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Abstract

Every user leaves traces of her/his behaviour when she/he surfs the Web. All the

usage data generated by users is stored in logs of several web applications, and

such logs can be used to extract useful knowledge for enhancing and improving

performance of online services. Also Search Engines (SEs) store usage information

in so-called query logs, which can be used in di�erent ways to improve the SE

user experience. In this thesis we focus on improving the performance of a SE, in

particular its e�ectiveness and e�ciency, through query log mining.

We propose to enhance the performance of SEs by discussing a novel Query

Recommender System. We prove that is possible to decrease the length of a user's

query session by unloading the SE of part of the queries that the user submits in

order to re�ne his initial search. This approach helps the user �nd what she/he is

searching in a shorter period of time, while at the same time decreasing the number

of queries that the SE must process, and thus decreasing the overall server load.

We also discuss how to enhance the SE e�ciency by optimizing the use of its

computational resources. The knowledge extracted from a query log is used to

dynamically adjust the query processing method by adapting the pruning strategy

to the SE load. In particular query logs permit to build a regressive model used to

predict the response time for any query, when di�erent pruning strategies are applied

during query processing. The prediction is used to ensure a minimum quality of

service when the system is heavily loaded, by trying to process the various enqueued

queries by a given deadline. Our study also addresses the problem of the e�ectiveness



of query results by comparing their quality when dynamic pruning is adopted to

reduce the query processing times. Finally, we also study how response times and

results vary when, in presence of high loads, processing is either interrupted after a

�xed time threshold elapses or dropped completely. Moreover, we introduce a novel

query dropping strategy based on the same query performance predictors discussed

above.
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Introduction

Query log generated by the interaction between users and web search engine (SE)

is a great source of information to enhance user experience and to improve the

performance of the SE itself. The information stored in the query log is collected

from the activity of users that make searches on SE. The number of users and the

variety of searched topics make the analysis of the query log complex. For these

reasons query log mining is the subject of many research papers.

In this thesis we use query log mining techniques to enhance the performance

of the SE both to improve the user experience and to optimise the usage of the SE

resources.

In this thesis we propose to improve the performance of a SE from di�erent point

of views. Firstly, we propose a novel query recommender system to help users shorten

their query sessions. The idea is to �nd shortcuts to speed up the user interaction

with the SE and decrease the number of queries submitted. The proposed model,

based on the pseudo-relevance feedback, formalizes a way of exploiting the knowledge

mined from query logs in order to help users rapidly satisfy their information need.

We tested the algorithm proposed exploiting di�erent metrics both to prove the

goodness of recommendations provided and to prove that our algorithm is a valid

solution to the search shortcuts problem.

Secondly, the satisfaction of a user can be enhanced also from a di�erent perspec-

tive. To this extent, we propose to optimize the query processing phase to obtain an

improved trade-o� between e�ciency and accuracy. In particular, commercial SEs

have to deal with a lot of simultaneous queries from numerous di�erent users. At

the same time the query stream is characterized of a discontinuous arrival rate that

make di�cult for the SE to deal with high query load periods without oversizing
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the architecture. In this scenario we exploit the past queries submitted by users

to build a machine learning model for query e�ciency prediction. This model is

then used to dynamically select a suitable query processing (retrieval) strategy to

handle the queries and satisfy a time threshold deadline, thus reducing the query

processing time during intense query tra�c. In particular, when deciding between

processing strategies, our approach considers the time necessary to satisfy the per-

query deadlines for all queries in queue for being dealt with by search servers. In

this way the system can fairly allocate the available resources for enqueued queries.

The proposed techniques are validated and tested in a distributed SE deployed over

a multi-node cluster. At the same time we study also the cases when the query

arrival rate is unsustainable for the system and we propose a method to decrease

the number of query dropped or stopped.

In the Section I.1 we present the contributions brought on from the proposed

solutions.

I.1 Contributions

In this thesis we describe three main contributions as follows.

Search Shortcuts for User Sessions: We describe a method to recommend queries

helping the users to easily �nd informative queries. This work aims to resolve

the query shortcut problem and is �rstly introduced in 2012 in the IPM Journal

[23]. The query shortcuts problem is formally de�ned as a problem related to

the recommendation of queries in search engines and the potential reductions

obtained in the users session length. By exploiting a weak function for assess-

ing the similarity between the current query and the knowledge base built from

historical user sessions, we re-conduct the suggestion generation phase to the

processing of a full-text query over an inverted index. The resulting query rec-

ommendation technique is highly e�cient and scalable, and it is less a�ected



Contributions xiii

by the data-sparsity problem than most state-of-the-art proposals. Thus, it

is particularly e�ective in generating suggestions for rare queries occurring in

the long tail of the query popularity distribution. The quality of suggestions

generated is assessed by evaluating the e�ectiveness in forecasting the users'

behaviour recorded in historical query logs, and on the basis of the results

of a reproducible user study conducted on publicly-available, human-assessed

data. The experimental evaluation conducted shows that our proposal remark-

ably outperforms two other state-of-the-art solutions, and that it can generate

useful suggestions even for rare and unseen queries.

Load-Sensitive Selective Pruning: We explore di�erent techniques of query pro-

cessing and we analyse their behaviour in a high load environment, this work

is published at CIKM'13 [21]. Our idea is to improve the performance of a

SE in a heavy loaded environment using the query log mining. In particular

we introduce a novel method to dynamically adapt the pruning strategy of

each query to the instant workload of the search sever. With the goal of an-

swering a query within a given upper bound in terms of query response time,

the method uses machine learning models to predict the running time of each

pruning strategy, selects the one that �ts into the time bound and maximizes

the e�ectiveness of results. The proposed method, by adapting the query pro-

cessing to the workload, is able to face peak load periods reducing sensitively

the processing time and keeping the quality of the results at acceptable levels.

For each search server there is a queue of queries to be processed, and the

number of queued queries depends on the query arrival rate. Our framework

is able to optimise the queue management strategies so that not only the cur-

rently processed query is optimized but also the queries that are already in the

processing queue of each search server. We validate our approach on 10, 000

queries from a standard TREC dataset with over 50 million documents, and

compare it with several baselines. These experiments encompass testing the
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system under di�erent query loads and di�erent maximum tolerated query re-

sponse times. Our results show that, at the cost of a marginal loss in terms

of response quality, our search system is able to answer 90% of queries within

half a second during times of high query volume.

Query Processing in Highly-Loaded Search Engines: The idea of exploiting

a predicting framework to dynamically adapt the processing strategy is used

and extended on another contribution, published at SPIRE'13 [22], where we

analyse query dropping strategy in high load environment. By using predic-

tors to estimate the query response time, we propose to exploit the estimated

response time to pro-actively control the query dropping behaviour. Our ex-

periments show that our proposed dropping strategy is able to decrease the

number of queries dropped, improving overall e�ectiveness whilst attaining

query response times within the time threshold. For instance, for a query ar-

rival rate of 100 queries per second, our strategy is able to answer up to 40%

of the queries without degrading e�ectiveness, while for our baseline strategies

this happens for only 10% of queries.

I.2 Outline

This thesis is structured as follows.

In Chapter 1 there is a brief overview of the structure of SE and its components

while also discussing the state-of-the-art solutions. After a general discussion about

current problems and goals of a SE, the main phases of a search engine are described:

crawling, indexing and querying. We focus our presentation mainly on describing

the query processing phase that is one of the central point of this thesis.

In Chapter 2 we analyse the web search topic by taking into consideration the

problems referring to the distributed environment like query routing and index par-

titioning strategies. Based on those observations we con�gure a distributed search
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engine for our experiments and we describe the resulting framework.

Since all of our works exploit query log mining techniques, in Chapter 3.1 we

analyse the state-of-the-art on this topic including typical aspect of a query log,

common features, and data mining techniques such as session extraction.

The following three Chapters 4, 5 and 6 elaborate on the contributions

mentioned in Section I.1. Chapter 4 describes: a novel algorithm to e�ciently

and e�ectively generate query suggestions that is robust to data sparsity, a novel

evaluation methodology with which we can compare the e�ectiveness of suggestion

mechanisms and an extensive evaluation comparing on the same basis the proposed

solution with two state-of-the-art algorithms.

Chapter 5 describes: a load-sensitive selective pruning framework for bound-

ing the permitted processing time of a query and an accurate approach for query

e�ciency prediction of term-at- a-time dynamic pruning strategies.

Chapter 6 describes a novel query dropping strategy by using predictors to esti-

mate the query response time for document-at-a-time.

Conclusions and future work are discussed in Chapter 7.



xvi Introduction



1

Web Search

The World Wide Web (WWW) is a huge and complex network that consists of an

extensive collection of inter-linked hypertext documents. SEs aim to discover, map

and index the web in order to enable easy information search. The main problems

of this process is that the web is continuously growing and changing, especially if

we think at news websites and social networks. Some studies [3] estimate that the

number of pages in the WWW, using the documents indexed by the main commer-

cial web search engines, to at least 14.79 billion pages. To e�ectively search through

this enormous, and often dynamic, quantity of information, SEs must exploit com-

plex and e�cient algorithms, in general distributed over multiple servers and often

located in di�erent sites. Di�erent servers are also used to accomplish di�erent tasks

that the SEs have to ful�l. A SE consists of several precesses and phases: exploration

meaning crawling the web by following the links in the pages; indexing which allows

to organize the data collected from the crawling and storing it in a special data

structure, such as the inverted index; query processing which exploits the indices

in order to retrieve information in reply to queries. The distributed environment,

typical for SE architecture, makes all these phases more complex. In fact, each

algorithm must be designed to interact with several machines and to avoid �ooding

web servers.
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1.1 Search engines

SEs supply results to a large number of users in a timely fashion. A typical dis-

tributed architecture of a commercial SE for query processing consists of a broker

and a pool of query servers. The broker receives queries from users and forwards

them to all (or a subset of) query servers. Each query server exploits the posting

lists of its local index to compute partial results. These results are returned to the

broker, which produces the �nal ranking of documents that is presented to the user.

Each local index is a partition of the global index, which is in turn distributed over

di�erent servers.

Cambazoglu et al. [34] have presented a comprehensive survey of the distributed

architecture and scalability challenges in modern Web search engines. According to

their architecture, query processing can be classi�ed in four types of granularity:

single node, multi-node cluster, multi-cluster site and multi-site engine. In this

thesis we deal with query processing in a multi-node cluster, where typically o�-

the-shelf commodity computers are employed to parallelise the query processing

procedure (see Chapters 5 and 6). In the multi-node cluster architecture, a user

query is issued to a broker node, which dispatches the query to the search nodes

(Figure 1.1). The broker node is also responsible for merging the results retrieved

from the search nodes and returning a �nal results set to the user. Query processing

in a multi-node search cluster depends on the index partitioning techniques used to

distribute the index among the search nodes (Figure 1.2). In case of document-based

partitioning ([29, 50]), the broker issues the query to all search nodes in the cluster.

Results are concurrently computed and returned to the broker. In case of term-

based partitioning [76], the query is issued to only the search nodes that contain

the posting lists associated with query terms. The contacted nodes compute results

sets, where document scores are partial, by using their posting lists that are related

to the query. These result sets are then transferred to the broker, which merges

them into a global result set.
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Client

Broker

Index
Server 1

Index
Server 2

Index
Server N

...

Figure 1.1: Classical architecture of a distributed search engine (based on [33]).

Figure 1.4: Term and document inverted index partitioning.

independently of others. In addition, DP supports availability as query evaluation is un-
interrupted even if one of the search-servers becomes unavailable, of course with a loss of
some effectiveness4. However, this approach incurs a disk access overhead. For instance,
for n search-servers and q query terms, n ∗ q inverted lists must be fetched5. Another
drawback of DP is that the search-servers execute several unnecessary operations when
querying a sub-collection, which may contain only few or no relevant documents. Only
top-k documents relevant to the query from n ∗ k documents retrieved by n search-servers
are transferred to the user by the broker, hence some of the computation done by the
search-servers is futile and results in an increase in the intercommunication and overhead
on the broker.

Alternative to DP is TP. A TP approach creates an index on the entire collection and
then range partitioned the inverted list by terms among the search-servers. Following the
previous example, consider the same data collection with the set of documents, D. The
inverted index stored on the search-server3 is as follows:

< t6, L6 > whereL1 = {d2, d6}
< t7, L7 > whereL2 = {d3, d4, d7, d8}

where ti is the term in the vocabulary and Li is list of documents containing the term ti.

4Effectiveness measures the ability of the search engine to find the right information. The two most
common effectiveness metrics are recall and precision.

5Additional disk seek are in parallel and each server only do q disk-seek.

7

Figure 1.2: Di�erences between Document and Term Partitioning.

In the rest of this chapter we describe in more detail the di�erent phases of the

SEs in a distributed settings. We give particular emphasis to the query processing

phase, that is the main phase analysed in this thesis.

1.2 Crawling

The crawling module is a software that downloads and collects relevant objects from

the web. The implementation of such a module is very simple: it starts from an

initial list of URLs to visit. The crawler stores these pages and identi�es hyperlinks

in the content which allow to discover new pages to visit, as represented on Figure
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Figure 1.3: Single Node Crawling module.

1.3.

The main challenge of this module is to avoid multiple visits to the same page

and, in the case of distributed crawling, is to avoid that multiple agents visit the

same server simultaneously, thus overloading it. Large-scale web crawlers should be

distributed because of the intensive network and CPU usage due to the hundreds of

simultaneous connections to the web servers.

An important restriction for distributed web crawlers is to avoid overloading web

servers. This is made possible by using a good policy for the partitioning of the web

graph to be discovered. The partitioning should take into account also the load

balancing between crawling servers, in order to optimize network and power capa-

bilities [19]. A partitioning strategy can be organized to reduce the data exchange

between agents: a possible solution is assigning all pages deployed by the same web

server to the same agent [6].

Regarding crawling, another interesting topic is the periodicity of the crawling.

In fact, lots of web users are actually interested on searching news or trending topics.

To satisfy these users, SEs must scan the web frequently to collect the last news or

update information from dynamic social network pages.
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Figure 1.4: Inverted Index Structure

1.3 Indexing

During the crawling phase, the SE gathers a wide collection of documents. Each

document in the collection has to be preprocessed; this operation implies remov-

ing HTML tags, stopwords, duplicates and performing tokenising, stemming and

lowercasing operations. After this cleaning phase the data is ready to be indexed.

When speaking about indexing in SE, we mainly refer to building an inverted

index [46, 118, 78]. The inverted index is a data structure that permits to easily �nd

terms occurrences in documents. The inverted index is composed of a dictionary

that holds all the terms found in the collection and a set of corresponding inverted

lists, one for each term (Figure 1.4). Each inverted list is a list of postings where

each posting consists of docids and statistics. The information stored in the inverted

index are useful for the retrieval and ranking of all the documents matching the query

terms.

As an example, if we want to compute tf-idf [90, 91] to rank the retrieved

documents, we need to store, for each term, its frequency in the whole collection.

We also need to know which documents the term occurs in and how often it occurs

in each document. These last two pieces of information can be stored inside the

inverted list associated with the term. Additional information, like the position of

the term in the document, can also be useful for phrase query processing and can

be stored directly in the index.

Due to the fact that the index must retrieve the documents on a short period
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of time it should not be charged with too much information. For more detailed

statistics and data related to documents a structure called docmap can be used. It

associates the document ID (a.k.a. docid) with the full document information: full

text, URL, length (for length-normalized similarity metrics like BM25 [56, 88]).

Apart from the data stored in the inverted index, another important feature

is the ordering of documents in the inverted lists [39]. The easiest way to design

the inverted lists is to order the documents in ascending docid-order (docid-sorted).

This structure is commonly used because it permits to easily update the inverted

lists. Indeed, since new documents will have a greater docid, we can add them

at the end of the respective posting list. The docid-sorted lists are also preferred

in the case of Boolean queries. Docid sorted indices allow a better compression

of the index because is possible to exploit gap-encoded compressor [116, 100]. In

the modern context, saving space is still a very important issue. The aim is to

reduce the number of machines needed to hold the index, their use of energy, and

the amount of communication. Furthermore, in the last years, to improve the query

response time, often SEs that store the index on the main memory to avoid disks

latencies. Compressing the index is then indispensable for this type of applications

[107, 44, 38]. To improve the performance of a document-ordered index, several

strategies have been employed in the past. One of these is the use of the skipping

index [109], which avoids reading all the postings, thus skipping part of the lists.

This method does not always o�er better performance, but it behaves well in the

case of AND queries. More detailed description of the characteristics can be found

in Section 1.4.

Other index structures exploit the fact that users do not need to examine all the

documents matching their query. For this reason it is possible to avoid reading and

processing all the postings by ordering the documents for highest-relevance. For

example if we are using tf-idf, we can use a frequency ordering, as documents

that contain more occurrences of the terms are in general more relevant than the

others. Using this ordering we can stop reading the posting lists when we understand
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that the contribution is no longer su�cient to change the document ranking [83].

Another example is the impact factor ordering [50, 5] that computes the impact of

each posting during the index building. Adding documents to this type of index is

a more challenging task because documents are not added at the end of the posting

lists, as in the case of the docid-sorded index, in fact they must be inserted at the

corresponding position.

Other solutions aim to combine the advantages of the two techniques above. The

Impact-Layered indices reassign the docid to documents after having sorted them

by impact-factor.

The advantage is that while the impact factor ordering permits to use fast re-

trieval strategy, it is possible to easily compute operations like intersection thanks to

the docid ordering. However, this index structure makes the updating of the index

a more complex operation.

In a commercial SE or in a general large scale Information Retrieval (IR) system

the index phase must also address the problem of distributing the index across

multiple query servers. Due to the big dimension of the index, it is preferable to not

build a single global index. Accordingly, as explained in Section 1.1, the architecture

of such a system is in general distributed over several servers and located in di�erent

geographical sites (multi-site engine).

In each site, there are a set of query servers. The collection is typically split

over part of these servers, while others are often used as a replicas. The common

ways to split the index are in general for documents or for terms. The document

partitioning is the simplest way to partition the index: in this case the collection

is split before indexing by assigning di�erent documents to di�erent indices. The

di�erent indices can be build independently and each index can be stored in one or

more servers. The other approach is to split the index by terms. In this case each

shard contains only a subset of terms. This type of partitioning needs to have a

global index and strategies to �nd, given a query, the servers that contain the query

terms.
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The index partitioning strategy a�ects the query processing phase, aspects we

are going to describe in Section 1.4. Also the query routing is dependent of the

index partitioning. This problem will be addressed in Section 2.

1.4 Query Processing

The strategies used to match documents to a query fall into two categories [77]: term-

at-a-time (TAAT) [109, 59] where the posting lists of query terms are processed and

scored sequentially, or document-at-a-time (DAAT) where posting lists are processed

in parallel for all query terms. The DAAT strategy is obviously not possible when we

do not have the posting list ordered by docid without a prior sorting phase, that

anyway nulli�es any possible advantages of an impact factor sorted posting list.

In DAAT processing, the �nal score of any document is computed immediately.

This allowed to remove, from the list of candidates, the documents that do not

have a high-enough score to stay in the top-n results. The disadvantage of the

DAAT processing is that all the posting list must be in main memory.

In TAAT processing, the inverted list of each term is processed in turn. Each

document receives a partial score and the couple document-score is stored in one

accumulator. The set of accumulators is updated until the last term is processed.

At the end of the process, the accumulators must be sorted to retrieve the top-n

results.

Unlike DAAT, TAAT can maintain in main memory only one posting list at a time,

but it also has to maintain the list of accumulators with the partial scores.

The choice between DAAT and TAAT is not trivial and depends on a lot of factors:

index structure, collection features, type of the queries, etc.

As mentioned above, query processing is also a�ected by query type. Common

methods to interpret a query is to use operators, AND or OR, between terms. The

AND queries return only the results that contain all the query terms. They are

faster to process than the OR ones, because we are able to avoid scoring all postings
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when noticing that for one of the terms a corresponding document is not present

in the associated posting list. In the AND settings is also possible to exploit skip

indices [77]. Skip indices are additional information that must be included in the

index during the indexing phase.

A possible disadvantage for AND queries is that they may return a limited num-

ber of results, especially for long queries or when the query is expanded. OR queries,

on the other hand, can return more results which can be eventually re-ranked using

machine learning techniques (ML-rank) in order to improve the quality of the results

[108]. OR queries, in fact, return any document that contains at least one term of

the query. For this reason, the OR queries are slower, especially when the terms

are very frequent in the collection and the posting lists are long. To improve the

query response time of OR queries, pruning strategies have been developed. Pruning

strategies allow skipping part of the posting list thus speeding up the processing. In

literature, both lossless and lossful strategies have been studied for both for TAAT and

DAAT.

1.4.1 Pruning Strategies

The dimension of the collection impacts on the length of the posting lists which

in turn can worsen the performances of the SE in terms of query processing time.

In literature there are a lot of di�erent techniques to speed-up query processing by

leveraging the previously mentioned pruning strategies. Various techniques have

been proposed both for TAAT and DAAT processing methods. They can be classi�ed

as follows [109]:

safe optimizations guarantee that the ranking of the retrieved results is correct.

This implies optimizing the way in which the evaluation technique is imple-

mented, depending on the appropriate data structures or �le access methods.

The implementation highly in�uences the cost of the evaluation.

safe-up-to-rank-n optimizations guarantee that the ranking of the top-n retrieved
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results is correct (top-n documents appear in the same order as in the full

ranking).

approximate optimizations do not guarantee the correctness of the ranking, but

however, with a high degree of certainty, part of the top-n documents are

present in the top-n positions of the full ranking.

One popular technique for TAAT is the Quit-Strategy and its variant

Continue-Strategy described by Mo�at and Zobel in [77]. The idea of

Quit-Strategy is to limit the number of accumulators used to store the partial infor-

mation of documents. Quit-Strategy �xes a maximum number of accumulators and

when this number is reached, the computation is interrupted. Continue-Strategy,

instead of interrupting the processing, continues to process updating only the accu-

mulators already created. Continue-Strategy improves the quality of the results by

paying in terms of processing time. Improved versions of Continue-Strategy add

an adapting pruning [62] that estimates a threshold number of accumulators for each

term. These techniques are approximate optimizations.

Dynamic pruning strategies have been also proposed for DAAT. Two of the most

popular are Wand [26] and MaxScore[109], proposed to reduce the query pro-

cessing time by avoiding to score a subset of documents (usually those likely to not

be present in the �nal list of results). These two methods can be con�gured to be

safe-up-to-rank-n.

Wand is a Boolean predicate standing for Weak AND. It takes as argument a list

of Boolean variablesX1, X2, ..., Xk, a list of associated positive weights, w1, w2, ..., wk,

and a threshold θ. By de�nitionWAND(X1, w1, ...Xk, wk, θ) is true i�
∑

1≤i≤k xiwi ≥
θ where xi is the indicator variable for Xi, that is 1 if Xi is true and 0 otherwise.

It can be observed that with Wand it is possible to implement both the AND and

the OR operators. The tuning of the threshold θ lets Wand behave more like OR

or more like AND according to preference.
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MaxScore algorithm estimates the maximal score that a document can achieve

to early terminate the retrieval step. This method requires evaluating query terms

in ascending order of the global frequencies to place less in�uential terms at the

end. MaxScore works estimating the maximal score for each document-term pair.

Consequently, at any time of the computation, it is possible to compute the maximal

achievable score (max-score). Based on this, the computation can be interrupted if

the sum of the computed score and the remaining estimated score is not su�cient

for a placement in top-k.

In this thesis (Chapters 5 and 6) we consider the Continue TAAT dynamic

pruning strategy [77], which we denote by TAAT-CS. Within this strategy, as a posting

list is processed, the partial score contributions of documents are held in temporary

accumulators, that contain the �nal scores of documents once all posting lists are

processed. To limit the processing time, TAAT-CS limits the number of accumulators.

Once this limit is reached, no new accumulators are created, and the postings of

further query terms can only update the existing accumulator values. In this stage

of TAAT-CS, the use of skip pointers within the inverted �le posting lists allows

TAAT-CS to skip the decompression of postings which it does not need to examine,

thus reducing actual IO and increasing e�ciency. Although further improvements

for the TAAT-CS strategy have been proposed [63], we leave their consideration to

future work. Our choice of the TAAT-CS strategy is motivated by the fact that its

overall e�ciency is directly proportional to the number of accumulators to create in

the �rst phase [77]. Indeed, the �ne tuning of the number of accumulators gives us

the �exibility to directly control the e�ciency of the pruning strategy.

1.4.2 Selective Pruning

Dynamic pruning strategies, such as Wand and TAAT-CS can all be con�gured to

be made more aggressive. In doing so, the strategy becomes more e�cient, but at

a possible loss of e�ectiveness [26]. For instance, reducing the maximum number



12 1. Web Search

of accumulators in the TAAT-CS strategy results in less documents being examined

before the second stage of the algorithm commences, when no new accumulators

can be added. Hence, reducing the number of accumulators increases e�ciency, but

can result in relevant documents not being identi�ed within the set of accumulators,

thereby hindering e�ectiveness [77].

Typically, the aggressiveness is selected a priori to any retrieval, independent of

the query to be processed and its characteristics. However, in [106], Tonellotto et

al. show how the Wand pruning strategy can be con�gured to prune more or less

aggressively, on a per-query basis, depending on the expected duration of the query.

They call this approach selective pruning.

Our thesis (Chapters 5 and 6) makes an important improvement to selective

pruning, in observing that the appropriate aggressiveness for a query should be

determined not just by considering the current query. Instead, our proposed load-

sensitive selective pruning framework also accounts for the other queries waiting to

be processed, and their predicted response times, together with their positions in

the waiting queue. These are used to select the dynamic pruning aggressiveness in

order to process the queries with a �xed time threshold, when possible, or to process

it more e�ciently, when the time constraint cannot be respected.
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Distributed Architectures

2.1 Typical Structure

In Chapter 1 we have already mentioned about the general distributed structure of

SEs. According to [34] SEs can be classi�ed in di�erent types of granularity. From

a coarse-grained point of view, the SEs are structured as multi-cluster site engines

(Figure 2.1). It means that a SE is geographically distributed to permit users all

over the world access without signi�cant network latencies.

Distributing a SE over multiple sites is necessary to overcome lack of services

caused by regional problems, to exploit a bigger overall network capabilities and

decrease network latencies. Another advantage is that this infrastructure allows an

improved reliability whenever the data is replicated over geographical distributed

servers. Indeed, to improve the reliability, sites must have an overlapped portion

of the index to compensate eventual unreachable sites. Finding the optimal way to

Figure 2.1: Classical architecture of a distributed search engine node (based on [33]).
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distribute the index and which parts are better to replicate is not a trivial problem.

As an example, a solution is proposed in [31]. The authors suggest to store in

one site only the documents crawled from a certain region. Local documents are in

general more interesting for local queries. For example, di�erent sites could store

documents written in di�erent languages, to which a user may not be interested.

This approach is useful also for decreasing the communication between sites, this

representing an advantage from the latency point of view. It has obviously some

drawbacks. The more obvious is that not all the queries can be answered with the

local data. Di�erent alternatives can be explored: replicating popular documents

over di�erent sites and/or forwarding the query to di�erent sites [32]. To obtain

good overall performances one must �nd a trade o� between the number of the site

contacted, the dimension of the overlapping index and the quality of the results

returned to users.

In this thesis we do not analyse in detail the multi-site SE problems, but we do

take into consideration this level of granularity and problems related to multi-node

cluster. Each site of the SE is in fact made of several components as represented in

Figure 2.2. The front end of the architecture is called Query Broker. It is designed to

broadcast the query to the query servers, collect any partial results and merge them

into the �nal results presented to the user. Depending on the index partitioning

strategy used, the Query Broker selects the query servers to query. In the case of

shard replication the broker must implement also strategies to select replicas and

balance the load over the di�erent shards. Di�erent strategies have been proposed to

manage shard replication: from simple round-robin [70] to more complex solutions

based on machine learning [48, 47].

When a query reaches a query server, it is processed immediately if the server

is idle. Each query server comprises a query processor, which is responsible for

tokenising the query and ranking the documents of its index shard according to a

scoring function. Strategies such as dynamic pruning [26, 77, 110] can be used to

process queries in an e�cient manner on each query server.
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Figure 2.2: Google query serving architecture [13]

The SE architecture comprises also a set of document servers that hold full docu-

ments, snippets and other information about documents. In certain architectures it

is possible to have some servers dedicated to caching, spell checking and advertising.

[13].

2.2 Distributed Query Processing

In a distributed environment, for a given query, several servers are involved for the

computation of results. The di�erent techniques used to contact query servers are

in�uenced by factors like the index partitioning strategy or the presence of shard

replication. In this paragraph we describe the common ways to process a query in

a distributed environment taking into account the common ways to distribute an

index. Without loss of generality we do not deal about replication. As we see in

the next chapters, the following discussion can be easily extended in a distributed

environment with shard replication.

When the index is partitioned by documents, the broker has to query all the

query servers to obtain all the matching documents required. Each query server

can process the query autonomously, the only information that is globally required

regards statistics (like global IDF) which help to properly score and rank the docu-

ments. The top-k documents of each query server are returned to the broker that
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collects and merges the n∗k results obtained, where n is the number of query servers.
From a query processing point of view, the document partitioning has the advantage

of being simple, and permits to automatically balance the load, since all the servers

are involved in all the queries.

To involve less servers, some works [30, 95, 96, 94, 105] exploit collection selection

strategies. These techniques could a�ect negatively the balancing of the load, but

can decrease the computational resources needed for a query, improving the inter-

query parallelism.

The query processing is more complex when the index is partitioned by terms.

As described in 1.3 each server contains a subset of the terms and the broker has

to know where the query terms are located. This approach takes its advantages

from the fact that the query is computed by a limited group of servers, but in

general posting lists are longer that those contained in the document partitioned

index that limits the intra-query parallelism. This approach permits to process

more queries at a time since only few servers are involved in the processing of a

query. Actually, even though (the average length of a query is around 2 terms (see

Chapter 3.1)), commercial SEs often use techniques of query expansion that could

waste the advantage of term partitioning. Term partitioning is anyway used in at

least one commercial SE [87].

When using a term partitioned index, query servers do not have full information

about documents and they cannot compute the �nal scores. Partial scores must be

sent to the broker for the �nal computation. Unfortunately to obtain the optimal

solution all the partial score should be sent back to the broker. Since the list of

partially scored documents is too long, sending it to the broker, can lead to bad

performance due to an excessive use of the network. Furthermore is also costly for

the broker to perform the merge of the lists. For this reason, some studies [86]

suggest that a good choice is to return k×p× c documents where p is the number of
query server contacted and c is a constant. The bigger c, the better the e�ectiveness

of results.
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A possible problem of term partitioning is that the approach is quite ine�cient

for phrase queries. In fact, di�erent terms can be located in di�erent servers and

the position of terms in documents needs to be communicated to the broker, thus

increasing the communication cost. Lastly, the balancing of the load can be a

problem due to the fact that the terms have di�erent frequencies in the collection

and some of these can be referred too frequently.

In order to resolve the above mentioned problems of term partitioning, over time

several techniques have been proposed in order to balance the load or to decrease

communication cost with a targeted assignment of terms [53, 71, 74, 117]. Other

approaches, instead, are based on the distribution of the merging phase, freeing the

broker from this duty. This is the case of the method called pipelining [75, 54].

Pipeline Strategy permits to distribute the merging phase contacting one after

the other, the query servers involved. Each query server is in charge of computing the

partial results taking into account the results computed from the previous servers.

The last query server sends to the broker the �nal list of results. Adopting this

method, the broker has only to create a query bundle containing the query, the

routing information and a set of empty accumulators. Figure 2.3 illustrates the

routing of a query through a pipelined system. In this example, the query contains

four terms: t1, t2, t3 and t4. Since the index is term-partitioned, we do not have to

contact all the servers, but only a subset of them.

2.3 Our framework

In Chapters 5 and 6 we assume a distributed search engine where data are distributed

according to a document partitioning strategy. The index is thus partitioned into

shards each one relative to a particular partition of the documents. To increase

query throughput, each index shard is typically replicated into several replicas and

a query received by the search front-end is routed to one of the available replicas.

Our architecture works over a multi-node search engine without replicas, because
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Figure 2.3: Routing of a query through a pipelined system.[75].
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Figure 2.4: Our reference architecture of a distributed search engine node (based on

[[34]])

our experimental results are independent from the number of replicas, and hence

can be applied directly to each replica independently [34]. Figure 2.4 depicts our

reference architecture for a single replica.

New queries arrive at a front-end machine called query broker, which broadcasts

the query to the query servers of all shards, before collecting and merging the �nal

results set for presentation to the user. When a query reaches a query server, it

is processed immediately if the server is idle. Indeed, each query server comprises

a query processor, which is responsible for tokenising the query and ranking the

documents of its index shard according to a scoring function (in our case we use the
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BM25 scoring function [88]). Strategies such as dynamic pruning [26, 77, 110] can

be used to process queries in an e�cient manner on each query server.

In this thesis, we consider document-sorted indices, as used by at least one major

search engine [40]. Other e�cient retrieval techniques such as frequency-sorted [110]

or impact-sorted indices [4] are possible, which also support our objective of early

termination of long running queries. However, there is no evidence of such index lay-

outs in common use within commercial search engines [76], perhaps � as suggested

by Lester et al. [63] � due their practical disadvantages such as di�culty of use for

Boolean and phrasal queries. As such, in this work, we focus on the realistic scenario

of standard document-sorted index layouts. Finally, we use disjunctive semantics for

queries, as supported by Craswell et al. [37] who highlighted that disjunctive seman-

tics does not produce signi�cantly di�erent high-precision e�ectiveness compared to

conjunctive retrieval.

On the other hand, if the query server is already busy processing another query,

each newly arrived query is placed in a queue, waiting to be selected by a query

scheduler for processing. Hence, the time that a query spends with a query server,

i.e. its completion time, can be split into two components: a waiting time, spent in the

queue, and a processing time, spent being processed. While the latter depends on the

particular retrieval strategy (which we call the processing strategy) and the shard's

characteristics, the former depends on the speci�c scheduling algorithm implemented

to manage the queue and on the number of queries in the queue itself.

Indeed, it has been observed that a query scheduler can make some gains in

overall e�ciency by re-ordering queries, thereby delaying the execution of expensive

queries [69]. However, this approach only considers the cost of executing single

queries, and hence cannot respond to surges in query tra�c. Instead, in this work,

we take a di�erent approach, by arguing that the time available to execute a query

on a query server � whilst meeting the completion time constraints � is in�uenced

by the other queries queued on that query server. Hence in the work we propose in

Chapters 5 and 6, we estimate the target completion times for a query on a server
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based on the prediction of queueing and completion times for the queries scheduled

after the query in the queue.

The utility of query scheduling is particularly evident when queries arrive at a

higher rate than the maximum sustainable peak load of the system [55]. Indeed, in

our proposed framework, we set the maximum query processing time to a carefully

chosen value (see Section 5.1), such that the system load is kept under control,

thereby enabling an optimal management of the peak load at the cost of a slightly

reduced results quality (see Section 5.4.2). Our proposed framework exploits novel

machine learning models for estimating processing time under di�erent processing

strategies.



3

On Query Logs

Commercial SEs receive a huge amount of queries every day from millions of users

searching for a wide variety of arguments. The behaviour of users, when they interact

with the SE, is an important source of information to understand what users are

interested in. All user queries and adjacent information is stored by the SEs in a

log, commonly called query log. However, understanding the intentions of users

from the collected data is not a trivial problem. Due to the importance of the

information stored in the query log a big e�ort has been spent during time to extract

knowledge from it. All these techniques are known as query log mining techniques,

analysed in more detail in Section 3.1. The observation derived from the study of

query log further justify our work described in Chapters 5 and 6, which exploit its

characteristic for improving e�ciency of SEs.

In this thesis we use the information contained in the query log to build a query

recommender system in order to assist user to make better queries to satisfy his

information need. An overview on query recommender system in general is presented

in Section 3.2 while our query recommender application is described in Chapter 4.

Furthermore, in Chapters 5 and 6 we use the information stored into the query log

to build an e�ciency predictor to estimate the query processing time for a set of

retrieval strategies.
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3.1 Query Log Mining

The general structure of a query log permits not only to extract queries submitted

by users but also contains other useful information. In Table 3.1 we can see a

sample of the AOL query log [81]. Besides queries, the query log contains additional

information such as the user id of who submitted the query, the result he clicked, its

position in the ranked list and the time of all these operations. In Table 3.1 some

queries submitted from the same user, over a period of �ve days, are presented. It

is possible to observe that the activity of the user 507 can be split in sessions where

the user searched for di�erent topics.

Extracting search sessions is an important operation performed on a query log.

Search sessions are generally de�ned as sequences of queries, related to the same

subject, submitted by the same user. They o�er useful information on understanding

how users re�ne and modify their search to �nd the answer they are looking for.

Understanding how to best split the query stream to infer sessions is a di�cult

task especially because we need to understand the topic of the queries. As a matter

of fact, the same user often search multiple topics at the same time (multitasking),

or temporarily change topic to later return to the previous one (task switching). As

reported in [80] in the 11.4% of the cases users are pursuing multitasking sessions.

This percentage raises up to 31.8% in the case of AllTheWeb.com users, a popular

search engine at that time. In the same paper, the mean number of topic changes

per session has been estimated to around 2.2 and when considering only multi-topic

sessions it raises up to 3.2.

Due to these reasons, it is di�cult to discover groups of coherent queries that

are sent for a common purpose (logical session). Instead, a common technique

is to extract physical sessions, namely groups of queries submitted by the same

user in a limited period of time, where �limited� depends from the context. In the

�eld of query log mining a physical session is around 30 minutes, but in works like

[64, 66], the authors use a more complicated model over the AOL query log and
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user ID query date rank url

507 kbb.com 2006-03-01 16:45:19 1 http://www.kbb.com

507 kbb.com 2006-03-01 16:55:46 1 http://www.kbb.com

507 autotrader 2006-03-02 14:48:05

507 ebay 2006-03-05 10:50:35

507 ebay 2006-03-05 10:50:52

507 ebay 2006-03-05 10:51:24

507 ebay 2006-03-05 10:52:04

507 ebay 2006-03-05 10:52:36

507 ebay 2006-03-05 10:58:00 69 http://antiques.ebay.com

507 ebay 2006-03-05 10:58:21

507 ebay electronics 2006-03-05 10:59:26

507 ebay electronics 2006-03-05 11:00:21 5 http://www.internetretailer.com

507 ebay electronics 2006-03-05 11:00:21 20 http://www.amazon.com

507 ebay electronics 2006-03-05 11:00:21 22 http://gizmodo.com

507 ebay electronics 2006-03-05 11:18:56 22 http://gizmodo.com

507 ebay electronics 2006-03-05 11:20:59

507 ebay electronics 2006-03-05 11:21:53 66 http://portals.ebay.com

507 ebay electronics 2006-03-05 11:25:35

Table 3.1: Some rows of the AOL query log [98]

they understand that the mean length of a session for that query log is 26 minutes.

During a search session a user often tries to re�ne or modify queries in order to

satisfy his information need. This behaviour is studied by Lau and Horvitz in [60]

where they divide the session's queries in di�erent types:

• new: a query for a topic not previously searched for in the current session;

• generalization: a query on the same topic as the previous query, but seeking

more general information;
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• specialization: a query on the same topic as the previous query, but seeking

more speci�c information;

• reformulation: a query on the same topic that can be viewed as neither a

generalization nor a specialization, but a reformulation of the prior query.

• interruption: a query on a topic previously searched by a user but which has

been interrupted by a search on another topic;

• request for additional results: a request for another set of results on the

same query from the search service. Duplicate queries appear in the data when

a person requests another set of results for the query;

• blank queries: log entries containing no query.

Understanding users behaviour during their sessions is important in order to

discover patterns and improve the user experience increasing also the performance

of the SE.

Another frequently used information is the click-through, namely the result se-

lected by the user. To understand if a user has found something interesting for the

query he submitted, we can exploit the links he eventually clicked within the results

page. As we see in Chapter 4 and in [24], the click-through information can be used

to discriminate between successful or not successful sessions, respectively those that

end up with a clicked query or not.

To be able to mine useful information from the query log, a common technique is

to prepare the data before using it. The reason is that the query log is often target of

spam and user errors that can deteriorate the outcome of the mining process. This

phase is called data preparation and comprises data cleaning (removing irrelevant

item as, for example, the robot queries), anonymization (seeking to identify sessions

and to remove sensible data to avoid privacy issues) and so on. All these data

preparation techniques do not have to remove important data or change important

statistic features.
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A lot of e�ort was spent to study what the users search through SEs. One of

the �rst important intuitions is reported in [97] published in 1999 where the authors

studied 45 days of the Altervista query log. They showed that about 85% of the users

visit the �rst page of results only. They also show that 77% of the user sessions end

up just after the �rst query while only the 4.5% of them are longer than 3 queries.

Another interesting contribution of the same paper is about the structure of the user

sessions: in more than half of the cases some query terms are deleted from the query

and other terms added. It is likely the user is modifying the query to restate the

information need. Instead in about 12% of cases terms are either added or deleted,

in this case the user is probably trying to restrict the search or make it broader. In

more than 35% of cases the query change totally.

A good summary of interesting features found in query logs is reported in [61, 42,

72]. The �rst important thing to consider is the distribution of the query frequency.

The distribution in fact follows a power law, meaning that the occurrences y of a

query is proportional to its popularity rank x following the formula y = Kx−α.

The parameters K and α are respectively a normalization constant and a parameter

that shows how popularity decreases. In particular in [72, 61, 7] it is shown that the

exponent is around 2.4 for di�erent query logs: AltaVista, Yahoo! and Excite. As

an example in Figure 3.1 we can see the number of accesses for the �rst 1, 000 most

popular queries in Excite query log. The most popular query is submitted 2, 219

times, while the 1, 000th most popular query is submitted only 27 times.

Some other interesting query log statistics are presented in [81]. The query

arrival rate, for example, is an interesting parameter useful both for developing the

SE architecture and for understanding the user behaviour. In �gure 3.1 we see that

throughout an entire day, the query tra�c is not constant. In the morning, users

submit less queries than in the afternoon and, at the same time, there is correlation

between topics searched by users and the time of the search (Figure 3.1).

Discovering topics is another non-trivial task in query log mining. A very �rst

result in categorizing queries is [104]. Authors show the percentage of queries sub-
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Figure 3.1: Number of accesses for the 1,000 most popular queries on Excite [72]

mitted for each topic to the Excite search engine in 1997. Recent papers showing

techniques for assigning labels to each query [15, 27] adopts a set of multiple classi-

�ers subsequently re�ning the classi�cation phase.

3.2 Query Recommender System

Recommender systems are used in several domains, being specially successful in

electronic commerce. They can be divided in two broad classes: those based on

content �ltering, and those on collaborative �ltering. As the name suggests, content

�ltering approaches base their recommendations on the content of the items to be

suggested. They face serious limitations when dealing with multimedia content and,

more importantly, their suggestions are not in�uenced by the human-perceived qual-

ity of contents. On the other side, collaborative �ltering solutions are based on the

preferences of other users. There are two main families of collaborative �ltering algo-

rithms: memory-based and model-based. Memory-based approaches use the whole

past usage data to identify similar users [93], items [92], or both [112]. Generally,
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Figure 3.2: Number of accesses for the 1,000 most popular queries on Excite [81]

memory-based algorithms are quite simple and produce good recommendations, but

they usually face serious scalability problems. On the other hand, model-based al-

gorithms construct in advance a model to represent the behavior of users, allowing

to predict more e�ciently their preferences. However, the model building phase can

be highly time-consuming, and models are generally hard to tune, sensitive to data

changes, and highly dependent on the application domain. Di�erent approaches can

be adopted based on linear algebra [35, 85], clustering [111], latent class models [51],

singular value decomposition [82]. An analysis of the use of collaborative �ltering

algorithms to the query suggestion problem can be found in [12], where the problem

descending from the poor and very sparse scoring information available in query logs

is highlighted.

On the other side, query suggestion techniques address speci�cally the problem

of recommending queries to Web search engine users, and propose speci�c solutions

and speci�c evaluation metrics tailored to the Web search domain. Techniques pro-

posed during last years are very di�erent, yet they have in common the exploitation

of usage information recorded in query logs [99]. Many approaches extract the in-

formation used from the plain set of queries recorded in the log, although there

are several works that take into account the chains of queries that belong to the

same search session [84]. In the �rst category we have techniques that employ clus-
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Figure 3.3: Number of accesses for the 1,000 most popular queries on Excite [81]

tering algorithms to determine groups of related queries that lead users to similar

documents [115, 8, 14]. The most �representative� queries in the clusters are then re-

turned as suggestions. Others solutions employ the reformulations of the submitted

query issued by previous users [58], or propose as suggestions the frequent queries

that lead in the past users to retrieve similar results [11].

[10] exploit click-through data as a way to provide recommendations. The

method is based on the concept of Cover Graph. A Cover Graph is a bipartite

graph of queries and URLs, where a query q and an URL u are connected if a user

issued q and clicked on u that was an answer for the query. Suggestions for a query

q are thus obtained by accessing the corresponding node in the Cover Graph and

by extracting the related queries sharing more URLs. The sharing of clicked URLs
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Figure 3.4: The query distribution of a 24 hours time span covering 1st May 2006

from MSN query log.

results to be very e�ective for devising related queries, and the Cover Graph solu-

tion has been chosen as one of the two query suggestion algorithms considered in

the Chapter 4 for experimental performance comparison.

Among the proposals exploiting the chains of queries stored in query logs, [43]

use an association rule mining algorithm to devise frequent query patterns. These

patterns are inserted in a query relation graph which allows �concepts� (queries that

are synonyms, specializations, generalizations, etc.) to be identi�ed and suggested.

Boldi et al. introduce the concept of Query Flow Graph, an aggregated repre-

sentation of the information contained in a query log [16]. A Query Flow Graph is

a directed graph in which nodes are queries, and the edge connecting node q1 to q2

is weighted by the probability that users issue query q2 after issuing q1. Authors

highlight the utility of the model in two concrete applications, namely, devising logi-

cal sessions and generating query recommendation. The authors re�ne the previous

studies in [17] and [18] where a query suggestion scheme based on a random walk

with restart model on the Query Flow Graph is proposed. Such suggestion algorithm

is the second algorithm considered in the Chapter 4 for experimental performance

comparison.



30 3. On Query Logs

Another approach is represented by the query re�nement/substitution technique

discussed in [58]. The goal of query re�nement is to generate a new query to replace

a user's original ill-formed search query in order to enhance the relevance of retrieved

results. The technique proposed includes a number of tasks such as spelling error

correction, word splitting, word merging, phrase segmentation, word stemming, and

acronym expansion.

The importance of rare query classi�cation and suggestion recently attracted a

lot of attention from the information retrieval community. Generating suggestions

for rare queries is in fact very di�cult due to the lack of information in the query

logs.

The authors of [41] describe search log studies aiming at explaining behaviours

associated with rare and common queries. They investigate the search behaviour

following the input of rare and common queries. Results show that search engines

perform less well on rare queries. The authors also study transitions between rare

and common queries highlighting the di�erence between the frequency of queries

and their related information needs.

[103] propose an optimal rare query suggestion framework by leveraging implicit

feedbacks from users in the query logs. The proposed model is based on the pseudo-

relevance feedback. It assumes that clicked and skipped URLs contain di�erent

level of information, and thus, they should be treated di�erently. Therefore, the

framework optimally combines both click and skip information from users, and uses

a random walk model to optimize i) the restarting rate of the random walk, and ii)

the combination ratio of click and skip information. Experimental results on a log

from a commercial search engine show the superiority of the proposed method over

the traditional random walk models and pseudo-relevance feedback models.

Mei et al. propose a novel query suggestion algorithm based on ranking queries

with the hitting time on a large scale bipartite graph [73]. The rationale of the

method is to capture semantic consistency between the suggested queries and the

original query. Empirical results on a query log from a real world search engine show
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that hitting time is e�ective to generate semantically consistent query suggestions.

The authors show that the proposed method and its variations are able to boost

long tail queries, and personalized query suggestion.

Broder et al. propose to leverage the results from search engines as an external

knowledge base for building the word features for rare queries [28]. The authors

train a classi�er on a commercial taxonomy consisting of 6,000 nodes for catego-

rization. Results show a signi�cant boost in term of precision with respect to the

baseline query expansion methods. Lately, Broder et al. propose an e�cient and ef-

fective approach for matching ads against rare queries [25]. The approach builds an

expanded query representation by leveraging o�ine processing done for related pop-

ular queries. Experimental results show that the proposed technique signi�cantly

improves the e�ectiveness of advertising on rare queries with only a negligible in-

crease in computational cost.
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SearchShortcut

In this Chapter we propose an e�cient and e�ective solution to the problem of choos-

ing the queries to suggest to web search engine users in order to help them in rapidly

satisfying their information needs. By exploiting a weak function for assessing the

similarity between the current query and the knowledge base built from historical

user sessions, we re-conduct the suggestion generation phase to the processing of a

full-text query over an inverted index. The resulting query recommendation tech-

nique is very e�cient and scalable, and is less a�ected by the data-sparsity problem

than most state-of-the-art proposals described in 3.2. Thus, it is particularly ef-

fective in generating suggestions for rare queries occurring in the long tail of the

query popularity distribution. The quality of suggestions generated is assessed by

evaluating the e�ectiveness in forecasting the users' behaviour recorded in historical

query logs, and on the basis of the results of a reproducible user study conducted

on publicly-available, human-assessed data. The experimental evaluation conducted

shows that our proposal remarkably outperforms two other state-of-the-art solutions,

and that it can generate useful suggestions even for rare and never seen queries.

4.1 Introduction

Giving suggestions to users of Web search engines is a common practice aimed at

driving users toward the information bits they may need. Suggestions are normally

provided as queries that are, to some extent, related to those recently submitted by
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the user. The generation process of such queries, basically, exploits the expertise

of �skilled� users to help inexperienced ones. The knowledge mined for making this

possible is contained in Web search engine logs which store all the past interactions

of users with the search system. More the users that satis�ed the same information

need in the past, the more precise and e�ective the related suggestions provided

by any query recommendation technique. On the other hand, to generate e�ective

suggestions for user queries which are rare or have never been seen in the past is an

open issue poorly addressed by state-of-the-art query suggestion techniques.

In a previous work, an interesting framework for the query suggestion problem

is provided by the Search Shortcut model, and an evaluation metric for assessing

the e�ectiveness of suggested queries by exploiting a query log is proposed [12]. Ba-

sically, the model formalizes a way of exploiting the knowledge mined from query

logs to help users to rapidly satisfy their information need. In the same work the

use of Collaborative Filtering (CF) algorithms is investigated. However, the work

highlights some limitations in the query recommendations solutions based on collab-

orative �ltering mainly due to the poor and very sparse scoring information available

in query logs. In fact, due to the long-tail distribution of query occurrences, click

information for low-frequency queries is rare and very sparse. Since implicit feed-

back information given by popularity and user clicks is the only source of (positive)

query scoring available, most of the queries in the query log cannot be exploited to

generate the recommendation model [1]. This issue a�ects CF-based solutions, but

also many other query recommendation techniques discussed in the literature.

In this Chapter we propose an e�cient and e�ective query recommendation al-

gorithm that can cover also queries in the long tail. We adopt the Search Shortcuts

model and its terminology, and re-conduct the shortcut generation phase to the

processing of a full-text query over an inverted �le that indexes satisfactory user

sessions recorded in a query log. Unlike most state-of-the art proposals, our short-

cut generation algorithm aggregates implicit feedback information present in query

logs at the level of single query terms, thus alleviating the data sparseness issue. The
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contribution of each query terms is then combined during the suggestion generation

process in order to provide recommendations also for queries that are rare or even

for those that were never seen in the past. Generating suggestions for rare queries is

a hot research topic [73, 103, 25], and our suggestion generation technique beyond

addressing the data-sparsity problem, is both very e�cient and scalable, making it

suitable for a large-scale deployment in real-world search engines.

Another contribution of this Chapter consists in the methodology adopted for

manually assessing the e�ectiveness of query suggestion techniques. The methodol-

ogy exploits the query topics and the human judgements provided by the National

Institute of Standards and Technology (NIST) for running the TREC Web Track's

diversity task. For the purposes of the diversity task, the NIST assessors provide 50

queries, and, for each of them, they identify a representative set of subtopics, based

on information extracted from the logs of a commercial search engine. We claim that

given a query topic A with all its subtopics {a1, a2, . . . , an}, and a query suggestion

technique T , the more the queries suggested by T for A cover the human-assessed

subtopics {a1, a2, . . . , an}, the more T is e�ective. To assess the e�ectiveness of a

given query suggestion technique, we thus propose to simply ask human editors to

count how many subtopics are actually covered by the suggestions generated by

T for the TREC diversity track queries. This methodology is entirely based on a

publicly-available data. It can be thus considered fair and constitute a good shared

base for testing and comparing query recommendation systems. We shall de�ne the

above concept better in Section 4.3.

The experimental evaluation conducted shows that the proposed solution outper-

forms remarkably two state-of-the-art algorithms chosen for performance comparison

purposes (presented in [10] and [16, 17]). Unlike these competitor algorithms, our

solution generates in fact relevant suggestions for a vast majority of the 50 TREC

queries, and the suggested queries cover a high percentage of possible subtopics.

In particular, we assessed that it can generate useful suggestions even for queries

that are rare or do not occur in the query log used for training the recommendation
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model. Moreover, the proposed algorithm outperforms the competitor solutions even

on the tests measuring the e�ectiveness in forecasting the users' behavior recorded

in historical query according to the metric used in [12].

The main original contributions of this work are thus:

1. A novel algorithm to e�ciently and e�ectively generate query suggestions that

is robust to data sparsity;

2. A novel evaluation methodology with which we can compare the e�ectiveness

of suggestion mechanisms;

3. An extensive evaluation comparing on the same basis the proposed solution

with two state-of-the-art algorithms.

The idea we present in this Chapter follows a completely new approach in relation

to the algorithma t the state of the art described in Chapter 3.2. First, we infer

the relevance of a query based on whether it successfully ended a search session,

i.e., the last query of the user session allowed the user to �nd the information she

was looking for. Recent research results have shown in fact that user behavior

recorded in query log allows e�ective predictive models to be learned for estimating

search success [49]. Successful sessions have also already been taken into account

as a way to evaluate promotions of search results [102, 101]. Similarly, satisfactory

sessions are considered in this Chapter as the key factor for generating useful query

recommendations. All the queries in the satisfactory sessions stored in the log which

terminate with the same �nal query are considered �related�, since it is likely that

these queries were issued by di�erent users trying to satisfy a similar information

need. Thus, our technique exploit a sort of collaborative clustering of queries inferred

from successful user search processes, and suggest users the �nal queries which are

the representatives of the clusters closest to the submitted query.

To deeply understand the work presented in this Chapter is suggested to read

the Chapter 3, in particualar the sections about Query Log mining (Section 3.1)
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and Query Recommender System (Section 3.2).

The rest of the Chapter is organized as follows. The next Section brie�y sketches

the shortcuts model and describes the e�cient algorithm designed for generating

query shortcuts. The evaluation methodology based on the TREC diversi�cation

track data is discussed in Section 4.3 which also presents the encouraging results

obtained by our solution in the performance comparisons tests conducted. Finally,

Section 4.4 draws some conclusions.

4.2 An E�cient Algorithm for the Query Shortcuts

Problem

In the following we brie�y recall the basis of the Search Shortcuts Problem (SSP)

proposed in [12], and we introduce our novel shortcuts generation algorithm.

4.2.1 The Search Shortcuts Problem

The SSP is formally de�ned as a problem related to the recommendation of queries

in search engines and the potential reductions obtained in the users session length.

This problem formulation allows a precise goal for query suggestion to be devised:

recommend queries that allowed �similar� users, i.e., users which in the past followed

a similar search process, to successfully �nd the information they were looking for.

The problem has a nice parallel in computer systems: prefetching. Similarly to

prefetching, search shortcuts anticipate requests to the search engine with suggestion

of queries that a user would have likely issued at the end of her session.

We now introduce the notations and we recap the formal de�nition of the SSP.

Let U be the set of users of a Web search engine whose activities are recorded

in a query log, and Q be the set of queries in that query log. We suppose the query

log is preprocessed by using some session splitting method (e.g. [57], [65]) in order

to extract query sessions, i.e., sequences of queries which are related to the same
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user search task. Formally, we denote by S the set of all sessions in a query log.

Moreover, let us denote with σi the i-th query of σ. For a session σ of length n its

�nal query is the query σn, i.e., the last query issued by the user in the session.

We say that a session σ is satisfactory if and only if the user has clicked on at

least one link shown in the result page returned by the Web search engine for the

�nal query σn, unsatisfactory otherwise. Finally, given a session σ of length n we

denote σt| the head of σ, i.e., the sequence of the �rst t, t < n, queries, and σ|t the

tail of σ given by the sequence of the remaining n− t queries.

De�nition 1 We de�ne k-way shortcut a function h taking as argument the head

of a session σt|, and returning as result a set h
(
σt|
)
of k queries belonging to Q.

Such de�nition allows a simple ex-post evaluation methodology to be introduced

by means of the following similarity function:

De�nition 2 Given a satisfactory session σ ∈ S of length n, and a k-way shortcut

function h, the similarity between h
(
σt|
)
and a tail σ|t is de�ned as:

s
(
h
(
σt|
)
, σ|t
)

=

∑
q∈h(σt|)

n−t∑
m=1

Jq =
(
σ|t
)
m

Kf (m)

|h(σt|)|
(4.1)

where f (m) is a monotonic increasing function, and function Jq = σmK = 1 if and

only if q is equal to σm.

For example, to evaluate the e�ectiveness of a given shortcut function h, the

sum (or average) of the value of s computed on all satisfactory sessions in S can be

computed.

De�nition 3 Given the set of all possible shortcut functions H, we de�ne Search

Shortcut Problem (SSP) the problem of �nding a function h ∈ H which maximizes

the sum of the values computed by Equation (4.1) on all satisfactory sessions in S.
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A di�erence between search shortcuts and query suggestion is actually repre-

sented by the function Jq =
(
σ|t
)
m

K in Equation (4.1). By relaxing the strict equality

requirement, and by replacing it with a similarity relation � i.e., Jq ∼
(
σ|t
)
m

K = 1

if and only if the similarity between q and σm is greater than some threshold � the

problem reduces, basically, to query suggestion. By de�ning appropriate similar-

ity functions, the Equation in (4.1) can be thus used to evaluate query suggestion

e�ectiveness as well.

Finally, we should consider the in�uence the function f (m) has in the de�nition

of scoring functions. Actually, depending on how f is chosen, di�erent features of

a shortcut generating algorithm may be tested. For instance, by setting f (m) to

be the constant function f (m) = c, we measure simply the number of queries in

common between the query shortcut set and the queries submitted by the user. A

non-constant function can be used to give an higher score to queries that a user

would have submitted later in the session. An exponential function f (m) = em can

be exploited instead to assign an higher score to shortcuts suggested early. Smoother

f functions can be used to modulate positional e�ects.

4.2.2 The Search Shortcuts Generation Method

Inspired by the above SSP, we de�ne a novel algorithm that aims to generate sug-

gestions containing only those queries appearing as �nal in satisfactory sessions.

The goal is to suggest queries having a high potentiality of being useful for people

to reach their initial goal. As hinted by the problem de�nition, suggesting queries

appearing as �nal in satisfactory sessions, in our view is a good strategy to accom-

plish this task. In order to validate this hypothesis, we analyzed the Microsoft RFP

2006 dataset, a query log from the MSN Search engine containing about 15 million

queries sampled over one month of 2006.

First, we measured that the number of distinct queries that appear as �nal query

in satisfactory sessions of the query log is relatively small if compared to the overall
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number of submitted queries: only about 10% of the total number of distinct queries

in the query log occur in the last position of satisfactory user sessions. As expected,

the distribution of the occurrences of such �nal queries in satisfactory user sessions

is very skewed (as shown in Figure 4.1), thus con�rming once more that the set of

�nal queries actually used by people is limited.

Queries which are �nal in some satisfactory sessions may obviously appear also

in positions di�erent from the last in other satisfactory sessions. We veri�ed that,

when this happens, these queries appear much more frequently in positions very close

to the �nal one. About 60% of the distinct queries appearing in the penultimate

position of satisfactory sessions are also among the �nal queries, about 40% in

positions second to the last, 20% as third to the last, and so on. We can thus argue

that �nal queries are usually close to the achievement of the user information goal.

We consider these queries as highly valued and high quality short pieces of text

expressing actual user needs.

Figure 4.1: Popularity of �nal queries in satisfactory sessions.

The SSP algorithm proposed in this Chapter works by computing, e�ciently,

similarities between partial user sessions (the one currently performed) and his-
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torical satisfactory sessions recorded in a query log. Final queries of most similar

satisfactory sessions are suggested to users as search shortcuts.

Let σ′ be the current session performed by the user, and let us consider the

sequence τ of the concatenation of all terms with possible repetitions appearing in

σ′t|, i.e., the head of length t of session σ′. We now compute the value of a scoring

function δ (τ, σs), which for each satisfactory session σs measures the similarity be-

tween its queries and the set of terms τ . Intuitively, this similarity measures how

much a previously seen session overlaps with the user need expressed so far (the

concatenation of terms τ serves as a bag-of-words model of user need). Sessions

are ranked according to δ scores and from the subset of the top ranked sessions we

suggest their �nal queries. It is obvious that depending on how the function δ is

chosen we may have di�erent recommendation methods. We opt for δ to be a linear

combination of the BM25 metric [89] and the frequency of the �nal queries in the

query log. More formally, given a satisfactory session σs of length n, its �nal query

σsn, and the sequence τ of the concatenation of all terms with possible repetitions

appearing in σ′t|, we de�ne

δ(τ, σs) = α ·BM25(τ, σs) + β · freq(σsn)

We exploit an IR-like metric (BM25) because we want to take into much con-

sideration words that are discriminant in the context of the session to which we

are comparing. BM25, and other IR-related metrics, have been designed specif-

ically to account for that property in the context of query/documents similarity.

We borrow from BM25 the same attitude to adapt to this conditions. We also ex-

ploit the frequency of �nal queries in the scoring formula. By doing so we aim at

promoting sessions containing �nal queries that are frequently used by users. The

shortcuts generation problem has been, thus, reduced to the information retrieval

task of �nding highly similar sessions in response to a given sequence of queries.

In our experiments we set α = β = 1/2. Furthermore, we compute the similarity
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function δ only on the current query issued by the user instead of using the whole

head of the session. We do this in order to be fair with respect to our competitors

as they produce recommendations starting from a single query. We leave the study

of the use of the whole head of the session for producing query recommendations as

a future work.

The idea described above is thus translated into the following process (see Al-

gorithm 1). For each unique �nal query contained in satisfactory sessions we de�ne

what we have called a virtual document identi�ed by its title and its content. The

title, i.e., the identi�er of the document, is exactly the string of the �nal query. The

content of the virtual document is instead composed of all the terms that have ap-

peared in queries of all the satisfactory sessions ending with the �nal query. At the

end of this procedure we have a set of virtual documents, one for each distinct �nal

query occurring in some satisfactory sessions. Just to make things more clear, let us

consider a toy example. Consider the two following satisfactory sessions: (gambling,

gambling places, las vegas, bellagio), and (las vegas, strip, las vegas hotels, bellagio).

We create the virtual document identi�ed by the title bellagio and whose content

is the text (gambling gambling places las vegas las vegas strip las vegas hotels). As

you can see the virtual document actually contains also repetitions of the same term

that are considered in the context of the BM25 metrics.

All virtual documents are indexed with the preferred Information Retrieval sys-

tem, and generating shortcuts for a given user session σ′ becomes simply processing

the query σ′t| over the inverted �le indexing such virtual documents (see Algorithm

2). We know that processing queries over inverted indexes is very fast and scalable,

and these important characteristics are inherited by our query suggestion technique

as well.

The other important feature of our query suggestion technique is its robustness

with respect to rare and singleton queries. Singleton queries account for almost 50%

of the submitted queries [99], and their presence causes the issue of the sparsity

of models [1]. Since we match τ with the text obtained by concatenating all the
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Algorithm 1 O�ine generation of the recommendation model.
Require: a set S of user sessions recorded in the query log.

Ensure: an inverted index vdindex built over the virtual documents obtained from

satisfactory sessions.

1: for all σ ∈ S do

2: if sessionIsSatisfactory(σ) then

3: τ ← getTermsFromSession(σ)

4: vd[σn]← τ {given current satisfactory session σ, the occurrences of all the

query-terms in σ are added to the (initially empty) body of the virtual

document associated to �nal query σn.}

5: end if

6: end for

7: vdindex ← buildInvertedIndex(vd) {we build the inverted �le indexing all the

obtained virtual documents.}

queries in each session, we are not bound to look for previously submitted queries

as in the case of other suggestion algorithms. Therefore we can generate suggestions

for queries in the long tail of the distribution whose terms have some context in the

query log used to build the model.

4.3 Assessing Search Shortcuts Quality

The e�ectiveness of a query recommender systems can be evaluated by means of

user-studies or through the adoption of some performance metrics. Unfortunately,

both these methodologies may lack of generality and incur in the risk of being over-

�tted on the system object of the evaluation. The evaluation methodology used in

this Chapter tries to address pragmatically the above issues.

For what concerns the methodology based on a performance metrics, we used

the one de�ned in Equation (4.1), and we computed the average value of similarity
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Algorithm 2 Suggestion retrieval.
Require: the head σ′t| of length t of the current user session σ

′, and the recommen-

dation model vdindex.

Ensure: the set R of top-k scored recommendations for the given query.

1: τ ← getTermsFromSession(σ′t|)

2: D ← getMatchingV irtualDocuments(vdindex, τ)

3: R← new heap(k)

4: for all d ∈ D do

5: shortcut← getT itle(d)

6: R.insert(shortcut, α ·BM25(τ, d) + β · freq(shortcut))
7: end for

8: return R.

over a set of satisfactory sessions. This performance index objectively measures the

e�ectiveness of a query suggestion algorithm in foreseeing the satisfactory query for

the session.

In particular, we measured the values of this performance index over suggestions

generated by using our Search Shortcuts (SS) solution and by using in exactly the

same conditions two other state-of-the-art algorithms: Cover Graph (CG) proposed

by [10], and Query Flow Graph (QFG), proposed by [17]. These algorithms are

recent and highly reputed representatives of the best practice in the �eld of query

recommendation. To test QFG-based query suggestion we used the original imple-

mentation kindly provided us by the authors. In the case of CG, instead, we evaluate

our own implementation of the technique.

For what concerns the methodology based on user-studies, we propose an ap-

proach that measures coverage and the e�ectiveness of suggestions against a man-

ually assessed and publicly available dataset.

To this purpose, we exploited the query topics and the human judgements pro-

vided by NIST for running the TREC 2009 Web Track's Diversity Task (http:

http://trec.nist.gov/data/web09.html
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//trec.nist.gov/data/web09.html). For the purposes of the TREC diversity

track, NIST provided 50 queries to a group of human assessors. Assuming each

TREC query as a topic, assessors were asked to identify a representative set of

subtopics covering the whole spectrum of di�erent user needs/intentions. Subtopics

are based on information extracted from the logs of a commercial search engine, and

are roughly balanced in terms of popularity. Obviously the queries chosen are very

di�erent and from di�erent categories: di�cult, ambiguous, and/or faceted in or-

der to allow the overall performance of diversi�cation methods to be evaluated and

compared. Since diversity and topic coverage are key issues also for the query recom-

mendation task [67], we propose to use the same third-party dataset for evaluating

query suggestion e�ectiveness as well.

Let's now introduce the de�nitions of coverage, and e�ectiveness.

De�nition 4 (Coverage) Given a query topic A with subtopics {a1, a2, . . . , an},
and a query suggestion technique T , we say that T has coverage equal to c if n · c
subtopics match suggestions generated by T .

In other words, a coverage of 0.8 for the top-10 suggestions generated for a query q

having 5 subtopics means that 4 subtopics of q are covered by at least one suggestion.

De�nition 5 (E�ectiveness) Given a query topic A with subtopics {a1, a2, . . . , an},
and a query suggestion technique T generating k suggestions, we say that T has ef-

fectiveness equal to e if k · e suggestions cover at least one subtopic.

In other words, an e�ectiveness of 0.1 on the top-10 suggestions generated for a

query q means that only one suggestion is relevant for one of the subtopics of q.

The methodology just described has some net advantages. It is based on a

publicly-available test collection which is provided by a well reputed third-party

organization. Moreover, it grants to all the researchers the possibility of measuring

the performance of their solution under exactly the same conditions, with the same

dataset and the same reproducible evaluation criterium. In fact, even though the

http://trec.nist.gov/data/web09.html
http://trec.nist.gov/data/web09.html
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matching between suggestions and topics is still human-driven the process has a

very low ambiguity as we shall discuss in the next section.

4.3.1 Experimental Settings

The experiments were conducted using the Microsoft RFP 2006 query log which was

preliminary preprocessed by converting all queries to lowercase, and by removing

stop-words and punctation/control characters.

The queries in the log were then sorted by user and timestamp, and segmented

into sessions on the basis of a splitting algorithm which simply groups in the same

session all the queries issued by the same users in a time span of 30 minutes. We

tested also the session splitting technique based on the Query Flow Graph proposed

in [16], but for the purpose of our technique, we did not observe a signi�cant variation

in terms of quality of the generated suggestions.

Noisy sessions, likely performed by software robots, were removed. The remain-

ing entries correspond to approximately 9M sessions. These were split into two

subsets: training set with 6M sessions and a test set with the remaining 3M ses-

sions. The training set was used to build the recommendation models needed by

CG and QFG and used for performance comparison.

Instead, to implement our SS solution we extracted satisfactory sessions present

in the training set and grouped them on the basis of the �nal query. Then, for each

distinct �nal query its corresponding virtual document was built with the terms (with

possible repetitions) belonging to all the queries of all the associated satisfactory

sessions. Finally, by means of the Terrier search engine (http://terrier.org/),

we indexed the resulting 1, 191, 143 virtual documents. The possibility of processing

queries on such index is provided to interested readers through a simple web interface

available at the address http://searchshortcuts.isti.cnr.it. The web-based

wrapper accepts user queries, interact with Terrier to get the list of �nal queries

(id of virtual documents) provided as top-k results, and retrieves and visualizes the

http://terrier.org/
http://searchshortcuts.isti.cnr.it
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Query: TREC query (n. 8): appraisal

Query's subtopics:

S1: What companies can give an appraisal of my home's value?

S2: I'm looking for companies that appraise jewelry.

S3: Find examples of employee performance appraisals.

S4: I'm looking for web sites that do antique appraisals.

SS QFG CG

performance appraisal (S3) online appraisals (S4) appraisersdotcom (S4)

hernando county property employee appraisals (S3)

appraiser (S1) real estate appraisals

(S1)

antique appraisal (S4) appraisers (S1)

appraisers in employee appraisals

colorado (S1) forms (S3)

appraisals etc (S1) appraisers.com (S4)

appraisers.com (S4) gmac

�nd appraiser (S1) appraisers

beverly wv (S1)

wachovia bank picket fence

appraisals (S1) appraisal (S1)

appraisersdotcom (S4) fossillo creek san antonio

Table 4.1: An example of the coverage evaluating process involving the TREC

dataset. For the 8th TREC query appraisal , one of the assessors evaluates the

coverage of suggestions generated by SS, QGF, and CG. The subtopics covered by

each suggestion are reported in bold between parentheses. Suggestions not covering

any of the subtopics are emphasized.
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associated query strings.

4.3.2 TREC queries statistics

We measured the popularity of the 50 TREC 2009 Web Track's Diversity Task

queries in the training set obtained by the Microsoft RFP 2006 dataset as described

in the previous section. Figure 4.2 shows the cumulative frequency distribution of

the 50 TREC queries. While 8/50 queries are not present in the training set, 2/50

queries occur only one time. Furthermore, 23/50 queries have a frequency lower than

10 and 33/50 queries occur lower than 100 times. The TREC dataset thus contains

a valid set of queries for evaluating the e�ectiveness of our method as it includes

several examples of unseen and rare queries, while popular queries are represented

as well. Table 4.2 shows some queries with their popularity measured in the training

set.
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Figure 4.2: Histogram showing the total number of TREC queries (on the y axis)

having at most a certain frequency (on the x axis) in the training set. For instance,

the third bar shows that 23 TREC queries out of 50 occur at most ten times in the

training set.
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TREC Query Frequency

wedding budget calculator 0

�ame designs 1

dog heat 2

the music man 5

diversity 27

map of the united states 170

cell phones 568

starbucks 705

Table 4.2: An example of eight TREC queries with their relative frequency in the

training set.

4.3.3 Search Shortcuts metric

We used Equation (4.1) to measure the similarity between the suggestions generated

by SS, CG, and QFG for the �rst queries issued by a user during a satisfactory session

belonging to the test set, and the �nal queries actually submitted by the same

user during the same session. We conducted experiments by setting the number k

of suggestions generated to 10, and, as in [12], we chose the exponential function

f (m) = em to assign an higher score to shortcuts suggested early. Moreover, the

length t of the head of the session was set to dn/2e, where n is the length of the

session considered. Finally, the metric used to assess the similarity between two

queries was the Jaccard index computed over the set of tri-grams of characters

contained in the queries [52], while the similarity threshold used was 0.9.

Due to the long execution times required by CG, and QFG for generating sug-

gestions, it was not possible to evaluate suggestion e�ectiveness by processing all

the satisfactory sessions in the test set. We thus considered a sample of the test

set constituted by a randomly selected group of 100 satisfactory sessions having a

length strictly greater than 3. The histogram in Figure 4.3 plots the distribution
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of the number of sessions vs. the quality of the top-10 recommendations produced

by the three algorithms. Results in the plot are grouped by quality range. As an

example, the second group of bars shows the number of sessions for which the three

algorithms generated suggestions having a quality (measured using Equation (4.1))

ranging from from 0.1 to 0.2. Results show that recommendations produced for

the majority of sessions by QFG and CG obtains a quite low score (in the inter-

val between 0 to 0.1), while SS produces recommendations whose quality is better

distributed among all the range.

In particular, SS produces recommendations having a quality score greater than

60% for 18 sessions out of 100. Moreover, in 36 cases out of 100, SS generates

useful suggestions when its competitors CG and QFG fails to produce even a single

e�ective suggestion. On average, over the 100 sessions considered, SS obtains an

average quality score equal to 0.32, while QFG and CG achieves 0.15 and 0.10,

respectively.
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Figure 4.3: Distribution of the number of sessions vs. the quality of the top-10

recommendations produced by the three algorithms.
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4.3.4 Suggestions Quality on TREC topics

The relevance of the suggestions generated by SS, CG, and QFG w.r.t. the TREC

query subtopics was assessed manually1. Seven volunteers were chosen among CS

researchers working in di�erent research groups of our Institute. The evaluation

consisted in asking assessors to assign, for any given TREC query, the top-10 sug-

gestions returned by SS, CG, and QFG to their related subtopic. Editors were

also able to explicitly highlight that no subtopic can be associated with a partic-

ular recommendation. The evaluation process was blind, in the sense that all the

suggestions produced by the three methods were presented to editors in a single,

lexicographically ordered sequence where the algorithm which generated any spe-

ci�c suggestion was hidden. Given the limited number of queries and the precise

de�nition of subtopics provided by NIST assessors, the task was not particularly

cumbersome, and the evaluations generated by the assessors largely agree. Table 4.1

shows the outcome of one of the editors for the TREC query n. 8. The note in bold

after each suggestion indicates the subtopic to which the particular suggestion was

assigned (e.g. employee appraisals in the CG column matches subtopic S3). Thus

for this topic this editor gave to both SS and CG a coverage of 3/4 (3 subtopics

covered out of 4), while QFG was rated 1/4. Moreover, suggestions in italic, e.g.

gmac in the CG column, were considered by the editor not relevant for any of the

subtopics. Thus, for topic appraisals SS and QFG score an e�ectiveness equal to 1

(all suggestions generated were considered relevant), whereas CG score was 4/5 (2

non relevant suggestions out of 10).

The histogram shown in Figure 4.4 plots, for each of the 50 TREC topics, the

average coverage (De�nition 4) of the associated subtopics measured on the basis of

assessor's evaluations for the top-10 suggestions returned by SS, CG, and QFG. By

1All the queries suggested by the three algorithms for the 50 TREC queries are available to the

interested reader along with the associated subtopic lists at the address http://searchshortcuts.

isti.cnr.it/TREC_results.html.

http://searchshortcuts.isti.cnr.it/TREC_results.html
http://searchshortcuts.isti.cnr.it/TREC_results.html
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looking at the Figure, we can see that SS outperforms remarkably its competitors.

On 36 queries out of 50 SS was able to cover at least half of the subtopics, while

CG only in two cases reached the 50% of coverage, and QFG on 8 queries out of

50. Moreover, SS covers the same number or more subtopics than its competitors

in all the cases but 6. Only in 5 cases QFG outperforms SS in subtopic coverage

(query topics 12, 15, 19, 25, 45), while in one case (query topic 22) CG outperforms

SS. Furthermore, while SS is always able to cover one or some subtopics for all the

cases, in 15 (27) cases for QFG (CG) the two methods are not able to cover any of

the subtopics. The average fraction of subtopics covered by the three methods is:

0.49, 0.24, and 0.12 for SS, QFG, and CG, respectively.
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Figure 4.4: Coverage of the subtopics associated with the 50 TREC diversity-track

queries measured by means of an user-study on the top-10 suggestions provided

by the Cover Graph (CG), Search Shortcuts (SS), and Query Flow Graph (QFG)

algorithms.

Figure 4.5 reports the e�ectiveness (De�nition 5) of the top-10 suggestions gen-

erated by SS, QFG, and CG. Also considering this performance metric our Search

Shortcuts solution results the clear winner. SS outperforms its competitors in 31

cases out of 50. The average e�ectiveness is 0.83, 0.43, and 0.42 for SS, QFG, and

CG, respectively. The large di�erence measured is mainly due to the fact that both
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CG and QFG are not able to generate good suggestions for queries that are not

popular in the training set.
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Figure 4.5: E�ectiveness measured on the TREC query subtopics among the top-10

suggestions returned by the Cover Graph (CG), Search Shortcuts (SS), and Query

Flow Graph (QFG) algorithms.

Regarding this aspect, the histogram in Figure 4.6 shows the average e�ective-

ness of the top-10 suggestions returned by SS, CG and QFG measured for groups

of TREC queries arranged by their frequency in the training set. SS remarkably

outperforms its competitors. SS is in fact able to produce high-quality recommen-

dations for all the categories of query analyzed, while CG and QFG can not produce

recommendations for unseen queries. Furthermore, while SS produce constant qual-

ity recommendations with respect to the frequency of the TREC queries, CG and

QFG show an increasing trend in the quality of recommendations as the frequency

of the TREC queries increases.

For this reason, we can assert that the SS method is very robust to data sparsity

which strongly penalizes the other two algorithms, and is able to e�ectively produce

signi�cant suggestions also for singleton queries which were not previously submitted

to the Web search engine. We recall that singleton queries account for almost half

of the whole volume of unique queries submitted to a Web search engine, and are
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Figure 4.6: Average e�ectiveness of the top-10 suggestions provided by the Cover

Graph (CG), Search Shortcuts (SS), and Query Flow Graph (QFG) algorithms for

groups of TREC queries arranged by their frequency (freq.) in the training set.

often the hardest to answer since they ask for �rare� or badly expressed information

needs. The possibility of suggesting relevant alternatives to these queries is more

valuable than the one of suggesting relevant alternatives to frequent queries, which

express common and often easier to satisfy needs.

Just to give an example of the results we obtained and the data on which we

evaluated the quality, Tables 4.3 and 4.4 report the top-10 suggestions provided

by SS, CG, and QFG for some TREC Web Track's diversity task query topics.

For each query topic, the �rst column of the table lists the associated subtopics.

These examples are representative of the �gures above discussed: SS computed

mostly relevant suggestions covering a signi�cant subset of the subtopics. CG, on

the other hand, performed worst and returned three suggestions only for a single

query among the �ve reported in the table, and one single suggestion in another

case. QFG returned instead 10 suggestions for three topics, and no suggestions in

two cases.
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4.4 Conclusions

We proposed a very e�cient solution for generating e�ective suggestions to Web

search engine users based on the model of Search Shortcut. Our original formulation

of the problem allows the query suggestion generation phase to be re-conducted to

the processing of a full-text query over an inverted index. The current query issued

by the user is matched over the inverted index, and �nal queries of the most similar

satisfactory sessions are e�ciently selected to be proposed to the user as query

shortcuts. The way a satisfactory session is represented as a virtual document, and

the IR-based technique exploited, allow our technique to generate in many cases

e�ective suggestions even to rare or not previously seen queries. The presence of

at least one query term in at least a satisfactory session used to build our model,

permits in fact SS to be able to generate at least a suggestion.

By using the automatic evaluation approach based on the metric de�ned in

Equation (4.1), SS outperformed QFG in quality of a 0.17, while the improvement

over CG was even greater (0.22). In 36 evaluated sessions out of 100, SS generated

useful suggestions when its competitors CG and QFG failed to produce even a single

useful recommendation.

An additional contribution of this work regards the evaluation methodology used,

based on a publicly-available test collection provided by a highly reputed organiza-

tion such as the NIST. The proposed methodology is objective and very general,

and, if accepted in the query recommendation scienti�c community, it would grant

researchers the possibility of measuring the performance of their solution under ex-

actly the same conditions, with the same dataset and the same evaluation criterium.

On the basis of the evaluation conducted by means of the user-study, SS re-

markably outperformed both QFG and CG in almost all the tests conducted. In

particular, suggestions generated by SS covered the same number or more TREC

subtopics than its two counterparts in 44 cases out of 50. In 36 cases the number

of subtopics covered by SS suggestions was strictly greater. Only in 5 cases QFG
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outperformed SS, while this never happens with CG. Also when considering e�ec-

tiveness, i.e. the number of relevant suggestions among the top-10 returned, SS

resulted the clear winner with an average number of relevant suggestions equal to

8.3, versus 4.3, and 4.2 for QFG, and CG, respectively. Moreover, di�erently from

competitors SS resulted to be very robust w.r.t. data sparsity, and can produce

relevant suggestions also to queries which are rare or not present in the query log

used for training.

All the queries suggested by the three algorithms for the 50 TREC queries given

as input to assessors are available along with the associated subtopic lists at http:

//searchshortcuts.isti.cnr.it/TREC_results.html. Moreover, a simple web-

based wrapper that accepts user queries and computes the associated top-20 SS

recommendations is available at http://searchshortcuts.isti.cnr.it.

As future works we intend to evaluate the use the whole head of the user session

for producing query recommendations. Furthermore, we want to study if the sharing

of the same �nal queries induces a sort of �clustering� of the queries composing the

satisfactory user sessions. By studying such relation which is at the basis of our query

shortcut implementation, we could probably �nd ways to improve our methodology.

Finally, it would be interesting to investigate how IR-like diversi�cation algorithms

(e.g., [2]) could be integrated in our query suggestion technique in order to obtain

diversi�ed query suggestions [67], [20].

http://searchshortcuts.isti.cnr.it/TREC_results.html
http://searchshortcuts.isti.cnr.it/TREC_results.html
http://searchshortcuts.isti.cnr.it


5

Load-Sensitive Selective Pruning

A search engine infrastructure must be able to provide the same quality of service to

all queries received during a day. During normal operating conditions, the demand

for resources is considerably lower than under peak conditions (Figure 3.4), yet an

oversized infrastructure would result in an unnecessary waste of computing power.

A possible solution adopted in this situation might consist of de�ning a maximum

threshold processing time for each query, and dropping queries for which this thresh-

old elapses (Chapter 6), leading to disappointed users. In this Chapter, we propose

and evaluate a di�erent approach, where, given a set of di�erent query processing

strategies with di�ering e�ciency, each query is considered by a framework that

sets a maximum query processing time and selects which processing strategy is the

best for that query, such that the processing time for all queries is kept below the

threshold. The processing time estimates, used by the scheduler, are learned from

past queries.

In this Chapter we assume a distributed search engine, like the one described

in Chapter 2, where data is distributed according to a document partitioning strat-

egy [9]. In this work, we assume a multi-node search engine without replicas, because

our experimental results are independent from the number of replicas, and hence

can be applied directly to each replica independently [33].

We experimentally validate our approach on 10, 000 queries from a standard

TREC dataset with over 50 million documents, and we compare it with several

baselines. These experiments encompass testing the system under di�erent query
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loads and di�erent maximum tolerated query response times. Our results show that,

at the cost of a marginal loss in terms of response quality, the search system is able

to answer 90% of queries within half a second during times of high query load.

5.0.1 Query E�ciency Prediction

The query scheduler component used in this thesis, must select the next query to be

processed from the queue of waiting queries. To achieve this, it is fundamental to

know in advance an estimation of the processing time for the query to be scheduled.

E�ciency predictions can be used to estimate the response time of a search engine

for a query [69].

Mo�at et al. [76] stated that the response time of a query is related to the posting

list lengths of its constituent query terms. However, in dynamic pruning strategies

(e.g.Wand [26]), the response time of a query is more variable, as not every posting

is scored, and many postings can be skipped, resulting in reduced retrieval time. As

a result, forWand, the length of the posting lists is insu�cient to accurately predict

the response time of a query [69]. In fact, the response time of Wand depends also

on the number of postings that are actually scored, as well as the pruning di�culty

of the query, i.e. the number of postings that overlap for the constituent query

terms, and the extent to which high-scoring documents occur towards the start of

the posting lists. Query e�ciency predictors [69] have been proposed to address the

problem of predicting the response time of Wand for an unseen query. In particular,

various term-level statistics are computed for each term o�ine. When a new query

arrives, the term-level features are aggregated into query-level statistics, which are

used as input to a learned regression model.

In this thesis, arising from our focus on the TAAT-CS pruning strategy, we propose

query e�ciency predictions for TAAT-CS, by describing a set of features that can be

easily used to estimate the e�ciency of a query through a learned approach. These

predictions represent our estimates for the query processing time, which we exploit
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to determine a maximum amount of processing time to allocate for each query.

5.1 Load-Driven Selective Pruning

One of the problems that must be addressed to build a large-scale Web search

engine is how to provide the service when the received query volume is excessively

high. In particular, when the entire system is overloaded, the response time of the

queries increases, making it necessary to answer queries more rapidly. A common

strategy is to drop queries that have been waiting or executing for a long time,

returning empty results list; alternatively, it is possible to set a time threshold and

interrupt the retrieval whenever a query is going to take too much time. Both

strategies are suboptimal and have the huge drawback of disappointing the users

who submitted those queries that have been dropped. Typically, in search systems

critical situations arise when bursts of queries are submitted (almost) at the same

time. See, for instance, the peak load around 12 PM in the query workload plotted

in Figure 3.4.

In this section, we discuss a novel load-sensitive framework, based on query

e�ciency predictors and taking into account other features like the length of the list

of queries waiting to be processed and the duration each query has been queued for.

We aim to dynamically adapt the retrieval strategy, by reducing the processing time

of queries when the system is heavily loaded. Indeed, during high query load, we

propose to adopt aggressive pruning strategies, thus speeding up query processing,

while possibly impacting negatively on the e�ectiveness of the returned results.

Let us consider the search engine state depicted in Figure 5.1, which shows the

system at time t. It has n queries q1, . . . , qn waiting to be processed in the scheduler's

queue. Let ti be the arrival time of query qi, where ti ≤ tj whenever i < j, i.e.,

t1 ≤ . . . ,≤ tn ≤ t. Query q1 is the head of the queue, as it has been queued for the

longest time.

Until time t, the query processor was busy by processing the previous queries
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Figure 5.1: The components of the proposed load-sensitive selective pruning frame-

work (bottom), along with a representation of the variables depicting the queries

currently queued (top).

(not shown in the �gure), and at time t it becomes idle. Then, the query scheduler

must select the next query to be processed. We assume that scheduling follows a

�rst-in �rst-out discipline, that is, query q1 � which has been queued for the longest

time � is selected for processing next. Furthermore, each query can be processed

by several processing strategies σ1, . . . , σp, such as TAAT or DAAT with di�erent lev-

els of dynamic pruning aggressiveness. We assume that strategy σ1 is the search

engine's full processing strategy, such as TAAT or DAAT, while subsequent strategies

are increasingly more e�cient, such that σp is the most e�cient processing strategy.

Moreover, we assume that, while σi+1 is more e�cient than σi, the e�ectiveness

of σi is, in general, better than the e�ectiveness of σi+1. This assumption is well-

founded, because e�cient processing strategies typically have a negative impact on

the corresponding retrieval e�ectiveness [68, 113].

For query q1, we associate with each strategy σk the processing time ek(q1), which

the strategy is predicted to take to process query q1. This means that, for example,

e1(q1) represents the processing time of query q1 when the less e�cient (but most
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e�ective) processing strategy is adopted, while ep(q1) represents the most e�cient

yet less e�ective predicted processing strategy.

A constant time threshold T represents the maximum time budget for the pro-

cessing of any query: the completion time of any query must be not greater than T ,

such that its results can be presented to the user in a timely manner. This means

that the time elapsed between the arrival of any query and its processing �nish

time must not exceed T . Note that, since the query already spent some time in the

queue, its available processing time, i.e., the maximum time it is allowed to spend

in processing, is not, in general, equal to T , but it is decreased by the time it has

spent in the queue. Moreover, if there are other subsequent queries queued, then it

can be considered unfair for the query to take all time available, while other queries

are starved. Hence, we argue that the available processing time for each query is

bounded by some time budget depending on various factors such as the time the

query has spent in the queue, and the number of queued queries.

The de�nition of a suitable time budget is central to this work. Let f(qi) be

this time budget for query qi, which has to ensure �fairness� in query processing:

whenever the query workload is close to the maximum allowed, enqueued queries

should be assigned reduced time budgets for their processing. Once f(qi) has been

computed, we have to select the processing strategies able to process the query

within the time budget, i.e. any strategy σk(qi) such that ek(qi) ≤ f(qi). Finally,

among all these strategies, we select the best strategy in term of e�ectiveness, i.e.,

according to our assumptions, the strategy that takes the largest processing time

among all admissible strategies. The de�nition of a suitable time budget function

f(qi) depends on various features: the position of the query in the queue, its arrival

time, the current time, and the status of the queue.

The outline of the proposed selective pruning framework is shown in Algorithm 3.

For a queue of queries awaiting processing, q1, . . . , qn, their expected processing times

for all possible processing strategies are estimated. This allows the time budget to

be calculated f(q1) for the next query to be processed. Thereafter, we choose an
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appropriate query processing strategy, which aims to ensure that the query meets its

completion time threshold T , while providing results that are as e�ective as possible.

Algorithm 3 Load-Sensitive Selective Pruning Framework

Input: The queries q1, . . . , qn

The completion time threshold T

Output: The selected processing strategy σ∗ for query q1

1: for all processing strategies σk, k = 1, . . . , p

2: for all enqueued queues qi, i = 1, . . . , n

3: expected processing time ek(qi) ← Predict(σk, qi)

4: Time budget f(q1)← Bound(T, σ1(q1), . . . , σp(qn))

5: Processing strategy σ∗ ← Select(f(q1), e1(q1), . . . , ep(q1))

In order to select the processing strategy σ∗, we must implement the following

functions within our framework:

• Predict(): De�nes a mechanism allowing to predict the processing time for

each query in the queue when the processing strategy can be selected among

the di�erent dynamic pruning processing strategies. This mechanism is used

to estimate the processing times ek(qi) of the available processing strategies,

and the pruning strategy that will most likely to process the query within the

desired time threshold T .

• Bound(): De�nes a method to compute the time budget f(q1) for query q1,

depending on the global time threshold T and on the queries waiting to be

processed. The time budget de�nes a bound on the processing time that query

q1 will be permitted.

• Select(): De�nes a mechanism to select the �best� processing strategy that is

able to process query q1 according to the maximum processing time, f(q1),

that q1 is allowed to take and that maximises the resulting query e�ectiveness.
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Similar to previous work on selective pruning [106], it follows that the process-

ing times of a query can be estimated through the use of query e�ciency predic-

tion, i.e. Predict(). However, as no such predictors have previously been de�ned for

TAAT strategies such as TAAT-CS, in Section 5.2 we address query e�ciency prediction

for TAAT. In the remainder of this section, we propose mechanisms for Bound() (Sec-

tion 5.1.1) and Select() (Section 5.1.2).

5.1.1 Bound()

We assume a list of queries q1, q2, . . . , qn that are currently (at time t) in the queue

of the system. Each query is associated with its arrival time ti. Roughly speaking,

the query processing time bound f(q1) has the following goals:

1. E�ciency: q1 (the least recently queued query) will have a completion time

not greater than T , the global time threshold.

2. E�ectiveness: The time available to process q1 will be as large as possible,

such that the most e�ective processing strategy can be deployed.

3. Fairness: Queries q2, . . . , qn received after q1 are not starved of processing

time, and hence are each able to meet T .

Clearly, these three goals can be at odds with each other. In the following, we

describe three methods of de�ning f(q1) that address some or all of the goals to

varying extents:

Perfectionist. Query q1 is processed as e�ectively as possible, i.e. using the most

ine�cient processing strategy:

f(q1) = argmax
k
{ek(q1)} = e1(q1).

This method ignores the waiting time spent in the queue, and makes no attempt to

prune aggressively queries such that the threshold T can be met, by this query or

other queries in the queue. In other words, it is a method that is neither fair nor
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e�cient. For this reason we use it as a baseline to upper bound the e�ectiveness of

the method.

Manic. Query q1 is processed as fast as possible, by using the most e�cient,

aggressive pruning strategy for all queries:

f(q1) = argmin
k
{ek(q1)} = ep(q1).

In this method, we ignore the waiting time that the query q1 has spent in the queue.

Similarly to the Perfectionist method, Manic serves as a baseline method that does

not consider the fairness or e�ectiveness goals. However, in contrast to Perfectionist,

Manic consumes the least computing resources, and hence is the fairest method, even

if the other queries does not exploit the unused resources.

Sel�sh. The query q1, enqueued at time t1, should be processed within t1 + T

seconds. Then, at time t, we have to decrease the total time T allowed for query

completion by t1 seconds. Formally, the remaining time ∆1 to process query q1 such

that threshold T is met is:

∆1 = (t1 + T )− t

If ∆1 > 0, the processing time bound is f(q1) = ∆1, and depends only on the time

q1 has spent in the queue, without consideration for the processing time needed

for other queued queries. In particular, if the time threshold T for this query has

elapsed (∆1 ≤ 0), then the query is processed as fast as possible, as in the Manic

case:

f(q1) =

∆1 if ∆1 > 0

ep(q1) otherwise

Altruistic. The previous method has the disadvantage that q1 processing is

bound with the maximum amount of time available (given the time spent in the

queue), disregarding the queries that are still in the queue. This can penalise queued

queries q2, . . . , qn that have not yet been processed. In contrast, Altruistic enforces

�fairness�, by �rstly computing how much time is left to empty the current queue.
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This time is simply the time at which the lastly queued query qn should be com-

pleted (tn + T ) minus the current time. Formally, ∆n, the remaining time to �nish

processing upto query n, is:

∆n = (tn + T )− t

Then, to compute the maximum time available for q1 we have to subtract the min-

imum time necessary to process all the queued queries. This time is simply given

by the sum of the estimations ep(qi) of the processing time needed by the fastest

processing strategy p. Hence, we de�ne the available slack time, ∆̃n, as:

∆̃n = ∆n −
n∑
i=1

ep(qi).

If ∆̃n > 0, we evenly distribute this extra slack time to the queued queries. In doing

so, if some time is left to process all enqueued queries faster than the minimum

possible, each one might receive a fair amount of extra processing time1. Hence the

processing bound for query q1 becomes ep(q1) + ∆̃n/n. However, this quantity can

exceed ∆1, and will result in too much extra budget assigned to query q1, beyond

the time threshold T . In this case, the processing bound for the query q1 is simply

∆1. Finally, if ∆̃n ≤ 0, we process the query as fast as possible, as in the Manic

case, i.e.,

f(q1) =

min
{

∆1, ep(q1) + ∆̃n/n
}

if ∆̃n > 0

ep(q1) otherwise

The Altruistic method to compute Bound() is a central contribution of this Chap-

ter. Once the time budget f(q1) has been computed, it is used by the query processor

to �select� the most suitable processing strategy among those available to process

the query. In the following, we describe Select(), which is the function used to take

these decisions.

1This is true as far as no additional queries are received.
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5.1.2 Select()

Given the time budget f(q1) granted by Bound(), the role of the Select() function is to

choose the most e�ective strategy σ∗ = σk ∈ {σ1, . . . σp} to resolve query q1 within

the assigned budget f(q1). Primarily, the selection of an appropriate processing

strategy is based on the estimated query processing times e1(q1), . . . , ep(q1). Assum-

ing the estimates are sorted in descending order of expected processing times, i.e.,

e1(q1) ≥ · · · ≥ ep(q1), we can identify the strategy σk such that ∀i = 1, . . . , k − 1,

ei(q1) > f(q1) and ∀i = k, . . . , p, ei(q1) ≤ f(q1). This means that all strategies

σk, σk+1, . . . σp have an estimated processing time for query q1 that respects the time

budget f(q1). In other words, we select the smallest value of k in 1 . . . p such that

ek(q1) ≤ f(q1), that is the strategy whose expected completion time is not greater

than the budget the query has been granted by Bound(). Hence, among all these

strategies, we select the best strategy in terms of e�ectiveness, i.e., according to our

assumptions, the strategy that takes the largest processing time among all admis-

sible strategies. Note that, in the case that no strategy is able to process query

q1 within the computed time budget, we always select the most aggressive process-

ing strategy, i.e., σp. As a remark, when Manic and Perfectionist methods are used

Select() will resort to always pick CS−1000 (i.e. σp) and DAAT (i.e. σ1), respectively.

Both Bound() and Select() descriptions have been given using the informal, and

implicit, concept of an e�ciency predictor. In the next section, we detail in a more

precise way how � inspired by the work in [106] � we predicting the e�ciency of a

TAAT-CS strategy before processing commences.

5.2 Processing Strategies & Predictors

The framework we described in the previous section relies on the concept of query

e�ciency predictors. In our de�nition, given a query and a set of query processing

strategies, e�ciency predictors return the estimated query processing time for each
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one of the strategies considered.

The load-sensitive selective pruning framework proposed in Section 5.1 is gen-

eral with respect to the deployed retrieval strategy. However, in this work we focus

on two particular strategies, namely DAAT and TAAT-CS. In particular, We adopt

DAAT for full processing. Full-processing is chosen when, in normal load conditions,

processing time is not constrained. On the other hand, when the system is experi-

encing workload peaks, we resort to use faster and less precise processing strategies,

speci�cally, based on the term-at-a-time Continue-Strategy (TAAT-CS) [77]. In the

remainder of this section, we de�ne the details of TAAT-CS (Section 5.2.1), before

explaining how the processing time of both DAAT and TAAT-CS can be accurately

measured (Section 5.2.2).

5.2.1 TAAT-CS Dynamic Pruning

As de�ned in [77], TAAT-CS works as follows. Given a set of terms to process, sorted

in decreasing order of posting list length, an OR phase processes the posting lists

one by one until we have K accumulators. From this point, no new accumulators are

created, and an AND phases processes the remaining posting lists by intersecting

them with the existing accumulators. The e�ciency of the AND phase can bene�t

from skip pointers within the posting lists, such that the postings of documents that

are not in the top-K accumulators are not decompressed, leading to IO bene�ts.

Therefore, smaller values of K correspond to more aggressive pruning, as the AND

phase is started earlier, and more skipping can occur during this phase. However,

smaller K values are likely to lead to result lists with degraded e�ectiveness.

Our implementation of the TAAT-CS dynamic pruning strategy adopts a further

heuristic, to optimise the initial phase in which new accumulators are created. Given

that DAAT processing is faster than TAAT processing [45], we alter the accumulator

creation phase as follows. We select the smallest l lists such that the sum of their

lengths is greater than or equal to the number of accumulators K. These posting
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lists for this initial set of terms are processed using a DAAT strategy, instead of

TAAT. In doing so, the resulting number of accumulators will never be greater than

the number of accumulators we will get after processing the �rst list with a classic

TAAT-CS strategy. After this modi�ed OR phase, the processing strategy proceeds

with the AND phase as in TAAT-CS. Using our re�ned strategy, we may end up

with less accumulators than using the traditional TAAT-CS. However, in our initial

experiments, we found that this happens only for 0.01% of the 10,000 queries used in

this experiments. Yet, on average, the response time of our DAAT/TAAT-CS strategies

exhibit a 2x improvement over the classical TAAT-CS strategy.

The adoption of the DAAT/TAAT-CS strategy motivates also the comparison of

our selective pruning strategies with DAAT, instead than TAAT. Beating DAAT as a

baseline is, in general, tougher than beating TAAT in terms of e�ciency [45]. In the

following, we refer to our DAAT/TAAT-CS with K accumulator as CS-K (e.g. CS-1000

uses K = 1000 accumulators), without stressing anymore the use of DAAT for the

initial phase. As a side note, we are not aware of any previous work studying this

small variation on TAAT-CS. Therefore, to the best of our knowledge, this is another

new contribution presented by this work.

5.2.2 Query E�ciency Prediction

In the preceding, we de�ned the processing strategies used within this Chapter. In

this section, we describe how we obtain query e�ciency predictions for the process-

ing strategies. In particular, we are inspired by the query e�ciency predictors for

DAAT previously de�ned by Macdonald et al. [69]. However, in this work we also

use TAAT-CS for aggressive pruning. Hence, in the following we devise a method for

predicting the processing time of CS-K, before retrieval commences, using a Linear

Regression-based technique.

First of all, we have de�ne a set of features to represent each query. In the case

of DAAT, Macdonald et al. [69] show that there is a strong correlation between the
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Query E�ciency Prediction Features

total number of postings in the query's term lists

number of terms in the query

variance of the length of the posting lists

mean of the length of the posting lists

length of the shortest posting list

length of the longest posting list

number of terms processed in the �rst phase of CS

length of the posting lists processed in the �rst phase of CS

number of terms processed in the second phase of CS

length of the posting lists processed in the second phase of CS

Table 5.1: Features used for prediction processing time: the top features are method

independent, the bottom features are method dependent, for CS.

distribution of postings in the query terms and the response time of the query itself.

Therefore, to predict the response time of DAAT we use the features listed in the top

part of Table 5.1.

On the other hand, as discussed above, TAAT-CS strategies do not score all post-

ings in the posting lists of the query terms. Hence, we do not expect that relying

only on posting features can lead to good predictions. Instead, given the charac-

teristics of our TAAT-CS strategies (a �rst phase where we fully evaluate a subset of

terms, a second phase where we use the remaining terms to update the accumulators

found in the �rst phase) we build a regression model using the features listed in the

bottom part of Table 5.1, in addition to the method independent featured listed in

the top part. It is of note that all of these query e�ciency prediction features can be

calculated using commonly available statistics, particularly the length of the query

term's corresponding posting lists, before retrieval commences, and hence query ef-

�ciency predictions can be made with very low overheads, as soon as a query arrives

at a query server.

In total, our prediction method models the problem using a feature space made

up of 10 distinct features. As our reference architecture is a distributed one, each

query server might have di�erent response times for the same query. For this reason,
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we need to build di�erent models for each server.

We adopt a linear regression model to estimate the running time ej(qi) of query qi

when scored using method j. In other words, we model ej(qi) as a linear combination

of the features fi weighted by a real value λf . Features and weights are di�erent

for each scoring method thus we indicate fji and λjf to refer to values for scoring

method j. Formally,

ej(qi) = λj0fj0 + . . .+ λj9fj9.

Linear regression is then used to �nd the values for various λjf with the goal of

minimising the least square error on a training set of queries [69].

In the next section, we de�ne the experimental setup for our experiments. In

particular, we show the accuracy of the proposed e�ciency predictors for TAAT-CS,

before showing how the proposed selective scheduling framework proposed in Sec-

tion 5.1 can increase the ability of a search engine to e�ectively and e�ciently handle

di�erent tra�c query loads.

5.3 Experimental Setup

In the following experiments, we deploy a widely used document collection created as

part of TREC, namely the ClueWeb09 (cat. B) collection, which comprises around

50 million English Web documents, and is designed to represent the �rst-tier index

of a commercial Web search engine. We index the document collection using the

Terrier search engine [79], removing standard stopwords and applying Porter's En-

glish stemmer. The resulting index is document partitioned into ten separate index

shards, while maintaining the original ordering of the collection. Each inverted in-

dex shard also has skipping information embedded, to permit skipping [77] during

the Continue phase of TAAT-CS.

For the retrieval experiments, we use a distributed C++ search system engine,

accessing the index produced by Terrier. Our experiments are conducted on a cluster
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of twelve quad-core machines, where each machine has one Intel Xeon 2.40GHz

X32230 CPU and 8GB of RAM, connected using Gigabit Ethernet. Our distributed

architecture is organised with a single index shard on each of the ten query servers.

Two additional nodes are used as follows: one as the query broker, and one as the

client application that sends the queries to the system. Finally, each query server

has a queue used to keep queries coming from the broker, while the Query Processor

on each query server processes queries one at a time. As query processing strategies,

we use DAAT, as well as TAAT-CS with di�erent accumulators, i.e. CS-1000, CS-2000,

CS-5000 and CS-10000. Documents are scored using BM25, with parameters at the

default settings [88].

We use queries from the TREC Million Query Track 2009 [36], which contains

40, 000 queries, some of which have relevance assessments. In our experiments,

30, 000 of these queries are used as the training set for learning λ values in our

regression models, while the other 10, 000 are used for testing the accuracy of the

predictors, and retrieval experiments. Indeed, for measuring the accuracy of our

query e�ciency predictors, we use root mean square error (RMSE), while for retrieval

e�ectiveness, we compute NDCG@1000 using the 687 queries out of the 10, 000 that

have relevance assessments from TREC 2009. E�ciency is measured using mean

response time.

5.4 Experiments

In the following, we address these research questions:

RQ1. What is the accuracy of the linear regression-based approach for query

e�ciency prediction for TAAT-CS? (Section 5.4.1)

RQ2. Do the proposed methods achieve e�ective and e�cient retrieval under

di�erent query loads? (Section 5.4.2)

RQ3. To what extent can e�cient query per second servicing be attained for

di�erent time thresholds? (Section 5.4.3)
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5.4.1 Predictors Error Evaluation

E�ciency predictors, which aim to predict the processing time of a query before

retrieval commences, are an important component of our work. In this �rst research

question, we aim to ensure that our estimations, particularly for TAAT CS pruning

strategies, are accurate. We compare the accuracy of the features listed in Table 5.1

when combined using linear regression. In particular, we compare the set that

only includes the six �method independent� features, with the set that includes, in

addition to the previous six, the four �method dependent� features proposed for

TAAT CS. Table 5.2 reports the accuracy of the linear regression models combining

the six and ten features, as well as a baseline predictor that uses only the total

number of postings for the query terms as a feature. In the table, we report the

mean, over the ten query servers, of the query processing time (QPT) for each

strategy, as well as the Root Mean Square Error (RMSE), and the percentage of

queries for which the prediction error is less than 10 milliseconds. The best value in

each row for each measure is highlighted.

On analysing Table 5.2, we note that for DAAT, using the six features im-

proves over the baseline single feature predictor by 42% (from RMSE 8.78 ·10−3 to

4.98 ·10−3), with 95% of the queries having a prediction error of less than 10 ms. On

the other hand, using only the six features is insu�cient for accurate processing time

prediction for the CS-K strategies � for instance, for CS-10000, only 65% of queries

are accurately predicted within 10 ms. However, for the linear regression models

that uses the additional 4 method dependent features (10 features in all)2, the error

is one order of magnitude lower, and for the vast majority of queries (95-99%) our

linear model is able to guess the correct response time up to a 10ms error.

Therefore, in answering research question RQ1, we �nd that the proposed linear

regression model is accurate, with an error smaller than 10 ms in more than 95% of

the cases. In particular, the best performing models for predicting CS-K strategies

2The 4 method dependent features do not apply to DAAT.
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are those obtained by the full set of ten features described in Section 5.2, while in

the case of DAAT, the six features describing the lengths of the lists associated with

query terms perform very well. Therefore, in the following experiments, we use six

features for the prediction of DAAT processing times and the full set of ten features

for the prediction of TAAT CS-K scoring strategies.

5.4.2 E�ciency and E�ectiveness Analysis

In this section, we experiment to address RQ2, in comparing the e�ciency and

e�ectiveness of our proposed load-sensitive selective pruning framework. In partic-

ular, we compare our methods, Sel�sh and Altruistic, with three di�erent baselines:

Perfectionist and Manic, as well as applying CS−10000 for all queries. We remark

that, by their respective de�nitions, Perfectionist corresponds to a pure DAAT full pro-

cessing strategy and Manic corresponds to using CS-1000. Within this section, we

use a maximum threshold time of T = 0.5 seconds, which mandates that the results

for each query must be returned, including both queueing and processing, before

this time elapses. Later, in Section 5.4.3, we analyse how T a�ects the performances

of our methods.

We analyse our methods in terms of query response time and e�ectiveness, stress-

ing our search system with di�erent rates of queries, measured in queries per second

(q/s). The query response time corresponds to measuring how much time the query

spends within the queues and being processed � in other words the time a user

waits for the results to be returned. We evaluate e�ectiveness using NDCG@1000,

exploiting the 687 queries that have relevance assessments and we use RBO metric

[114] to examine the results degradation between full processing and the proposed

strategies for all of the 10, 000 queries tested.

Firstly, we experiment to determine the average response time of the various

methods by varying the number of queries per second submitted to the search sys-

tem. We remark that queries are submitted uniformly, in other words a submission
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Figure 5.2: Average query response time in seconds for di�erent methods, T = 0.5.

rate of N q/s corresponds to submitting a query every 1/N seconds. Figure 5.2

shows the behaviour of the various techniques we tested under various load con-

ditions. As expected, when using Perfectionist method, the mean response time

exceeds the threshold (T = 0.5) for all except very low workloads. CS−10000 can

sustain slightly higher loads than Perfectionist, however for loads greater than 20 q/s

the response times are well above the threshold.

Figure 5.3 enlarges the curves of Figure 5.2 for query response times up to the

threshold T = 0.5. This allows us to better analyse the behaviour of the various

methods for a workload of 40 q/s or less. Clearly, Manic attains the smallest response

times, as it aggressively prunes all queries. However, both Sel�sh and Altruistic

methods are less e�cient than Manic, but still achieve the threshold up to 40 q/s.

To show how the various methods cope with queries of varying e�ciency, Fig-

ure 5.5 plots the actual query response times for a subset (one hundred) of all the

test queries, for a query workload of 40 q/s. In particular, the response times for

Manic, CS-10000, Sel�sh, and Altruistic are shown. Spikes in the lines correspond
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Figure 5.3: Average query response time in seconds for di�erent methods (enlarge-

ment of Figure 5.2).

to the e�ect of expensive queries on other later queries. Indeed, expensive queries

delay the queries submitted later, as expected though Sel�sh and Altruistic are more

uniform than the others. In particular, in the case of Altruistic, the line is also close

to the time threshold, indicating a better utilisation of the resources.

Finally comparing Figures 5.4 and 5.5 we can observe that Altruistic obtains

approximately the same response time in the two settings, while the other lines are

always more skewed.

To determine how the threshold is adhered to for di�erent methods and work-

loads, Figure 5.6 shows the percentage of queries whose response time are within

the threshold T = 0.5. From the �gure, we observe that for Sel�sh, the percent-

age of queries meeting the 0.5 seconds deadline falls for workloads greater than 20

q/s, whereas Altruistic and Manic are able to keep this percentage above 90% for

workloads up to 40 q/s.

We now analyse the e�ectiveness of the proposed methods. In Figure 5.7, we plot

the NDCG@1000 values achieved for the di�erent methods and workloads. These
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results are mirrored in Table 6.1, where we also show the signi�cance of our results

(paired t-test) compared to the Manic method (i.e. CS-1000). From the curves

in Figure 5.7, we observe that the three baseline methods (Manic, CS-10000, and

Perfectionist) have a constant e�ectiveness under any load conditions, as they do

not apply any form of adaptation to load changes. On the other hand, Sel�sh and

Altruistic adapt the processing strategy according to the load level, such that while

e�ectiveness degrades further as load increases, e�ectiveness is still signi�cantly

better than applying Manic, for all of the tested workloads. This considerations can

be also applied to Figure 5.8 that reports the NDCG@20.

Finally, to complete our answering of research question RQ2, e�ectiveness and

e�ciency results must be compared, by examining Figures 5.2 and 5.3 (query pro-

cessing time) and Table 6.1 (NDCG@1000). For relatively low workloads, i.e. 5-20

q/s, the e�ectiveness of the Altruistic method is better than other approaches and is

able to meet the time constraint of processing queries in less than T = 0.5 seconds.
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On the other hand, for higher query workloads of 30 and 40 q/s, Altruistic is clearly

the most e�ective method able to keep response times below T . This is explained in

that Altruistic is able to fairly distribute query processing resources, enabling later

queries in the queue to meet the deadline whilst still maintaining a signi�cantly high

e�ectiveness compared to the Manic method. For workloads greater than 40 q/s,

none of our proposed methods are able to respect the time constraint. Nevertheless,

it is worth remarking that Altruistic still attains higher e�ectiveness than Manic,

which in turn has the same average response time.

To better validate our approaches we use also the RBO metric to measure how

pruning a�ects the ranked list. Using this metric we are also able to test all of

the 10,000 queries because we do not need the relevance judgments. RBO metric

was �rstly introduced in [114] to compare di�erent ranked lists. We compare all

the method proposed with a full evaluation strategy (DAAT) computed over our SE.

We set the parameter p = 0.9 that means that the �rst 10 ranks have 86% of the

weight of the evaluation[114]. Using the ranked list returned by the full processing

strategy as our best possible results, the DAAT strategy achieve always a RBO of 1.
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Manic method lost about 10% of RBO in any of the load settings. Also in this case,

our methods obtain remarkable results. In particular Altruistic got an RBO 20%

better in high workload in relation to Manic and achieve an RBO =∼ 1 for unloaded

settings.

5.4.3 E�ect of Parameter T on Response Times

Another advantage of our proposed framework is that the parameter T can be ad-

justed to tune the response time of the queries and adapt the retrieval strategy to

our needs. In Figure 5.10 & 5.11, we show how the response times and NDCG@1000

with respect to three di�erent thresholds, T = {0.1, 0.25, 0.5}. In particular, in ad-

dition to Manic, we show the results for Altruistic, which was the best performing

in the previous section, with a su�x denoting the T value (e.g. Altruistic-0.25 for

T = 0.25).

As expected, on examination of Figure 5.10, we �nd that by lowering the time

threshold we also reduce the maximum sustainable load. In general, Altruistic at-
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Method 5 q/s 10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

Manic 0.316 0.316 0.316 0.316 0.316 0.316 0.316

CS-10000 0.348N 0.348N 0.348N 0.348N 0.348N 0.348N 0.348N

Perfectionist 0.352N 0.352N 0.352N 0.352N 0.352N 0.352N 0.352N

Sel�sh 0.352N 0.352N 0.347N 0.339N 0.329N 0.3184 0.3184
Altruistic 0.352N 0.352N 0.350N 0.345N 0.335N 0.324N 0.324N

Table 5.3: E�ectiveness (NDCG@1000) for the di�erent methods for T = 0.5. Sta-

tistically signi�cant improvements vs. Manic, as measured by the paired t-test, are

denoted by 4 (p < 0.05) and N (p < 0.01).

tains the highest e�ectiveness whilst being able to answer within the threshold to a

relatively high query load. Indeed, Altruistic can achieve T = 0.5 with query loads

upto 40 q/s, while T = 0.25 is achieved upto 30 q/s, and upto 10 q/s for T = 0.1

seconds. On the other hand, on examination of Figure 5.11, we observe that the

e�ectiveness of Altruistic increases for larger T , particularly for low workloads. In-

deed, for the challenging T = 0.1 threshold, even if at 5 q/s not all queries attain

maximal e�ectiveness, we note that only a 5% di�erence3 with the NDCG@1000 of

Perfectionist (0.347 vs. 0.352).

Overall, from these results, we �nd that for very high query arrival rates and

challenging time thresholds, it is impossible to attain T (for instance, T = 0.1

seconds at rates above 10 q/s). If the system must ensure that T is met, then the

only alternative is to interrupt or drop late queries during processing. In the Chapter

6 we conduct experiments on the e�ectiveness of both dropping and interrupting

query processing.

To summarise, for research question RQ3 we �nd that in response to more

challenging time thresholds T , the Altruistic method is able to adjust e�ciency to

facilitate servicing higher query loads within T than Perfectionist, whilst improving

3Due to the large number of queries, all di�erences are statistically signi�cant for p < 0.05.
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Figure 5.7: NDCG@1000 computed over the 687 queries in the test set, T = 0.5.

over the e�ectiveness of the uniform Manic method.

5.5 Conclusions

In this Chapter, we presented an innovative solution to the important problem of

processing queries during times of high system load. In particular, we design a

query processing framework relying on the two novel functions, namely Predict(),

and Bound(). These use the predicted processing time for a query to calculate a

processing time budget for that query, depending on both a global response time

threshold, and the other queries waiting to be processed, while taking into account

goals such as e�ciency, e�ectiveness and fairness. This allows an appropriate dy-

namic pruning strategy to be selected for each query. For Predict(), we presented

a regression-based model that can correctly predict the processing times of both

DAAT and TAAT strategies with less than 10ms error in more than 90% of cases.

On the other hand, for Bound(), we proposed an Altruistic among other meth-

ods, which is able to fairly allocate processing resources across all queries currently
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queued. Through extensive experiments on a standard test collection, Altruistic is

shown capable of processing queries within various time thresholds T and with the

smallest loss in terms of NDCG@1000. Finally, we show that Altruistic not only on

average is able to stay within the time threshold T , but, under high load, is also the

method that has the smallest percentage of queries for which the processing time

exceeds T . Indeed, our results show that at a workload of 40 queries per second,

Altruistic is able to meet a deadline of 0.5 seconds for 90% of queries (see Figure 5.6)

while still attaining signi�cantly high e�ectiveness (Table 6.1). In contrast, the next

most e�ective Sel�sh method can only meet the deadline for 40% of queries.
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Highly Loaded Search Engine

In this Chapter, we investigate the performances of di�erent dropping solutions with

the goal of maintaining the query response time under a speci�ed time threshold. As

explained in Chapter 5 it is possible to build e�ciency predictors for TAAT-CS and

DAAT to meet a time threshold when the web search engine is higly loaded. In

Chapter 5 we also see that there is a breaking point where, using the fastest pruning

strategy, the method proposed is not able to answer queries within the �xed time

threshold.

In fact, in Figure 5.2, we see that Manic, the method that selects always the

fastest strategy, for more than 40 queries per second, is not able to answer within

the time threshold.

In this Chapter we present a method for always meeting the time threshold also

when the strategy proposed in the previous Chapter fails. We compare naïve solu-

tions with a novel method based on e�ciency prediction that leverages a machine

learning technique similar to the one in Chapter 5. We consider full DAAT as the

baseline strategy. The methods presented work over the same distributed environ-

ment described previously and use the predictors to understand when a query must

be dropped to avoid partial or incomplete results. We test our solution while vary-

ing the query arrival rate, from 5 to 100 queries per second (q/s), and measuring

the query response time and the e�ectiveness in terms of NDCG@20 for all the

methods proposed. We �nd that our strategy is able to sustain a workload of up

to 100 queries per second with a relative degradation of only 15% with regard to
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the baseline methods, by reducing the number of queries dropped. Furthermore,

while the baseline methods are not able to sustain moderately low workloads within

the speci�ed threshold, we are able to process up to 20 query per second with no

statistically signi�cant degradation in e�ectiveness.

6.1 Baselines

The aim of this Chapter is to study dropping techniques for keeping the response

time of a highly loaded SE below a given time threshold. Our reference architecture

is a distributed SE composed of a query broker that forwards requests to a pool

of query servers. As depicted in Figure 6.1, we consider that each query server

processes one query at a time. If a query server is processing a query, and other

queries arrive, they are locally enqueued until they can be processed. Hence, the

query response time for a query q is the sum of the time spent in the queue wt(q)

and processing time pt(q).

The length of the queue at each query server depends on the query arrival rate

and the processing time of the previous queries. In general, for higher query arrival

rates, the query response time are increased, due to the longer waiting times. To

ensure low query response times in a high load environment, we set a maximum

processing threshold T that queries must be answered within.

We adopt two baseline strategies that de�ne how a query server responds to

a query for which T has elapsed during processing. The �rst strategy (hereinafter,

Drop) interrupts the processing of a query and returns an empty list of results when-

ever the elapsed waiting and processing time exceeds T (i.e. when wt(q)+pt(q) ≥ T ).

Similar to the Drop strategy, the second baseline (hereinafter, Partial-Drop) mon-

itors the current query processing time and if it exceeds the deadline, it returns

the partial results list that has been computed thus far (instead of dropping all

results that have already been computed). Finally, we note that each query server

acts independently from the other servers, in an autonomous fashion: each queue
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Figure 6.1: Architecture of our distributed Web SE.

is managed locally, and any dropping strategy is enforced locally. Hence, even if a

query is fully processed on one query server, it can be (partially-)dropped on another

server, causing the �nal results returned to the user to be partial in nature.

6.2 Prediction-based dropping

Unlike the previously described baselines, we aim to predict the response time of

a query, to decide whether the query should be dropped or not before starting the

actual processing phase. In particular, it has been shown that the response time of

a query can be accurately predicted based on the total number of postings to be

scored when using a full DAATretrieval strategy [69].

In particular, we use the predicted response times at each query server to under-

stand if the query can be processed within the remaining time on that server before

T has elapsed. Given the predicted response time p̂t(q) of query q, if the inequality

p̂t(q) ≤ T −wt(q) does not hold, then the query is dropped before processing starts

and the next query is processed from the queue. In this way, the query server does

not consume processing resources for queries that cannot be fully (and e�ectively)
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completed within the remaining time until the threshold T has elapsed.

Query e�ciency prediction for DAAT can be achieved using a machine learned

algorithm using the total number of postings to be scored as feature [69]. To fur-

ther improve the response time estimations, we use �ve additional features, which

are listed in Table 5.1. In this case we use always DAAT and we do not need the

four method dependent features. All features can be easily computed during the

processing time without a�ecting the query response time.

The predicted response times are computed using a machine learned model im-

plemented by a linear regression of the features. We learn a prediction model for

each query server using the statistics of query terms on the local index. The co-

e�cients of the regression model are computed by minimising the mean squared

error on a set of training queries. In the following, we refer to our prediction-based

dropping strategy as ML-Drop, and experiment to ascertain its properties in terms

of e�ciency and e�ectiveness.

6.3 Experimental Setup

The reseach questions we want to answer in this Chpter are:

1. What is the accuracy of our response time predictors? (Section 5.4.1)

2. What are the bene�ts of our ML-Drop strategy with respect to the two baseline

strategies, Drop and Partial-Drop? (Section 6.4)

Since in this work we use DAAT as the retrival strategy for all of our methods, the

answer to the �rst research question is already answered in the previous Chapter in

the Section 5.4.1. The only di�erence is that in this work we do not need the part

about TAAT-CS because we always use DAAT as the retrieval strategy.

The setting we use in this experiment is the same used in Section 5.3 except for

the time threshold, we set here T = 0.5s for all of the experiments. We choose this

value because it is a reasonable time from the user perspective and at the same time

using this time threshold, in our architecture, 98% of queries can be answered using
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the full DAAT strategy when the system is not heavy loaded.

Anyway we showed in the Section 5.4.3, that the approach we use works also

when we vary the time threshold.

In the following experiments we compare our dropping strategy with two baseline

strategies.

6.4 Dropping Strategies

We analyse the performance of the di�erent query dropping strategies, namely Drop,

Partial-Drop and ML-Drop. We compute the average query response time of the

dropping strategies and we compare them to the full DAAT processing strategy with-

out any dropping.

Figure 6.2 shows the average query response time vs. the number of queries

per second (denoted q/s) received by the system. From the �gure, we observe

that using the full DAAT processing for all the queries implies an increasing query

response time that is caused by congestion at the queues. However, all the other

strategies (Drop, Partial-Drop and ML-Drop) manage to answer, on average, within

the time constraint, as the superimposed curves show. As expected, the Drop and

Partial-Drop strategies achieve this threshold, as they are both de�ned such that

processing terminates at time T . In the case of our approach (ML-Drop), instead,

respecting the time constraint means that our prediction models are able to identify

queries to drop that cannot be processed within the time threshold.

Next, we examine the impact on e�ectiveness of the di�erent processing methods.

Figures 6.3 and 6.4 present e�ectiveness in terms of NDCG@20 and NDCG@1000,

while Table 6.1 reports the same NDCG@20 values, in conjunction with statistical

signi�cance tests using the paired t-test.

As expected, full processing (DAAT) always obtains the best e�ectiveness, at the

price of a higher query response time. The other strategies obtain an e�ectiveness

dependent on the system load, since the number of dropped queries is impacted
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Figure 6.2: Average query response time (in seconds) for di�erent dropping strate-

gies.

by the remaining time for processing queries. This time is inversely proportional

to the waiting time of the query itself. The least e�ective method is Drop: even

though it achieves high e�ectiveness when the system is unloaded, NDCG@20 and

NDCG@1000 decrease quickly as the load increases, because the processing of many

queries cannot be �nished within the permitted time. Consequently, these queries

are dropped by the query server and the time spent is wasted, as no results are

returned to the broker. The other baseline, Partial-Drop, obtains a better ef-

fectiveness in comparison to Drop. This is expected, because by returning partial

results that have been computed within the limited processing time, some relevant

results for some queries can be retrieved on average.

On the other hand, the e�ectiveness of ML-Drop is always higher than the two

baselines. For instance, when queries arrive at a rate of 100 q/s, ML-Drop results in

an e�ectiveness drop of 15% NDCG@20 (0.228 to 0.195, signi�cant for p < 0.05),
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compared to Partial-Drop which would result in a 52% drop in e�ectiveness, signif-

icant for p < 0.01. Similarly, for query arrival rates up to 20 q/s, ML-Drop exhibits

no signi�cant degradation in e�ectiveness, which is in contrast with both Drop and

Partial-Drop. The gaps are more evident in the case of NDCG@1000 where the

e�ectiveness of Partial-Drop is 50% worse than ML-Drop for query arrival rates

about 100 q/s.

The relatively high e�ectiveness of ML-Drop compared to Partial-Drop can be

explained as follows. In Partial-Drop, queries can partially be processed, expend-

ing valuable processing time while they would not likely not return any relevant

documents. Instead, in ML-Drop, as queries which cannot be processed before T

elapses are immediately discarded, leaving the potential for more queries to be fully

processed.

To illustrate this, we analyse the number of queries globally dropped for the

di�erent methods. A query is globally dropped when it is dropped by all query
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Figure 6.4: E�ectiveness in terms of NDCG@1000, T = 0.5s.

servers processing it. Indeed, as query servers are independent, a query can be

dropped only in a subset of the query servers. It is therefore possible that some

queries have partial results even when the Drop strategy is used. In Figure 6.5, we

show both the number of queries globally dropped and the number of queries that

have partial results. In the case of Partial-Drop, the expiry of the time threshold

can cause local partial results to be sent back to the broker. For high query loads,

i.e., 100 q/s, this impacts about 90% of processed queries. For the same high arrival

rate, the Drop strategy globally drops around 60% of queries while returning partial

results for around 30% of queries. However, in the case of the ML-Drop strategy,

the number of queries globally dropped or with partial results markedly decreases

in relation to the other strategies.

Hence, in addressing our second research question, we �nd that the proposed

ML-Drop strategy reduces the number of queries dropped under high load, resulting

in improved e�ectiveness. Indeed, when 100 queries per second arrive, ML-Drop is
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Method 5 q/s 10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

DAAT 0.228 0.228 0.228 0.228 0.228 0.228 0.228

Drop 0.219 H 0.200 H 0.140 H 0.105 H 0.076 H 0.056 H 0.021 H

Partial-Drop 0.227 0.224 O 0.210 H 0.189 H 0.173 H 0.161 H 0.110 H

ML-Drop 0.227 0.227 0.217 0.207 O 0.205 O 0.203 O 0.195 O

Table 6.1: E�ectiveness (NDCG@20) for the di�erent methods. Statistically signif-

icant degradations vs. DAAT, as measured by the paired t-test, are denoted by O

(p < 0.05) and H (p < 0.01).

able to answer up to 40% of the queries without e�ectiveness degradations, while

for Drop and Partial-Drop strategies this happens for only 10% of queries.

6.5 Conclusion

In this Chapter, we analysed dropping and stopping methods for query processing

in presence of an unsustainable workload. Our aim was to answer queries within

a �xed time threshold, whilst maintaining overall e�ectiveness of the results. To

address this goal, we used two baselines reportedly deployed by Web SEs, where

a timer causes the query processing to be interrupted or the query to be dropped

entirely when the time threshold expires. In addition, we propose a novel dropping

method based on the predicted e�ciency of queries. We test the proposed method

on a distributed SE using 10, 000 queries and a collection of 50 million documents,

varying the number of queries per second. Our e�ciency predictor models learned

using linear-regression over six features are able to predict the query response time

for DAAT with an error less than 10 ms in more than 93% of the cases. Using these

predictors to select the queries to drop, the �xed time constraint can be achieved.

We also compared the e�ectiveness of the results using relevance assessments from

the TREC Million Query track. Our results showed that our method obtain up to

80% improvement in comparison to the most e�ective of the used baselines. Finally,
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Figure 6.5: Percentage of globally dropped or partially evaluated queries.

we showed that our method decreases the number of dropped queries when the

system is overloaded.
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Conclusions

In this thesis we proposed di�erent solutions to improve the e�ciency and e�ec-

tiveness of web search engines by exploiting the data stored into query logs. The

aim of the thesis is to o�er solutions for e�ciently and e�ectively managing high

query load conditions in a web search engine. The problem was tackled from various

perspectives. From the �rst point of view, we proposed an e�ective query recom-

mendation algorithm for the Query Shortcuts Problem (Chapter 4). Our query

recommender aims not only at enhancing the SE e�ectiveness along with the SE

user experience, but also the overall e�ciency of the SE by reducing the average

length of user sessions. The quality of query suggestions generated was assessed by

evaluating the e�ectiveness in forecasting the users behaviour recorded in historical

query logs, and on the basis of the results of a reproducible user study conducted

on publicly-available, human-assessed data. The experimental evaluation conducted

showed that our proposal remarkably outperforms two other state-of-the-art solu-

tions, and that it could generate useful suggestions even for rare and never seen

queries.

As future work we intend to evaluate the use of the whole head of the user session

for producing query recommendations. Furthermore, we want to study if the sharing

of the same �nal queries induces a sort of �clustering� of the queries composing the

satisfactory user sessions. By studying this relationship, which lays at the basis of

our query shortcut implementation, we could probably �nd newer and better ways

to improve our methodology. Finally, it would be interesting to investigate how IR-
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like diversi�cation algorithms (e.g., [2]) could be integrated in our query suggestion

technique in order to obtain diversi�ed query suggestions [67], [20].

From the second point, of view we presented two kind of strategies to avoid

high query response time when the web search engine is highly loaded, one which

dynamically selects adequate pruning strategies, presented in Chapter 5, and the

other one which dynamically selects which queries to drop in order to maximize the

overall e�ectiveness, presented in Chapter 6).

In particular, in Chapter 5, we designed a query processing framework relying

on the two novel functions, namely Predict(), and Bound(). These use the predicted

processing time for a query to calculate a processing time budget for that query,

depending on both a global response time threshold, and the other queries waiting

to be processed, while taking into account goals such as e�ciency, e�ectiveness

and fairness. This allows to select an appropriate dynamic pruning strategy to

be selected for each query. For Predict(), we presented a regression-based model

that can correctly predict the processing times of both DAAT and TAAT strategies

with less than 10ms error in more than 90% of cases. On the other hand, for

Bound(), we proposed the Altruistic method, which is able to allocate, in a fair

manner, processing resources across all queries currently queued. After extensive

experiments on a standard test collection, Altruistic is shown to be the most e�cient,

capable of processing queries within various time thresholds T and with the smallest

loss in terms of NDCG@1000. Finally, we showed that not only Altruistic is, on

average, able to stay within the time threshold T under high load, but it also has

the smallest percentage of queries for which the processing time exceeds T . Indeed,

our results show that at a workload of 40 queries per second, Altruistic is able to

meet a deadline of 0.5 seconds for 90% of queries (see Figure 5.6) while still attaining

signi�cantly high e�ectiveness (Table 6.1). In contrast, the next most e�ective Sel�sh

method can only meet the deadline for 40% of queries.

An interesting future work to be explored is the de�nition of a computational

optimisation problem addressing Bound(), which could be adapted to a continuous
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stream of incoming queries. On the other hand, we believe that improved de�nitions

for Predict() and Bound() could take into consideration the entire distributed search

architecture, rather than each query server independently.

Moreover, in Chapter 6 we analysed techniques for dropping or interrupting

queries under unsustainable workload. We used two baselines reportedly deployed

by web SEs, where a timer causes the query processing to be interrupted or the query

to be dropped entirely when the time threshold expires. In addition, we propose

a novel dropping method based on the predicted e�ciency of queries. We test the

proposed method on a distributed SE using 10, 000 queries and a collection of 50

million documents, varying the number of queries per second. We also compared

the e�ectiveness of the results using relevance assessments from the TREC Million

Query track. Our results showed that our method obtained up to 80% improvement

in comparison to the most e�ective of the baselines. Finally, we showed that our

method decreases the number of dropped queries when the system is overloaded.

Future extensions of this work could encompass a dropping algorithm that changes

the order of the queries queued on each query server. Alternatively, it is possible to

give a di�erent priority to di�erent query servers, thereby combining the solution

proposed by this work with collection selection methods.

The work on the e�ciency of SEs, discussed in Chapter 5 and 6, opens several

directions for future work. First of all it is possible to use both of the methods

presented in Chapters 5 and 6 together and implement a heuristic method to obtain

an improved quality of service. It is also possible to improve the methodology

proposed exploiting a query scheduling algorithm to reorder queued queries, by �rst

processing the ones which can be resolved faster and then the remaining ones.
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