example an entity
might be physical,damageable,drawable,damager and many other common
components which implement their own code which can be reused.

Note that rules are updated in cascade, this means that, when inheriting
an entity, if both the inherited entity and the inheriting one have a rule over
the same field, this is updated twice. For instance, consider the following

42 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

code snippet:

e n t i t y A() =
{

Counter : i n t
r u l e Counter = = y i e l d Counter + 1

c r e a t e () =
{

Counter = 0
}

}

e n t i t y B() =
{

i n h e r i t A()

r u l e A. Counter = y i e l d A. Counter + 2
}

In this example Counter is updated twice and incremented by 3, since the
rule in A updates it by 1, and then, in cascade, the rule in B is called to
update the same field by 2.

A rule can be marked as virtual, meaning that inheritors can override
the rule, in order to avoid the phenomenon described above. Let us consider
an alternative version of the previous code snippet:

e n t i t y A() =
{

Counter : i n t
v i r t u a l r u l e Counter = y i e l d Counter + 1

c r e a t e () =
{

Counter = 0
}

}
e n t i t y B() =
{

i n h e r i t A()

r u l e A. Counter = y i e l d A. Counter + 2
}

In this case Counter is incremented only by 2 because B overrides the rule in
A.

Finally a rule can be marked as abstract, meaning that inheritors must
provide an implementation of that rule:

2.7. CASANOVA 2.0 LANGUAGE DEFINITION 43

e n t i t y A() =
{

Counter : i n t
ab s t r a c t r u l e Counter

c r e a t e () =
{

Counter = 0
}

}
e n t i t y B() =
{

i n h e r i t A()

r u l e A. Counter = y i e l d A. Counter + 1
}

Let us consider the following example, where an entity inherits more than
one entity, each one having its Position field, which must be updated.

i n h e r i t PhysicsBody
i n h e r i t DamageGiver
i n h e r i t DamageTaker

r u l e DamageGiver . Po s i t i on = y i e l d PhysicalBody . Pos i t i on
r u l e DamageTaker . Po s i t i on = y i e l d PhysicalBody . Pos i t i on

In this situation, the inheritor must provide a rule to update both fields of
the other inherited entities. This situation is not only error-prone but also
inefficient because it requires needless copies of the same field.

To avoid this situation a field can be declared as abstract, this means
that an entity declares the field but does not store it. In this way, the
inherited entities in the snippet above can declare Position as abstract,
and having the ”real” field stored in the inheritor.

An additional method is that of declaring a field virtual. A virtual
field, much like an abstract one, may be overridden. When this happens,
then the two declarations are essentially merged into a single concrete field
shared by both entities. If, for example, we declared the Position field inside
PhysicsBody as virtual, then we could inherit all the base entities with the
same code above. If we need to inherit just the PhysicsBody though, then
we can skip the redefinition of the Position field:

44 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

2.7.3 Language syntax and semantics

The syntax of the language (here presented in Backus-Naur form) is rather
short. It allows the declaration of entities as simple functional types (records,
tuples, lists, or unions). Records may have fields and may inherit from other
records. Rules contain expressions which have the typical shape of functional
expressions, augmented with wait, yield, and queries on lists.

<Program > : := <moduleStatement>
{< openStatement >}

<worldDecl > : := world id ”=” <worldOrEntityDecl>
<ent i tyDec l> : := e n t i t y id ”=” <worldOrEntityDecl>
<worldOrEntityDecl> : :=

”{”
[i n h e r i t id {” , ” id }]
<ent i tyBlock>

”}”
<ent i tyBlock> : := {< f i e l d D e c l >} {<ru leDec l>} {<const ructor>}
<formal> : := id [” : ” <type>] {” , ” <formals>}
<f i e l d D e c l> : := [v i r t u a l] id [” : ” type] [”=” <expr>] |

abs t r a c t id [” : ” <type>]
<ru leDec l> : :=

([o v e r r i d e | v i r t u a l] r u l e id {” , ” id } ”=” <expr> | abs t r a c t
r u l e id {” , ” id }) ”=”

<expr>
<cons t ructor> : := c r e a t e ”=” [< l e tB ind ings >] ”{” <createBody> ”}

”
<l e tB ind ings> : := l et id ”=” <expr>
<createBody> : := id ”=” <expr>
<type> : := i n t [”<” measureType ”>”]

| boolean
| f l o a t 3 2 [”<” measureType ”>”]
| Vector2 [”<” measureType ”>”]
| Vector3 [”<” measureType ”>”]
| s t r i n g
| char
| l i s t ”<” type ”>”
| <type> ” [” ”] ”
| <gener i c>
| id

<gener i c> : := ” ’ ” id
<measureType> : := ”1”

| id
| <measureType> ”∗” <measureType>
| <measureType> ”/” <measureType>

<expr> : := (∗ t y p i c a l F# expr e s s i on s such as l e t , whi le ,
e t c .)

| <queryExpr>
| wai t | y i e l d | <ari thExpr> | <boolExpr> | <

2.7. CASANOVA 2.0 LANGUAGE DEFINITION 45

l i t e r a l >
<queryExpr> : := from id [” ,” id] ”<−” id where <boolExpr>

s e l e c t <expr>

The semantics of Casanova are mostly rewrite-based[13] [11], meaning
that the current game world is transformed into another one with different
values for its fields and different expressions for its rules. The two exceptions
to the rewrite-based semantics are rendering and input. The semantics of
rendering assume that after every tick of the game loop, the drawable entities
are drawn to the screen, whereas the semantics of input assume that the
evaluation of the input functions such as IsKeyDown or GetMousePosition

looks up the latest state of the input buffers.
Let us consider the following example as an instance of rewrite-based

semantics:10

world World =
{

X : f l o a t <m>
V : f l o a t <m/s>
r u l e X’ = X + V ∗ dt
r u l e V’ =

wait (IsKeyDown (Keys . Space))
y i e l d 1<m/s>
wait 2<s>
y i e l d 0<m/s>

}

The game world needs to track information about the values of its field, but
also the current execution state of the rules over those fields. In particular
Rule V’ needs to track at which point its execution it is now, i.e. if it is at
the beginning or during the second wait statement. This implies the world
will contain 3 values, two for the fields and one for the rule.

Let us consider a long game interval, with dt = 1s, the state of the game
world would be

W = {X = 0 ; V = 0 ; r u l e V’ = wait (IsKeyDown (Keys . Space)) . . . }

Let us assume now that Space is pressed at some point. The state will be
the following:

W = {X = 1 ; V = 1 ; r u l e V’ = wait 2 . 0 . . . }

10Note that we used a different field name for the rule assignment just for the purpose
of distinguish rules from fields by name in what follows.

46 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

After dt = 1s has passed, we will obtain the following state:

W = {X = 2 ; V = 1 ; r u l e V’ = wait 1 . 0 . . . }

When the timer has exhausted Rule V’ goes back to the beginning and V is
zeroed again thanks to the yield statement returning 0.

More formally let us define a transformation [[•]] from entities into entities
applying rules and replacing field values. The transformation also applies
itself recursively to all fields. We will assume, as above, that world is the
game world and dt is the amount of time elapsed from the last tick. Besides,
let us define the semantics for a single rule as a transformation 〈•〉 which
maps expressions in a pair (e′, v′) where e′ is the new body of the rule (an
expression as well), and v′ is the new value of the field.

[[type T = { f 1 : F1 ; f 2 : f 2 ; . . . ; fn : Fn ;
r1 = R1 ; . . . ; rm = Rm}]] (w : World , t : T, dt : f l o a t<s>)

∀fi, rj : rj = fi, fi, rj = 〈t.Rj〉 (w, t, dt, [[t.fi]](w, t, dt), Rj)
∀fi : @rj , rj = fi fi = [[t.fi]](w, t, dt)

The transformation above takes each field with a corresponding rule and
produces a new value for both the field and the rule itself. For all fields,
whether or not they have been transformed by the rule, we then reapply the
original semantics. When the evaluation of the rule body reaches the end,
then the semantics returns the previous value of the field f , as the new value,
and the initial body of the rule as the new body.

〈ε〉(w, t , dt , f ,R) = f ,R

For all other types, such as lists, discriminate unions, tuples, the operator
[[•]] is simply applied respectively to all its elements, union cases, compo-
nents.

For most of terms the semantics are the same of pure functional program-
ming languages:

〈 l et x = e1 in e2 〉(w, t , dt , f ,R) =
〈 e2 [x → e1 [world → w, s e l f → t , dt → dt]] 〉(w, t , dt , f ,R)

〈 i f t rue then e1 else e2 〉(w, t , dt , f ,R) =
〈 e1 〉(w, t , dt , f ,R)

〈 i f f a l s e then e1 else e2 〉(w, t , dt , f ,R) =
〈 e2 〉(w, t , dt , f ,R)

. . .

The terms that require special care are those involving waiting or yielding:

〈 wait 0<s>;k 〉(w, t , dt , f ,R) = 〈 k 〉(w, t , dt , f ,R)
〈 wait wt ; k 〉(w, t , dt , f ,R) = 〈 wait (wt − dt) ; k〉(w, t , dt , f ,R)
〈 y i e l d f ’ ; k〉(w, t , dt , f ,R) = f ’ , k

2.8. COROUTINE OPERATORS IN CASANOVA 2.0 47

The first rule is the basic step of the next recursive rule . A wait of 0 seconds
means evaluating immediately the continuation k of the rule.

The second rule states that a wait of wt seconds returns the set of fields
followed by a new code for the rule where the wait time is now wt − dt.

2.8 Coroutine operators in Casanova 2.0

By removing coroutines from Casanova 1.0 we lose all the concurrency opera-
tors defined in Section 2.5.2. Thus, it would appear that Casanova 2.0 is less
expressive than Casanova 1.0, since we cannot make use of functions which
implement parallel and concurrent behaviours as for coroutines. Below we
try to implement some of the operators defined for the coroutine monad to
show that, using interruptible rules, we can achieve the same expressiveness
of coroutines.

WAIT and CONDITIONAL WAIT

This two operators are already implemented as language primitives in Casanova
2.0, and they are identical to their counterparts in the coroutine monad.

PARALLEL

The implementation of the parallel operator is not straightforward. We recall
that this operator runs two coroutines in parallel and waits until both return
a result. We can model a coroutine as an entity which contains two fields:
an input parameter and one containing its state. The coroutine will be
constructed setting its state to Running which, when it has to return a result,
will be changed to Done. Its only rule will act on the result and will contain
the code which the coroutine has to execute. The following code gives the
full implementation:

e n t i t y State <’T> =
| Done of ’T
| Running

e n t i t y Coroutine =
{

Input : Option<’T1>
State : State <’T2>

}

r u l e Input , State =
w a i t u n t i l Input = Some input

48 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

// execute co rout ine code
y i e l d None , Done (x)

Create (input : ’T1) =
{

Input = Some input
State = Running

}

As we can see, the coroutine waits until it has an input, it executes the
code and then sets its input to None to stop the rule, and changes its state
to Done.

We now define a coordinator entity. This entity will contain two fields
referencing the coroutines, and a field containing the result of the parallel
operator. The result is an option since it has a value only when the result of
the parallel is produced . This entity constructs the two coroutine entities
and runs them, waiting until they both produces a result.

e n t i t y E =
{

C1 : Option<Coroutine>
C2 : Option<Coroutine>
V : Option<’a ∗ ’b>

}

r u l e C1 , C2 ,V =
w a i t u n t i l C1 = Some(c1) && C2 = Some(c2)
w a i t u n t i l C1 . State = Done(x1) && C2 . State = Done(x2)
y i e l d None , None , Some (x1 , x2)

Create (input1 , input2) =
{

C1 = Coroutine . Create (input1)
C2 = Coroutine . Create (input2)
V = None

}

The rule will wait until the coroutine have been created. Then it waits until
both produces a result. When both results are ready it sets the value to the
pair containing both coroutine results.

CONCURRENT

The structure of the concurrent operator is similar, but we have to take only
the result of the first coroutine which terminates. The coordinator entity
definition is the following:

2.8. COROUTINE OPERATORS IN CASANOVA 2.0 49

e n t i t y E =
{

C1 : Option<Coroutine>
C2 : Option<Coroutine>
V : Option<’T>

}

r u l e C1 , C2 ,V =
w a i t u n t i l C1 = Some(c1) && C2 = Some(c2)
w a i t u n t i l C1 . State = Done(x1) | | C2 . State = Done(x2)
i f C1 . State = Done(x1) then

y i e l d None , None , Some x1
else

y i e l d None , None , Some x2

Create (input1 , input2) =
{

C1 = Coroutine . Create (input1)
C2 = Coroutine . Create (input2)
V = None

}

The coordinator entity waits, as usual, that the coroutine entities are created.
Then waits until either one of them returns a value. If the first one has
returned then it sets to None both coroutine entities and yields the returned
value. In this way the reference to the other coroutine entity will be set to
null and the execution of the rule of the second coroutine entity will be
stopped. If the second one has returned then both are set to null and we
return the result of the second one.

GUARD

The guard operator requires to wait for the first coroutine entity to return.
The returned value of the first coroutine entity will be passed as input to the
second one, which eventually will return its own result.

We have to change the constructor of the coordinator entity, so that it will
only construct the first coroutine entity. The second one will be constructed
after the first one returns. The definition of the coordinator entity in this
case is the following11:

e n t i t y E =
{

C1 : Option<Coroutine>

11The statement yield FieldName <- value is a variant of the yield statement which
allows to yield on just a subset of the fields modified by the rule.

50 CHAPTER 2. CASANOVA: A LANGUAGE FOR VIDEO GAMES

C2 : Option<Coroutine>
V : Option<’b>

}

r u l e C1 , C2 ,V =
w a i t u n t i l C1 = Some(c1)
w a i t u n t i l C1 . State = Done(x1)
y i e l d C2 <− Some (Coroutine . Create (x1))
w a i t u n t i l C2 . State = Done(x2)
y i e l d None , None , Some x2

Create (input1) =
{

C1 = Coroutine . Create (input1)
C2 = None
V = None

}

The coordinator rule waits until the first coroutine entity is created. Then it
waits until the first coroutine entity returns a value. Then the second corou-
tine entity is created and the result of the first one is passed as argument.
Finally it waits until the second coroutine entity returns and yields the result
in the corresponding field in the coordinator entity.

From the considerations above we showed that the new interruptible rules
introduced in Casanova 2.0 are no less expressive than coroutines, since we
can implement the concurrency operators we had previously defined.

Chapter 3

Casanova compiler

In this chapter we will examine the architecture of Casanova 2.0 compiler.
This compiler is widely based on the open-source version of F# compilers.
This choice comes from the fact that we want to maintain compatibility
among Casanova compiled programs and .NET libraries. This gives us the
following advantages:

• We can write external libraries supporting our Casanova program, such
as file readers as we will see in Section 4.1.

• We can implement interoperation between third-party .NET libraries,
such as external engines as Unity 3D, XNA or MonoGame.

• We can use F# compiler back-end to produce .NET bytecode without
writing our type checking rules and code generation procedures.

Casanova compiler will just implement the front-end, that is the lexer,parser
and Abstract Syntax Tree (AST), while it will delegate the code checking
and generation to F# type checker and back end. This can be achieved by
translating Casanova AST into F# AST, using a set of mapping functions.
The mapping is almost one to one since Casanova AST, is just a pruned and
slightly modified version of F# AST, and it will not be covered deeply by
this thesis, as it is just a mere translation from Casanova AST types into F#
AST types.

A scheme of Casanova compiler is shown in Figure 3.1. Our compiler
will take as input a Casanova source file (CNV file), and it performs the
Lexing/Parsing operations defined according to the syntax rules given in
Section 2.7.3. This will produce Casanova AST. The AST is then modified
to reflect shadowing, as described in Section 3.4, and then the rules state
machine is generated. This part will be covered by Section 2.2.

51

52 CHAPTER 3. CASANOVA COMPILER

Figure 3.1: Casanova Compiler architecture

3.1 Casanova lexer

Casanova lexer is a modified version of F# lexer. The keywords of Casanova
have been added to this lexer in order to implement the new control struc-
tures of the language, such as rule,from,where,select,world,entity. An
interesting feature of this lexer is the usage of a stack to detect the beginning
and end of a block. F# does not require block delimiters such as curly brack-
ets in Java/C++/C#, rather it uses indentation as a syntax rule to define
a block. This, unfortunately, makes F# a context-dependent language. The
context is the position of the token in the file.

When running the lexer, the compiler maintains a stack where it pushes
support tokens at the current token t context, i.e. its row and column posi-
tion, into the stack. Whenever it encounters a new token t′ it tries to close
the current block if t′ context is the same of t context, i.e. if they are aligned,
pushing a block end token. Otherwise it pushes an end coming soon and a
block begin token to signal that we are waiting to close the block in t and we
are opening a new block in t′.

Example 3.1. Consider the following code snippet

3.2. CASANOVA PARSER 53

l et f x y =
l et a = f2 x
l et b = a∗∗2 + (f3 y)
a + 2 ∗ b + (x ∗ y)

. . . / / other code

In the following scheme we represent the state of the stack after analysing
the statement to the left.

l et f x y −>
b lock beg in

l et a −>
b lock beg in
end coming soon
b lock beg in

l et b −>
b lock beg in
end coming soon
b lock beg in
block end
b lock beg in

a + 2 ∗ b + (x ∗ y) −>
b lock beg in
end coming soon
b lock beg in
block end
b lock beg in
block end
block end

The inner let bindings are closed immediately because they are in the same
context. The outer let is closed at the end, but in its body we push a
end coming soon to signal that the following block is in another context.
The end coming soon is then matched with the last block end.

3.2 Casanova parser

Casanova parser is again a modified (and pruned) version of F# parser. The
parser is defined and generated using FSYacc, which is a parser generator
for F#. In this generator each syntax rule has a name followed by a dis-
criminated union of syntax rules, each one consisting of a sequence of tokens

54 CHAPTER 3. CASANOVA COMPILER

and/or productions. Each syntax rule is followed by F# code used to in-
stantiate the corresponding structure in Casanova AST. Below we will map
the syntax definition given in Section 2.7.3 into FSYacc definitions. In what
follows we will omit the code used to generate the AST and focus only on the
grammar productions. Besides we will examine only the syntax rules related
to Casanova structures, omitting those of F#.1

WORLD AND ENTITIES:

type keyword tyconDefn tyconDefnList

TYPE COMING SOON type keyword { }
| TYPE IS HERE { }
| TYPE { }
| WORLD { }
| ENTITY { }

tyconDefn :
| typeNameInfo EQUALS tyconDefnRhsBlock

tyconDefnRhsBlock :
| OBLOCKBEGIN cnvTyconDefnRhs opt OBLOCKSEP opt c l a s sDe fn

oblockend opt c l a s sDe fn

cnvTyconDefnRhs :
| tyconDefnOrSpfnCnvRepr

tyconDefnOrSpfnCnvRepr :
| o p t d e c l V i s i b i l i t y braceFie ldOrRuleDec lL i s t :

tyconDefnOrSpfnCnvRepr :
| o p t d e c l V i s i b i l i t y braceFie ldOrRuleDec lL i s t

braceFie ldOrRuleDec lL i s t :
| LBRACE f i e l d O r R u l e L i s t rbrace

World and entities start with a type keyword, which can be a token world,entity

or type. It is then followed by one or more type definition (the third pro-
duction is used to define recursive types with the keyword and). Each type
definition is made of a type name, followed by a = token and type defini-
tion block. Each block is enclosed by curly brackets and contains a list of
fields,rules, and a type constructor. The body of an entity definition is the
following:

1Tokens starting with OBLOCK are the auxiliary tokens described in Section 3.1.

3.2. CASANOVA PARSER 55

f i e ldOrRu le :

/∗ SynM4emberDefn . Member ∗/
| o p t d e c l V i s i b i l i t y RULE memberCore opt ODECLEND

| o p t d e c l V i s i b i l i t y CREATE
createMemberCoreWithParams opt ODECLEND

| o p t d e c l V i s i b i l i t y CREATE createMemberCore
opt ODECLEND

| OLET o p t d e c l V i s i b i l i t y cnvF ie ld In i tCore
opt ODECLEND

| f i e l d D e c l

FIELDS:

f i e l d D e c l :
| o p t r e f ident COLON typ

A field can start with an optional reference attribute, which tells if the field
is a reference, i.e. it is not updated by the game logic when updating the
entity fields, or drawn. Each field has an ID (name) followed by a : and a
type name.

RULES:
The syntax definition for rules is the following:

f i e ldOrRu le :
| o p t d e c l V i s i b i l i t y RULE memberCore opt ODECLEND

A rule begins with optional visibility parameters (virtual,abstract), a
rule keyword and then a member core definition. A member core is a mod-
ified version of F# method core, without a method name. It accepts a list
of parameters (whose type is optionally specified), followed by a = token and
a typed sequential expression block. This block is the actual body of a rule,
and it will be examined below.

CONSTRUCTORS:
The syntax definition for a constructor is the following:

f i e ldOrRu le :

56 CHAPTER 3. CASANOVA COMPILER

| o p t d e c l V i s i b i l i t y CREATE
createMemberCoreWithParams opt ODECLEND

| o p t d e c l V i s i b i l i t y CREATE createMemberCore
opt ODECLEND

The syntax accepts two version of the constructor: one with parameters and
another with no parameters.

o p t i n l i n e createBind ingPatte rn
opt topReturnTypeWithTypeConstraints EQUALS
typedSeqExprBlock

o p t i n l i n e opt topReturnTypeWithTypeConstraints EQUALS
typedSeqExprBlock

The first production accepts arguments for the constructor (createBindingPattern)
followed by a = token and a typed sequential expression block. The second
one does not require any arguments.

SEQUENTIAL EXPRESSIONS:
Sequential expressions are the core of rules body. They contains all the

F# structures (let,while,if,for,...). For brevity we will examine only
syntax rules for new Casanova statements, skipping those available in F#.

The first statement is the wait statement, whose production is the fol-
lowing:2

| OWAIT typedSeqExprBlock hardwhiteDefnBindingsTerminator

The statement starts with a wait token and it is followed by a typed expres-
sion. Clearly the typed expression must return a floating point value, but
this constraint is checked later by the F# type checker.

The second statement is the wait until statement. The syntax is the
same of the wait statement, except for the starting keyword:

| OWAIT UNTIL typedSeqExprBlock hardwhiteDefnBindingsTerminator

Another statement is the yield statement, whose syntax is the following:

| OYIELD typedSeqExprBlock hardwhiteDefnBindingsTerminator

This statement starts with the yield keyword and it is followed by a sequen-
tial expression. Again, the grammar allows to write any sequential expres-
sion, without checking the returned type, because it will be taken care of by
the F# type checker after the mapping procedure.

2In the following productions all the tokens OWAIT,OWAIT UNTIL,etc. are auxiliary
tokens used by the lexer as described in Section 3.1.

3.3. STATE MACHINE 57

The from-where-select statement is more complex:

| FROM fromExprCondition fromExprWhere fromExprSelect

fromExprCondition :
| fromTupleExpr BAR fromLoopBinder

| fromLoopBinder

| fromLoopBinder BAR fromLoopBinder

fromLoopBinder :
| parenPattern LARROW declExpr
| parenPattern LARROW rangeSequenceExpr

The from section is defined writing an id followed by a <- operator and an
id of a field. If multiple selections are performed, they must be separated
with the | separator. The right side of <- operator might also be a ranged
expression, that is an interval of integer values. The syntax for the where

section is the following:

| OWHERE OBLOCKBEGIN typedSeqExpr oblockend

It starts with a where keyword and then it accepts a typed sequential ex-
pression. Again, checking that the type is boolean is delegated to F# type
checker. The syntax for the select section is the following:

| OSELECT OBLOCKBEGIN typedSeqExpr oblockend

It starts with a select keyword and then it accepts a typed sequential ex-
pression.

3.3 State machine

In this section we will present the implementation of our new design of rules.
We recall that our idea is merging the features of old Casanova scripts into
rules, so that we can use time primitives within a rule body. Our solution was
to implement a general and compiled version of the state machine introduced
in Section 2.2, which is non-trivial[18].

A first naive attempt of implementing a state machine was to reduce each
statement in a rule to a state in the state machine, and increase the state at
each evaluation of the rule to advance to the next statement. This solution
has, however, a major flaw, which is shown by this code snippet:

58 CHAPTER 3. CASANOVA COMPILER

r u l e X =
l et x1 = v1
l et x2 = v2
. . .
l et xn = vn
y i e l d

∑n
i=1 vi

This code is mapped to a state machine which has a state for each of the
let statements plus one for the yield statement. This means that the rule
is evaluated n+ 1 times (once for each statement), thus the body of the rule
takes (n+1) ·dt seconds to be evaluated. If dt = 1/60 seconds and n = 59 the
body of the rule takes 1 second to be fully evaluated, while clearly it should
take just dt seconds because only the yield statement alters the entity state.

A better solution is implementing the state machine as a set of code
blocks organized in a tree structure. A block has a type, a direct link to its
parent, and a state. The body of a rule is a root block, which can have several
children, depending on the time primitives and the statement defined within
it. In the current version of the compiler the block kinds are the following:

• Wait

• Wait Until

• Yield

• Foreach

• Query

• While

• Let

• If

• Then

• Else

• Atomic

• Body

3.3. STATE MACHINE 59

Figure 3.2: Wait block expression

Atomic blocks are made of uninterruptible statements (such as in the previous
example) and are executed atomically within the current frame. The other
blocks are generated according to their own rule. We will discuss separately
the generation of each type of block and their related state machine. In what
follows we will use a high-level pseudocode, but in the actual implementation
of the compiler each auxiliary data structure is translated directly into F#
AST. This choice has been made in order to help the reader, who has not a
deep knowledge of the data structure used by F# AST, to better understand
the logic behind the state machine and to provide him with readable code
(putting a constructor which takes 20 arguments into the code would indeed
make it unreadable).

3.3.1 Wait state machine

The block for a wait statement has no children and it is obtained by building
an atomic block containing all the non-interruptible statements preceding the
wait and the wait block itself. A schematic representation is shown in Figure
3.2.

The state machine for this statement is very simple, having just one state.

60 CHAPTER 3. CASANOVA COMPILER

Figure 3.3: Wait state machine

We assume that, during the block generation, we had added a field to the
current entity as a timer for the current statement. We then compare the
current timer value with the argument of the wait statement. If it is lower
we increment the timer by dt; at the next step the rule will re-evaluate the
same condition with the updated timer. Otherwise the timer has expired,
thus we reset the timer (because when we start re-evaluating the entire body
of the rule we want the timer to start from 0 again), and we increase the
state of the parent block (which might be a root block or another kind of
block),re-evaluating the rule thereafter. The pseudocode below implements
what explained above.

match p a r e n t s t a t e with
. . .
| wait (wai t t ime) −>

i f tk < wait t ime then
tk := tk + 1

else
r e s e t t i m e r (tk)
inc (p a r e n t s t a t e)
r e e v a l u a t e r u l e ()

| n e x t s t a t e −>
//<− a f t e r running the else block the cur rent s t a t e i s t h i s

Figure 3.3 shows a state machine diagram for the wait statement.

3.3.2 Wait Until state machine

The wait until statement block is identical to the wait block. The state
machine is only different in the fact we check if the condition passed as
argument to the wait until statement is true. If it is satisfied we increment
the parent state and we re-evaluate the rule,otherwise we just do nothing (we
return unit at the end of the match case). The pseudocode below implements

3.3. STATE MACHINE 61

Figure 3.4: Wait Until block expression

what explained above, while Figure 3.5 shows the related state machine.

match p a r e n t s t a t e with
. . .
| w a i t u n t i l (cond) −>

i f cond then
i n c (p a r e n t s t a t e)
r e e v a l u a t e r u l e ()

else ()
| n e x t s t a t e −>

//<− a f t e r running the else block the cur rent s t a t e i s t h i s

3.3.3 Yield state machine

The yield statement block generation is similar to that of wait, but the
state machine is quite different. Figure 3.6 shows the block scheme.

The state machine updates the fields passed as arguments of the yield

statement by generating the AST code for field assignments, then increments
the parent state and re-evaluates the rule. Figure 3.7 shows a scheme of the
state machine.

62 CHAPTER 3. CASANOVA COMPILER

Figure 3.5: Wait Until state machine

match p a r e n t s t a t e with
. . .
| y i e l d v1 , v2 , . . . , vn −>

f 1 := v1
f2 := v2
. . .
fn := vn
inc (p a r e n t s t a t e)
r e e v a l u a t e r u l e ()

| n e x t s t a t e −>
//<− t h i s s t a t e i s executed a f t e r the f i e l d update

3.3.4 Foreach state machine

The for statement block is structured along three levels: the outer level is
the for block which has as child a body block. The body block has as child an
atomic block. This is shown in Figure 3.8.

The state machine is more complex than those seen until now, as it is
made of 4 states. The first state initializes a counter used to iterate the
elements of the list and then it immediately re-evaluate the rule, incrementing
the state of the for by 2. The second state executes the body and then
increments the state of the for by 1. The third state checks if we have
reached the end of the list. If we are at the end then it increments the state
by 1 and re-evaluate the rule. Otherwise it increments the counter and set
the state to 1, in order to run the body on the next element of the list. The
fourth and last state exits the for loop. It reset the state of the loop and
increase the parent state by 1, re-evaluating the rule.

match p a r e n t s t a t e with
. . .
| Foreach (l) −>

f o r s t a t e := 0

3.3. STATE MACHINE 63

Figure 3.6: Yield block expression

Figure 3.7: Yield state machine

64 CHAPTER 3. CASANOVA COMPILER

Figure 3.8: For block expression

match f o r s t a t e with
| 0 −>

ForCounter := 0
f o r s t a t e := 2
r e e v a l u a t e r u l e ()

| 1 −>
execute body ()
inc (f o r s t a t e)

| 2 −>
i f ForCounter < l . Length then

f o r s t a t e := 1
r e e v a l u a t e r u l e ()

else
f o r s t a t e := 3
r e e v a l u a t e r u l e ()

| −>
f o r s t a t e := 0
inc (p a r e n t s t a t e)

| n e x t s t a t e −> . . .

Figure 3.9 shows a scheme of the state machine.

3.3. STATE MACHINE 65

Figure 3.9: For state machine

3.3.5 While state machine

The while statement has 3 blocks, just like the for statement: the outer
block is a while block, the second block is a body block, and the third block is
an atomic block. Figure 3.10 shows a scheme of the block hierarchy.

The while state machine is made of 3 states: the first state checks the
while condition. If the condition is false then we increase the while state by
1 and we re-evaluate the rule. Otherwise we increase the while state by 2
and re-evaluate the rule. The second state executes the body and then it
decreases the state 1, in order to go back to the state of the condition check.
The third state exits the loop, increasing the parent state. Figure 3.11 shows
the state machine scheme.

match p a r e n t s t a t e with
. . .
| While (cond) −>

w h i l e s t a t e := 0
match w h i l e s t a t e with
| 0 −>

i f cond then
w h i l e s t a t e := 2

66 CHAPTER 3. CASANOVA COMPILER

Figure 3.10: While block expression

r e e v a l u a t e r u l e ()
else

w h i l e s t a t e := 1
r e e v a l u a t e r u l e ()

| 1 −>
execute body ()
dec (w h i l e s t a t e)

| −>
i n c (p a r e n t s t a t e)

| n e x t s t a t e −> . . .

3.3.6 If state machine

The if statement is made of 5 blocks: the outer block is the if block, whose
children are then block and else block. The remaining two are atomic blocks
whose parents are respectively the then block and the else block. This is
shown in Figure 3.12.

The state machine has 5 states. The first state evaluates the condition of
the if, If it is true then it increases the state by 1 and re-evaluates the rule.
If it is false it sets the state to 4 (to jump to the else case) and re-evaluates

3.3. STATE MACHINE 67

Figure 3.11: While state machine

the rule. The second state executes the then block, and then increases the
state by 1. The third block is merely a jump to state 5, so it just sets the
state to 5. The fourth state executes the else block and then increments the
state by 1. The fifth state exits the if block, incrementing the parent state
and re-evaluating the rule. Figure 3.13 shows a scheme of the state machine.

match p a r e n t s t a t e with
. . .
| I f (cond) −>

i f s t a t e := 0
match i f s t a t e with
| 0 −>

i f cond then
i n c (i f s t a t e)
r e e v a l u a t e r u l e ()

else
i f s t a t e := 3
r e e v a l u a t e r u l e ()

| 1 −>
execute then body ()
inc (i f s t a t e)

| 2 −>

68 CHAPTER 3. CASANOVA COMPILER

Figure 3.12: If block expression

i f s t a t e := 4
r e e v a l u a t e r u l e ()

| 3 −>
e x e c u t e e l s e b o d y ()
inc (i f s t a t e)

| 4 −>
i n c (p a r e n t s t a t e)
r e e v a l u a t e r u l e ()

| n e x t s t a t e −> . . .

3.3.7 Let bindings and atomic blocks

The remaining blocks have just one state and are not explained in detail, since
they just executes their code and then re-evaluate immediately. However, a
particular care must be done when dealing with let bindings. Let us consider
the following code snippet:

r u l e F =
l et x = 10
wait 1 . 0 f<s>

3.3. STATE MACHINE 69

Figure 3.13: If state machine

y i e l d x

The yield statement cannot see the definition of x because the state ma-
chine definition is the following:

match s with
| 0 −>

l et x = 10
i f tk < 1 .0 f then

tk := tk + 1
else

r e s e t t i m e r (tk)
s := s + 1
r e e v a l u a t e r u l e ()

| 1 −>
y i e l d x

so the let is within a different case of the match. For this reason every
binding is mapped into a field in the entity defining the rule.

70 CHAPTER 3. CASANOVA COMPILER

3.4 Shadowing

Mapping Casanova AST into F# AST is, in most cases, a straightforward
process. All the mapping functions are not described for brevity, as they
are merely functions that map a Casanova AST type into a F# AST type,
filling the unused fields by Casanova with default values in F#. Particular
care must be put when dealing with shadowing within rules. Shadowing is a
property of programming language for which local variables hide within the
current scope another variable with the same name in an outer scope. In
Casanova we do not have the concept of variable, however we do have the
concept of let bindings. Let bindings behave in the same way of shadowed
variables, with the exception they can be shadowed within the same scope.

Let us consider now the following code

r u l e R =
l et x = 10
y i e l d 0
l et x = ” text ”
y i e l d 1

which is mapped into the following state machine, according to the let trans-
lation defined in Section 3.3.

e n t i t y E =
{

mutable R : i n t
mutable x : i n t
mutable x : s t r i n g
mutable s t a t e = 0
r u l e R =

match s t a t e with
| 0 −>

x := 10
R := 0
s t a t e <− 1

| 1 −>
x := ” text ”
R := 1
s t a t e := 2

| 2 −>
s t a t e := 0

}

which is wrong because we cannot use the same name for two variables. We
can rename the shadowed bindings progressively in the following way: we use
a set of dictionary whose key is the id of the variable and the value a counter
which counts the occurrences of the same shadowed variable. Whenever we

3.4. SHADOWING 71

encounter a let binding, we check if the dictionary contains that id. If it
does not we add it to the dictionary and set the counter to 1. If it exists we
increment the counter and store the id as id + (string counter). In the
example above we would get a dictionary with x1 and x2.

Unfortunately this is not enough, since we still have to declare the type
of the field. At this point we do not know the type of the let binding, since
the type checker has not been run yet. We create an auxiliary class as follows

[<Nul lable >]
type Ex(va l) =

l et elem = val
t h i s . Value = elem

The name of the class is generating concatenating the name of the entity
id with the one of the let binding id. Each variable in let bindings will have
its own auxiliary class. The class is marked as nullable because when the
entity is being constructed, we do not know the initialization value, which is
set to null. The class will be instantiated at the first occurrence of the let
binding. The above example will then become:

[<Nul lab le >]
type Ex1(va l) =

l et elem = val
t h i s . Value = elem

type Ex2(va l) =
l et elem = val
t h i s . Value = elem

e n t i t y E =
{

mutable R : i n t
mutable x1 : Ex1
mutable x2 : Ex2
mutable s t a t e = 0
r u l e R =

match s t a t e with
| 0 −>

x1 := Ex1 (10)
R := 0
s t a t e := 1

| 1 −>
x2 := Ex2(” text ”)
R := 1
s t a t e := 2

| 2 −>
s t a t e := 0

}

72 CHAPTER 3. CASANOVA COMPILER

Chapter 4

Case study and evaluation

In this chapter we will present a serious game implemented in Casanova 2.0,
an example showing how numerical approximation in rules can affect the
behaviour of entities, and a simpler case study used for evaluation. The first
is a game developed in cooperation with Tilburg university to detect dyslexia
in pre-school children [6]. The last is a simple asteroid shooter where a ship
shoots lasers at asteroids closing in.

4.1 Implementing a game in Casanova 2.0

This serious game uses a set of sounds to detect dyslexia in children. The
sounds are played in pairs, and the user must tell if they are the same or
not clicking on two different buttons on the screen. The game features a
planet, consisting of two circles. The first represents a walkable landscape,
while the second is a far landscape. The walkable landscape features a series
of trees. A fox will close to each tree and play the first sound of the current
pair. After that a bird will fly in, land on a branch and plays the second
sound. After that the user will be able to click on the buttons and decide
whether the sounds are the same or not. After an answer is given, the both
the walkable landscape and the far landscape will rotate, to simulate the
walking fox, which will play an animation. Some of the tasks are tutorial
tasks, meaning that the game will auto-complete them to show the user how
the game works. Figure 4.1 shows a screenshot of the game. In what follows,
we will focus on the core logic of the game, skipping all the entities definition.

We begin by defining the world structure: our world is made of a series
of tasks (which has type query), a Graphic User Interface (GUI) Answer

made of two buttons, a fox, a reference to a bird, a reference to the active
song, a boolean to check if the fox is playing a song, two Layers to draw

73

74 CHAPTER 4. CASE STUDY AND EVALUATION

Figure 4.1: Dyslexia game in action

the landscape, a task index marking the current active task, a set of parsed
tasks (read from a .csv file) and a report data structure used to write the
test results in an output .csv file. We will assume that all the non-primitive
types are defined elsewhere as entities or in external libraries and that they
implement methods to be drawn. Also the field Game is used by Casanova
game loop to create the game.

world Dys l ex iaDetector =
{

Game : CasanovaGame<Dyslex iaDetector>
TaskIndex : i n t
Layers : Paral laxBackground
Tasks : Task query
ParsedTasks : L i s t<i n t ∗ s t r i n g ∗ i n t ∗ bool>
Answer : Button
Fox : Fox
r e f Bird : Bird
r e f ActiveSong : Song
Playing : bool
Report

. . .
}

Now we must define a constructor for the world, which is created when
the game is started. The constructor uses an external .NET library which

4.1. IMPLEMENTING A GAME IN CASANOVA 2.0 75

provides a method parseInput to read a .csv file and build a task in a format
accepted by the game. It also initializes the fox and the bird in the correct
position. The bird is created with scale 0, so it is invisible at the beginning
of the game.

Create (game : CasanovaGame<Dyslex iaDetector >) =
l et date = System . DateTime .Now
l et year = s t r i n g date . Year
l et month = s t r i n g date . Month
l et day = s t r i n g date . Day
l et hour = s t r i n g date . Hour
l et minute = s t r i n g date . Minute
l et second = s t r i n g date . Second
l et f o x s i z e = Vector2<p ixe l >. Create (150 . 0 f)
l et f i l e n a m e = day + ” ” + month + ” ” + year + ” ” +

hour + ” ” + minute + ” ” + second + ” . csv ”
l et ta sk s = InputParser . parseInput (@”Content\ t r a ck s . csv ”

)
l et f ox pos = Vector2<p ixe l >. Create (−50.0 f , 1 5 0 . 0 f)
l et f u l l s c r e e n = true
l et h o r i z o n t a l r e s o l u t i o n = 1280
l et v e r t i c a l r e s o l u t i o n = 768
// l et game = CasanovaGame . Create (f u l l s c r e e n ,

h o r i z o n t a l r e s o l u t i o n , v e r t i c a l r e s o l u t i o n)
l et background = Paral laxBackground . Create (game .

d e f a u l t l a y e r)
l et precache y buttons = S p r i t e . Create (background .

ForegroundCanvas , Vector2<p ixe l >.Zero , Vector2<p ixe l >.
Create (250 . 0 f) ,@” yes f rames ”)

l et precache n buttons = S p r i t e . Create (background .
ForegroundCanvas , Vector2<p ixe l >.Zero , Vector2<p ixe l >.
Create (250 . 0 f) ,@” no frames ”)

{
Game = game
Tasks = empty ()
ParsedTasks = task s
TaskIndex = 0
Layers = background
Answer = Button . Create (background . ForegroundCanvas ,

Vector2<p ixe l >. Create (0 . 0 f , 3 9 0 . 0 f))
Fox = Animal . Create (” fox wa lk ing ” , ” f o x s i n g i n g ” , ”

fox ” , 4 , 15 , 0 . 3 f<s > ,0.08 f<s>,background .
ForegroundCanvas , fox pos , Vector2<1>.Create (1 . 5 f
, 1 . 5 f) , f o x s i z e , f ox pos)

Bird = Animal . Create (” b i rd ” , ” b i rd ” , ” b i rd ” , 1 , 1 , 1 . 0 f<s
> ,1.0 f<s>,background . ForegroundCanvas , Vector2<
p ixe l >. Create (0 . 0 f , 1 1 0 . 0 f) , Vector2<1>.Zero ,
Vector2<p ixe l >.Zero , Vector2<p ixe l >. Zero)

ActiveSong = Song . Create (game . Content)

76 CHAPTER 4. CASE STUDY AND EVALUATION

Playing = f a l s e
Report = Fi l eWr i t e r . Create (”Report” , f i l e n a m e)

}

The game world defines a single rule which acts on most of its fields.

r u l e Layers . Rotat ionVeloc i ty ,
Layers . RotationAngle ,
Answer . TutorialAnswer ,
Bird ,
Bird . Moving ,
Bird . Singing ,
Bird . Dest inat ion ,
Fox . Moving ,
Fox . Singing ,
ActiveSong ,
TaskIndex ,
Report . WriteLine ,
ActiveSong . Playing ,
Bird . Sp r i t eSca l e ,
Game . Quit ,
Answer . YesPressed ,
Answer . NoPressed ,
Answer . CorrectAnswer ,
Answer . P layTutor ia l = . . .

This rule will immediately suspend itself, waiting that the list containing the
task definitions is filled. This is done in order to avoid a premature exit of
the game. After that we write in the report the table titles, yielding the
string in the field property WriteLine.

w a i t u n t i l Tasks . Length > 0
// c r e a t e the column t i t l e s in the r epor t
y i e l d Report . WriteLine <− ”Task Number , Result , Answer time ”

We now define a for iterating over all the tasks

for t in Tasks do
. . .

Now the world must rotate until the tree is in the correct position. The final
angle of the rotation is given by the formula

α = −2πi

N

where i is the current task index and N is the number of the trees in the
landscape (which we know to be 11). The negative sign is due to the fact
the world turns clockwise, and in our reference system the vertical axis is
inverted than a cartesian system.

4.1. IMPLEMENTING A GAME IN CASANOVA 2.0 77

At the same time the fox must start walking and we have to pre-cache
the bird from the current task.

y i e l d
Bird <− t . Bird
ActiveSong <− t . Song
Layers . Rotat ionVe loc i ty <− −1.0 f<rad /s>
Fox . Moving <− t rue
l et t a r g e t r o t a t i o n a n g l e = (f l o a t 3 2 TaskIndex) ∗ (two pi /

11 .0 f) ∗ −1.0 f
w a i t u n t i l (Layers . RotationAngle + Layers . Rotat ionVe loc i ty
∗ dt <= t a r g e t r o t a t i o n a n g l e)

The code snippet above sets the bird to t.Bird, that is the bird relative to
the current task, the ActiveSong to the current task song. We then set a
flag in the Fox entity which signals to play the walking animation. We then
wait until the rotating landscape has reached the target angle.

y i e l d
Layers . Rotat ionVe loc i ty <− 0 .0 f<rad /s>
Layers . RotationAngle <− t a r g e t r o t a t i o n a n g l e
Bird . Moving <− t rue
Fox . Moving <− f a l s e

wait 0 . 1 f<s>

When the rotation is complete, we reset the velocity to 0 to stop the rotating
landscape, and set manually RotationAngle to the target rotation angle to
correct numerical errors. We then set the fox flag to false to make it play
her standing animation, and we set the bird moving flag to true to make it
fly in.

wait 0 . 1 f<s>
// wait u n t i l the b i rd i s in p o s i t i o n
w a i t u n t i l (Bird . Ve loc i ty . Length = 0 .0 f<p i x e l /s>)
// b i rd i s on the branch , changes i t s s t a t e and s t a r t s s i n g i n g
y i e l d

Bird . Moving <− f a l s e
Fox . S ing ing <− t rue
ActiveSong . Playing <− t rue

The code above wait until the bird is in position, i.e. when it has stopped.
Then, we set its flag to false and we set the singing flag of the fox and the
playing flag of the active song to true, to play the first part of the sound.

wait 1 . 5 f<s>
y i e l d

Bird . S ing ing <− t rue
Fox . S ing ing <− f a l s e
wait 1 . 5 f<s>

78 CHAPTER 4. CASE STUDY AND EVALUATION

y i e l d Bird . S ing ing <− f a l s e

We wait 1.5 seconds, which is the duration of each sound part, and then we
set the fox singing flag to false to stop the singing animation, and we set
the bird singing flag to true to start the singing animation. We wait for the
sound to be played and then we stop the bird singing animation.

// wait for the user to answer
l et s t a r t t i m e = System . DateTime .Now
w a i t u n t i l (Answer . YesPressed | | Answer . NoPressed | | t .

I s T u t o r i a l)
l et user answer =

i f Answer . YesPressed then
1

else
0

l et end time = System . DateTime .Now
l et e l apsed t ime = end time − s t a r t t i m e
l et e l apsed t ime = s t r i n g e l apsed t ime

// b i rd f l i e s away
y i e l d

Bird . Des t ina t i on <− Vector2<p ixe l >. Create (−627.0 f ,−625.0 f)
Bird . Moving <− t rue

Now we wait until the user has pressed either one of the buttons in the
interface. If the current task is a tutorial, then we will simply move ahead
as the condition is automatically satisfied. The following lines measure the
answer time. After that we set the bird destination and we make it fly away,
by turning the moving flag to true.

l et r epor t answer =
i f (user answer = 1 && t . Answer = 1) | | (user answer = 0 && t .

Answer = 0) then
” Correct , ”

else
”Wrong , ”

// play t u t o r i a l
i f t . I s T u t o r i a l then

wait 1 . 0 f<s>
y i e l d

Answer . TutorialAnswer <− t . Answer
Answer . P layTutor ia l <− t rue

wait 2 . 0 f<s>
y i e l d

Answer . P layTutor ia l <− f a l s e
TaskIndex <− TaskIndex + 1

// update r epor t

4.2. A SIMULATOR FOR PROJECTILE DYNAMICS 79

else
let report msg = (s t r i n g (TaskIndex + 1)) + ” , ” +

report answer + e lapsed t ime
y i e l d

TaskIndex <− TaskIndex + 1
Report . WriteLine <− report msg

The end part of the rule produces the output in the .csv file. If the current
task is a tutorial we play the tutorial now. Otherwise we increment the task
index and we write the report output in the file.

When all tasks have been processed the game quits calling

y i e l d Game . Quit <− t rue

at the end of the rule.

4.2 A simulator for projectile dynamics

In this section we present a simple simulator to show how Casanova 2.0 can
be used to build physics simulations and how numerical approximation in
rules can affect the behaviour of entities in this context. Our simulator repli-
cates a typical phenomenon studied in general physics courses: the projectile
dynamics. Using what has been introduced in Section 2.1 on the approxima-
tion of differential equations, we will run the simulation for three different
projectiles, whose position is updated at every frame while their velocity is
updated every ti > dt. Since the approximation is less accurate we should
see not only a more abrupt change of direction, but also a different trajectory.

We will start by defining the world of our simulation

world Simulator =
{

Game : CasanovaGame<Simulator>
Scene : Canvas
P r o j e c t i l e s : P r o j e c t i l e query
LogFi le : CSVMaker
FileColumns : i n t

. . .
}

The field Game has type CasanovaGame<’w>, where ’w is the type of the
world entity. It is passed to the game engine to update the rules. We must

80 CHAPTER 4. CASE STUDY AND EVALUATION

define Scene which has type Canvas to draw our entities. A Canvas is a
built-in component which contains the graphics data for the object drawn
on the screen. The display is made of layers which allow to simulate the
depth of view in a 2D environment. A Canvas is used to define which objects
belong to the same layer.

We then define a list of Projectiles, whose type is a query of projectiles.
The query is a special kind of list which enables the usage of a SQL syntax
to operate on its element, which we will see below. The Projectile type is
an entity type defined below.

The other two fields are used to create a CSV file containing the data on
the projectiles, which will not be covered for brevity.

We now give the definition of the projectile entity:

e n t i t y P r o j e c t i l e =
{

Pos i t i on : Vector2<p ixe l>
Ve loc i ty : Vector2<p i x e l /s>
Acce l e r a t i on : Vector2<p i x e l / sˆ2>
UpdateRate : f l o a t 3 2
Tracers : Dot query
TracerColor : Casanova . Drawing . Color
S p r i t e : S p r i t e
r e f Scene : Canvas
Log : s t r i n g
LineCounter : i n t
Id : i n t

. . .
}

The projectile has a Position, a Velocity, and an Acceleration, whose type
is V ector2 < measure > which is a built-in type. Units of measure are a
feature of Casanova. Since the screen coordinates are measured in pixels, the
position measure is a pixel, the velocity is pixel/s and the Acceleration is
pixel/s2. The Update Rate is the rate at which the velocity of the projectile
will be updated. The tracers are a series of static entities, which represents
the dots drawn on the screen to mark the trajectory. We will not show
their definition in detail for brevity, since they are not updated by the game
engine, having no rules. The Tracer Color is the colour of the dots. A Sprite
is a built in type containing the information on the size and the position
of the image representing the object and the image file associated with it.
The other are used to generate the report file. We now have to define a

4.2. A SIMULATOR FOR PROJECTILE DYNAMICS 81

constructor for the projectile. We want be able to dynamically define its
starting position, velocity, acceleration (which will be only along the Y-axis
to simulate gravity), the rate at which the velocity is updated, its Canvas,
the color of the trace, and an id to uniquely identify it1.

Create (po s i t i on , v e l o c i t y , a c c e l e r a t i o n , update rate , scene
: Canvas , t r a c e r c o l o r , id , techn ique) =
{

Pos i t i on = p o s i t i o n
Ve loc i ty = v e l o c i t y
Acce l e r a t i on = a c c e l e r a t i o n
UpdateRate = update rate
Tracers = empty ()
TracerColor = t r a c e r c o l o r
S p r i t e = S p r i t e . Create (scene , Vector2<p ixe l >.

Create (0 . 0 f , 0 . 0 f) , Vector2<p ixe l >. Create (48 . 0
f , 1 2 . 0 f) , ” p r o j e c t i l e . png”)

Scene = scene
Log = ””
LineCounter = 0
Id = id
Technique = technique

}

Now let use define a rule to update the position according to the Euler scheme
defined in Section 2.1.

r u l e Pos i t i on = y i e l d Pos i t i on + Ve loc i ty ∗ dt

The position is updated at every frame, since we want the representation of
the trajectory to be as accurate as possible.

As for the Velocity, we want to update it at different rates for all projec-
tiles. Our approximation interval will then be ∆t = dt · UpdateRate. The
rule definition is the following:

r u l e Ve loc i ty =
y i e l d t h i s . Ve loc i ty + Acce l e r a t i on ∗ UpdateRate ∗ dt
wait UpdateRate ∗ dt

We update the velocity according to the differential equation defined in Equa-
tion 2.1. We, then wait for ∆t = UpdateRate · dt seconds to stop the simu-
lation.

1Again, the Log is used to generate the report and will not be explained in detail

82 CHAPTER 4. CASE STUDY AND EVALUATION

The following rules draws the projectile and its trajectory on the screen

r u l e Tracers =
l et t r a c e r = Dot . Create (t h i s . Pos i t ion , t h i s . Scene ,

TracerColor)
y i e l d t r a c e r + Tracers
wait 0 . 1 f<s>

r u l e S p r i t e . Po s i t i on = y i e l d Pos i t i on

r u l e S p r i t e . Rotation =
i f Ve loc i ty .X = 0 .0 f<p i x e l /s> && Veloc i ty .Y > 0 .0

f<p i x e l /s> then
y i e l d 3 .0 f ∗ p i o v e r 2

e l i f Ve loc i ty .X = 0 .0 f<p i x e l /s> && Ve loc i ty .Y <
0 .0 f<p i x e l /s> then

y i e l d p i o v e r 2 ∗ 1 .0 f
else

y i e l d atan (Ve loc i ty .Y / Ve loc i ty .X) ∗ 1 .0 f<rad>

The first rule creates a dot every 0.1s, the second one clamps the image
of the projectile to its position to update its representation on the screen.
The second rotates the projectile image according to the velocity vector. We
use the well known formula to find the angle of the vector with respect to
the X-axis, which is

Θ = arctan

(
vy
vx

)
(4.1)

Since Equation 4.1 fails for vx = 0, we consider those cases separately and
immediately return the angle associated to v = [0, vy].

Now that we have defined the dynamics of the projectile, we need to
update the world. We first need to create our projectile.

r u l e P r o j e c t i l e s =
w a i t u n t i l P r o j e c t i l e s . isEmpty
l et t e s t s h e l l 1 = P r o j e c t i l e . Create (Vector2<p ixe l

>. Create (−400.0 f , 2 5 0 . 0 f) , Vector2<p i x e l /s>.
Create (100 . 0 f ,−300.0 f) , Vector2<p i x e l / s ˆ2>.
Create (0 . 0 f , 9 8 . 1 f) , 1 . 0 f , t h i s . Scene , Color . Blue ,
P r o j e c t i l e s . Length)

y i e l d t e s t s h e l l 1 + P r o j e c t i l e s

4.2. A SIMULATOR FOR PROJECTILE DYNAMICS 83

l et t e s t s h e l l 2 = P r o j e c t i l e . Create (Vector2<p ixe l
>. Create (−400.0 f , 2 5 0 . 0 f) , Vector2<p i x e l /s>.
Create (100 . 0 f ,−300.0 f) , Vector2<p i x e l / s ˆ2>.
Create (0 . 0 f , 9 8 . 1 f) , 30 . 0 f , t h i s . Scene , Color . Red ,
P r o j e c t i l e s . Length)

y i e l d t e s t s h e l l 2 + P r o j e c t i l e s

The following rules waits until the projectile list is empty. This is needed
in order to loop the simulation and to re-create the projectiles when they
are deleted because they lies outside the screen boundaries (see below). It
creates two projectiles with initial position p = [−400, 250]2, initial velocity
v = [100,−300], and a constant acceleration a = [0, 98.1] (gravity). The first
projectile velocity is updated 60 times per second, the other one only two
time per second.

When the projectiles go outside the screen boundaries, we remove them.
After that the previous rule generates two new projectiles. This is achieved
by the following rule:

r u l e P r o j e c t i l e s =
w a i t u n t i l not P r o j e c t i l e s . isEmpty
l et screen boundary = 800 .0 f<p ixe l>
l et o u t o f s c r e e n p r o j e c t i l e s =

from p r o j e c t i l e <− P r o j e c t i l e s
where p r o j e c t i l e . Po s i t i on .X > screen boundary

| | p r o j e c t i l e . Po s i t i on .X < (−
screen boundary) | |

p r o j e c t i l e . Po s i t i on .Y > screen boundary
| | p r o j e c t i l e . Po s i t i on .Y < (−

screen boundary)
s e l e c t p r o j e c t i l e

i f P r o j e c t i l e s . Length = o u t o f s c r e e n p r o j e c t i l e s
. Length then

y i e l d empty ()

Finally, the following rule stops the simulator and generates the report
file when pressing escape.

r u l e Game . Quit , LogFi le =
w a i t u n t i l i s key down Keys . Escape
for p in P r o j e c t i l e s do

2Note that in the screen coordinate system the Y-axis is inverted as opposed to the
cartesian system.

84 CHAPTER 4. CASE STUDY AND EVALUATION

Figure 4.2: Chart of the trajectory at different update rates

y i e l d LogFi le . WriteLine <− p . Log
w a i t u n t i l not LogFi le . Writing
y i e l d Game . Quit <− t rue

4.2.1 Experimental results

We ran the simulation using 3 projectiles with an update rate of 1/6s, 1/2s,
and 1s. We can appreciate the fact that the trajectory drastically changes
due to a worse approximation of the velocity, and that the transition when
updating the velocity is less smooth than at higher rates. Figure 4.2 shows
the trajectory of projectiles at the different update rates. Figure 4.3 shows
the simulator in action. We note that the trajectory is different with respect
to the update rate, and that, at lower update rates, the shape of the position
function resembles more a piecewise linear polynomial than a parable3, as
it should be for the trajectory of a projectile. This is due to the fact that
the position is updated at every frame, but not the velocity. Thus, when
the velocity is not updated, the projectile travels at constant speed (linear
motion). When the velocity is updated, the trajectory changes according
to the deceleration, abruptly in the case of a lower precision (lower update
rate).

3Even though, at a higher precision, we still obtain a piecewise linear polynomial and
not the exact function

4.3. CASE STUDY AND EVALUATION 85

Figure 4.3: Running simulator showing the trajectories of the projectiles at
different update rates

4.3 Case study and evaluation

We will evaluate Casanova 2.0 comparing the new implementation (com-
piled) of the asteroid shooter game with the old one (interpreted) written
in Casanova 1.0. Since the highest computational time is spent by comput-
ing the collisions among asteroids and lasers, we will measure the processed
frames per second in function of the number of asteroids. The benchmark
version of the game will shoot a laser at each frame, create a certain num-
ber of consecutive asteroids, and finally pause the generation process for 1
second. Table 4.1 shows our results.

We note that Casanova 1.0, although performing quite the same for few
entities, has a huge performance drop when dealing with a large amount
of collisions, at the point the game it becomes almost unplayable (to have a
smooth game play experience the fps rate should be higher than 30) even for a
moderate amount of entities. On the other hand, Casanova 2.0 does not suffer
relevant performance drops even when dealing with huge amounts of entities
in the game state. This result is strengthened by the fact that the asteroid
shooter implemented in Casanova 1.0 makes use of index optimization on
the queries to detect collisions, which have not been implemented yet in
Casanova 2.0.

This result clearly shows the loss of performance using scripts imple-
mented with monads compared to our compiled implementation of a state
machine for interruptible rules. Figure 4.4 shows a chart of the average pro-
cessed FPS in both versions of the language.

86 CHAPTER 4. CASE STUDY AND EVALUATION

Casanova 1.0
asteroids min fps max fps avg fps

100 40 60 60
250 15 60 20
500 10 50 11
1000 5 50 7
5000 2 48 5

Casanova 2.0
100 51 59 57
250 50 59 57
500 50 59 49
1000 39 59 47
5000 37 59 40

Table 4.1: Benchmarks on the asteroid shooter

Figure 4.4: Chart of average FPS processed by both asteroid shooter implemen-
tations

Chapter 5

Conclusions and future works

In this thesis work we presented Casanova 1.0, which was interpreted and
written in F#, and exposed its flaws. We analysed the problem of having
implemented a scripting language using a monadic domain specific language,
where each lambda abstraction is translated into a class by the F# com-
piler. Besides our surveys showed that testers tended to ”abuse” the rule
structure even to implement timers, using scripts just to define input events.
This has brought us to redefine our language, merging the concepts of rules
and scripts into a single structure called interruptible rule. Besides we built
a compiler, based on the F# one, to solve the problem related to monadic
scripts, implementing a state machine for interruptible rules. The first non-
trivial challenge we faced was to understand the basics of the F# lexer and
parser to extend the language introducing Casanova keywords and syntax
definitions. The main problem with the lexer/parser is that F# is a context-
dependent language, since it uses indentation as a syntax rule to define blocks
(and not delimiters such as begin/end or curly brackets), so the lexer must
use a stack of auxiliary tokens to detect the block boundaries. The second
challenge was to design the state machine for rules. We started from a trivial
implementation, where each statement was a state in the automaton, and
then implemented an improved version where only time primitives or state
updates interrupt the rule. The third challenge was solving the problem of
scoping in the state machine. Indeed, the state machine introduces additional
scopes and blocks that are not defined in the source code of the program. We
had to create an automated system to map the local variables into a global
scope visible within the rule. A further challenge was to solve the problem
related to shadowing, where multiple definitions of the same variable might
occur during the translation of the rule to the state machine. Finally we
presented a serious game implemented for a team of researchers of Tilburg
university to detect dyslexia in pre-school children. We used a benchmark

87

88 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

sample to test the performances of Casanova 2.0 compared with the same
implementation in Casanova 1.0. The results showed that Casanova 2.0 can
process an amount of frames per second which is even 6 times larger than
Casanova 1.0 with a high number of entities in the game.

Future works on this subject will be the following:

• Internet multi-player aspect of games. Indeed the network synchro-
nization of the game state is a hard and complicated subject, and no
high-level libraries, which provide the programmer with an interface to
send data, exist. We are planning to extend Casanova language with
network primitives which implements a system of message passing be-
tween rules run on different machines. A first attempt had already
been made in Casanova 1.0, although never completed, which used a
modified version of the world traversal presented in Section 2.4.4 to
decompose the game world in atomic values which could be sent by a
network library written in .NET.

• Code optimization through static analysis techniques. We will em-
ploy static analysis to analyse the code and determine correctness and
performance properties which the programmer may use to improve its
code. Particular care will be posed to query optimization techniques,
i.e. identifying common patterns for optimizable queries and build
indices to speed up the research, and network bandwidth usage and
prediction techniques.

• Object-Oriented paradigm implementation. The current version of
casanova compiler does not support the object-oriented syntax de-
scribed in Section 2.7 and they will be implemented in future versions.

• Translation of Casanova into C# code, to achieve better performances,
since the source code of the back-end of the compiler has been released.

• Integration of Casanova in Microsoft Visual Studio. This requires build-
ing an extension to manage the project system in Casanova, and trying
to extend the intellisense to support Casanova.

Bibliography

[1] Entertainment software association. http://www.theesa.com.

[2] Game engines. http://en.wikipedia.org/wiki/Game_engine, 2014.

[3] Nwscript. http://en.wikipedia.org/wiki/NWScript, 2014.

[4] Mohamed Abbadi, Francesco Di Giacomo, Renzo Orsini, Aske Plaat,
and Pieter Spronck. Resource entity action: A generalized design pattern
for rts games. The 8th international conference on computers and games
(CG2013), 2013.

[5] R. W. Crandall and J. G. Sidak. Video Games: Serious Business for
America’s Economy.

[6] G. Maggiore, M. Abbadi, M. Postma, F. Di Giacomo. A serious game
for detecting dyslexia in children. http://casanova.codeplex.com/.

[7] Jason Gregory. Game engine architecture. Taylor & Francis Ltd., 1
edition, 2009.

[8] Paul Hudak. The Haskell school of expression : learning functional
programming through multimedia. Cambridge University Press, New
York, 2000.

[9] Peter J. Kovach. The Awesome Power of Direct3D/DirectX - DirectX 5
Version. Manning Publications Co., Greenwich, CT, USA, 1998.

[10] Z.N. Li and M.S. Drew. Fundamentals Of Multimedia, chapter 10, pages
288 – 290. Prentice-Hall Of India Pvt. Limited, 2005.

[11] A. Cortesi P. Spronck D. Dini G. Maggiore M. Abbadi, F. Di Giacomo.
Orchestration in games. Technical report, Università Ca’ Foscari DAIS,
Tilburg University, NHTV University of Breda, 2014.

89

90 BIBLIOGRAPHY

[12] G. Maggiore. Casanova: a language for game development. PhD thesis,
Università Ca’ Foscari di Venezia, Dipartimento di Informatica, 2012.

[13] G. Maggiore. A proposal for a casanova 2.0 networking. Technical report,
NHTV Breda University of Applied Sciences, 2014.

[14] Giuseppe Maggiore, Alvise Spanò, Renzo Orsini, Michele Bugliesi, Mo-
hamed Abbadi, and Enrico Steffinlongo. A formal specification for
casanova, a language for computer games. In Proceedings of the 4th
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, EICS ’12, pages 287–292, New York, NY, USA, 2012. ACM.

[15] Alfio Quarteroni, Fausto Saleri, and Paola Gervasio. Scientific Comput-
ing with MATLAB and Octave, 3rd ed. Texts in Computational Science
and Engineering. springer, 2010.

[16] John Rice. Assessing Higher Order Thinking in Video Games. Journal
of Technology and Teacher Education, 15(1):87–100, January 2007.

[17] Jason Della Rocca, Hank Howie, Steve Meretzky, Joe Minton, Kent
Quirk, and Tracy Rosenthal-Newsom. In the trenches: game devel-
opers and the quest for innovation. In Proceedings of the 2006 ACM
SIGGRAPH symposium on Videogames, Sandbox ’06, pages 9–11, New
York, NY, USA, 2006. ACM.

[18] Joachim Schmid. Compiling abstract state machines. Journal of Uni-
versal Computer Science, 7:2001.

