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Chapter 1

Introduction

In this work two important API standards are analyzed: PKCS#11

and Microsoft CryptoAPI. A security API is an Application Program

Interface that allows users to interact with trusted modules and work

with sensitive data in a secure way. Cryptography is used to ensure

a communication between an untrusted source (host, application) and

a trusted service, such as a web server or a hardware device (security

tokens). A first degree of security is provided by PIN authentication,

i.e. something that user ”knows”, but it can be easily intercepted then

broken. The attention is to the analysis of the standards, highlighting

their vulnerabilities.

Starting from a previous security analysis of the standard PKCS#11

[2,5] we try to identify if attacks, which were discovered on PKCS#11

devices, also affect CryptoAPI. Some tokens, which we do not cite,

have been taken in consideration for that purpose. Despite key man-

agement is quite different from PKCS#11, similar vulnerabilities were

found, e.g. the wrap decrypt attack. CryptoAPI does not allow to store

symmetric keys within the device, being session keys, and key expor-

tation is only made through a specific structure, the keyblob. The work

proceeds with an integration of the two standards to deeply discover

more vulnerabilities, analyzing the limits and delivering new solutions.
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Chapter 2

CryptoAPI standard

CryptoAPI (or CAPI) [10], by Microsoft, is a set of cryptographic func-

tions performed by independent software modules, the Cryptographic

Service Providers (CSPs), to ensure operations such as encryption, de-

cryption and signature of messages, and secure key storage. The mod-

ules are implemented with a set of dynamic libraries, and work apart

from user applications. Applications start a session (i.e. a context)

with the cryptographic token after a call to the function CryptAcquire-

Context(), specifying the correct CSP. Each CSP consists of an unique

ID name, specified by the application when the context is acquired,

and a type, which defines the operations that can be carried out, pro-

viding a different implementation of the Cryptography API layer. One

CSP, the Microsoft RSA Base Provider, is included with the operat-

ing system, while other cryptographic provides allow to use different

and stronger cryptographic algorithms. Some of them are based on

hardware components, such as smart cards and tokens.

Software CSPs offer more flexibility than hardware CSPs, which

often allow a limited number of private keys to be stored (our token

supports two pairs of exchange and signature keys) requiring at the

same time a longer time to be generated and to sign data, but with

a lower overall security. To give an example, both the Base and En-

hanced Cryptographic Provider use RSA technology for signing or key

exchange, however the first one public key length is set to 512 bits as

default, the minimum recommended, while the stronger one reaches up

to 16KB. Differences also affect the algorithms used for symmetric (or

session) keys. On the other side, hardware-based cryptography and key

management is more secure than software-based cryptography and key

9



management because cryptographic operations and private keys are

isolated from the operating system, with the assurance of an encrypted

communication and user authentication. Software CSPs usually pro-

vide more flexibility than hardware CSPs, but at the cost of somewhat

less security.

2.1 Token device for tests

The study of CAPI was conducted over software and hardware providers,

such as usb smart card tokens. The hardware device considered in the

analysis a token of a known brand. The token offers a two-factor au-

thentication for secure access, i.e. a knowledge factor (the PIN) and

a possession factor (the smart-card), providing generation and protec-

tion of user’s sensible credentials, such as private keys, password and

certificates, inside the protected internal memory. API and standards

support includes CAPI and PKCS#11. Private keys can never be ex-

posed outside the token, in contrast to some providers (e.g. Microsoft

base and enhanced provider) which allow an authenticated user to ex-

port the private key into a blob. Every public key is instead exportable

by default.

2.2 Keys

Each CSP contains a key database, which consists of one or more key

containers, where all the cryptographic keys of a specific user are safety

stored; after it has been acquired acquired, user can create a default

key container, which takes user’s login name as its name, or retrieve

an existing one. Once a user has received the handle to the container

(then he is inside a session), the application can access the objects

stored on the token, i.e. keys and certificates. Only two types of keys

can be stored: the exchange and signature public/private key pairs.

The first type refers to keys used to encrypt session keys so that they

can be securely exported and then exchanged with other users via an

encrypted and secure format (key blob), while the second one is about

messages authentication (digitally signing). For each key container,

two private/public key pair can be stored (one for each type); our to-

ken supports up to two key containers. Keys have a set of permissions,

i.e. boolean parameters that specify key roles. Some of them are spec-

10



ified at creation time, e.g. the parameter exportable, which identifies if

a key is exportable outside the CSP, the other ones are automatically

set depending on key type. Permissions are read by the function Crypt-

GetProvParam, or via PKCS#11 (but here they are called attributes),

but anyway any flag (encrypt, decrypt, wrap, etc.) applied to session

keys has no effect, because they are not kept in memory after session

has been closed. As it follows in next sections, when session keys are

exchanged with another user, one key container should store user’s own

public/private key pairs, the other the receiver’s public key (previously

imported from a public key blob). The container can be protected by

a PIN, or password, stored in a smart-card or usb token, and, as the

keys inside, is accessed only through a handle. However, if the PIN

is intercepted, a malicious user can easily access the smartcard and

use all the keys that are stored inside. This vulnerability constitutes a

starting point in order to carry out attacks in the token.

A key container is preserved by the CSP from session to session,

including all the keys it stores, while session keys, even if kept inside

the CSP for a security purpose, are not preserved being volatile, but

can be saved for further use into a specific blob type. Session keys are

treated as symmetric keys, being used with symmetric algorithms to

encrypt and decrypt data, and should be frequently changed, better if

after one cryptographic operation. Next we will use the terms sym-

metric and sessions without difference in meaning. Keys, after having

acquired a CSP context, can be generated randomly by the functions

CryptGenKey() or, for session keys only, by CryptDeriveKey(), which

derives a key from an input string. According to the ALG ID param-

eter, an user can create a pair of keys (at keyexchange or at signature)

or a session key, specifying a valid algorithm (the list of available al-

gorithms depends on the CSP used). If the CSP stores a user digital

certificate, the related public key can just be retrieved by the function

CryptGetUserKey.

The security of keys storage directly depends on the CSP and its

design. Three rules should be applied:

• Keys, generated within CSP, are not directly accessible by the

application except through handles, in order to deny access to

the key material or derive the key from random sources.

• Details of cryptographic operations cannot be implemented or

modified by the application. The implementation is internal to
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the CSP, while the algorithm (the available ones) to be performed

can be chosen by the application.

• User authentication is managed by the CSP; the application does

not store any user credentials.

Every operation refers to a key through its handle, but it is still

possible to export the key into a particular format and save it out of

the application for future uses. Sensitive keys, which are, by default,

private keys, and in general all CAPI keys can be exported into a

particular structure, the key blob, if it is not prevented by the CSP

(e.g. our token does not allow private keys to be exported) or the

flag ”crypt exportable” is not set. Except for public keys, which are

exported in clear, a key is wrapped, i.e. exported after it has been

encrypted under another key. Session keys are usually wrapped with

a public key or another symmetric key, while the private key is stored

into the blob ”as is” or encrypted with a symmetric key. Next picture

represents the relation among cryptographic components.

Figure 2.1: CSP and key diagram
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2.3 Session keys

In CAPI, session keys can be generated by every CSP with the func-

tion CryptGenKey() or CryptDeriveKey() and exported, then stored,

into the application level. The primary use consists on encryption and

decryption of a message, which would be exchanged between two pro-

cesses. To guarantee the security and the secrecy of a symmetric key,

the latter must be encrypted with a public key (simpleblob), and then

imported using the corresponding private key of the key pair before

decrypting the encoded message. If the message has to be exchanged

between two local processes, the CSP will use its own public key to

export the session key into a simple key blob, so that the session key

used can be imported into the CSP using the ”local” private key. The

scenario would be different if two users want to exchange a message:

the sender has to wrap the symmetric key with the receiver’s public

key and later on the receiver will use his private key to decrypt the

session key.

Key management should prevent any intruder to get a secret key

during a communication between two or more host. Some rules are

adopted during key generation and specific structure are used to store

session keys outside trusted devices. It is very important that a reliable

key is generated randomly, in order to prevent any known dictionary

attack [14], and, for encryption, CBC mode (Cipher-block chaining)

should be used in addition to an initialization vector IV of non −
zero elements, so that an attacker must try every possible IV before

decrypting a cypher text. More details are showed in the next section.

2.4 Key blob structures

Keys, once exported from the CSP, are stored into key blobs, and

then can be used by the application level. Each type of key blob has

a common header, the publickeystruc structure, which indicates blob

type and the key algorithm’s ID. Key pairs can only be exported into a

publickeyblob or privatekeyblob structure. The publickeyblob stores the

public key for use with the RSA key exchange algorithm: the public

exponent and the modulus info is kept inside the format. The private

key can be saved ”in clear” through the corresponding format, but

in general CSPs, like the token’s csp, do not allow it to be exported

outside the key storage. Session keys can be exported in three types
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Figure 2.2: Exchanging session keys
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of blobs: a plaintextkeyblob, that is the ”raw” key material preceded

by the common blob header, a simplekeyblob, a ”wrapping format”

in which the session key is encrypted with a public key before being

exported, and a symmetricwrapkeyblob, a format specified in the IETF

SMIME X9.42 standard [7], used to wrap session keys with another

session key.

According to the function CryptImportKey(), setting the proper

parameters, any type of key can be imported into a CSP, starting from a

key blob format. A key blob can be managed outside the CSP, and then

written or read to/from a text file. The structure can be manipulated

(i.e. changing byte values in the correspondence of key algorithm,

modulus or key exponent) or created ex-novo to insert a desired key and

allow it to be imported into the CSP and then recognized as a valid key.

The simplest scenario concerns session keys and the plaintextkeyblob

structure: starting from such type of blob, it is possible to create a

random or known key and save it to the structure, adding the correct

parameters of key size and key algorithm. A valid key is the following:

Listing 2.1: create a random key

// A l l o ca t e memory f o r 3DES key and

// F i l l key wi th data 1 , 2 , 3 , . . . in t h i s case

pbKeyMaterial = (LPBYTE) Loca lA l loc (LPTR, 192/8) ;

for (n = 0 ; n < 192/8 ; n++)

pbKeyMaterial [ n ] = n+1;

dwKeyMaterial = 192/8 ;

The key is then inserted into a plaintextkeyblob, or it can be en-

crypted under a public key and then inserted into a simple blob. This

operation is showed in the next sections, when it is given the description

of an attack.

Figure 2.3: Blob header (publickeystruc structure)

The simpleblob can be modified to set the proper key algorithm and
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its size to add a new key material, previously encrypted with a public

key (which belongs to a exchange public/private key pair). Being part

of the application level, key blobs become an interesting starting point

to analyze and discover vulnerabilities of CAPI.
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Chapter 3

A model for CAPI

The semantic of our model is based on the one proposed in [6] to model

PKCS#11 operations. This provides a starting point to build a more

generic model to describe both CAPI and PKCS#11 and their inter-

operability.

3.1 Primitives

Asymmetric and symmetric encryption of a plain text x under the key

y :

{x}y = aenc(x,y)

{‖x‖}y = senc(x,y)

Key data stored in key blobs:[
{x}y

]
= key blob with aenc(x,y)[

{‖x‖}y
]
= key blob with senc(x,y)[

x
]
= key blob with x not encrypted

The functions aenc(x,y) and senc(x,y), of arity 2, are formally defined

as

aenc: key × string → string

senc: key × string → string

17



3.2 Basic notation

The finite set of function symbols is Σ, with the arity function

ar : Σ → N, where Σ ⊂ Nn and n the number of arguments.

Plain terms (PT) is defined as:

t1, t2 = x x ∈ X
| = n n ∈ N

| = f(t1...tn) f ∈
∑

and ar(f) = n

with N the set of keys, nonces and data values, and X the set of vari-

ables.

Key access is modeled with functions of arity 2.

h: nonce × key → handle

We use h(n1, k1) to define the handle n1 of the key k1.

To directly access the encrypted key, start from the 12th byte posi-

tion of key blob: this part corresponds to aenc(x,y) or x, if the blob is

exported without encryption (i.e. plaintextblob, publickeyblob).[
{x}y

]
→ {x}y

If the blob is a symmetricwrapkeyblob, the key is stored according to the

format specified in [7]. We assume to have performed all the necessary

operations to get the key in the ”clear” format {x}y, with y a symmetric

key. [
{|x|}y

]
→ {x}y

Implementations of symmetric key blob must protect the encrypted

key, i.e. the stored secret key, in the best possible way. When a key is

generated, a default IV is applied: for a better security, implementa-

tions of symmetric key wrapping must generate random initialization

vectors (IVs) and padding. To decrypt a symmetric key blob (in our

tests, we use 3DES symmetric keys), if no change on IV is made, we

can follow the procedure about Triple-DES Key Unwrap in the docu-

mentation of rfc3217 standard [7].

18



3.3 CAPI syntax

A first difference respect to PKCS#11 is the absence of templates (set

of attributes): a key has some permissions, i.e. operations it can per-

form, such as decrypt, encrypt, wrap, unwrap, assigned at creation time

according to key type (or specification), determined by the algorithm

identifier ALG ID, and some flags. Depending on key roles, ALG IDs

can assume different values for (symmetric) session keys. These keys

can perform all operations by default.

For key pair, ALG ID can be substituted by a key specification (ks):

ks = {exchange key, signature key}

In this way, the algorithm used to generate a key pair depends on

the cryptographic provider. To refer to a session key, without spec-

ifying an algorithm, we add the key specification session key, which

does not belong to CAPI syntax. Every time a key is created with

this specification, a suitable symmetric algorithm is applied. Usually,

CALG RSA KEYX is used for key exchange and CALG RSA SIGN

for key signature. Key specification determines a different set of per-

missions: e.g. for key exchange, the public key is wrap and encrypt,

the private is unwrap and decrypt.

When generating a RSA key pair, CAPI maintains only one handle

for both the key. The key pair consists on a set of numbers, each one

specifying a key parameter, such as the private and public exponent,

the modulus, the prime numbers, and so on. From a key pair kp, we

refer to the public key component writing pub(kp). As described in

Cryptographic security APIs [13]:

pub: seed → key

In PKCS#11, to get a handle to pub(kp), we must call the PKCS#11

function CreateObject() [11]. PKCS#11 or CAPI key pairs are stored

into the cryptographic providers with the label at key exchange or

at key signature. In CAPI, the choice of the key (public or private

key) in each operation, is automatically selected; we only need to call

the key pair handle. Other parameters used at key generation are nu-

meric constants, the flags (f), which set additional properties to keys.

The set of flags is defined as follows:

FLAGS = {exportable, archivable, ..}

19



To assign more than one flag f to a key, we should concatenate them.

The suitable data structure is a list, represented with λ.

λ = f1|f2| . . . |fn f1 . . . fn ∈ FLAG

A generic key is represented by k1, k2, while a public/private key pair is

kp. When a key is encrypted using a key pair, i.e. it is encrypted under

a public key, we use pub(kp), to state that only the public exponent

and the modulus are used to perform encryption.

The set of Type Terms (TT) can be defined as:

tt1, tt2 = (n, ks) ks ∈ N
| = (n, λ) λ = f1 . . . fn

Each term is a couple with a nonce (i.e. handle to the key) n and a

list of flags or a key specification.

System is described with this set of rules:

T ; Γ
newñ−−−→ T ′; Γ′

where T, T’ ⊂ PT are plain terms, such as keys and nonces, and Γ, Γ′

⊂ TT are type terms, i.e. conditions to apply to keys. T represents

user’s knowledge and Γ is the current system state before performing

the attack.

3.4 CAPI operations

Main operations with CAPI:

Gen key: the function generates a random session key, and returns a

handle to the key k1 in n1. Generally, λ = exportable.

Gen key:
newn1−−−→ h(n1, k1); (n1, λ), (n1, session key)

Gen key pair: the function generates a key pair, and returns a unique

handle. According to key specification ks, a key pair is for key exchange

or for signature. During tests, we create exchange key pairs to maintain

interoperability with PKCS#11 (as we would see, a PKCS#11 key pair

is recognized as an exchange key when saved in the token) with the flag

exportable always set.
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Gen key pair:
newnp−−−→ h(np, kp), pub(kp); (np, λ), (np, ks)

If the flag archivable is specified, the function generates a key pair,

stored in the device memory, and a copy of it, maintained in the current

session, with the corresponding handle. When the session is closed, the

session key pair is destroyed.

Gen key pair:
newnps−−−−→ h(nps, kps), pub(kps);

(nps, exchange key), (nps, archivable)

Export: the function takes a handle to the key (k2) to be exported

and, if requested, the handle to the encrypting key (it depends from

the key blob type in which the key is exported to). If the blob is not

encrypted, such as a public or plain text blob, no encrypted key is

passed. To export the key, it must be exportable. The public key is

always exportable. The function returns a key blob. For every key blob

type:

Export(asym): h(np, pub(kp)), h(n2, k2); (n2, exportable)

(np, exchange key)→
[
{k2}pub(kp)

]
Export(sym): h(n1, k1), h(n2, k2); (n2, exportable)

(n1, session key)→
[
{‖k2‖}k1

]
Export(plain): h(n2, k2); (n2, exportable)

→
[
k2
]

Export(public): h(np, kp); (np, exportable)

→
[
pub(kp)

]
An additional external condition is necessary to describe if a private

key is exportable: is private exportable. Even if the flag exportable is

set to true, a private key is exportable if the current CSP allows it

(Microsoft software CSPs allow it; the token which we use does not

allow it).
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if(is private exportable)

Export(private): h(np, kp); (np, exportable)→
[
kp
]

Export(private): h(np, kp); (np, archivable)→
[
kp
]

Export(private): h(n2, k2), h(np, kp); (np, exportable)

(n2, session key)→
[
{kp}k2

]
Export(private): h(n2, k2), h(np, kp); (np, archivable)

(n2, session key)→
[
{kp}k2

]
else

Export(private): h(np, kp); (np, archivable)→
[
kp
]

Export(private): h(n2, k2), h(np, kp); (np, archivable)

(n2, session key)→
[
{k2}k2

]
Import: the function imports a cryptographic key from a key blob into

a CSP. It takes a key blob and a handle to a decrypting key: it must

be the symmetric key used to wrap the key stored in the key blob or

the private key of an exchange key pair (i.e. the corresponding public

key is used to encrypt the key). If the blob is not encrypted, no key is

passed as first parameter.

Import(asym): h(np, kp),
[
{k2}pub(kp)

]
, (np, exchange key)

newn2−−−→ h(n2, k2); (n2, exportable), (n2, session key)

Import(sym): h(n1, k1),
[
{‖k2‖}k1

]
, (n1, session key)

newn2−−−→ h(n2, k2); (n2, exportable), (n2, session key)

Import(plain):
[
k2
] newn2−−−→ h(n2, k2);

(n2, exportable), (n2, session key)

Import(public)
[
pub(k2)

] newn2−−−→ h(n2, pub(k2));

(n2, exportable), (n2, session key)

Import(private)
[
k2
] newnp−−−→ h(np, kp);

(n2, exportable), (n2, exchange key)

Encrypt data (key): the function encrypts data (here data is key

material) with the key k2.
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SEncrypt: h(n2, k2), k1; (n2, session key)→ {|k1|}k2
AEncrypt: h(np, pub(kp)), k1; (n2, exchange key)→ {k1}pub(kp)

Decrypt data (key): the function takes a key k1 encrypted with

k2, and the handle to a decrypting key (that is k2 if symmetric). If

we start from a key blob, we only consider the section which contains

encrypted key data. The encrypted data (key) is
[
{x}y

]
→ {x}y (see

next function).

SDecrypt: h(n2, k2), {|k1|}k2 ; (n2, session key) → k1
ADecrypt: h(np, kp), {k1}pub(kp); (n2, exchange key)→ k1

Get encrypted key: the function (not included in CAPI) gets en-

crypted data from a key blob (i.e. select data from the 12th byte posi-

tion), where k2 is the key encrypted under another key k1 or kp (if the

blob is a plaintextkeyblob, no wrapping key is specified). We assume

to get access to the encrypted key k2 even if k1 is a symmetric key (as

already specified in model description).

Get EKey:
[
{k2}k1

]
→ {k2}k1

Get EKey:
[
{k2}

]
→ {k2}

GetUserKey: this function starts a search of a public/private key pair

inside a CSP and returns a handle to it. We cannot use keys without

handles.

GetUserKey: kp
newn−−−→ h(np, kp)

Additional rules are defined to open and close a session:{
T, L

} start−session−−−−−−−−→ T, L

T ′, L′
close−session−−−−−−−−→

{
T ′′, L′′

}
To have access to private objects, the normal user must log in and be

authenticated (the state
{
T, L

}
means that the user is not authen-

ticated). When the session is closed, all session keys are destroyed.

We cannot start a new session if another one is already open or after a

session key has been created (during cross-api attacks, we open a ses-

sion in CAPI; in PKCS#11 no more session can be created, until the
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previous one is closed). It follows an example of an archivable private

key, i.e. the key can be exported during session time.

{} start−−→ emptysession

Gen key pair:
newnpe−−−−→ h(nps, kps), pub(kps);

(nps, exchange key), (nps, archivable)

h(nps, kps), pub(kps); (nps, exchange key), (nps, archivable)
close−−→

{h(nps, kps)}

Inside a session, kps is archivable, i.e. the private key is exportable dur-

ing the session. No external CSP condition, such as is private exportable,

would affect this operation. When the session is closed, the key kps is

no more archivable (then exportable).
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Chapter 4

A model for CAPI &

PKCS#11

4.1 Primitives

Asymmetric and symmetric encryption of a plain text x under the key

y :

{x}y = aenc(x,y)

{‖x‖}y = senc(x,y)

For the property previously cited, if we get a key blob from CAPI, we

assume to work directly with the encrypted key, i.e. {x}y or {‖x‖}y,
without considering the header.

4.2 Basic notation

The finite set of function symbols is Σ, with the arity function

ar : Σ → N, where Σ ⊂ Nn and n the number of arguments.

Plain terms (PT) is defined as:

t1, t2 = x x ∈ X
| = n n ∈ N

| = f(t1...tn) f ∈
∑

and ar(f) = n

with N the set of keys, nonces and data values, and X the set of vari-

ables.
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Key access is modeled with functions of arity 2.

h: nonce × key → handle

h(n, k) is a handle n to the key k. Different handles to the same key

allow user to assign more templates to keys (formally, a template is

linked to a nonce).

To state a key property or set a boolean value to a key attribute,

write a(t, b), i.e. the boolean value b, true (>) or false (⊥), of an

attribute a is applied to the term (i.e. nonce) t. The terms b are

constants, i.e. functions of arity 0. Formally:

a: Nonce × bool → Attribute

The ordered set of binary function symbols, the attributes, is A, disjoint

from Σ:

A = a1, ..., an

with a1 = sensitive, a2 = exportable, a3 = modifiable, a4 = encrypt,

a5 = decrypt, a6 = wrap, a7 = unwrap, a8 = token (i.e. the key is

permanently stored in the token). The set of attribute terms specify

all the functions in the form a(t, b).

AT = {a(t, b)|a ∈ A, t ∈ P, b ∈ {>,⊥}}.

More in general, we consider a template T a set of true attributes:

ai, ...aj

The template is associated to a term t: the attributes which appear

in the template have the corresponding boolean values set to true; the

other ones are set to false.

To build a secure configuration [2], we should apply some fixes FX in

addition to attribute templates (see the last chapter). For now we con-

sider some basic default templates, evidencing all the vulnerabilities.

In PKCS#11 templates must be specified every time a key is created

(or to search and manipulate objects), setting specific values for each

attribute. The set T of standard templates is defined as:

T = {t pkcs, t exchange, t public, t session}

26



The default one, for every PKCS#11 key type, is the following:

t pkcs = {exportable,modifiable}

A PKCS#11 key has all the attributes set to false, except for exportable

and modifiable.

In CAPI, templates are assigned to a public/private key pair using

the key specification at keyexchange or at signature. We consider by

default the corresponding template for exchange key pair:

t exchange = {sensitive, encrypt, decrypt, wrap, unwrap, token}

The template refers to the key pair, but each key has specific attributes:

the public key is wrap, encrypt and exportable, the private is unwrap,

decrypt and sensitive. Generally, a private key is not exportable. If the

flag is set to true, only some CSPs allow the private key to be exported.

Public key template is:

t public = {exportable, encrypt, wrap}

A CAPI session key, instead, has the following template:

t session = {modifiable, encrypt, decrypt, wrap, unwrap}

To assign a valid template tp ∈ T to the key handle n, use A(n,tp), i.e.

a1(n,>), . . . , an(n,>).

System is described with a finite set of rules:

T ;L
newñ−−−→ T ′;L′

where T, T’ ⊂ PT are plain terms, such as keys and nonces, and L,

L’ ⊂ AT are sets of attribute terms, i.e. conditions on attributes. T

represents user’s knowledge and L is the current system state before

performing the attack.

From T and L we derive new sets of terms and attributes condition, so

that:

x1, x2 ∈ T ⇒ x1, x2 ∈ T ′
y1, y2 ∈ L⇒ y1, y2 ∈ L′

where names(T ∪ L) = {} and names(T’
⋃

L’) ⊆ ñ.

User knowledge is updated to T’ and system state satisfies L’. When

T and L are evaluated, new ñ means that names in ñ must be replaced

by names in T’ and L’ (e.g. during key generation).
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4.3 Merge together

We consider a super model which describes both CAPI and PKCS#11

operations. Thanks to a good interoperability level, we can represent

CAPI keys, then operations, through PKCS#11 notation. From the

set of CAPI rules:

T ; Γ
newñ−−−→ T ′; Γ′

we consider a set of transformation functions (tf) which map CAPI

rules into more general ones. The new model will result from the

following rules: [
T
]
;
[
Γ
] newñ−−−→

[
T ′
]
;
[
Γ′
]

Every flag corresponds to an attribute, and ks maps to a specific tem-

plate (t exchange or t signature). In fact, if we create a key pair in

CAPI, the private key is recognized in PKCS#11 with a set of at-

tributes, which differ according to key specification. From CAPI, a

type term (tt) is mapped into a plain term (pt):

tf(n, ks)→ A(n, ts), with ts ∈ T

tf(n, λ)→ a1(n,>) . . . an(n,>)

Each transformation is applied to a couple of type terms tt, to obtain a

new set Γ′ of attribute terms. CAPI uses the blob format to store keys,

but the encrypted key can be easily extracted from a blob, then used

to perform a decrypt or an unwrap. We assume to apply the function

Get EKey(), declared in the previous section.[
{k2}k1

]
→ {k2}k1

The new super model considers ”extra” attributes, called fixes which

can be added to enforce security configuration to any hardware devices.

With fixes, attributes of a particular key are set off.

{a1(. . . ,⊥), a2(. . . ,⊥), . . . }

The system, with the set of fix attributes FX, becomes:[
T
]
;
[
Γ
] newñ−−−→

[
T ′
]
;
[
Γ′
]
;FX

All the operations are executed inside sessions: after user has opened a

session, an application has access to the token’s public objects. Session

keys, as the name suggests, are accessible during the session time: none

of these keys, after the session has been closed, is permanently saved

to memory.
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4.4 New rules

New rules take in consideration the transformation function tf : from

CAPI to SM we apply this function when required.

Gen key: the function generates a random session key, and returns

a handle to the key k1 in n1. If the key is extractable, the attribute

exportable must be set to true. The key is modifiable, i.e. its attributes

can be changed.

(CAPI)

Gen key:
newn1−−−→ h(n1, k1); (n1, exportable), (n1, session key)

(SM)

Gen key:
newn1−−−→ h(n1, k1); exportable(n, >), A(n1, t session).

In CAPI, all the symmetric keys are session keys, i.e. they are available

during session time. In the following example, we consider a key pair kp,

already stored in the token, and a session key generated with Gen key.

Session keys are destroyed when session is closed.{
h(np, kp); A(np, t exchange)

}
start−session−−−−−−−−→

h(np, kp),A(np, t exchange).

Gen key:
newn1−−−→ h(n1, k1); exportable(n1, >), A(n1, t session).

h(np, kp), h(n1, k1);

exportable(n1,>)A(n1, t session),A(np, t exchange)
close−session−−−−−−−−→{
h(np, kp)

}
.

The key k1 is destroyed, because it is a session key (t session) and

hence it has the attribute token set to false.
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Gen key pair: the function generates a key pair. If the key pair is

archivable, it is copied and the new copy is set exportable, and the

attributes token and sensitive are unset. (CAPI)

Gen key pair:
newnp−−−→ h(np, kp), pub(kp); (np, exchange key).

Gen key pair:
newnps−−−−→ h(nps, kps), pub(kps)

(nps, exchange key), (nps, archivable)

(SM)

Gen key pair:
newn1−−−→ h(n1, kp), pub(kp); A(n1, t exchange)

Gen key pair:
newnps−−−−→ h(nps, kps), pub(kps), h(np, kps),

A(nps, t exchange), exportable(nps,>),

token(nps,⊥), sensitive(nps,⊥),

A(np, t exchange)

If a key pair is created with the flag archivable, it means that a copy

of the key pair is maintained in the session and it becomes exportable

(in general, a private key is not exportable outside the token, where it

is stored).

Export/wrap: the function takes a handle to the key to be exported

and, if requested, the handle to the encrypting key (it depends from

the key blob type in which the key is exported to). If the blob is not

encrypted, such as a public or plain text blob, no key is specified. The

function returns encrypted data. The public key is referenced using

the same handle np.

(CAPI)

Export(asym): h(np, pub(kp)), h(n2, k2); (n2, exportable),

(np, exchange key)→
[
{k2}pub(kp)

]
Export(sym): h(n1, k1), h(n2, k2); (n2, exportable),

(n1, session key)→
[
{‖k2‖}k1

]
To export the private key, we must consider the external condition

is private exportable. Even if the flag exportable is set to true, a pri-

vate key is exportable if the current CSP allows it. We consider the
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condition in which the private key is wrapped with a symmetric key

(for CAPI and PKCS#11 interoperability). If is private exportable is

set:

Export(private): h(n2, k2), h(np, kp); (np, exportable),

(n2, session key),→
[
{kp}k2

]
Export(private): h(n2, k2), h(np, kp); (np, archivable),

(n2, session key),→
[
{kp}k2

]
If the condition is unset, the private key is exportable only if it is archiv-

able. Remember that the archivable key is a copy of a public/private

key pair, which is not exportable after the session was closed. In SM

we are exporting this copy.

(SM)

Export(asym): h(np, pub(kp)), h(n2, k2); exportable(n2,>),

A(np, t exchange)→ {k2}pub(kp)

Export(sym): h(n1, k1), h(n2, k2); exportable(n2,>),

A(n1, t session),→ {‖k2‖}k1

Export(private): h(n2, k2), h(np, kp); exportable(np,>),

A(n2, t session)→ {kp}k2

Export(private): h(n2, k2), h(np, kp); exportable(np,>),

A(n2, t session), token(np,⊥), sensitive(np,⊥)

→ {kp}k2

The condition if(is private exportable), in SM, is expressed with the

attribute exportable. When, in PKCS#11, we get a handle to the pri-

vate key, even if the key is created with the flag exportable in CAPI,

the key can have the attribute set to true or false. Only private keys

with the attribute exportable can be wrapped. Anyway, in PKCS#11,

some tokens do not allow private keys to be created if the attribute

exportable is set to true.

Import/unwrap: the function imports a cryptographic key. It takes

encrypted key data and a handle to a decrypting key: it must be the

symmetric key used to wrap the key or the private key of an exchange
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key pair (i.e. the corresponding public key is used to encrypt the key).

(CAPI)

Import(asym): h(np, kp),
[
{k2}pub(kp)

]
; (np, exchange key)

newn2−−−→ h(n2, k2); (np, exportable),

(n2, session key)

Import(sym): h(n1, k1),
[
{‖k2‖}k1

]
; (n1, session key)

newn2−−−→ h(n2, k2); (n2, exportable),

(n2, session key)

(SM)

Import(asym): h(np, kp), {k2}pub(kp); A(np, t exchange)
newn2−−−→ h(n2, k2); exportable(n2,>),

A(n2, t session)

Import(sym): h(n1, k1), {‖k2‖}k1 ; A(n2, t session)
newn2−−−→ h(n2, k2); exportable(n2,>),

A(n2, t session)

Encrypt data (key): the function encrypts data (here data is key

material) with the key k2.

(CAPI)

SEncrypt: h(n2, k2), k1; (n2, session key)→ {|k1|}k2
AEncrypt: h(np, pub(kp)), k1; (np, exchange key)→ {k1}pub(kp)

(SM)

SEncrypt: h(n2, k2), k1; A(n2, t session)→ {|k1|}k2
AEncrypt: h(np, pub(kp)), k1; A(np, t exchange)→ {k1}pub(kp)

Decrypt data (key): the function takes key data k1, encrypted with

k2, and the handle to a decrypting key (that is h(n2, k2) if symmetric,

or the corresponding private key if k2 is public).

(CAPI)

SDecrypt: h(n2, k2), {|k1|}k2 ; (n2, session key) → k1
ADecrypt: h(np, kp), {k1}pub(kp); (np, exchange key)→ k1
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(SM)

SDecrypt: h(n2, k2), {|k1|}k2 ; A(n2, t session)→ k1
ADecrypt: h(np, kp), {k1}pub(kp); A(np, t exchange)→ k1

Create object: the function creates a public key object starting from

raw data, i.e. public information (modulus, public exponent) of a key

pair.

CreateObject: pub(kp)
newn1−−−→ h(n1, k1), A(n1, t public)

Create key blob: the function takes key data k1, encrypted with a key

k2 (or not), and returns a CAPI key blob. This structure is necessary

to import PKCS#11 keys in CAPI.

CreateBlob: {k2}pub(kp) →
[
{k2}pub(kp)

]
CreateBlob: {k2} →

[
{k2}

]
Get encrypted key:

Get EKey:
[
{k2}k1

]
→ {k2}k1

Get EKey:
[
{k2}

]
→ {k2}

4.5 Correctness of the model

Our intent is to formalize every CAPI operation with a super model,

which uses PKCS#11 syntax. Starting from the model of CAPI

T ; Γ
newñ−−−→ T ′; Γ′

we apply suitable transformation functions (identified with square brack-

ets) [
T
]
;
[
Γ
] newñ−−−→

[
T ′
]
;
[
Γ′
]

Every transformation must map a state (i.e. a sequence of operations)

from CAPI to the super model SM. To prove the correctness of the

model, a valid state in CAPI must be coherent in SM, i.e. all the

operations performed in CAPI must be replicable in SM.

33



Formally:

∀ n,k ∈ T, h(n,k) ∈ T, f1 . . . fn ∈ Γ, ks1 . . . ksn ∈ Γ

=⇒

n,k ∈
[
T
]
, n,k ∈

[
T
]
, tf(f1) . . . tf(fn) ∈

[
Γ
]
, tf(ks1) . . . tf(ksn) ∈

[
Γ
]

We use the following transformation functions:

• tf(n1,session key) → A(n1, t session)

• tf(n1,exchange key) → A(n1, t exchange)

• tf(n1,signature key) → A(n1, t signature)

• tf(n1,exportable) → exportable(n1,>)

• tf(n1,archivable) → exportable(n1,>), token(n1, ⊥),

sensitive(n1,⊥)

Then we must prove that a sequence of state S1 . . . Sn in CAPI is

coherent in SM: in both the model we must be able to carry out the

same operations.

S1 → S2 · · · → Sn[
T
]
;
[
Γ
]
→
[
T ′
]
;
[
Γ′
]
· · · →

[
T n
]
;
[
Γn
]

=⇒

S1 → S2 · · · → Sn

T ;L→ T ′;L′ · · · → T n;Ln

Some key roles can be expressed more in detail by the SM model:

for example, the archivable property is expressed with three attributes

in PKCS#11. Still more, if we create an archivable key in CAPI, in

PKCS#11 we find two keys (a session key and a permanent key), while

in CAPI we have only one handle.

To prove the implication, we first how all the necessary transformations

from CAPI to SM, to obtain the system

T ;L
newñ−−−→ T ′;L′

and then we give an example of state consistency.
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Gen Key (CAPI):

Gen key:
newn1−−−→ h(n1, k1); (n1, exportable), (n1, session key)

We apply these transformation functions:

tf(n1,session key) → A(n1, t session)

tf(n1,exportable) → exportable(n1,>)

Gen Key (SM):

Gen key:
newn1−−−→ h(n1, k1); exportable(n, >), A(n1, t session).

Gen Key Pair (CAPI):

Gen key pair:
newnps−−−−→ h(nps, kps), pub(kps)

(nps, exchange key), (nps, archivable)

We apply these transformation functions:

tf(nps,exchange key) → A(n, t exchange)

tf(nps,archivable) → exportable(n,>), token(n,⊥), sensitive(n,⊥)

Gen Key Pair (SM):

Gen key pair:
newnps−−−−→ h(nps, kps), pub(kps), h(np, kps), pub(kps),

A(nps, t exchange), exportable(nps,>),

token(nps,⊥), sensitive(nps,⊥),

A(np, t exchange)

In SM we have two handle to the key kps: one is a session key (the

archivable key), the second, which is not handled in CAPI. is stored in

the device (the key has the attribute token set to true). Gen key pair

rule also applies to all key pairs.

Export(asym) (CAPI):

Export(asym): h(np, pub(kp)), h(n2, k2); (np, exchange key),

(n2, exportable)→
[
{k2}pub(kp)

]
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We apply the following transformation functions:

tf(np, exchange key) → A(np, t exchange)

tf(n2, exportable) → exportable(n2,>)

Export(asym) (SM):

Export(asym): h(np, pub(kp)), h(n2, k2); A(np, t exchange),

exportable(n2,>)→ {k2}pub(kp)

In CAPI, the result of export is a key blob. In SM, we consider the en-

crypted (wrapped) key without the key blob structure (essentially, we

have a key blob without the header). We implicitly apply the function

Get EKey(), from CAPI to SM model. The two exported formats are

considered without difference in meaning. Export() rule also applies to

symmetric keys .

Export(private) (CAPI):

Export(private): h(n2, k2), h(np, kp); (n2, session key),

(np, archivable)→
[
{kp}k2

]
We apply these transformation functions:

tf(np, archivable)→ exportable(np,>), token(np,⊥), sensitive(np,⊥)

tf(n2, session key) → A(n2, t session)

Export(private) (SM):

Export(private): h(n2, k2), h(np, kp); A(n2, t session),

exportable(np,>), token(np,⊥),

sensitive(np,⊥)→ {kp}k2

Export(private) rule also applies to private not-archivable keys.

Import(asym) (CAPI):

Import(asym): h(np, kp),
[
{k2}pub(kp)

]
; (np, exchange key)

newn2−−−→ h(n2, k2); (n2, exportable), (n2, session key)
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We apply these transformation functions:

tf(n2, exportable) → exportable(n2,>)

tf(np, exchange key) → A(np, t exchange)

tf(n2, session key) → A(n2, t session)

Import(asym) (SM):

Import(asym): h(np, kp), {k2}pub(kp)
newn2−−−→ h(n2, k2);

A(n2, t session),A(np, t exchange),

exportable(n2,>)

Import() rule also applies to symmetric keys .

AEncrypt (CAPI):

AEncrypt: h(np, pub(kp)), k1; (np, exchange key)→ {k1}pub(kp)

We apply these transformation functions:

tf(np, exchange key) → A(np, t exchange)

AEncrypt (SM):

AEncrypt: h(n2, pub(kp)), k1; A(n2, t exchange)→ {k1}pub(kp)

Encrypt() rule also applies to symmetric encryption .

ADecrypt (CAPI):

ADecrypt: h(np, kp), {k1}pub(kp); (np, exchange key)→ k1

We apply these transformation functions:

tf(np, exchange key) → A(np, t exchange)

ADecrypt (SM):

ADecrypt: h(np, kp), {k1}pub(kp); A(np, t exchange)→ k1

Encrypt() rule also applies to symmetric decryption.
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The second proof is about state consistency: we consider the wrap

decrypt attack (described more in detail in the next chapter): a key k1
is encrypted with kp and then exported. The key k1 must be exportable,

kp must have the flag/attribute encrypt set to true (according to the

function Export(asym) and ADecrypt previously defined). In CAPI,

the attack is defined as follows (state by state; Si denotes a state):

S1 { }
S2 (Gen key pair) h(np, kp), pub(kp); (np, t exchange)

S3 (Gen key) S2 + h(n1, k1); (n1, t session), (n1, exportable)

S4 (Export(asym)) S3 + h(np, pub(kp)), h(n1, k1)→
[
{k1}pub(kp)

]
S5 (ADecrypt) S4 + h(np, kp), {k1}pub(kp) → k1

The key kp is encrypting (it is an exchange key - S2) and k1 is exportable

(it is a session key - S3). With SM the sequence becomes:

S1 { }
S2 (Gen key pair) h(np, kp), pub(kp); A(np, t exchange)

S3 (Gen key) S2 + h(n1, k1); A(n1, t session), exportable(n1,>)

S4 (Export(asym)) S3 + h(n3, pub(kp)), h(n1, k1)→ {k1}pub(kp)
S5 (ADecrypt) S4 + h(np, kp), {k1}pub(kp) → k1

The key kp is again encrypting (we apply a t exchange template - S2)

and k1 is exportable (we apply a t session template - S2). Maintaining

the same handles, we can perform the final decryption of k1, that is

our aim.
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4.6 PKCS#11 operations

PKCS#11 model and key management in [5, 6] has been extended ac-

cording to the previous definition of super model (SM).

Generate key pair: generates public and private key pair with a

specific template. The private key must be sensitive, and, if the at-

tribute cka token is set to true, the key will be accessible via CAPI.

Gen key pair:
newnp−−−→ h(np, kp), pub(kp); A(np, t pkcs),

sensitive(np, >)

Gen key: generate a symmetric key.

Gen key:
newn1−−−→ h(n1, k1); A(n1, t session)

Wrap key: this operation corresponds to Export key in CAPI, but a

key blob structure is not created.

Wrap(asym): h(np, pub(kp)), h(n2, k2); wrap(np,>),

exportable(n2,>) → {k2}pub(kp)

Wrap(sym): h(n1, k1), h(n2, k2); wrap(n1,>),

exportable(n2,>) → {|k2|}k1
Unwrap key: this operation corresponds to Import key in CAPI, but

here the function returns a string (or encrypted string) instead of a

blob structure.

Unwrap(asym): h(np, kp), {k2}k1 ; unwrap(np,>)
newn2−−−→ h(n2, k2); A(n2, t pkcs)

Unwrap(sym): h(n1, k1), {|k2|}k1 ; unwrap(n1,>)
newn2−−−→ h(n2, k2); A(n2, t pkcs)

Encrypt key: similar to CAPI; specify if to use a public key.

SEncrypt: h(n2, k2), k1; encrypt(n2,>)→ {|k1|}k2
AEncrypt: h(np, pub(kp)), k1; encrypt(np, >) → {k1}pub(kp)
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Decrypt key: similar to CAPI; specify if to use a private key.

SDecrypt: h(n2, k2), {|k1|}k2 ; decrypt(n2, >) → k1
ADecrypt: h(np, kp), {k1}k2 ; decrypt(np, >) → k1

Set or unset attribute: these functions allow to modify some key at-

tributes. CAPI private key permissions are not modifiable via PKCS#11.

If attribute modifiable is set, attributes cannot be changed. Other re-

strictions (see next paragraph) refer to conflicting attributes, sticky on

and sticky off attributes.

Set Attribute: h(n1, k1); a(n1,⊥),→ a(n1,>)

Unset Attribute: h(n1, k1); a(n1,>),→ a(n1,⊥)

Later on, when we talk about fixes and solutions to attacks, we will

consider restrictions about conflicting attributes and sticky on and

sticky off attributes.
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Chapter 5

Attacks

Clulow and Bortolozzo et al. [2, 4] give some demonstrations on how

to perform attacks on PKCS#11 sensitive keys, exporting them and

then reading the content of the key, in clear, outside the device. The

operations take advantage of the conflicting roles assigned to keys, such

as wrap and decrypt or encrypt and unwrap.

By the use of Tookan [3], a tool for PKCS#11 token analysis, our

token was discovered vulnerable to the wrap decrypt attack, i.e. a

sensitive key k1 is wrapped with a key k2 with the attributes wrap and

decrypt set on, and then, once extracted, it is decrypted with the same

key. A first remark to be done is about the wrapping format of the

exported keys: CAPI allows keys to be exported into a key blob, a

structure which contains the encoded key. However, the blob format

can be changed favoring a way to read the wrapped key in clear.

In all the attacks (we maintain the names of the attacks described in

the paper [2]), the token is assumed to be connected to a host under the

control of an intruder who knows the secret PIN and can have access

to the whole set of API operations. User is supposed to be able to read

an encrypted key only if he knows the correct key, and cannot crack

the encryption algorithm by brute-force attempts or similar means.

5.1 PKCS#11 attacks simulated with CAPI

In this section we try to replicate vulnerabilities, found in PKCS#11,

with CAPI functions. A first important remark should be done: in

CAPI no session key is sensitive and can be stored in the token. Session

keys can be stored outside the device into (protected) key blobs: in
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the next chapter we will describe some cross-attacks (from CAPI to

PKCS#11 or vice-versa) that can be done using such a structure. Now

we give demonstration that CAPI has no restrictions on performing

conflict operations, such as wrap/decrypt: these vulnerabilities will

reflect on further attacks.

Keys are represented as h(ni, ki): ni is a handle for the key ki, where

k1 is usually a sensitive key stored in the device, for which we want to

discover the secret value. The intruder is given some initial knowledge,

such as some keys ki, or keys wrapped with other keys kikj .

5.1.1 Wrap decrypt attack

An intruder knows the sensitive and extractable key k1 and the wrap/de-

crypt key k2. Excluding a symmetric wrap (we mainly test CAPI with

asymmetric wrap/decrypt, for simplicity in operating with simple key

blob structures), we consider a RSA private/public key pair k2: a user

can get it from a public certificate (already included in the token), gen-

erate a new RSA key pair or derive a one exponent private/public key

pair [1]. This last key let the intruder export k1 ”as is”, saving it into

a simple key blob; k1 is not really encrypted because of the wrapping

key exponent of one. The token allows to create (or import) new keys,

so the one exponent key can always be a valid key. A public key is, by

default, always exportable, and it can perform wrap (encryption) and

decryption. The one exponent key is created starting from a private

key blob of a key pair generated by another software provider, e.g. the

Microsoft Enhanced Provider, included in every Windows OS, and then

it is successfully imported into the token.

The wrap/decrypt attack is simply:

Export(asym): h(n2, pub(k2)), h(n1, k1);

(n1, exportable), (n2, exchange key)

→
[
{k1}pub(k2)

]
Get EKey:

[
{k1}pub(k2)

]
→ {k1}pub(k2)

ADecrypt: h(n2, pub(k2)), {k1}pub(k2)
(n2, exchange key)→ k1
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If we perform this attack with a one exponent key, the private key

must be generated and then exported by a different CSP, because the

token provider does not allow any private key to be exported (as we

have remarked, it is sensitive and not exportable); then the key blob

is modified to change the exponent of the key (refer to the following

picture to look which bytes should be modified). Different CSP do not

generate conflicts or errors during these operations. To prevent the

Figure 5.1: RSA private key blob

wrap decrypt attack in PKCS#11, we should avoid a key to be at the

same time wrap and decrypt, adding these attributes to the set of con-

flicting ones. In CAPI we cannot set permissions to public/private key

pair: basically every key pair can wrap (i.e. encrypt) and decrypt data.

With one exponent private/public key, decryption is not necessary at

all, so any conflicting role is absent.
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5.1.2 Encrypt unwrap attack

The intruder knows the handles h(n1, k1), with k1 set sensitive and ex-

tractable, and h(n2, k2), with k2 a private/public key (the private has

encrypt and unwrap set on), and the plain-text key k3. Using the one

exponent key pair, it is still possible to read the sensitive key. With

the unwrap operation, the attack becomes the following:

Initial knowledge: h(n1, k1) session key handle, h(n2, k2) public/pri-

vate key pair handle, k3 key.

AEncrypt: h(n2, pub(k2)), k3; (n2, exchange key)

→ k3pub(k2)

CreateBlob: k3pub(k2) →
[
{k3}pub(K2)

]
Import(asym): h(n2, k2),

[
{k3}pub(K2)

]
, (n2, exchange key)

newn3−−−→ h(n3, k3); A(n3, t session)

exportable(n3,>)

A new key has been imported after it was encrypted into a simple key

blob; then we can read k1 value after having wrapped the key with k3
or another one exponent key.

Listing 5.1: create a simpleblob key (pseudo code)

[ . . . ]

( ( b lobheader ∗) pbPtr)−>bType = s impleb lob ;

( ( blobheader ∗) pbPtr)−>bVersion = 2 ;

( ( blobheader ∗) pbPtr)−>r e s e rved = 0 ;

( ( blobheader ∗) pbPtr)−>aiKeyAlg = Algid ;

dwDataLen = s izeof (ALG ID ) ;

//Place the encrypted key in r e v e r s e order ( l i t t l e −endian format )

[ . . . ]

//The key i s now imported ( k3 )

CryptImportKey (

token provider ,

pbData ,

datalength ,

private key ,

c rypt expor tab l e ,

key handle

) ;

44



The key, once encrypted, is suitably inserted into a simpleblob struc-

ture. The simple blob structure is shown as follows:

Figure 5.2: Simplekeyblob

In PKCS#11, to prevent this attack, the attributes encrypt and un-

wrap are considered conflicting. In CAPI, we propose the attack using

a public/key pair, to operate with the simplest key blob format. Public

and private key permissions cannot be set, so it is always possible to

perform this kind of operations. Anyway, in the following attacks, we

will not consider keys with such conflicting attributes.

45



5.1.3 Re import attack 1

Without using the same key as in the previous attacks to wrap and

decrypt, a key k2 is first wrapped under k2 itself or another key, then it

is unwrapped obtaining a different handle. The same key is viewed as

two different keys, which are used to wrap and then decrypt. In CAPI

k2 should be a session key or a private/public key pair. The intruder

knows the handles h(n1, k1), with k1 set sensitive and extractable, and

h(n2, k2), set extractable.

Initial knowledge: h(n1, k1) is a session key handle and h(n2, k2)

a public/private key pair handle.

Export(public): h(n2, k2); (n2, exportable)→
[
pub(k2)

]
Import(public)

[
pub(k2)

] newn3−−−→ h(n3, pub(k2)); (n3, exportable),

(n3, session key)

Export(asym): h(n2, pub(k2)), h(n1, k1); (n1, exportable),

(n2, exchange key)→
[
{k1}pub(k2)

]
Get EKey:

[
{k1}pub(k2)

]
→ {k1}pub(k2)

ADecrypt: h(n3, k2), {k1}pub(k2); (n3, exchange key)→ k1

In PKCS#11, key k2 should be wrapping and unwrapping. The attack

can be prevented adding these attributes as conflicting. In CAPI it has

again no effects!

5.1.4 Re import attack 2

Giving the intruder an encrypted key k3k2 , (in CAPI it must be encap-

sulated into a simpleblob or symmetricwrapkeyblob, encoded under k2
key), we can unwrap twice this key, obtaining two key, one to wrap and

the other to decrypt. The intruder knows the handles h(n1, k1), with

k1 set sensitive and extractable, h(n2, k2), set extractable, and k3k2 (in

a blob structure). We consider the simplest case of simpleblob, with

k2 a private/public key.
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Initial knowledge: h(n1, k1) is a session key handle, h(n2, k2) a pub-

lic/private key pair handle and k3k2 an encrypted key. k3 is a raw

key.

Import(asym): h(n2, k2),
[
{k3}k2

]
; (n2, exchange key)

newn3−−−→ h(n3, k3); A(n3, t session)

Import(asym): h(n2, k2),
[
{k3}k2

]
; (n2, exchange key)

newn4−−−→ h(n4, k3); A(n4, t session)

Export(sym): h(n1, k1), h(n3, k3); (n1, session key)

exportable(n1,>)→
[
{|k1|}k3

]
Get EKey:

[
{|k1|}k3

]
→ {|k1|}k3

SDecrypt: h(n4, k3), {|k1|}k3 → k1

An alternative to a symmetric blob decryption expects to import

again the blob to get a new handle to k1; then we export the key into

a plain text blob. We can always do it in CAPI.

Import(sym): h(n3, k3),
[
{|k1|}k3

]
; (n3, session key)

newn5−−−→ h(n5, k1); A(n5, t session)

exportable(n5,>)

Export(plain): h(n5, k1); (n5, exportable)→
[
k1
]

5.2 Notes

Vulnerabilities found in PKCS#11 are similar to the ones found in

CAPI devices. While the first standard allows to set parameters to

define specific key behaviors, CAPI has an option to set permissions

to session keys, but there is no effect, being them volatile and not

persistent to memory. Session keys has no protection, except if they

are declared ”not-exportable”: in this way, they cannot be wrapped

under any key. CAPI defines specific exporting formats, the key blobs:

these structures allow at the same time a good manipulation (we saw

how to create ”ad hoc” simple or plain text key blob to encapsulate
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a known key) and a good protection, such as the symmetric key blob,

hard to decrypt manually, but anyway it follows a standard. PKCS#11

does not provide these kind of structures; keys, when wrapped (then

exported), are raw strings. We often use a simple key blob to simplify

the decryption operation, once a key has been wrapped. The use of the

one exponent key derives from the vulnerability of the token (vulnerable

to a2 attack; see [6]); any operation which aims to discover a key value

can use this key without a final decryption.

Session keys are volatile, but they can still be saved in the applica-

tion layer, differently from PKCS#11 devices which allows symmetric

keys to be stored inside. Attacks will be performed on that structures,

using functions of the two standards alternately and vulnerabilities we

have found.
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Chapter 6

Implementation with CAPI

The implementation follows a top-down approach, in order to high-

light some essential phases of the attacks that we proposed. The code

is written in C++ using Visual Studio 2012. All the cryptographic

functions we use are included in Windows libraries: no external files

are necessary. To communicate with hardware devices, we install the

requested drivers. For each application, we suppose to have acquired

the context of the token and its cryptographic provider, using the

function CryptAcquireContext(). The Token is password protected,

and before executing the first operation in the device it is necessary

to type the PIN. The function CryptSetProvParam() with the flag

PP KEYEXCHANGE PIN provides the PIN when requested.

Listing 6.1: acquire context

// prov ide r name i s s p e c i f i e d in the token documentation

LPCTSTR prov ide r = T( token Cryptographic Provider ) ;

// token i s the name o f key con ta iner .

// i f keys are crea t ed v ia PKCS11, key con ta iner i s

// ”∗∗∗∗∗∗∗∗∗” , wi th x >=0

// i f no key i n s i d e the token , s e t CRYPTNEWKEYSET

CryptAcquireContext (

&tokenProv ,

T ( ” token” ) ,

provider ,

PROV RSA FULL,

0)

// s e t user PIN
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CryptSetProvParam (

tokenProv ,

PP KEYEXCHANGE PIN,

(PBYTE) pin ,

0)

A fist step is about key generation, provided by the function Cryp-

toGenKey(). The function requires a value (ALG ID) that identifies

the algorithm to generate a key:

• a session key is DES, 3DES, etc.

• a public/private key pair is AT KEY EXCHANGE, if used to

export (encrypt) and import (decrypt) session keys, i.e. to ex-

change them among users, or AT SIGNATURE, if used for sig-

nature and authentication.

The algorithm depends on the provider: for tests with the to-

ken provider, 3DES is chosen for symmetric keys, CALG RSA KEYX

(RSA public key exchange) for public and private keys. No flag can be

used (or has no effect with the token provider) to set the key ”sensi-

tive” or not. Every key we create is exportable, otherwise no operation

that expects to export (or wrap) a key could be done. This flag applies

only to session key and private key blobs: if a session key is set not

exportable, it becomes available only for the application that generated

it, i.e. for the current session, and cannot be exchanged. Public keys

are always exportable by default.

Listing 6.2: generate key

//ATKEYEXCHANGE i d e n t i f i e s the a l gor i thm CALG RSA KEYX

//An exchange pu b l i c / p r i v a t e key pa i r i s c rea t ed

CryptGenKey ( tokenProv ,ATKEYEXCHANGE, f l ag ,&k3 )

// f l a g must be s e t to CRYPTEXPORTABLE i f the key i s to

// expor t

Unlike the standard PKCS#11, we do not set key permissions to

determine key roles, e.g. wrap, unwrap, decrypt or encrypt key. The

function to set parameters is CryptoSetKeyParam(), available only for

session keys [10]; values set by this function are not persisted to memory

and can only be used within a single session. A key can be set to have

a different encryption mode (the default is CBC), or contain a salt

(KP PADDING) used by the cipher or declare a different initialization
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vector (KP IV), to be used in CBC. The symmetric function to get

key parameters is CryptoGetKeyParam(); it is used in the function to

import a key raw into the token, to get the necessary information to

build a new key blob.

Listing 6.3: get key info and build a key blob

//a key b l o b needs p r i v a t e key ’ s a l gor i thm and key l en g t h

// to be s e t in header

// Get p r i v a t e key ’ s a l gor i thm

dwSize = s izeof (ALG ID ) ;

fRe su l t = CryptGetKeyParam(hpKey ,

KP ALGID, // ge t a l g ID

(LPBYTE)&dwPrivKeyAlg ,

&dwSize ,

0

) ;

// Get p r i v a t e key ’ s l e n g t h in b i t s

dwSize = s izeof (DWORD) ;

fRe su l t = CryptGetKeyParam(

hpKey ,

KP KEYLEN,

(LPBYTE)&dwPublicKeySize ,

&dwSize ,

0

) ;

// c a l c u l a t e Simple b l o b ’ s l e n g t h

dwSessionBlob = ( dwPublicKeySize /8) + s izeof (ALG ID)

+ s izeof (BLOBHEADER) ;

// c r ea t e the b l o b

[ . . . ]

To perform the first attack, the wrap/decrypt attack, we suppose

to have a symmetric key k1 and a public/private key pair k2. The

first function that we call is CryptExportKey(): it requires a handle

of the key to be exported, e.g. n1, a blob type and, if requested,

a handle of a key used to wrap (encrypt) the first key. If the blob

type is a publickeyblob, no key is requested, because the public key

will be exported without any encryption. A privatekeyblob cannot be

obtained with the token provider, because the private key is set to

sensitive and not exportable. A blob to be used with a session key

and a private/public key pair is a simpleblob. Specifying k2 as the
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encrypted key, k1 will be exported encrypted, i.e. wrapped, with the

public key. At this point, k1 is stored in a key blob outside the CSP,

starting from the 12th byte of the structure. To perform a decryption,

the key is temporary saved into a data array, then it becomes an input

to the decrypt function CryptDecrypt(). The CryptDecrypt() function

decrypts data using the private k2.

Listing 6.4: decrypt a wrapped key

CryptExportKey ( k1 , k2 ,SIMPLEBLOB,0 , keyBlob ,&dwBlobLength ) )

// save the key in keyDecrypt

keyDecrypted = &keyBlob [ 1 2 ] ;

// update k e y l eng t h

keyDecryptedLength = dwBlobLength−12;
// decryp t the key wi th the p r i v a t e key k2

CryptDecrypt ( k2 , 0 ,FALSE, 0 , keyDecrypted ,&keyDecryptedLength ) )

To unwrap a key derived by a known string, more steps are necessary

(we show the solution with simepleblob):

1. A string of bytes, a plain text key, must be encrypted by a pri-

vate/public key. The length should be equal to a known key, e.g.

a 3DES key has a length of 192bit.

2. Create a simpleblob, including a publicstruct header, specifying

the crypt provider, the encrypt algorithm (i.e. key algorithm,

such as 3DES), the public/private key pair and the raw key with

its length (the procedure is described in the previous chapter).

3. Encrypt the key material with CryptEncrypt(). The byte array

(i.e. the simpleblob) contains now a publicstruct blob header fol-

lowed by the encrypted key.

4. Import the key blob into the token with CryptImportKey(). A

new handle to the imported key is created.

There are no restrictions on the keyblob: it can be created by the

running application or by another application on a different computer.

This allows an intruder to create a private blob from a random key,

export it (remember, the token provider denies it), change some bytes

and import it successfully into any other provider. This will be the

starting point for the one-exponent key attack. The new session key is

ready to perform all the cryptographic operations, and the unwrap is

done. With key unwrapping it is possible to obtain different handles,

giving keys different attributes (possibly not conflicting ones).
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Another ”bug” allow an intruder to export a session key without the

knowledge of public/private key pair. As discovered by TooKan in [6],

with the token it is possible to import any key without restrictions,

so an user can create a private key, modify the exponent to one and

import it again under a different CSP, the token’s one. Main steps are:

1. Call CryptAcquireContext() to acquire the Microsoft Enhanced

provider, and generate a public/private key pair.

2. Export a private key into a privatekeyblob, access the structure

and set the RSA public and private exponent to 1.

3. Write the key blob into an external text file, then import it again

into the token CSP.

In C++, the function used to perform these operations is createOne-

ExponentKey():

Listing 6.5: one exponent key generation

// Generate the p r i v a t e key

CryptGenKey ( hProv , dwKeySpec , CRYPTEXPORTABLE, hpKey ) ;

// Export the p r i v a t e key , we ’ l l conver t i t to a p r i v a t e

// exponent o f one key

CryptExportKey (∗hpKey , 0 , PRIVATEKEYBLOB, 0 , keyblob , &dwkeyblob ) ;

// Get the b i t l e n g t h o f the key

memcpy(&dwBitLen , &keyblob [ 1 2 ] , 4 ) ;

// po in t e r

BYTE ∗ptr ;

// Modify the Exponent in Key BLOB format

// Key BLOB format i s documented in SDK

// Convert pubexp in rsapubkey to 1

ptr = &keyblob [ 1 6 ] ;

for (n = 0 ; n < 4 ; n++){
i f (n == 0)

ptr [ n ] = 1 ;

else ptr [ n ] = 0 ;

}

// Skip pubexp
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ptr += 4 ;

// Skip modulus , prime1 , prime2

ptr += (dwBitLen /8 ) ;

ptr += (dwBitLen /16 ) ;

ptr += (dwBitLen /16 ) ;

//Convert exponent1 to 1

for (n = 0 ; n < ( dwBitLen /16 ) ; n++){
i f (n == 0)

ptr [ n ] = 1 ;

else ptr [ n ] = 0 ;

}

// Skip exponent1

ptr += (dwBitLen /16 ) ;

// Convert exponent2 to 1

for (n = 0 ; n < ( dwBitLen /16 ) ; n++){
i f (n == 0)

ptr [ n ] = 1 ;

else ptr [ n ] = 0 ;

}

// Skip exponent2 , c o e f f i c i e n t

ptr += (dwBitLen /16 ) ;

ptr += (dwBitLen /16 ) ;

// Convert pr iva teExponent to 1

for (n = 0 ; n < ( dwBitLen /8 ) ; n++){
i f (n == 0)

ptr [ n ] = 1 ;

else ptr [ n ] = 0 ;

}

// wr i t e key b l o b to f i l e

[ . . . ]

//Change to the token prov ider , read the f i l e and import the key

// b l o b

// Import the exponent−of−one p r i v a t e key in t o the token !

CryptImportKey ( hCryptProv , keyblob , dwkeyblob , 0 , 0 , hpKey)

//hpKey i s the new key

The application returns a valid handle to the key, and it can be

used to simulate a wrap of the session key k1 into a simple blob. If

k1 is wrapped and exported into a simpleblob with the one-exponent
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public key, from the 12th position of the blob it is possible to read the

key in clear, i.e. ”as is”. This key can be also used to ”unwrap” a key,

i.e. the key is imported, again, without any encoding.
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Chapter 7

CAPI and PKCS#11 keys

Behind a common set of cryptographic operations, key management

plays a primary rule for security both in PKCS#11 and CAPI appli-

cations, even if keys have different uses and properties: for example, in

CAPI, symmetric keys are volatile and cannot be saved in the token,

and public/private key pairs result accessible through a unique han-

dle. The token is use provides interoperability between PKCS#11 and

CAPI, but with some restrictions which may vary according to token

versions. The aim is to study if keys, stored in the token, are vulnera-

ble to attacks, such as wrap/decrypt, using CAPI and PKCS#11 alter-

nately (in succession or simultaneously). A first analysis concerns the

public and private keys, their permissions and usage limits, then sym-

metric and session keys (respectively of PKCS#11 and CAPI), which

appear to have the most interoperability issues.

7.1 Public and private keys

In CAPI, a public/private key pair is created by the function Crypt-

GenKey() specifying the flag at key exchange or at signature. This key

specification determines public and private key rule: an exchange key

pair can perform all kind of cryptographic operations, wrap, decrypt

first of all, while a signature key is more limited. Most of the key per-

missions are visible via PKCS#11 when a key search is performed, but

only private key can be retrieved. Each key has a list of attributes (i.e.

a template), in particular boolean attributes indicate a key status or

rule: for example, if CKA SENSITIVE is true, then the key is sensi-

tive, and its values cannot be read; if CKA UNWRAP is true, the key
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can perform an unwrap operation.

A private exchange or signature key, when created in CAPI, has the

following attributes set to true:

exchange key: unwrap, decrypt, signature, sensitive,

never extractable

signature key: signature, encrypt, sensitive, never extractable

An exchange key can perform the whole set of operations (i.e. it

is also a signature key) considering that the corresponding public key

is wrap and encrypt (we know from CAPI). In particular, the conflict

operations wrap and decrypt are carried out without any limitation,

and it constitutes a security issue. Despite that, a CAPI key pair,

as is, with all its permissions and functionalities, cannot be used in

PKCS#11. CAPI stores into a device the only private key, so that

the corresponding public key cannot be found by a public search in

PKCS#11. All keys are retrieved specifying in the search template

the attribute CKA CLASS with the value CKO PUBLIC KEY or

CKO PRIVATE KEY (i.e. a key is only accessible after user authenti-

cation). A CAPI key pair has an unique handle: the function CryptGe-

tUserKey() retrieves the private key, and the public key is dynamically

derived from it. The token does not allow user to get or delete only one

of the two key (from a key pair) separately. As seen before, a private

key blob stores private but also public information, such as the public

exponent and the modulus (common attribute). Every time a public

key is imported, a default set of attributes is applied, depending on

private key type (if exchange or signature). CAPI attributes cannot be

changed in a PKCS#11 application: when a private key is retrieved,

and a call to the function C GetKeyAttributes() is made, some of its

attributes are visible, but they are read only. Any tempt to set or

change key attributes will result in two types of errors:

• CKR FUNCTION FAILED, if try to set off sensitive and extract

• CKR DEVICE ERROR, if try to change other attributes

The attribute sensitive is sticky-on, while extractable is sticky-off. Any-

way we cannot change attributes value, according to the token at-

tributes policies. The public key should be created ”ex-novo”, with a

specific public exponent and modulus, then we may get a valid key to
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use with the private. It is presented a template for public key with

the attribute wrap set to true: it would be a security issue, because

any extractable secret key could be wrapped then decrypted with the

private key. In next chapter the problem is analyzed in detail, then

some fixes will be proposed.

Listing 7.1: create a public key

// c r ea t e a search temp la te to f i nd the p r i v a t e key

CK ATTRIBUTE search templa te [ ] = {
{CKATOKEN, &yes , s izeof ( true )} ,
{CKA MODULUS BITS, &modulusBits , s izeof ( modulusBits )} ,
{CKA PUBLIC EXPONENT, &publicExponent , s izeof ( publicExponent )}

} ;
// save pu b l i c a t t r i b u t e s

// c r ea t e a temp la te f o r a new pu b l i c key

CK OBJECT CLASS keyClass = CKO PUBLIC KEY;

CK KEY TYPE keyType = CKK RSA;

CK ATTRIBUTE template [ ] = {
{CKA CLASS, &keyClass , s izeof ( keyClass )} ,
{CKA KEY TYPE, &keyType , s izeof ( keyType )} ,
{CKAWRAP, &yes , s izeof ( true )} ,
{CKAMODULUS, modulus , s izeof (modulus )} ,
{CKA PUBLIC EXPONENT, publicExponent , s izeof ( publicExponent )}

} ;

// c r ea t e an RSA pub l i c key o b j e c t

rv = (∗ f unc t i ons−>C CreateObject )

( s e s s i on , template , 5 , &publicKey ) ;

In PKCS#11 a public key is created starting from a public exponent

and modulus (using the function C CreateObject()), or through the

function C GenerateKeyPair(), which creates a public/private key pair.

Respect to CAPI key pairs, PKCS#11 maintains two handles, and

each key can be retrieved in different sessions. If keys are saved into

the token, CAPI can recognize, then get, the only private key, with

the attributes specified in PKCS#11 at creation time. The public

key is reconstructed form the private using CAPI template: even if in

PKCS#11 specific attributes and permissions are set, they will be lost

and substituted with default ones.

Unlike CAPI, in PKCS#11 we must specify a template when we

generate a public and private key pair (one different template for each

key type). A list of attributes to be excluded, for each key, is specified
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in the document of PKCS#11 [11], in addition to some restrictions

specified in token policies (e.g. a private key cannot have the attribute

encrypt set to true). Attributes set in PKCS#11 affect operations in

CAPI: if a private key has decrypt set to false (anyway there is no

reason to set it to false), in CAPI the key cannot be used to decrypt

data, and permissions can no longer be modified.

As specified in token documentation, CAPI can read some keys cre-

ated via PKCS#11. The first operation to be made is a key-container

search, to list all the keys stored in the token: by the call to the func-

tion CryptGetProvParam(), all PKCS#11 key containers, which store

private keys, are returned with some pseudorandom labels. If other

key types (i.e. secret or public keys) are kept inside, they cannot be

read by a CAPI application. This limit also affects CAPI keys to be

read via PKCS#11 applications: only private keys stored in a token

(remember, only one handle for each key pair created) are recognized.

In the following code, the function determines the current key container

(with the flag CRYPT FIRST set) and the keys which are stored in

the token (flag CRYPT NEXT set).

Listing 7.2: search keys

// current key con ta iner .

i f (CryptGetProvParam (

tokenProv ,

PP ENUMCONTAINERS,

containerName ,

&containerNameSize ,

CRYPT FIRST)

)

[ . . . ]

// search o ther key con ta ine r s .

while (CryptGetProvParam (

tokenProv ,

PP ENUMCONTAINERS,

containerName ,

&containerNameSize ,

CRYPTNEXT))

{
for ( count=0; count<containerNameSize ; count++)

p r i n t f ( ”%c” , containerName [ count ] ) ;

}

60



Next session is about session and secret keys interoperability.

7.2 Session and secret keys

CAPI session keys are volatile and can be stored, then exported, into

key blobs, outside any token devices. PKCS#11 corresponding keys

are secret keys, i.e. symmetric keys, with particular attributes and

permissions, which can be saved into tokens and used in different ses-

sions. CAPI keys can be read in PKCS#11 as encrypted (or not) data

string: if a session key is encrypted with a CAPI public key, the cor-

responding private key is used in PKCS#11 to decrypt data and the

the key is recovered, or if the key was exported into a plain text key

blob, data is recovered without decryption. CAPI session keys, for they

specifications, are never sensitive, and they are mainly used as sym-

metric keys (i.e. to encrypt and decrypt a message exchanged among

users). Using the same application and executing both the two stan-

dards, session keys are not directly accessible via PKCS#11, but this

limit can be easily by-passed decrypting a key blob which contains such

a key. PKCS#11 secret keys can be sensitive and store secret data, so

attacks to discover sensitive keys’ value make sense. These keys cannot

be directly read via CAPI at all, even if they are stored into a token.

By default, keys are saved into a key store, like the one created to store

public and private key pair, but two scenarios arise:

• the key container is not visible in CAPI if it only contains sym-

metric keys

• key handles are not valid

Anyway, if the correct PKCS#11 key container is retrieved, no secret

key can be handled. To get a key we can use the function CryptGe-

tUserKey(), but only the private key, if present, is returned. Symmetric

keys can be imported if saved in the known key blob format.

The following CAPI wrap operation uses a PKCS#11 secret key

handle generated in the same application (i.e. session), but it returns

an error.

61



Listing 7.3: error wrapping key

// l e t k1 be a s e c r e t key

(∗ f unc t i ons−>C GenerateKey ) ( s e s s i on , &gmec , sTemplate , 8 , &k1 ) ;

// l e t k2 be a pu b l i c / p r i v a t e key pa i r

CryptGenKey ( tokenProv ,ATKEYEXCHANGE,CRYPTEXPORTABLE,&k2 ) ;

//wrap k1 wi th k2 pu b l i c key

CryptExportKey ( k1 , k2 ,SIMPLEBLOB,0 ,NULL,&dwBlobLength ) ;

The function terminates with the error bad key, i.e. k2 is not a

valid key handle, so that a secret (sensitive) key cannot be directly

used in CAPI and perform a wrap/decrypt attack, despite it is always

possible to perform this kind of operations with session keys using

public/private key pair. This is an interoperability limit, but it ensures

a more secure environment. Next section introduces some attacks and

the relative fixes, with the use of specific and limited key templates.

7.3 Attacks and vulnerabilities using PKCS#11

and CAPI together

CAPI is shown to be vulnerable to some attacks such as the wrap-

decrypt attack, because of the property of public/private key pairs

(always wrap and decrypt keys) and the facility to manipulate key blob

structure to create new fake keys, like the one-exponent key, which

allows to read any session key value without performing a decrypt

operation. PKCS#11 standard is also vulnerable to attacks aimed at

discover the plain text value of sensitive keys [5]. Some fixes to these

security issues have been proposed [2]: sensitive keys should be set as

not exportable, or public key should not be wrap keys, but huge limits

would be imposed over standard functionalities. In addition to known

attacks, the interoperability between CAPI and PKCS#11 offers some

interesting ideas to exchange keys and discover secret key values. The

first ”cross API” attack consists on importing and/or decrypting a

secret (and sensitive) key created in PKCS#11; the last one starts

from CAPI and the aim is to discover the key value from an encrypted

key blob.
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1 - Export and import sensitive key: start from PKCS#11 with a

public/private key pair kp, and a symmetric, sensitive and exportable

key k3. Aim: wrap k3 with pub(kp) and decrypt it with CAPI using

the private key kp to read k3 secret value.

Gen Key Pair:
newn1,n2−−−−−→ h(n1, kp), h(n2, pub(kp));

A(n1, t exchange), A(n2, t public)

Gen Key:
newn3−−−→ h(n3, k3); A(n3,t session),

exportable(n3, >).

Export(asym): h(n2, pub(kp)), h(n3, k3)→ {k3}pub(kp)

Now reverse {k3}pub(kp) bytes, because of the different encryption for-

mat. In CAPI, the function CryptGetUserKey() retrieves the private

key kp. Using the handle h(n1, kp) we can access to the private key,

but also to a public (derived) key.

(first solution): the key is decrypted directly

ADecrypt: h(n1, kp), {k3}pub(kp);→ k3

(second solution): the key is imported then decrypted

Create Blob: {k3}pub(kp) →
[
{k3}pub(kp)

]
Import(asym): h(n1, kp), {k3}pub(kp)

newn4−−−→ h(n4, k3);

A(n4, t session), exportable(n4,>)

Export(plain): h(n4, k3)→
[
k3
]
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2 - Wrap/decrypt with symmetric key: start from PKCS#11 with

a sensitive key k1 and a symmetric wrapping key k2. Keep k2 value and

save it externally, in order to build a plain text key blob, then a valid

symmetric and decrypting key in CAPI. Aim: wrap k1 with k2 and

decrypt it with CAPI using the imported k2 to read k1 secret value.

Gen Key:
newn1−−−→ h(n1, k1); A(n1, t pkcs), exportable(n1, >),

sensitive(n1, >)

Gen Key:
newn2−−−→ h(n2, k2); A(n2, t pkcs), exportable(n2, >)

Export(sym): h(n2, k2), h(n1, k1);wrap(n1,>)→ {‖k1‖}k2

Now reverse {‖k1‖}k2 bytes , because of the different encryption format.

Create a plain text blob with k2 value.

Create Blob: k2 →
[
k2
]

Import(plain):
[
k2
] newn3−−−→ h(n3, k2); A(n3, t session),

exportable(n3,>)

SDecrypt: h(n3, k2), {‖k1‖}k2 ;→ k1

3 - Decrypt CAPI blob: a key k2 is exported into a simple blob

using k3, a public/private CAPI key pair. In PKCS#11 the encrypted

key {k2}k3 is decrypted with the private key k3. Note that in CAPI k3
is a key pair, while in PKCS#11 only the private key is recognized (i.e.

the unique object saved in the token).

Gen Key Pair:
newn3−−−→ h(n3, kp), pub(kp); A(n3, t exchange)

Gen key:
newn2−−−→ h(n2, k2); A(n2, t session),

exportable(n2,>)

Export(asym): h(n4, pub(kp)), h(n2, k2)→ {k2}pub(kp)

//switch to PKCS#11

//reverse bytes

ADecrypt: h(n3, kp), {k2}pub(kp) → k2
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Another attack should be found in PKCS#11 vulnerability. Clu-

low, in his work [4], introduced the term key conjuring, to refer to

the ability to generate keys in any hardware device with unauthorized

transactions: a public key can be generated starting from the pub-

lic data contained in a private key (it is anyway not necessary to use

them), a random ”raw” string can be unwrapped and become a new

key, and so on. Using the two standards together, the following attack

can be performed: a sensitive key is wrapped with a Trojan [4] pub-

lic key, created ad-hoc deriving the modulus and the public exponent

from the private (CAPI) key. The key can be imported into the token

with the function CryptImportKey(), after it has been inserted into a

valid simple key blob, to be used for other operations, or simply it can

be decrypted to read the secret value. This sensitive key exchange is

permitted if no restrictions to key template are made.

Listing 7.4: exchange key attack

// I n i t i a l knowledge : k1 pu b l i c / p r i v a t e key (CAPI) , k2 s e n s i t i v e

//and e xpo r t a b l e key (PKCS#11).

/Get public exponent and modulus from $h ( n 1 , k 1 ) $ .

// search f o r p r i v a t e keys

CK ATTRIBUTE pr i v a t e s e a r c h [ ] = {
{CKADECRYPT, &yes , s izeof ( true )}

} ;

(∗ f unc t i ons−>C FindObjects In i t )

( s e s s i on , p r i va t e s ea r ch , 1 ) ; //0 not match

rv = (∗ f unc t i ons−>C FindObjects )

( s e s s i on , &foundKey , 1 , &nKeys ) ;

i f ( rv == CKROK && nKeys > 0) {
lastKey = foundKey ;

g e t k e y i n f o ( s e s s i on , foundKey ) ;

// search o ther keys

rv = (∗ f unc t i ons−>C FindObjects )

( s e s s i on , &foundKey , 1 , &nKeys ) ;

}

// genera te p u b l i c key o b j e c t ( s e t modulus b i t s : 1024)

rv = (∗ f unc t i ons−>C CreateObject )

( s e s s i on , keyTemplate , 5 , &publicKey ) ;

//wrap

rv = (∗ f unc t i ons−>C WrapKey)

( s e s s i on , &dec mec , publicKey , k1 , r e su l t , &l enResu l t ) ;
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// wr i t e to . t x t f i l e

FILE∗ pFi l e ;

i f ( f open s (&pFi le , ” keywrappedsecret . txt ” , ”w”)==0){
for (n=0 ; n<l enResu l t ; n++)

f p r i n t f ( pFi le , ”%02x” , r e s u l t [ n ] ) ;

f c l o s e ( pF i l e ) ;

}

// change to CAPI c a l l s .

//e . g . the key i s 3DES. The key can be decryp ted or imported .

//For s imp l i c i t y , a s imple key b l o b i s f i r s t c r ea t ed ; wrapped

// data f o l l ow s l i t t l e −endian format .

//we c rea t e a b l o b s t r u c t u r e ( keyBlob ) performing a 3DES

// key expor t wi th a pu b l i c key ; t h i s would be used as model

// read data and save to keyDecrypted : i t s dimension

// ( keyDecryptedLength ) i s the same o f the wrapped 3DES

//key , expor ted p r e v i o u s l y

// c r ea t e b l o b

PBYTE newBlob = new BYTE[ keyDecryptedLength ] ;

// Place the key mater ia l in r e v e r s e order ( l i t t l e −endian format )

for (n = 0 ; n < keyDecryptedLength ; n++)

newBlob [ n ] = keyDecrypted [ keyDecryptedLength−n−1] ;

//maintain ( key ) b l o b header and wr i t e new data

for (n = 0 ; n < keyDecryptedLength ; n++)

keyBlob [ n+12] = newBlob [ n ] ;

PBYTE f ina lKey = new BYTE[ keyDecryptedLength ] ;

f ina lKey = &keyBlob [ 1 2 ] ;

// decryp t key (1)

CryptDecrypt ( k2 , 0 ,FALSE, 0 , f ina lKey ,&keyDecryptedLength )

for ( count=0; count<keyDecryptedLength ; count++)

p r i n t f ( ”%02x” , f ina lKey [ count ] )

// i f we want to import the key (2)

CryptImportKey (

ehCryptProv ,

keyBlob ,

keyDecryptedLength+12,

k2 ,
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CRYPTEXPORTABLE,

&k3

)

// key shou ld be s e n s i t i v e , but i t i s e x p o r t a b l e and can be

// read in c l e a r

CryptExportKey (

k3 ,

0 ,

PLAINTEXTKEYBLOB,

0 ,

NULL,

&dwKeyMaterial

)

pbKeyMaterial = new BYTE[ dwKeyMaterial ]

CryptExportKey ( k3 ,

0 ,

PLAINTEXTKEYBLOB,

0 ,

pbKeyMaterial ,

&dwKeyMaterial

)

// i f no errors , p r i n t the key

for ( count=0; count<dwKeyMaterial ; count++)

p r i n t f ( ”%02x” , pbKeyMaterial [ count ] ) ;

}

The attack is similar to the one proposed by Clulow, but here the

public key directly uses private key information, which can be read

across the two standards. The private key, in the example, is di-

rectly read in PKCS#11, then a decrypt operation can be performed

in PKCS#11 without the need to use CAPI calls. More in general, as

Clulow suggests, a malicious user can create a public key starting from

information (modulus and public exponent) that only he knows and it

is not accessible through PKCS#11 application.

Another vulnerability should be found in asymmetric key manage-

ment: as described in previous sections, when a key pair is created in

the token via PKCS#11, the standard maintains two handle for pub-

lic and private key, while CAPI recognizes the private key only. Any

template applied to the public key would not be valid in CAPI: a se-
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cure template for public key, proposed by Bortolozzo and Focardi [2],

considers that public keys should not have the attribute wrap set on.

Every time a public key is used in CAPI, it is derived from the private,

with a default template. Functions such as CryptEncrypt() or Crypt-

ExportKey() can be always performed, because CAPI treats PKCS#11

keys as exchange keys, even if some permissions are changed or set off

at creation time. During a common session, session keys (and hence

the handles) are not recognized by both the two standards; keys be-

come vulnerable only if wrapped (i.e. exported into an encrypted

format). The point is: if a secret, sensitive and exportable key can

be wrapped outside a PKCS#11 device with a public or a common

symmetric key, using a valid private key (i.e. the private key should be

a decrypt key), it becomes easy to read the clear value of the key.

The secure template for PKCS#11 public key can be easily by-

passed using CAPI, but the resulting attack cannot be performed:

a public key, generated or imported into the token, should have the

attribute wrap set to false; it does not apply if the key (must be

AT KEYEXCHANGE ) is created in CAPI. A public-private key pair,

once created, has an unique handle, but it is possible to extract the

public key, then import it obtaining a new valid handle. This key main-

tains the properties of encryption and wrap, but is not recognized as

public key object in PKCS#11: the C WrapKey() function terminate

with error CKR OBJECT HANDLE INVALID.

Listing 7.5: invalid public handle

//k3 i s a ATKEYEXCHANGE key pa i r

// Export the p u b l i c key

CryptExportKey ( k3 , 0 ,PUBLICKEYBLOB,0 ,NULL,&dwBlobLength )

// Import the p u b l i c key under a d i f f e r e n t handle

CryptImportKey (

tokenProv ,

keyBlob ,

dwBlobLength ,

0 ,

CRYPTEXPORTABLE,

&k2

) ;

// l e a v e the prov ide r open . No key handle i s l e f t
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// genera te a s e n s i t i v e key

(∗ f unc t i ons−>C GenerateKey )

( s e s s i on , &gen mec , skey template , 8 , &sKey ) ;

// func t i on e x i t s wi th error

rv = (∗ f unc t i ons−>C WrapKey)

( s e s s i on , &gen mec2 , k2 , sKey , resultWrapped , &l enResu l t ) ;

This limit of using key objects between CAPI and PKCS#11 would

ensure that secure templates and Policies are good enough to avoid

attacks on these devices. In next section secure templates are described

in detail.
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Chapter 8

Fixes and secure templates

Most tokens set some limits on templates that can be used to cre-

ate a PKCS#11 key. Some attributes should be disabled in order to

avoid conflicts among them and the wrap/decrypt attack: the same

key should not be either wrap and decrypt, and a sensitive key must

not be extractable. In the token we use for tests, a sensitive key can be

created with the attribute extractable set to true, which makes possible

all the attacks showed in [2] . Using CryptokiX [12], an extension to

open-Cryptoki, we can add a list of conflicting attributes to token

policies, in order to prevent or limit some attacks. Pairs of attributes

such as encrypt, decrypt and wrap, unwrap should not belong to same

key, i.e. each key maintains distinct rules. In CAPI, any exchange key

pair can perform a wrap and decrypt (i.e. the public key is wrap, the

private is decrypt), and permissions cannot be changed or selected at

creation time, considering that there is no function or template array

to call or set in CAPI. If the private key is read in PKCS#11, we

find it has usually the attribute never-extractable set to true, and some

attributes, except for modulus and public-exponent, cannot be read,

because the key is set as sensitive.

(fix):conflicting attributes in PKCS#11: wrap, unwrap,

encrypt, decrypt.

(fix):conflicting attributes in CAPI: none.

Sets of sticky-on and sticky-off attributes are already defined in

the token. A private key is always sensitive, and a not-extractable

key cannot be set as extractable. In addition to these known sticky

attributes, we can add sticky properties to conflicting attributes, in

order not to change key properties and rules once the key has been
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created. This property, already discussed in [6], applies to PKCS#11.

If we get CAPI private keys handle and attributes list in PKCS#11, it

is not possible to change attributes value. A stronger limitation than

sticky properties is given by the attribute modifiable, set to false. This

is applied by default to all CAPI private keys.

We now consider SafeNet response [8] to the attacks found in Al-

addin eToken devices using the tool ”Tookan” [3]. The document sug-

gests to:

• Block sensitive key export completely: no wrap operation would

have effect on the key. Key exchange is limited to symmetric (or

session) keys with the attribute sensitive off.

• Use trust and wrap-with-trusted attributes: keys can be wrapped

(i.e. exported) with trusted keys only. This is a good trade-

off between a never-extractable key and an extractable key; key

exchange is allowed.

The first point suggest to set every sensitive key as ”not exportable”,

so that every attack which aims to discover sensitive key value fails as

soon as the function (Asym/Sym)Wrap is called. With the second so-

lution, the sensitive key must be set exportable under a certain trusted

key, created at token initialization, i.e. a public key is verified and have

the attribute trusted set on. This control ensures that only known keys

can carry out secure wrap and export operations. In our analysis, we

consider the scenario in which every sensitive key is also exportable.

The set of conflicting attributes is not enough to ensure a complete

solution to attacks: a key, for example, can be unwrapped more times

to generate new copies with conflicting attributes. A solution is found

in secure templates [2, 6], where attributes availability depends on

key type (symmetric, public and private) and use (key generation, key

unwrapping).

The question is: do secure templates apply to CAPI operations?

How would they be affected? CAPI keys, excluding sensitive keys (we

have only session keys, never sensitive), such as private and public

keys, have not templates to set: attributes (here permissions) are auto-

matically set, according to the key (pair) specification at keyexchange,

at signature. In few words, while PKCS#11 keys templates are fixed,
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CAPI does not allow to fix public/private keys permissions.

A combination of conflicting attributes and sticky properties can be

summed up in one unique attribute: modifiable. All keys, once gener-

ated, should have the attribute modifiable set to false: key permissions

cannot be changed and roles are kept separate, e.g. a key is encrypt

and decrypt or wrap and unwrap, while it can never be wrap and de-

crypt or unwrap and encrypt (being pairs of conflicting attributes).

In PKCS#11 key generation, according to secure templates, one of

the following templates should be applied:

Encrypt/decrypt key: sensitive = true, modifiable = false,

encrypt = true, decrypt= true, wrap = false, unwrap = false.

Wrap/unwrap key: sensitive = true, modifiable = false,

encrypt = false, decrypt= false, wrap = true, unwrap = true.

Using this configuration, a generated symmetric key cannot perform

a key wrap and then a decrypt. The attack wrap/decrypt with sym-

metric key is denied if we create every key with the attribute sensitive:

in fact, the value of symmetric wrapping key cannot be read and then

used in CAPI to build a new valid decrypt key. In the model, FX will

be as follows:

FX: wrap(ni,⊥), unwrap(ni,⊥), sensitive(ni,>)

or

FX: encrypt(ni,⊥), decrypt(ni,⊥), sensitive(ni,>)

Key attributes may be changed (e.g. we set wrap to false and decrypt

to true), or, if we consider the re-import attacks, a new handle to the

same key can be obtained with a key unwrap, specifying new attributes

value. The first attempt is avoided by setting the attribute modifiable

to false (as we discussed before); the second one needs a new template

for unwrap keys.

Imported key template: encrypt = true, decrypt= false,

wrap = false, unwrap = true.

An imported or derived key should never have the attribute wrap and

decrypt set to true, so that the re-import attacks are not allowed. In
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the model:

FX: decrypt(ni,⊥), wrap(ni,⊥)

In CAPI, wrap and decrypt operations are performed by private and

public exchange keys, i.e. public for wrap and private for decrypt. The

template (not modifiable) is: sensitive = true, modifiable = false, en-

crypt = true (public), decrypt= true (private), wrap = true (public),

unwrap = true (private).

Considering that a private key (and not the public) can be handled

in PKCS#11 application, we obtain a decrypt and unwrap key. If we

create a corresponding wrapping public key in PKCS#11, any sensitive

key can be exported and read. This cross-api attack requires first to

create a private key in CAPI, then use it in combination with a public

key, created with the function C CreateObject. To fix this vulnerability,

the previous imported key template is applied if C CreateObject

is called. Even if we are interested in the public key exponent and

modulus to wrap, we need to create a valid key object to be used in

the function (i.e. we cannot use directly the exponent and modulus

value). Clulow trojan key attack, which considers a private key and a

derived public key, is negated.

A public key, if wrapping, would be able to perform all kinds of

attacks seen since now, so such kind of limit is necessary to be applied.

Exchange key, from CAPI to PKCS#11 is allowed: a key, exported

via CAPI using the public key, is imported (i.e. unwrapped) with

the corresponding private key, because the private attribute unwrap

remains unchanged. Anyway, the new imported key cannot wrap a

sensitive key. Bortolozzo [2] suggests an additional template when the

PKCS#11 function C GenerateKeyPair is called.

Private/public key pair template: sensitive = true (private),

modifiable = false, encrypt = true (public), decrypt= true (private),

wrap = false (public), unwrap = false (private).
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In the model:

FX: wrap(public key,⊥), unwrap(private key,⊥)

This template limits a lot cryptographic functionalities: in PKCS#11

this type of keys would be used in encryption and decryption only,

while in CAPI, the private key (correctly recognized even if it is cre-

ated in PKCS#11), cannot be used to unwrap (import) other keys.

Attributes, specified in PKCS#11, become valid in CAPI for the pri-

vate key, while the public key is every time reconstructed from the

private key and gets default permissions (hence it is an encrypt and

wrap key). To deny asymmetric wrap/decrypt, it is enough to set the

attribute wrap to false; the attribute unwrap, if set to true, would be

useful to import and decrypt a key previously encrypted with the pub-

lic key by another user.

Actually, templates can be easily adopted to avoid all the attacks

and cross-api operations. The unique way to perform a wrap is to

create trusted keys, but this operation can only be performed by an

administrator.
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Chapter 9

Private key backup

Key backup is a kind of operation that users can perform both in

CAPI and in PKCS#11, but in different contexts. Every key with

the attribute exportable set on true can be exported, encrypted or

not, outside of a hardware device (e.g. a token) or a software provider.

With Microsoft API, all symmetric keys and public keys are exportable,

by default, then archived into a key blob. Since symmetric keys are

volatile, the only way to reuse them from session to session is to import

the key blob, i.e. the key backup. Keys, in PKCS#11, can be stored in

a token, if the attribute CKA TOKEN is set on true, but anyway, once

wrapped, i.e. exported under another key, they can be saved into an

external file. Different treatment is for private keys: token policies do

not allow them to be exported, even if they are declared exportable. In

CAPI, a public/private key pair admits the flag archivable, i.e. the key

pair is exportable only in the current session (the same in which the

key is generated), into a private key blob. In next sessions, the private

key becomes no more extractable. An application is executed running

the two standards simultaneously: first a public/private archivable key

is created in CAPI, then, without closing the current session, a public

object search is made in PKCS#11. The results show two equal private

keys (key modulus is a proof), but with different attributes: one key

has never extractable set to false, extractable set to true and sensitive

false, while the second key has opposite attribute values. An archivable

key is created via software, i.e. it is exportable but volatile, then copied

and stored into the token. If the object search is performed in future

sections, only the token key is retrieved. Application results are listed

below.
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@pkcs11 and capi.exe

Object:

Key found!

is sensitive: false

is neverExtract: false

is extractable: true

keytype: 3

Object:

Key found!

is sensitive: true

is neverExtract: true

is extractable: false

keytype: 3

The key type means that the object found is a private key stored in

the token. The private session key is not sensitive, then all its attributes

can be read. Anyway, any change on them will be lost next sessions.

@read keys PKCS11i.exe

Object:

Key found!

is sensitive: true

is neverExtract: true

is extractable: false

keytype: 3

The modulus, here not shown, is the same for all the keys retrieved.
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Chapter 10

Results and conclusions

Without fixes, sensitive keys created in PKCS#11 are vulnerable and

can be imported in CAPI with simple cross-api attacks. Data struc-

tures, such as key blob, can be easily manipulated (except for sym-

metric key blob), to obtain the encrypted key, or created ex-novo to

import PKCS#11 keys. A new CAPI imported key, specially if sym-

metric, is considered as a session key, so it can be exported in clear

without any additional operation (encryption or decryption). In short,

if a symmetric key is wrapped with a public key in PKCS#11, it can be

imported in CAPI then exported and read in clear. Wrap and decrypt

can be executed separately via CAPI then PKCS#11 (or vice-versa).

The absence of a template to be set in a huge limit in CAPI: fixes on

it in PKCS#11 do not affect any imported key. An exchange key pair

performs all the operations: wrap, unwrap, encrypt, decrypt, but also

sign and verify. Its permissions cannot be change when the key is read

by a PKCS#11 application.

Adopting partial restrictions, such as sticky-on and sticky-off at-

tributes (already set in token policies), it does not constitute a good

protection from attacks. Secure templates are a good solution, but they

limit a lot CAPI functionality. We notice that if we create a key pair in

PKCS#11, private key attributes affect CAPI private keys behavior,

i.e. they cannot perform the unwrap, then they cannot be used for key

exchange. On the opposite side, if we create a key pair in CAPI, we

can initialize the exchange operation, because the public key (pub(kp))

is derived and it has the wrap permission always set to true, then call

the unwrap with the private key. Permissions and template should be
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inserted as policies.

If a public/private key pair should be only encrypt and decrypt,

only (CAPI) signature keys are allowed. Key exchange with asymmet-

ric keys would be limited or denied. A wrap/unwrap template should

be avoided, because in CAPI a secret key value is read in clear in a

plain text key blob. It is therefore correct to assign such a template to

session keys only (as ”predicted” in [2] for PKCS#11 keys).

Using the super model, we study to what extent these attacks can

be performed, with fixes and without fixes.

Without fixes we can perform the following attacks:

1. Export and import sensitive key

2. Wrap/decrypt with symmetric (and not-sensitive) key

3. Decrypt CAPI blob

The first point needs a wrapping public key, in order to import the

symmetric key with CAPI (or decrypt it directly); the second one con-

siders a not-sensitive symmetric key, so that its value can be read then

used to create a new CAPI key; the third point is about a key exchange

operation: it describes how this operation can be performed across the

two standards. With fixes, i.e. sticky properties, key-separation roles

and secure templates, we cannot perform any more these attacks:

1. Export and import sensitive key - because the public key in

PKCS#11 is no more wrapping

2. Wrap/decrypt with symmetric (and not-sensitive) key - because

every key should be sensitive

The third point can be executed because wrap is made with the public

key in CAPI, then the private is used via PKCS#11; for this key, it is

not possible to apply/change key attributes. If the token policies apply

these restrictions for CAPI, neither this last operation is allowed.

If we deny wrap to secure the token, then it means no operations

with CAPI. A trade-off could be the following one:

• Asymmetric CAPI keys: wrap, without encrypt and decrypt, OR

encrypt and decrypt (i.e. signature key pair).

80



• Symmetric CAPI keys: encrypt/decrypt

If these permissions are set, CAPI looses exchange properties, but it

can export a symmetric key (can be then imported?). Any symmetric

key is used to encrypt or decrypt data, such as PKCS#11 symmetric

keys. The difficult is to allow basic CAPI operation and ensure a good

level of security. The interoperability between the two standards gives

us interesting starting points for further analysis.
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Chapter 11

Future Work: Microsoft

CNG

Until now, a full ”efficient” secure token configuration has not found.

Security means huge limits on cryptographic operations: CAPI and

PKCS#11 can be executed with a good interoperability grade, but re-

strictions on one standard make the other inefficient. CAPI essentially

performs a key exchange and a key signature using a couple of pub-

lic and private keys. No key is stored in the token. PKCS#11 stores

secret keys, which value should be protected, making limits on key ex-

porting (and so wrapping). Future Microsoft Cryptographic APIs are

Microsoft CNG. CNG, Cryptography API Next Generation, unlike

CAPI, separates cryptographic providers from key storage providers

(KSPs). KSPs are then used to create, delete, export, import and

store asymmetric and symmetric keys. Each key is an object with

some properties (constants), which can be set by an apposite function.

There are properties like ALGORITHM NAME, BLOCK LENGTH,

KEY LENGTH, or the more interesting Export Policy, Key Type and

Key Usage properties. The export policies apply to private key, speci-

fying how they can be exported. Key usage properties set some ”pre-

configured” permissions sets: we can create Decryption keys (i.e. the

new key is used for encryption and decryption), exchange or signing

key, and a ”all-usage” key, similar to CAPI session keys. The De-

cryption key is interesting, because we obtain a separation from a

wrapping key and a decrypting key, which was missed in CAPI.
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The new set of APIs permits a higher grade of customization. It

would be interesting to discover how restrictions and fixes affect or limit

cryptographic operations, considering that there are about twenty new

keyblob formats, the full support to suite B algorithms [9], and many

other features. Is possible to create a new strong interoperability among

security APIs and reach the best complete security?
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