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Abstract

In my thesis I study models of G-Networks, encoding them into the Stochas-
tic Process Algebra PEPA. Up to now there was the general belief that G-
Networks could not be caught by a traditional stochastic process algebra and
my thesis demonstrates the opposite.
G-Networks are a specific case in the queues theory and are used to describe,
for example, a computer, a network or a communication system. The en-
coding I propose allows one to analyze the dynamic behavior and then the
performance of those networks using the existing tools for PEPA. These anal-
ysis are useful in real-life modern systems, whose complexity and size are in-
deed very large and the corresponding models are huge and complex. With
the aid of the stochastic process algebra PEPA, we can apply a compositional
approach to perform not only qualitative analysis but also quantitative ones.
This approach consists in decomposing the entire system into small and more
simple subsystems. The main idea is that:
”The smaller they are, the more easily they can be modeled and consequently the more
easily the analysis can be”.
In the thesis I will first analyze the current literature on these topics, then
model some G-Networks in PEPA proving that my models are coherent with
the original analyzed G-Networks. Finally I apply the product form theorem
of Harrison to my model and give some guidelines about how a G-Network
can be encoded in PEPA.

vii
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Chapter 1

Introduction

1.1 Motivation

My thesis was started with the general idea of making models of G-networks
using the process algebra PEPA. Until now there was the general belief that
G-networks could not be catch by a process algebra framework and the main
target of my thesis is in fact to demonstrate the opposite.
If I could model the G-Networks (which are a specific case in the queues the-
ory) then in the future we could do performance modeling on those networks
using the tools which are given for PEPA.
The aim of performance modeling is to capture and analyze the dynamic be-
havior of, for example, a computer, a Network or a communication system.
This purpose is easy for very simple systems, but when real-life modern sys-
tems are considered, the complexity and size of them are indeed very large,
huge and results in complex models. With the aid of a process algebra, and in
particular of PEPA, we can adopt a compositional approach. This approach
try to decompose the entire system into small and more easy subsystems.
The main idea is that: ”The smaller they are, the more easily they can be modeled
and consequently the more easily the analysis can be”.
The compositional nature of PEPA can provide a lot of benefits for both model-
solutions and also model-constructions. The operational semantics provided
by PEPA is also used to make and generate an underlying Markov process for
any PEPA model as it is explained and demonstrate in the thesis of Hillston
[21].
In PEPA, simplifications of models and state space aggregations have been

1



2 CHAPTER 1. INTRODUCTION

studied to tackle problems of huge performance models. This is done with
notions of equivalence between the entities of the models and they also can
be useful in a general performance modeling context.
The strong structural equivalence of PEPA, and its isomorphism, allow one to
generate some equational laws. Those laws form the basis for the techniques
of model transformation. This equivalence together with abstraction mecha-
nisms for PEPA goes to form the basis of a model simplification technique.
The efforts of this thesis, to represent G-Networks in terms of PEPA, are done
in order to apply the already studied and demonstrated quantitative analysis
techniques for process algebras terms.
In this way there will be two main advantages in this field:

• Making the analysis on the single components and not in the overall
system

• Demonstrating that PEPA (and in general process algebras) is more ex-
pressive of what was thought in the past

Very often it happens that in queue systems a lot of different but simply
queues cooperate to form a much complex and huge system. For this reason,
the modeling of those queues with PEPA, lead to the possibility of making
analysis of the stream quantity of them individually. In this way we do not
have to make a model of the entire system (which can be often represented
only by a n-dimensional structure with a very large complexity), but we can
make the models of the simple components of it, which are much easier to
deal with and analyze (and in general can be represented by only a 1-2 di-
mensional structure). From this, the quantitative analysis of the single com-
ponents leads to the quantitative analysis of the whole system which is then
facilitated and simplified and as well as accelerated.
With my study I demonstrated that PEPA is expressive enough to allow one
to represent G-Networks. In the end this brings an increase of the coverage
of what PEPA can model and analyze.
I hope that this will also contribute in finding connections between queues
networks and Process Algebras.
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1.2 Personal Contribution

My personal and main contributions, in this field, will be to have found a way
to represent G-networks with a process algebra. In particular I worked with
the process algebra called PEPA (Performance Evaluation Process Algebra).
This process algebra is more suitable for performance modeling with respect
to other ones, developed previously [21]. Other process algebras are timed
or probabilistic ones, but PEPA embodies a different and new way to work in
this field: the stochastic process algebras.
Moreover, my work is composed by four main parts:

• First part, Studying: I studied the recent and up to now developed
bibliography of this two subjects, G-Networks and PEPA.

• Second part, Analysis and Modeling: in this part I modeled some gen-
eral examples of G-Network with the process algebra PEPA.

• Third part, Product-form Demonstration: in this part I demonstrated
that also from my PEPA representation of a G-Network I could also
satisfy the conditions to apply the Product-form theorem and use it.

• Fourth part, Guidelines Development: in this last part I formulated
and developed the guidelines for making PEPA models out of G-Networks.

In the first part of my thesis, I simply started to study the bibliography that
was already developed in the fields of process algebra and in the analysis
of the G-Networks. The study of PEPA was focused on the mechanism of
construction of models and on its limitation and bounds. In particular I stud-
ied the whole semantic and how it represents the various parts of a general
model. I studied also the various borderlines of its expressivity and tried to
find out new solution to resolve some existing problem. For example, one of
them is the problem of representing two actions of same probability but mu-
tually exclusive (this problem will be shown in the second part of the thesis).
In the second part I analyzed some example of G-Networks and I have tried
to find various model that represent them. Initially I found five possible solu-
tions that could fit the system. Some of them show problems in representing
more complicated G-Networks systems and so I discarded them. For some
others I would have to develop an extension of PEPA semantic, if I wanted
to use them. One of those last solutions (called ⊥-actions solution) could also
be expanded without extending PEPA but having an approximation of the
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original system.
Luckily there was a solution that, losing a bit of simplicity, still relies entirely
on PEPA original semantic and expresses completely the examples taking into
account. So I do not have to expand furthermore the language, maintaining
the original expressivity of PEPA.
I demonstrated that the model has the same behavior of the original system,
they also share the same underlying Markov Process and, subsequently, my
model has the product-form, if the original system has it.
The third part is the longest one, because I had to demonstrate that my model
(and its Underlying Markov Process) is in product-form. In order to do that, I
had to change my model, without changing its behavior. To resolve this task
I created the so called ”phantom states” F . Those states must be always un-
reachable in every possible state of the system.
The last step of this part was about the balancing of the equations of the
model, to satisfy the conditions of product-form theorem. The first attempts
does not succeed entirely in the balancing, so I developed a methodology to
generate actions (called Safe-Impossible actions) which never synchronized in
the system in both Input and Output from all states. In this way the balancing
was more easily computed.
When the equations were balanced I had to finally check that also the reverse
rates were constant. Furthermore, to ensure that they were constant, I created
another method to discharge the surplus rate in same cases. This methods re-
lies on a triangular form of safe-impossible actions on three corresponding
different processes.
Those methods will be explained in details in the third part of the thesis.
There is a last demonstration in this part, I checked that the modified system
still behaves as the original one.
In the last part of my thesis I have to find out some general rules to create new
models of PEPA from different cases of G-Networks. The target of those rules
is to create some sort of automatic modeling of some recurrent structures of
those network in order to facilitate future works and developments.
Modeling others kind of G-Networks with PEPA can be possible, and more
easy, with those rules.
My case study and those rules prove that there is a way, not found until my
thesis, to model G-Networks with a process algebra. Moreover I showed how
PEPA can be more expressive than what it was thought and how G-Networks
can be represented using PEPA.



Chapter 2

Introduction - Background

2.1 Background introduction

My thesis is based on various theories and concepts already been developed,
for this reason I will provide some background materials and also some defi-
nitions.

2.1.1 Performance Modeling

Performance modeling is dedicated to describe, analyze and then optimize
the dynamic behavior of a network, a communication system or a queue.
In order to do this, it studies, within and between each components of a sys-
tem, the flow of data and control information. It is done for the purpose of
understand the behavior and identify the aspects of system itself. Those fea-
tures are very useful in a performance point of view.
Before making a performance analysis of a system, essential characteristics of
it are captured, thanks to the use of models, or abstract representations, of the
system. The study of performances will usually discover some target charac-
teristics. They are found searching for several alternatives and represented
by the parameters of the model and their values. After that the model will be
evaluated,with the set of current parameter values, to define the measures of
its performance and its behavior.
To do this evaluation, the model may be simulated or there can be the res-
olution of a set of equations, using some analytical and possibly numerical
techniques.

5
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Usually the performance modeling and its analytical models are based and
applied to stochastic models and solved analytically. Often the notation, used
for the construction of these models, is of the queueing networks. In many of
these cases, it is assumed that the underlying stochastic models are Markov
processes.
A lot of modern systems have an huge size and a very high complexity, this
leads to have very large and complex corresponding models. This is a prob-
lem in both the construction and solution of model and, for this reason, there
is a growing interest in compositional approaches to performance modeling.
The main idea is to decompose the whole system into smaller and less com-
plex subsystems that are more easily to be modeled. The searching for meth-
ods for the resolution of big Markov chains, with finite but exceedingly large
state spaces, has been one of the major occupation of performance analysis
research.
Due to state explosion, standard numerical techniques cannot deal with those
models. The main solutions that have been found are:

• Separating the solution into sub-models thanks to some compositional
approaches applied to model solution and construction

• Separate modeling of subsystems even if the main model has to be con-
sidered as a single entity for the resolution process

• Using some techniques of model simplification applied to the models
of subsystem in isolation. However, this do not affect the integrity of
the whole model.

In general a large model can be usually reduced to a convenient dimension
using systematic and formal manipulations.

2.1.1.1 Queues

G-networks are based on the concept of the queue. A queue in computer sci-
ence is similar to real queue in human society (e.g. queue at flower shop or
waiting to pay at supermarket), hypothetically people are served in the same
order of appearance. Queues can be seen as abstract structures in which all
the elements are maintained in order within them.
There are usually only two operators: enqueue and dequeue.
The first add an entity to the tail of collection (as last element) and the second
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remove the first entity from the front position. In this way queues are of type
First-In-First-Out (FIFO) in which the first element, that arrives in the queue,
will be also the first customer to be served and then removes. Similarly once
a new costumer is put in the queue, all elements, that were previously added,
have to be removed before the new costumer can be served. These two prop-
erty always hold in normal FIFO-queues and in most of cases the queues are
of this type. In my thesis, all the queues types will be normal FIFO-queues.

Figure 2.1: Example of the evolution of a queue

2.1.2 Queueing Networks

If queue structures are used in a system, we can speak of queueing network.
In the performance modeling there is often the use of those networks.
In this short section I will briefly introduce the main ideas and some termi-
nology to give a general idea of the topic. There is a lot of literature in this
field, for more details read [26, 27, 1, 25, 18].
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Figure 2.2: Example of a Queueing Network

To define more formally, a queue is composed by:

• an arrival process,

• a buffer,

• one or more servers,

• a service.

The arrival process define the speed rate at which costumers arrive to the
queue. The buffer is where costumers await to be serviced, this can be finite
and, in case of new arrivals when the queue is full, the new customers can
be discarded or redirected to another queue. The servers provide to the cus-
tomer the service they request and usually are only one. The service represent
a resource which the customers must retain, each of them has to keep it for a
certain period before leaving the queue.
Moreover, the queue can characterized by five distinct factors:

• the arrival rate,

• the service rate,

• the number of distinct servers,

• the capacity of the buffer,
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• the queueing discipline.

We can concisely represent the first four characteristic using the Kendall’s
annotation for the classification of different queues. Using this notation, a
queue can be represented as A/S/c/m/N:

• A: denotes the rate of arrival process; it is usually M (Markov) if it is
exponential distributed, it can be also G, in case of general distribution,
or D, if it is a deterministic distribution.

• S: represents the service rate and uses the same distribution identifiers
of the arrival rate.

• c: is the number of servers available to provide the service to the queue.

• m: denotes the buffer capacity, it can be infinite by default or have a
limited number of seats. If a customer arrives when the buffer is full, it
can be lost, blocked, discarded or redirected.

• N: represent the current population of customers, it can also be infinite
by default.

Also other identifiers may be used for other kinds of distributions, such as Hk
(hyper-exponential with parameter k). Obviously in the default case, the two
last classifiers can be omitted.
The factor of queueing discipline can determines the way in which a server
can selects a customer from the queue, who will be then served. The most
common discipline is the FIFO (or FCFS, first-come-first-served) in which is
served next the most waiting customer. There are many other less frequent
discipline, like for example the processor sharing (PS) in which all costumers
present at the queue share the service capacity.
A queueing network is a directed graph in which the queues are represented
by the nodes. These are often called service centers in this context, and each
of them represent a modeled resource in the system. On the other hand, cus-
tomers represent the various jobs in the whole system. They flow through
it and compete for the given resources. Finally, the arcs of the graph are the
topology of the system and associated together with the routing probabilities
of costumers from one node to others, they determine the various possible
paths that customers may take through the network.
In this way, if the demand for resources is high and service rates low, the cos-
tumers contention over them will grow up and consequently this will lead to
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form a queue of waiting customers.
The typical representation of the state of the system is with the numbers of
customers currently occupying each queue. There can be also different types
of customers, each ones exhibiting a different behavior within the network.
And in that case the state of system is the number of waiting customers of
each class. Moreover, there can be classes of customers with fixed or chang-
ing patterns of behavior.
Also the networks can belong to different types: closed, open or mixed. This
depend on whether a fixed population of customers could arrive from (or de-
part to) some external environment or simply remain within the system.
There is a large class of queueing networks which have linear and computa-
tionally efficient solutions. Although in this class some interesting and im-
portant features of the system are excluded, they allow performance analy-
sis witout the use of the underlying Markov process. These solutions, called
product-form solutions, allow to consider separately the individual queues within
a network. Some simple algorithms are based on this, they compute most
performance measures looking directly on the parameters of the queueing
networks.
Satisfying the hypothesis to use the product-form theorem will be also a part
of my thesis.

2.1.3 Process Algebras

Process algebras are part of the mathematical theories. These theories aim
to model concurrent systems using their algebra and to provide methods for
reasoning about the model behavior and model structure.
The characteristics of a system are its interactions and communications be-
tween its active components and the components themselves. One of the
main and integral part of the language of these algebras are the composi-
tional reasoning but on the other hand, there isn’t a notion of flow or entity
within a model, like in queueing networks.
Some examples of process algebras include CCS (Calculus of Communicating
Systems), CSP (Communicating Sequential Processes), and ACP (Algebra of
Communicating Processes) [29, 22, 3].
In CCS algebra, process (or agents) are the active components of a system.
These processes perform actions which represent the possible discrete actions
of the analyzed system. Any of these actions can form the links or interac-
tions between neighboring processes or can also be internal to one of those.
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Processes may also proceed simultaneously with their internal actions. It is
important to notice that their behavior is described as interleaving semantics.
Agents can be constructed using the various combinators in the language:

• Prefix: to design a process with an assigned first action

• Choice: if the process can have a choice over various alternatives

• Composition: to model a process with concurrent possibilities

The first two combinators are present also in PEPA, but the last one, compo-
sition, is replaced by cooperation.
Many process algebras, as well as CCS, present an operational semantics, us-
ing a labeled transition system. Giving this, we can construct a graph or a
derivative tree, in which the nodes are language terms and the arcs are tran-
sitions. This can be used for analyze the processes and the systems they rep-
resent and it forms the basis of the bisimulation style of equivalence.
An agent is characterized by its actions, in this way if two agents perform
exactly the same actions, then they are considered to be equivalent. With this
style, two forms of equivalence are defined:

• Strong Equivalence: internal actions of a process are considered to be
observable

• Weak Equivalence: internal actions of a process are not considered

Correct behavior of systems (in a given specification or in more abstract sense)
has been established using widely the models presented with CCS.
This kind of modeling is sometimes called functional or qualitative model-
ing. Fairness, freedom from deadlock, and other behavioral properties are
analyzed unlike the quantitative values found from performance models.
For this reasons, to incorporate also time and probability in process algebras,
some extension of them have been made. Then, process algebras without
such extensions are sometimes called pure process algebras.

2.1.3.1 Timed Extensions of Process Algebras

In pure process algebras, time in processes is often not considered or ab-
stracted away. in this manner there is the assumption that all actions are
instantaneous and only relative timing can be represented using traces of
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process. The easiest way to incorporate time into an algebra is by making it
synchronous. To synchronizing calculations, the presence of a implicit global
clock must be assumed, and at each clock tick one action must occur.
Anyway, we need a more sophisticated representation of time to model and
represent the real time behavior of a real system. Allowing a process to take a
periods of delay, in addition to making actions, can represent time explicitly
in a process algebra. Some of those process algebras still assume that actions
are instantaneous and natural numbers are taken as the time domain.
Operational semantics of the language contain two different types of transi-
tion:

• Action transitions

• Time transitions

The equivalence relation has an additional condition: for all processes must
be possible to take any period of delay.
An alternative to this approach can be to associate an absolute time with the
completion of actions by processes, these can be called events. Moreover, rel-
ative time for each action can be specified, or even an interval of time during
which an event must be completed.

2.1.3.2 Probabilistic Extensions of Process Algebras

Often there is the need of modeling systems, with process algebras, in which
the behavior of their components can contain some uncertainty. This uncer-
tainty of behavior is often not considered or abstracted away, consequently
all choices become nondeterministic.
With the replacing of probabilistic choices over nondeterministic ones lead
to probabilistic extensions of process algebras. Those extensions allow the
quantification of this uncertainty and associate the probability with each pos-
sible outcome of a choice.
Also probabilistic process algebras use labeled transition systems in their op-
erational semantics. Those labeled transitions are probabilistic and represent
the probabilities associated with each transition.
There is a classification for those systems:

• Reactive Systems: transitions probabilities of processes depend on the
environment where the processes are located.
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• Generative Systems: probabilities of transitions don’t depend on the
environment.

In the first case, given that a particular action is performed, there is a prob-
ability distribution over the possible derivatives of a process. In the second
one, a probability distribution is determined over the possible actions of a
process. In some algebras there is also the use of weights to assign probabili-
ties, doing so, prioritized choices are defined.
Probabilistic process algebras are more useful for testing the equivalence be-
tween specification and implementation of a system [28]. Two different pro-
cesses are considered probabilistically equivalent (or bisimilar), if their visible
behavior is almost the same (with probability 1 − ε and ε an arbitrary small
number).
Other algebras use pre-orders, which evaluate processes and define some of
them probabilistically better than others. This can be use to prove that a im-
plementation of a system is improved with respect to its specification. If there
is a probability of 7% of breakdowns in the specification, only an ensured per-
centage of 6% or less will be satisfactory in the implementation of it.

2.1.4 Process Algebras for Performance Modeling

This section will includes some brief motivations for the studies of applying
the process algebras to the performance modeling due to perceived problems
of evaluation of performance [21]. There are three distinct problems arisen in
performance analysis:

• Integrating Performance Analysis into System Design: it is important
to consider timely the performance aspects of system planning but this
often does not occur in practice

• Representing Systems as Models: queueing networks have a restricted
expressivity, mostly considering real modern developments of computer
and telecommunication systems

• Model Tractability: size and complexity of solving models are often too
huge and complicate considering many modern systems. In order to
manage them, techniques of model simplification and aggregation have
been studied
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Process algebras can be considered as a tool for design methodology due to
their styles of expressing systems and their methods for manipulate the mod-
els.

2.1.4.1 Process Algebras for System Design

Designers model systems in a way very similar to the process algebras style
of system description. For this reason has been introduced an integration be-
tween analysis of performance and methods of design. Languages based on
process algebras can be used to do performance models using annotation of
already existing systems description for design.
This lead to an involvement for the practice of performance evaluation and
the model verification over design methodologies. The use of these formal
description languages permit the integration between design process and
performance modeling, moreover they allow to make a qualitative (or func-
tional) and quantitative modeling.

2.1.4.2 Process Algebras for Hierarchical Models

Systems are described in a process algebra as a collection of cooperating pro-
cesses to obtain the system behavior. The paradigm of cooperator (in contrast
with terms of operator or operand) fits well for modeling many modern com-
puter systems. Sequential control flow and resource allocation models do not
cover fully those systems.
One example can be communications networks components which have their
own autonomy and the framework used is one of cooperation. Furthermore,
in a process algebra model, each element of the system has equal status and
its own individual behaviors and interactions.
Unlike performance modeling, there are also composition and abstraction
techniques in process algebras, as well as tools for compositional reasoning.
The systematic construction of large models with hierarchical structure are
facilitated in this way, using those methods. Moreover they are useful also
for solving the underlying Markov process.

2.1.4.3 Process Algebras for Model Simplification and Aggregation

Underlying Markov process or its generator matrix are often the basis of a
lot of model simplification and aggregation methods. Unluckily, the size of
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the state space can be too large to generate and storage the complete Markov
process for very large systems [4].
Nonetheless, process algebra models lead to the introduction of methods for
model simplification and aggregation, not based on the underlying stochastic
model but on the system description itself. Furthermore, thanks to the com-
positionality of the process algebra, we can apply those methodologies also
to specific parts of the model while the integrity of the model as a whole en-
tity is maintained.
The comparison and manipulation of a model can be done in a formal frame-
work thanks to the formal definition of the process algebra. And finally, the
formal definition of equivalence permits the substitution of a model, or a part
of it, with another if they have the same observable behavior.
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Chapter 3

Introduction - PEPA

3.1 Introducing PEPA

3.1.1 General View

The subject to capture and analyze the dynamic behavior of a network, a com-
munication system or a queue is the performance modeling.
Unfortunately it is difficult to study and analyze many modern systems, due
to their size and complexity, resulting in very huge and complex models. To
solve this problem, the urge of taking a compositional approach raises. This
approach decomposes the whole system into smaller and easier subsystems.
They are indeed less complicate and consequently more easily to model. One
of the main compositional approach to performance modeling is based on the
process algebra named PEPA (Performance Evaluation Process Algebra).
PEPA is a suitably enhanced process algebra and its language has a pro-
nounced compositional nature. This can provide a lot of benefits for the solu-
tion of models and in the same way for model construction.
PEPA provides an operational semantics and uses it to create an underlying
Markov process. It may be used also as a paradigm for specifying Markov
models. This can be done for any PEPA model and the method is well ex-
plained and demonstrated in [21].
To deal with the problems of large performance models, some techniques of
model simplification and state space aggregation have been proposed. They
was developed as notions of equivalence between entities of models and have
an intrinsic interest for both process algebra perspective and usefulness in the

17
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context of performance modeling. The basis of these model transformation
techniques are formed by the equational laws. These laws are generated and
ensured by a strong structural equivalence, the isomorphism. Together with
the use of abstraction of PEPA mechanism, this equivalence leads to forming
a technique of model simplification. This obviously, providing that certain
conditions are satisfied.
These tools may be used to replace one model component by another one
which must have the same apparent behavior.
Moreover, developing only a timed and probabilistic process algebra, results
to be less suitable for performance modeling than PEPA. This because it is
a stochastic process algebra [21]. This process algebra tries also to identify
problems of performance evaluation in order to offer a systematic method
for modeling also complex systems.
To facilitate the analysis of the whole system, separate components and as-
pects of it may be considered just individually. They can be also subsequently
considered in a more abstract form, as their interactions are developed. Fur-
thermore, the methods of model simplification of PEPA can avoid the gener-
ation of the complete state space of the underlying stochastic process.
Finally all those methodologies have been formally defined with its opera-
tional semantic, in this way they could lead to automation or machine-assistance
for model simplification.

3.1.2 Main Features

One of the main targets of a process algebra able to make performance eval-
uation is to capture as many features of a normal process algebra as possible
while also having characteristics that allow specification of stochastic pro-
cesses. In this context, the performance evaluation part can be seen as an
extension, taking also the normal features of normal process algebras as a ba-
sis to be used as a design formalism and thanks to annotations of the design
we can develop the performance model.
The following features are considered essential for this process algebra:

• Parsimony: elements of the languages must be few in numbers and also
simple. With this parsimony the reasonings on the language should be
easy and ensure flexibility in the modeling phase. The basic elements
of this language are components and activities, corresponding in the
underlying stochastic model to states and transitions.
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• Formal Definition: in the language there is a structured operational
semantics, which provides a formal interpretation for each expression.
Those rules are the basis of the notions of equivalence, giving a formal
way to compare and manipulate both models and components.

• Compositionality: the combinator of cooperation is the basis of com-
position in PEPA. Complementary to it, there are methods of model
simplification and aggregation. In this way a part of a model can be
simplified in isolation and replaced by a simplified component without
compromise the integrity of the whole model.

Quantification of time and uncertainty are main attributes needed for per-
formance evaluation. They are present in PEPA but missing in other process
algebras such as CCS. In other algebras time of actions is usually implicit and
the models are nondeterministic but it is important to quantify timing behav-
ior and uncertainty for extracting performance measures form performance
models.
PEPA associate random variables (representing duration) to all activities, to
achieve this. In this way timing behavior of system is represent by delays of
each activity in the model. Furthermore, also temporal uncertainty (concern-
ing actions duration) is captured because the duration is a random variable.
Spatial uncertainty (about next events) is obtained because probabilistic choices
replace nondeterministic ones. Race conditions between the enabled activi-
ties determine probabilities of branchings.
Introducing random variables for all system activities can be considered as
annotations of the pure process algebra model.

3.1.3 Language - Informal Description

With PEPA one can describe a system via interactions of its components and
actions those elements can engage. The behavior and each part of the system
will be corresponded by some components. A queue could be represented by
an arrival component and a service component, both of them will interact to
form the queue behavior.
Moreover, each component can be atomic or can be composed itself by other
components and it is assumed that there is a countable number of possible
components, each of them has a behavior defined by its possible activities.
Contrarily to other process algebras, in PEPA a random variable representing
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duration, with an exponential distributions, is associated to each activity. Ev-
ery activity has a type (called action type) of a countable set A, of all possible
types. In case that different activities have the same type, this mean that they
are different instances of the same action in the system.
The action type τ , called also unknown type, represent an action (or a se-
quence of them) that is unknown or not important to identify. This action is
considered private to the component in which it occurs and it is not instan-
taneous, like any other type of action. Nonetheless, different instances of τ
don’t necessarily represent the same action within the modeled system and
they could be represented by their real number parameter of duration.
Generally speaking, this parameter is called the activity rate and must be
greater or equal than 0 or >which mean that it unspecified.
There will be the following conventions about the names of various elements:

• Components are denoted by names starting with large roman letters
(P ,Q,R,Pi,...).

• Activities are denoted by single small roman letters from the alphabet
beginning(a, b, c,...).

• Action types are denoted by small greek letters (α,β,γ,...), or by names
starting with a small roman letter (task, service, checki,...).

• Activity rates are denoted by single roman letters from the alphabet
ending (r,s,t,sj ,...). Usually the greek letters µ (for the service rate) and
λ (for the arrival rate) are also used.

• Subsets of A are typically denoted by L, K, and M .

In this way, each activity is defined by pairs such as (α; r) where α ∈ A is the
action type and r is the activity rate.
From this, we can say that there exists a set of activities, Act ∈ A×R+, where
R+ is the set of real positive numbers and the symbol >.
There is also some other terminology to introduce:

• System behaves as P : when the component P determines its behavior

• A(P ): current action types of P . The component P can next perform
only these action types.

• Act(P ): multiset of current activities of P . The component P can next
perform only these activities.
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• Delay period of an enable activity a = (α, r): period of time given by its
associated distribution function that is the probability that this activity
happens within a period of time t, with Fa(t) = 1− ert.

• P ′: is the component which describes the behavior of the system when
P completes α for some α ∈ Act(P ). P ′ don’t have to be different from
P .

• P α−→ P ′ or P
(α,r)−→ P ′: completion of activity α and the subsequent

behavior of the system as P ′.

The distinction between action types and activities is the dynamic behavior
of a component which depends on the number of instances of each enabled
activity. Moreover, A(P ) is a set and Act(P ) and is a multiset (unless stated
otherwise).
The delay period is like a timer set by an activity when becomes enabled and
the rate of the activity determines its time. Furthermore,each enabled activ-
ities has its own associated timer and the first which finishes implies that its
corresponding activity takes place (an external observer could observe the
event of an activity of that type). That activity is said to be succeeded or com-
pleted and others are considered preempted, or aborted.

3.1.4 Language - Syntax

The primitives of the PEPA language are: components and activities. Remem-
ber that activities characterize the behavior of a component and also PEPA
has a small set of combinators. Those combinators allow one to construct ex-
pressions and terms which can define the behavior of components through
interaction between them and activities they can perform. In this way, the
behavior of components can be influenced also by the environment in which
they are placed.
In PEPA, the syntax of terms is defined as follows:

P ::= (α, r).P | P +Q | P ��
L
Q | P/L | A

Now I will give a brief description of names and interpretations of those con-
structions.
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Prefix: (α, r).P
The basis of construction of component behavior is the mechanism of Pre-
fix. In this case, the component (α, r).P can perform the activity (α, r), which
has action type α and a duration exponentially distributed with parameter r
(mean 1

r ). For completing the activity, the time is t, drawn from the distribu-
tion. After its completion, the behavior of component will be as component
P . If a component reaches the behavior of (α, r).P at some time t′, it will
complete the action (α, r) in t′+ t time. In this way it will become P , enabling
all the activities in Act(P ). If we consider a = (α, r) then we can write the
component (α, r).P as a.P .
We have to remind also that we assume there is always an underlying im-
plicit resource, which helps the component activities. They are not modeled
explicitly but their utilization by the components are represented by the time
elapsed before the completion of an activity. Those resources could be time
processor, cycles of CPU, some I/O devices or bandwidth of a communica-
tion channel, this can depend on which system and at which level it is mod-
eled.

Choice: P + Q
A system which can behave both as component P or as component Q, can be
represented by the component P + Q. This component enables all the current
enabled activities of P and all the current enabled activities of Q at the same
time.
To be more formal: Act(P + Q) = Act(P ) ] Act(Q) (where ] denotes the
multiset of the union) and whatever enabled activity will be completed, it
must belong to Act(P ) or Act(Q). It must be in this way, also in the case that
P and Q have the same enabled activity since different instances of the same
activity are distinguished in PEPA. Doing so, the future behavior will be of
P or of Q and it will be distinguished by the first activity to complete. This
activity will also discard the other component of the choice.
We have an important thing to remind, the probability, that both P and Q
complete an activity at the same time, is zero, and this is ensured by the
continuous nature of the probability distributions. If we consider that after P
completed the activity, it behaves as P ′ component and similarly Q and Q′,
then the system will subsequently behave as P ′ or Q′ since P + Q had com-
pleted an activity.
Finally, we have to consider that there is always the underlying assumption
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that either P and Q compete for the same implicit resource.
In this way, the competition between components is represented by the choice
combinator represents.

Cooperation: P ��
L
Q

The set L is called cooperation set, and the interaction between the P and Q
components are determined by it. If we consider that K 6= L, then almost
certainly component P ��

L
Q will behave quite differently from the behavior

of P ��
K
Q. This makes the cooperation combinator an indexed family of com-

binators, a different combinator for each possible set of action types L ⊆ A.
The action types, on which the components must cooperate or synchronize,
are indeed defined by the cooperation set.
Contrary to the choice operator, we assume that in a cooperation, each com-
ponent has its own implicit resource. Moreover, they independently proceed
with any other activities whose types are not in the cooperation set L but
those whose action type is in the set L must involve simultaneously both
components (and consequently both resources) in an activity of that type.
Any cooperation set can’t contain any unknown action type τ .
The activities which have types which do not occur in L, are called individual
activities of the components and they will proceed unaffected.
On the other hand, shared activities, whose types are in the set L, will only
be enabled in P ��

L
Q, namely when they are enabled in both P and Q. Doing

so, one component, which waits for the other component participation, can
become blocked and represents situations in the system when, to achieve an
action, the components are required to work together.
Generally speaking, each component have to complete some work. This work
correspond to their own representation of the action and individual activities
of the individual components P and Q are replaced by a new shared activ-
ity, formed by the cooperation P ��

L
Q. The shared rate of this new activity

reflects the rate of the slower participant even if the activity will have the
same action type as the two contributing ones. Thus this rate (namely the
expected duration) of a shared activity, will be greater than or equal to the
rates (namely the expected durations) of the corresponding activities in the
cooperating components.
In the case of an unspecified rate of an activity in a component, the compo-
nent is called passive with respect to that action type. In other words, the
component will not contribute to the work involved, even though its coop-
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eration can be required to achieve the completion of an activity of that type.
One example can be the role of a channel in a communication system: if we
want to transfer a message, the cooperation of the channel is essential, but
the transfer don’t need any work (i.e. consumption of implicit resource) of
the channel itself.
Finally, if the set L is empty, ��

L
has the same effect of a parallel composition.

This allows the components to proceed concurrently without any kind of in-
teraction between them and this kind of situation will occur quite often, in
particular when systems have repeated components. For this reason to repre-
sent P ��

∅
Q, there is the introduction of the more concise notation P ||Q. The

combinator || is called parallel combinator.
We have to notice that also with this syntactic convenience inclusion, there is
no expressiveness addition to the language.

Hiding: P/Q
In the component P/Q, all activities, whose types are in the set L, are hidden,
this mean that their completion cannot be witnessed and this is the only dif-
ference between P/Q and P behavior. Those hidden activities will appear as
the unknown type τ and they can represent an internal delay of the compo-
nent.
The activities that a component can engage individually are not affected by
hiding but it affects the possibility to fully witness externally these activities.
If a process completes an activity, an external observer can see the type of
that completed activity and can also be aware of the length of time from the
previous activity completion, i.e. the delay of time in which the activity took
place. Rather than, the observer can only witness an hidden activity by its
delay and the unknown type τ .
Furthermore those hidden activities cannot be within a cooperation setLwith
any other component and their action types are no longer accessible outside
to both another component or external observer. Anyhow, activities are not
affected in their durations even if they are hidden.

Constant: A
def
= P

Assuming that the set of constants is countable, the meaning of constants
components is defined by equations such as A

def
= P , in this way the behavior

of component P is given to the constant A. Doing so, names can be assigned
also to components (behaviors).
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Let’s suppose that E is a component expression containing also a variable
X , the expression E{P/X} will then indicate the component made by the
replacement of P in every occurrence of X in E. Generally speaking, if we
consider an indexed set of variables, then E{P̃ /X̃} is the replacement of an
indexed set of variables X̃ by an indexed set of components P̃ .

Precedence of the Combinators
In PEPA the precedence of the combinators is also defined and this provides
a default interpretation for any kind of expression.
The precedence, from the highest to the lowest, is the following:

1. Hiding

2. Prefix

3. Cooperation

4. Choice

Moreover, forcing alternative parsings or simplifications, to clarify meaning,
can be done using brackets.
They can also be used to clarify the meaning of a combination of components.
For example, P ��

L
Q ��

K
R has an unclear scope of the cooperation sets L and

K. There are two alternatives:

• (P ��
L
Q) ��

K
R: in this case R, for each action type in L \K, can proceed

in independently but it has to cooperate with P and Q for any action
types in K

• P ��
L

(Q ��
K
R): here R has to cooperate with P to perform any action

types in L but P is free to do independently each action types in K \ L.

In this way the intended scope of the cooperation set can be delimited by the
use of brackets and, in case of missing brackets, it is assumed the left associ-
ation of cooperation combinator. Considering this and using differing coop-
eration sets in the cooperation between several different components, we can
build layers and levels. Each one of them uses a cooperation combination of
just two processes, those components can be in turn formed themselves by
cooperations between lower-level components.
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One example can be the following:(
(P1 ��

L
P2) ��

K
P3

)
��
M

(
P4 ��

N
P5

)
This component can be seen as Q1 ��

M
Q2 at the top level. Considering ≡ the

syntactic equivalence, then at lower level, Q1 ≡ Q3 ��
K
P3 and Q2 ≡ P4 ��

N
P5

and in the lowest level Q3 ≡ P1 ��
L
P2.

In the lowest level, components which do not contain any cooperation are
called atomic components, instead in the top level these are called top-level com-
ponents.

Passive Activities: >
In same cases, the components cooperation is not equal and this can represent
that one of them can be passive with respect to an action type. This means
that each enable activity of that type in the component, has an unspecified
activity rate. Those passive activities must be shared with others components
which will determine the real rate of this shared activity. A model is called
incomplete, if at least one of his passive components is not shared with others
or a cooperation set restrict it.
There is also the case in which more than one passive activity type is simul-
taneously enabled within a component and we must assign a weight to all
unspecified activity rates. Those weights have to be natural numbers and
they can be used to determine the relative probabilities of the possible out-
comes (concerning the activities of that action type).
If we consider this following component:

(α,w1>).P + (α,w2>).Q

It is passive considering the action type α and when that action will be com-
pleted, subsequently the component may behave asP with probabilityw1/(w1+
w2) or may behave as Q with probability w2/(w1 + w2).
Furthermore, we can assume that (α,>) is an abbreviation for (α, 1>) and
that if there is no weights assignation, then the various instances have all
equal probabilities to occur.
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From this, comparisons and manipulations of unspecified activity rates are
defined by the following inequalities and equations:

r < w> ∀r ∈ R+ and ∀w ∈ N

w1> < w2> if w1 < w2 ∀w1, w2 ∈ N

w1>+ w2> = (w1 + w2)> ∀w1, w2 ∈ N

w1>
w2>

=
w1

w2
∀w1, w2 ∈ N

Apparent Rate: rα(P )
Usually it could be convenient that a single action of the system is repre-
sented by more than only one activity in the model at time. Nevertheless the
apparent rate of those activities type will always be the same to an external
observer of the system or of the model. This because the race condition of the
model assure that the α-rate at which an α activity is completed result to be
the sum of the rates of all the enabled activities of type α.
For example, there exists systems with the multiple capacity of performing
an action, like a queue with multiple servers and n waiting customers with
obviously n > 1. Now let’s consider the apparent rate of service action of a
PEPA component which enables only one type of service activity but with a
rate n-times the actual service rate of the first presented example. The appar-
ent rate of two service activities would be the same.
From that we can comprehend that the apparent rate, at which action types
happen, is very important in the comparison of models with systems and be-
tween models themselves.
The formal definition for the Apparent Rate [21] is:
”The apparent rate of action of type α in a component P is denoted rα(P ) and it is
the sum of the rates of all activities of type α in Act(P )”.
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And the formal rules are the following:

1. rα((β, r).P ) =

{
r if β = α

0 if β 6= α

2. rα(P +Q) = rα(P ) + rα(Q)

3. rα(P/L) =

{
rα(P ) if α /∈ L
0 if α ∈ L

4. rα(P ��
L
Q) =

{
min(rα(P ), rα(Q)) if α /∈ L
rα(P ) + rα(Q) if α ∈ L

Remember that an apparent rate can also be unspecified, for example if P is
defined like this:

P
def
= (α,w1>).P1 + (α,w2>).P2

Then by the previous definitions: rα(P ) will be equal to the sum rα(P1) +
rα(P2), so we can sum w1> + w2> and we know that this is equal to (w1 +
w2)>. In conclusion rα(P ) = (w1 + w2)>.

Current Action Types: A(P )
The set of action types which are enabled by a component P is called A(P ).
This set contains all possible action types which can be seen in the next com-
pletion of an activity, when the system behaves as component P.
For any PEPA component, this set (Set of Current Action Types) can be con-
structed by the following definitions:

1. A((α, r).P ) = {α}

2. A(P +Q) = A(P ) +A(Q)

3. A(P/L) =

{
A(P ) if A(P ) ∩ L = ∅
(A(P )\L) ∪ {τ} if A(P ) ∩ L 6= ∅

4. A(P ��
L
Q) = (A(P )\L) ∪ (A(Q)\L) ∪ (A(P ) ∩ A(Q) ∩ L)
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Current Activities: Act(P )
The multiset of current activities of P is called Act(P). It will also take a rel-
evant part in the analysis of a component P . These are the enabled activities
when the system behaves as component P.
Adopting the following abbreviations:

Act\L(P ) = {|(β, r) ∈ Act(P )|β /∈ L|}
Act∩L(P ) = {|(β, r) ∈ Act(P )|β ∈ L|}

Then this multiset (Activity Multiset) can be constructed by the following
definitions:

1. Act((α, r).P ) = {|(α, r)}

2. Act(P +Q) = Act(P ) ]+Act(Q)

3. Act(P/L) = Act\L(P ) ] {|(τ, r)|(α, r) ∈ Act∩L(P )|}

4. Act(P ��
L
Q) = Act\L(P ) ] Act\L(Q)]

]{|(α, r)|α ∈ L,∃(α, r1) ∈ Act∩L(P ),∃(α, r2) ∈ Act∩L(Q),

and r =
r1

rα(P )

r2
rα(Q)

min(rα(P ), rα(Q))|}

3.2 Language - Operational Semantics

I present the summary of the formal definition of operational semantics of
PEPA in the following figure 3.1.
Those operational rules have the following meaning:
we can infer the transition below the inference line only if the transition(s) above that
line can be inferred.
The activities which a component can perform are outlined by the rules, and
whenever an activity completes, it cause a transition in the system.
Moreover, there is no explicitly representation of time in these rules but we
assume that, for all rules, an activity will take some time to complete. In this
way some advance of time is represented by each transition. In these rules,
we assume that each activity is (time) homogeneous, this mean that rates
and types of activities are time independent with respect of when they occur.



30 CHAPTER 3. INTRODUCTION - PEPA

Consequently we also assume that Act(P ), namely the activity set of a com-
ponent, is time independent, and it is independent form the time at which it
is considered.
The only comment presented is on the third rule for cooperation, which de-
fines shared activities. Furthermore, the apparent rate of a shared actions type
in the component E ��

L
F , when α ∈ L, is chosen such that it is the slowest of

the apparent rates of that action type in both E and F . In general ,we assume
also that both cooperation components have to complete some work to com-
plete the shared activity, as a reflection of their own version of that activity.
If one component has an unspecified apparent rate, other components will
completely determine that rate. Moreover, to represent different possibility
of outcome, we can use multiple instances of the same action type in a com-
ponent. It is also assumed that there is independence between the choice of
each shared activity rate, made in order to keep the same outcome probability
of each components, and the choice of outcome that each of the cooperating
components makes.
Considering for example an instance (α, r1) of action type α ∈ Act(E) and
another instance (α, r2) of action type α ∈ Act(F ). When an α-type activity
occurs, the probability, that it is (α, r1), is r1/rα(E) and on the other hand the
probability, that it is (α, r2), is r2/rα(F ). Instead, if α is a shared type activity
in E ��

L
F , when it occurs, the probability that E and F combine, to form the

shared activity, will be r1/rα(E)× r2/rα(F ).
The activity rate of any activity instance, is the product of the probability of
this instance completion (assuming that occur an activity of this type) and the
apparent rate in this component of the action type. Consequently there is the
following rule:

E
(α,r1)−→ E′ F

(α,r2)−→ F ′

E ��
L
F

(α,R)−→ E′ ��
L
F ′

(α ∈ L) where R = r =

r1
rα(E)

r2
rα(F )

min(rα(E), rα(F ))
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Figure 3.1: Operational Semantics of PEPA
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Taking those semantic rules, we can define PEPA as a labeled multi-transition
system. Generally speaking, a set of states S, a set of transition labels T and
a transition relation t→⊆ S × S ∀t ∈ T can define a labeled transition system
(S, T, { t→ |t ∈ T}). Instead, if we consider a multi-transition system, we have
to replace the relation with a multi-relation whose instances number of a tran-
sition between states is recognized.

In this way PEPA can be seen as a labeled multi-transition system (C,Act, {(α,r)−→
|(α, r) ∈ Act}), with Act as set of activities, C as the set of components and

rules in figure 3.1 give the multi-relation
(α,r)−→.

3.3 Language - Additional Definitions

In this section I will present some additional definitions for PEPA, resulting
from last section. If we consider a graph in which nodes represent the lan-
guage terms, arc represent the possible transition between them, then oper-
ational rules will define how the graph is formed. Considering also that we
have already distinguished different instances of the same activity, then the
graph will be a multigraph. In this way we will distinguish different instances
of an arc between terms.
This underlying derivation graph describes the possible behavior of any com-
ponent of PEPA. It provides also an useful way to reason about the model
behavior.
Finally, those are the formal notions of derivatives:

One-step derivative: P ′ is a one-step derivative of P , if P
(α,r)−→ P ′

Derivative: more in general, P ′ is a derivative of P , if P
(α1,r1)−→ . . .

(αn,rn)−→ P ′

Those derivatives represent the various states of the labeled multi-transition
system. It is usually convenient also to expand those definitions of a com-
ponent and name each derivative individually. In this way we can define
recursively the set of all possible derivatives (behavior) of all PEPA compo-
nents, in which they can evolve.
Derivate Set: ds(C) is the notation of the derivative set of a PEPA component, and
it is the smallest set of components such that:

• if C
def
= C0 then C0 ∈ ds(C);

• if Ci ∈ ds(C) and ∃a ∈ Act(Ci) such that Ci
a−→ Cj , then Cj ∈ ds(C).



3.4. THE UNDERLYING STOCHASTIC MODEL 33

Each reachable states of the system is captured by the derivative set of com-
ponents. In this way we can visualize all possible states of the system and the
relationships among them with the transition graph of a system. In fact the
derivation graph is defined in terms of the derivative set of a system.
Derivation Graph: the derivation graph D(C) of a component C and its deriva-
tive set ds(C), is the labeled directed multi-graph with set of nodes ds(C) and with
multiset of arcs A defined as:

• The elements of A given by the set ds(C)× ds(C)×Act ;

• 〈Ci, Cj , a〉 occurs in A with the same multiplicity as the number of distinct
inference trees which infer Ci

a−→ Cj .

We can intuitively define the derivation graph and derivative set of compo-
nent expressions with E, ds(E) and D(E).
Leaves of derivation graph are formed by the variables in the expression and
the appropriate derivation graph will be attached at that point if a variable is
instantiated.
~A(C) is the notation of the complete set of action types, used in the derivation

graph of a system. This complete set represent all possible action types which
can be completed during a component evolution.
Complete Set of Action Types: the complete set of action type of a componentC is:

~A(C) =
⋃

Ci∈ds(C)

A(Ci)

3.4 The Underlying Stochastic Model

A stochastic process, as a representation of the system, can be built using
PEPA and its derivation graphs. Furthermore, the resulting stochastic model
is a continuous time Markov process if we assume that the durations of activ-
ity are exponentially distributed random variables.
In PEPA there is a technique to solve the process when it is assumed that
exists a steady state solution and also there is a relationship between the er-
godicity of the Markov process and the structure of the PEPA models.
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3.4.1 Markov Process Generation

The generation of the underlying stochastic process we can be based on the
derivation graphs, for any finite model of PEPA. We know that in any model
there is a component which defines it as its initial node and that its deriva-
tion graph is a multigraph. Thus, we have the following characteristics of a
derivation graph:

• Initial node

• Other nodes in the graphs represent each subsequent derivative (or
component)

• Between the corresponding components, for each possible transition
there is an action type and an activity rate which label all arcs between
nodes

To build the stochastic process we make the following associations:

• Each node of the graph is associated with a state

• Arcs of the graph define the transitions between states

Remember that in the derivation graph, the number of nodes is finite be-
cause we have assumed that also the model is finite. Moreover, in the deriva-
tion graph, the sum of all the activity rates, which label the arcs linking two
nodes, represents the total transition rate between the corresponding states,
since each activity duration is exponentially distributed.
We can summarize it in the following theorem:

Theorem
For any finite PEPA model C def

= C0, if we define the stochastic process X(t), such
that X(t) = Ci represents that at time t, the system behaves as component Ci, then
X(t) is a Markov process.

The proof of this theorem can be found in [21].

3.4.2 Definitions on the Markov Process Underlying a PEPA Model

There are some notions associated with the Markov Underlying Processes of
PEPA Model.
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Sojourn Time: In a component C, the sojourn time is an exponentially dis-
tributed random variable. Moreover, C enables some activities and the sum
of these activity rates represents the parameter in the distribution. Then the
expected (i.e. the mean) sojourn time is:( ∑

a∈Act(C)

ra

)−1
Exit Rates: The related notion of the exit rate from C is more convenient to
consider. This rate can represent the rate at which an arbitrary activity is
completed in the component C (i.e. it does something). The exit rate can
also represents the rate at which the system leave the corresponding state of
component C for another one.
We denote it as q(C) and its definition is:

q(C) =
∑

a∈Act(C)

ra

Transition Rates: The transition rate is the rate at which transitions occur
between stateCi andCj or the system changes from behaving like component
Ci to behaving like component Cj . In the derivation graph there are arcs
connecting the node corresponding to Ci with the node corresponding to Cj ,
the sum of the activity rates labeling those arcs is represented by this rate.
We denote as q(Ci, Cj) the transition rate between two components Ci and Cj
and so it is:

q(Ci, Cj) =
∑

a∈Act(Ci|Cj)

ra

Where:
Act(Ci|Cj) = {|a ∈ Act(Ci)|Ci

a−→ Cj |}

Usually the previous multiset contains only a single element. Moreover, if the
set of one-step derivative of Ci doesn’t contain Cj , then q(Ci, Cj) = 0.
The off-diagonal elements of the infinitesimal generator matrix of the Markov
process Q are represented by q(Ci, Cj) which can be also denoted with qij . In
this way:

Pr(X(t+ δt) = Cj |X(t) = Ci) = q(Ci, Cj)δt+ o(δt)



36 CHAPTER 3. INTRODUCTION - PEPA

With: i 6= j

The negative sum of the non-diagonal elements of each row forms the diago-
nals elements (qii = −q(Ci)).
If exists Π(·), the steady state probability distribution for the system, we can
compute it solving the following matrix equation:

ΠQ = 0

This will be subject to the condition of normalization:∑
(Ci) = 1

Conditional Transition Rates: The conditional transition rate is the rate at
which, as a result of the completion of an activity of type α, the system
changes from behaving like component Ci to behaving like component Cj .
In the derivation graph there are arcs connecting the node corresponding to
Ci with the node corresponding to Cj , the sum of the activity rates labeling
those arcs, which have a label of the action type α, is represented by this rate.
We denote as q(Ci, Cj , α) the conditional transition rate between two compo-
nents Ci and Cj using the action type α.

Conditional Exit Rates: Also this conditional exit rate is consider sometimes.
The exit rate represents the rate at which the system leave the corresponding
state of component C for another one after the completion of an activity of
type α.
Moreover, C enables some activities and the sum of these activity rates of
type α represents this conditional exit rate. We denote it as q(C,α).
Furthermore, the apparent rate of α in C is the same as the conditional exit
rate of C using activities of type α:

q(C,α) = rα(C)



Chapter 4

Introduction - G-Networks

4.1 Introducing G-Networks

In this section I will briefly illustrate the main argument of G-Networks, with
some useful concepts.

4.1.1 Introduction

G-Networks enter in the field of queueing theory, in the more general topic
of mathematical theory of probability.
G-Network, namely Generalized Queueing Network or Gelenbe Network, is an
open network composed by G-queues. Erol Gelenbe first introduced it as a
model for queueing systems and as well as for neural networks, it has specific
control functions, which include traffic re-routing and traffic destruction.
The basis of this model is a G-queue, which is composed by:

• Positive Customers: they arrive from other queues or from outside the
system, they also wait for a service and follow a routing disciplines (like
in other conventional network models)

• Negative Customers: they arrive from other queues or from outside the
system, they don’t act as normal costumers but they remove (or kill) an-
other waiting customer of the queue (if the queue is non-empty). They
represent the need of remove some traffic in case of network congestion.
This include also removing batches of customers

37
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• Triggers: they arrive from other queues or from outside the system, they
also move other customers and displace them in other queues

A product form solution can be used to compute the stationary distribution
of G-networks. Moreover, these networks can be exploited to approximate
quite general input-output behaviors because of their nature of universal ap-
proximators for continuous and bounded functions [8].

We can briefly resume a G-network usual characteristics with the following
draft.
G-network is a network of n interconnected queues and:

• all queues, called G-Queues in this network, have a server which service
rate is µi

• external arrivals, of positive and negative costumers or of triggers and
resets, have a rate λi

• when a positive costumer (also called normal costumer) is serviced, it
can have multiple choices of behavior: to go to another queue remain-
ing a positive costumer; to change its nature and become a negative
costumer, a trigger or a reset; or to exit the system. The probabilities of
these choices are represented usually as p+ij , p

−
ij and di, respectively.

• the arrival of a positive costumer in a queue, increases the length of the
queue by 1.

• the arrival of a negative costumer in a queue, can reduce the length of
the queue by some fixed or random number of costumers (if the queue
is non-empty and there is at least one positive customer).

• the arrival of a trigger in a queue, moves a positive customer to another
queue with some probability

• the arrival of a reset in a queue, resets the queue and set it into its
steady-state only if the queue is empty at the arrival time.

• each negative costumer, trigger and reset, will disappear immediately
after completion of their actions. For this reason, they are considered
control signals of the network.
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4.1.2 General View

Gelenbe created a new class of queueing networks with two types of cus-
tomers: positive (or regular) and negative [10, 11, 2].
Interest, in queueing networks and also in the case of single server node,
has been increased since his new introduction of the notion of negative cus-
tomers. With this theory significant progresses have been made in the ver-
satile class of networks analysis. Those progresses have helped in the devel-
opment of real application systems like manufacturing, communication and
indeed computers. Moreover, they have also enriched the queuing theory.
The G-Networks, also known as queueing networks with negative customers,
signals, triggers(...), have the characteristics of containing also the presence of
negative customers in contrast with the normal positive ones. If those neg-
ative costumers arrive in a non-empty queue then there is the witness of a
removal of some amount of work from the queue itself. There are various
versions of this mechanism but the simplest of them provides that, according
to some strategy, a negative customer can delete or kill an ordinary-positive
customer.
Some extensions of this model include the removal of a random batch of cus-
tomers due to the arrival of a negative costumers. This correspond to remove
all or some random amount of work from the queue which not always repre-
sent an integer number of normal costumers.

Positive Costumers: they are the first type of customers, also known as regu-
lar customers or normal costumers. A server treats those costumers in the usual
normal way. The dynamic behavior of the considered network is determined
by service and routing disciplines that positive costumers follow.
Negative Costumers: they are the second type of costumers, contrary to the
positive ones, they induce (or kill) a positive costumer to immediately leave
the node if there is at least one in the queue, for this reason they have the
effect of a signal
The modeling of neural networks was the first motivation of the introduction
of this queueing network with positive and negative customers. A neuron
is represented by a node within this context and excitation/inhibition sig-
nals are represented by positive/negative customers routing in the network.
Those signals increase or reduce the neuron potential in which they arrive by
one unit.
G-Networks provides a basis that unifies queueing and neural networks and



40 CHAPTER 4. INTRODUCTION - G-NETWORKS

are the result of an extensions of the original network of Gelenbe.
Several extension were made since the introduction of G-networks like cover
of triggered movement, batch service networks, multiple classes networks,
state-dependent service disciplines, disasters and tandem networks.
G-Networks are a versatile class of networks in which the network behavior
is affected in many ways by the negative arrivals of costumers [2]. Some of
the different possibilities that have been introduced in this topic are:

• Individual removal: the event in which a positive costumer is canceled
by a negative customer arrival at the queue. It hasn’t effect in case the
queue is empty.

• Batch removal: the event in which a batch of customers are forced to
leave the network by a negative arrival.

• Disaster: the event in which a catastrophe in the node is the effect of a
negative arrival at the node. This means that all customers are forced to
leave the queue immediately and automatically.

• Triggered movement: the event in which the instantaneous forcing, of a
costumer movement to some other node or a batch of them to leave the
network, is triggered by a negative arrival which acts as a signal of that
trigger.

• Random work removal: the event in which the arrival of a negative cus-
tomer remove instantaneously a random amount of work from the sys-
tem.

4.1.3 ”Pure” G-Networks

The first G-networks introduced by Gelenbe, (i.e., without any extension)
are those with only general positive and negative customers. Considering
a Markovian network with n servers (also called nodes), the arrival of cus-
tomers agrees with an independent Poisson streams of rates, Λi for positive
costumes and λi for negative ones. Costumers are serviced in a server i with
times that are exponentially distributed with rate r(i).
If the queue is non-empty when negative customers arrive, its queue length
is reduced by one unit. That canceled unit represents a positive customer re-
moval.
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When a server completes to service a costumer, it can behave in three ways
when leaving the queue i and joins queue j:

• A costumer remain a positive costumer with probability p+(i, j)

• A costumer becomes a negative costumer with probability p−(i, j)

• A costumer leaves the network with probability d(i)

In this way, the traffic equations are the following:

λ+(i) =
∑
j
qjr(j)p

+(i, j) + Λ(i)

λ−(i) =
∑
j
qjr(j)p

−(i, j) + λ(i)

where qi =
λ+(i)

r(i) + λ−(i)
for i = 1, ..., n.

These equations are non-linear and this is their main feature. The interesting
thing is that if there exists {λ+(i), λ−(i)} unique and non-negative solution
such that qi < 1 ∀i > 0, then the stationary probability distribution will
have the following product form:

p(k) =
n∏
i=1

(1− qi)qkii

where k = (k1, ..., kn) represent the vector of lengths of queue.

4.1.4 Stability

Even if a ”pure” G-Network has its product form solution, it has also non-
linear traffic equations. This property distances itself from other classical
queueing networks. The non-trivial analysis of the stability of the network
and of existence of a solution to its traffic equations is the consequence of this.
The stability involves the existence of the stationary probability distribution.
Thus conditions for general stability in a multiple class G-Network (gener-
alization of the ”pure” network) are developed. This introduced method is
quite general and it can be used to analyze also extension of G-Network like
triggered movement, batch service, G-networks with different service disci-
plines [16, 13, 9, 23].
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The main point is to prove that solutions to the traffic equations exist, subse-
quently the uniqueness of solution is easy to prove. This is because it involves
the stationary solution of a system of Chapman-Kolmogorov equations.
Moreover, if a positive solution p(k) exists then it is unique.
Considering the following definition of vectors:

Λ = [Λ(i)], λ = [λ(i)], λ+ = [λ+(i)], λ− = [λ−(i)].

And taking into consideration also:

• the matrices, P+ and P−, of elements p+(i, j) and p−(i, j) respectively

• the diagonal matrix F of the element which represent the fraction of
queue entering of positive customers, who survive long enough to be
served by server and leave the queue unkilled

We can write the traffic equations in the following way:

λ+(I − FP+) = Λ, λ− = λ+FP− + λ+.

Now it can be proven that always exists the solution {λ+(i), λ−(i)} for i =
1, ..., n [10, 11, 2].

4.1.4.1 Important Property

When dealing with G-networks, the following important property ensure
that at equilibrium it doesn’t matter from which state of the queue we have
started, we will always get the same result we search for. Obviously assum-
ing that conditions for the state equilibrium are satisfied (e.g. it cannot be that
positive costumer arrival rate is much higher than the sum of the arrival rate
of negative costumer and servicing rate).
The property is this:

When the single node is at equilibrium,
the streams of future arrival of positive and negative customers,
the past departure processes of positive and negative customers
and the current state of the network are independent
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4.1.5 G-Networks Extensions

In the last years, a lot of different extensions and possibilities have been stud-
ied in this topic of G-Networks:

• G-Networks with Triggered Customer Movement: studied by [14, 12,
30, 5]

• G-Networks with Batch Removal: studied by [7, 20]

• Multiple Class G-networks: studied by [17, 24]

• G-Networks with Disasters: studied by [6]

• Tandem G-Networks: studied by [19]

The current literature was made in a short period of time and now I will
present the main extension that were made out of G-Networks. This should
discern the various kinds of G-Networks and what characterize each type of
them.

4.1.5.1 G-Networks with Triggered Customer Movement

For what concern queueing networks in the classical literature, regular cos-
tumers are assumed to move into another queue or leave the system after
they have been serviced (namely after some amount of service time). They
also usually follow a Markovian routing mechanism.
This is the standard idea of costumer transfer and this only occurs after a ser-
vice completion, however it’s possible also that in queueing networks, there
are external events occurrences which force and route a costumer to leave its
queue.
Gelembe himself introduced this new idea: G-Networks with positive customers
and signals. A Poisson process of rate λ(i) leads the arrivals of signals from
outside the queue.
If the queue is a non-empty one, signals can have two different behaviors
(and consequently two kinds of consequences in it):

• arrival of a signal implies the movement of a costumer with probability
q(i, j) from its queue i to another different queue j
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• arrival of a signal trigger a costumer (or a batch of them) to leave the
network, from queue i with probability D(i) = 1−

∑
j
q(i, j)

With the combination of this description and the routing discipline, after
some service is completed, we can comprehend that a signal could be de-
fined by the various movements of regular customers or it could also be ex-
ogenous. In both cases, an additional facility, represented by signals, is added
in the network for allow others movements of positive customers through the
system.
There are other extensions of this type where signals have a similar behav-
ior to triggers. Those are networks with both positive customers and signal
emissions. The emission of signal of effective type 0 and the concept of trig-
gers are quite similar each others.
Other extensions, for instance, involve also the use of signals within the sys-
tem for moving a costumer but considering them like a secondary service
process. Those processes have parallel characteristics with respect to regular
servicing events. This leads to the superposition of mechanisms of two ser-
vices and so these signals are no more an extra facility for the movement of
regular customers.
Some multiple class G-networks were also developed, with random trigger-
ing times. In these systems after the arrival of a signal in the queue, there is
some random delay before the trigger of a customer movement. The class of
leaving costumer, the queue in which it is and the source of the signal define
the random variable which represent that amount of time.
One last example is the incorporation, into probabilities of routing, of some
history degree of dependence. This lead to two different models of multiple
class of G-Networks:

• when a service is completed or when a negative costumer arrives, the
amount of service that has been received defines the various routing
probabilities.

• after the completion of a customer servicing time or after its obliged
movement due to a signal, the cause of its movement (namely for signal
arrival or end of its servicing) and the number of times in which signals
interrupted its service define the various routing probabilities.



4.1. INTRODUCING G-NETWORKS 45

4.1.5.2 G-Networks with Batch Removal

In G-Networks with batch removal, customers can exit the network in batch
mode. The variations assume different batch distributions and also different
movements through the system of signals and batches.
The first extension was made with the possibility of batch service when there
is a negative arrival. This kind of model keeps assumptions of input and
behavior when a regular service ends. On the other hand, when there is a
negative arrival on a non-empty queue, the effects are the same of the arrival
of a signal. The consequences are two:

• after that a signal arrives, a movement of a normal costumer, with prob-
ability q(i, j) from queue i to queue j, is triggered

• with the signal arrival, a service of a batch of normal costumers is com-
pleted

The batch size has a random distributionBi and it only depends on the queue
i in which the signal came. In case of a lesser number ki of costumers in
the node with respect to Bi, all and only the available regular customers are
removed.
There is also the extension which assumes that signals (or negative arrivals)
are secondary servicing processes. In this way both movements, caused by a
service completion of normal customers or by the arrival of signals, are the
same but they have their own specific parameters of movements triggering.
Could be also that a model has two kinds of different events in a queue i after
a service completion:

• type I: with probability pi, the routing probabilities agree with the a
general G-Network.

• type II: with probability 1− pi, a batch of size Bi leaves the network

Another batch removal system has also a symmetric behavior between ser-
vice completion and negative arrivals time but implies the following operat-
ing rules when there is a completion of service in the queue i:

• Costumers in a queue can merge together in a incomplete or partial
batch

• if a full batch is moved into a queue with a partial one, the latter is
automatically removed
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The routing possibilities are the following:

• the full batch joins the queue as a regular and singe costumer with prob-
ability p+(i, j)

• the full batch joins the queue as a signal with probability p−(i, j)

• the full batch leaves the system with probability d(i)

There can be a further implementation in which both origin and destination
queues can define the formation of negative customers batches caused by a
triggering movement. For example, the completion of a service in a queue i
can force the movement of a departing costumer to another queue j and in
the meantime also the simultaneous arrival in the same queue j of a batch
of n negative customers with probability dij(n). These creations of negative
batches can also be triggered by the external arrival to node i of a positive
customer (with size n and probability d0i(n)).

4.1.5.3 Multiple Class G-networks

Another family of alternative is represented by the case of multiple classes
of both positive and negative customers. In these extensions, either type of
costumers can belong to C different classes. An independent Poisson stream
of arrival of positive (with rate Λic) and negative (with rate λic) customers
in queue i characterize each class c. At queue i, c-type positive costumers
are served with exponential servicing time distribution ric. In the case of a
normal G-Network λic = λi, ∀c.
In those multi-class G-Networks, the state of system is now defined by:

• vector k = (k1, ..., kn)

• each component ki = (ki1, ..., kiC) ∀i = 1, ..., n

• each kic represents the the costumers number of class c in queue i

Negative costumers effects can be described in various ways:

• the negative arrivals of a c-class in the queue i affect only positive cos-
tumers of the same type (i.e. the same class c). Thus, if the number of c
positive costumers is greater than zero (kic > 0) then the length of the
queue is reduced by one unit.



4.1. INTRODUCING G-NETWORKS 47

• the negative arrivals trigger a removal of a random class costumer. Thus,
if in queue i a negative customer arrives and it is a non-empty queue
(ki > 0), then a positive customer of class c is removed with probability
kic
ki

.

• the most intricate of the three removal policies: the negative arrivals to
empty queues don’t have any effect and simply leave the system. The
negative arrivals to a non-empty queues select a regular costumer to be
removed, according to the service discipline of the current queue. Then,
the negative costumer try to kill the selected regular one and succeed
with probability Ki,m,n.
Where i is the queue, m is the class of the negative costumer and n is
the class of the positive costumer.

There are further studies [5, 7, 24] in which several service disciplines have
been considered in these G-Networks extensions like:

• first-come-first-served (FIFO or FCFS)

• processor sharing

• last-come-first-served (LCFS or LIFO) with preemptive resume priority

• efforts depending on state of system

• symmetric queues

• arbitrary service times

Moreover, there are the introduction of multiple class also for triggers [15].
Also the routing probabilities can be changed in some models depending on
the service times or on the number of service interruptions. Usually those
G-networks have n nodes, C classes of positive costumers and only a unique
type of negative ones. In this way, node i and class c determine the arrival
rates Λic whereas only the node i determines the exogenous negative arrival
rate λi.
We have to remember that different G-Networks usually require various ser-
vice requirements. Generally speaking, different servicing time distributions
belong to different types of costumers but in some cases, to soothe any other
condition we assume homogeneous service requirements.
For what concern the deletion choice of costumers, it could be:



48 CHAPTER 4. INTRODUCTION - G-NETWORKS

• random

• depend on the position of the customer in queue

• the class of the customer

• the service effort offered

All these multiple class G-Networks can bee described also as a particular
case of a general state-dependent description. Those more general systems
have state-dependent intensities and their signals can be either a trigger or a
batch of negative customers. Moreover, two non-negative functions, φ and ψ
(defined on Zn), describe the arrival of signals and positive customers.

4.1.5.4 G-Networks with Disasters

In some extensions, G-Networks can also be composed by the presence of
a flow of disasters. Contrary to previous G-Networks, in this case there is
the possibility of a disaster. These disasters represent an extreme case of cos-
tumers exodus. In fact, all the costumers present in the queue, which is af-
fected by the disaster, are automatically removed from the system.
The first studies of a clearing mechanism for single node queues were further
developed in more detail with G-Networks with disasters. Virus infections in
computer networks and catastrophes in migration processes are some possi-
ble applications to those models. All the assumptions of the main (or ”pure”)
G-Network remain valid with one exception for the negative arrivals. In this
specific case, a Poisson flow of disasters replace the usual single negative
arrivals. These disasters arrive in a queue i with rate λ(i) and the rules for
arrivals and routing of disasters are the same as the ones for negative arrivals.
The only difference is on the behavior, a disaster implies the total destruction
of all costumers (and indeed of work) in the destination queue.
In this kind of networks, the following nonlinear system is satisfied by their
traffic equations:

λ+(i) =
∑
j
qjr(j)p

+(j, i) + Λ(i),

λ−(i) =
∑
j
qjr(j)p

−(j, i) + λ(i)

where
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q(i) =
{
λ+(i) + λ−(i) + r(i)− (λ+(i)2 + λ−(i)2 + r(i)2 +

+2λ+(i)λ−(i) + 2λ−(i)r(i)− 2λ+(i)r(i))1/2
}
/2r(i)

If either λ−(i) > 0 or (λ−(i) = 0 and λ+(i) < r(i)) are satisfied by the solution
of this system for each node i, then the stationary probability distribution will
have the product form:

p(k) =
∏
i

(1− qi)qkii

4.1.5.5 Tandem G-Networks

Usually the main analysis in G-Networks includes stability, balancing equa-
tions and existence of a product form. In the case of tandem G-Networks, the
delay times and the response time distribution are the focus of analysis [19].
In a tandem of two Markovian G-Queues, the arrivals of costumers in the
queue are determined by Poisson processes. With rate Λ(i) for positive cos-
tumers and rate λ(i) for negatives one (for i = 1, 2 where i is the number of
queue). Moreover, regular costumers are served with time exponentially dis-
tributed with rate r(i). We have to remember that the exponential law has the
memoryless property, thus the policies of service and removal, and the queue
length distribution are independent.
In this way the limiting probability distribution is the following:

p(k1, k2) =
2∏
i=1

(1− ρi)ρkii

where

ρ1 =
Λ(1)

λ(1) + r(1)
< 1,

ρ2 =
r(1)ρ1 + Λ(2)

λ(2) + r(2)
< 1

To analyze the response times distribution (namely end-to-end delays) it is
assumed that queueing discipline in the G-Queues pair is FCFS and in case
of negative arrival, the removal of costumers starts at the end of the queue
(RCE). However this computation of the response time distribution also for
simple G-Networks is quite complex due to a phenomenon of overtaking [19].
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This event is the overseeing of a positive costumer from its removal: when an-
other regular customers arrives in the queue immediately after the observed
customer, positive costumer protects the observed one from removal of nega-
tive arrival. In this way the fate of observed costumer depends on the arrival
of positive customers after it.
The non-independence in each queue of sojourn times, which on the contrary
exist in classical networks without negative arrivals, is explained by this phe-
nomenon.
The probability of a positive costumer of not being deleted jointly the dis-
tribution of response time, have the following form (in terms of the Laplace
transform):

W ∗(s) = (1− ρ1)(1− ρ2)×
r(1)

Λ(1)
y1(s)G(ρ2, 0, y1(s), s)

Considering a Markovian G-Queue with FCFS and RCE discipline, in this
formula the root involved in the sojourn time distribution is represented by
y1(s) and functional equation is satisfied by function G. Dealing with the
dependence of sojourn times lead to this complex solution, even so the prob-
ability that a costumer is not removed can be reduced to the following simple
product formula:

W ∗(0) =
r(1)

λ(1) + r(1)

r(2)

λ(2) + r(2)

If we consider the particular case in which Λ(2) = λ(2) = 0, then, as we
can expect, the sojourn times are independent in all queues and moreover
distributed like considering isolated each corresponding queues.
Finally, in the case of Λ(2) = λ(1) = 0 , then costumers in second queue are
protected by the costumers departures of first queue and consequently there
is still dependence on the sojourn times.

4.1.5.6 The Service Mechanism

Now I will briefly describe the different possible choices of the service mecha-
nism and other relating operating rules for G-Networks. This include also the
individual service times. The network design of the whole system is strictly
connected with the choice of a service mechanism, this means that we have
to strengthen the description of other network components if we relax any
assumption on the choice. The final outcome and also the service facilities
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are greatly influenced by those compensations. In general, r(i) is the rate of
exponential service distribution of time in basic G-Networks at queue i but it
can be changed when there is multiple classes of customers and it is modified
by the type of costumers and/or the queue considered.
In a multiple class G-Network with tree distinct types of servicing centers
which have the following service disciplines:

• First-Come-First-Served (FCFS or FIFO)

• Processor Sharing (PS)

• Last-Come-First-Served with preemptive resume priority (LCFS/PR or
LIFO/PR)

Each class of positive customers c can obey a different service rate ric. In
this case, k = (k1, ..., kn) is the representation of state of FCFS and LCFS/PR
queues and in the queue i, the vector (kij) represents the state ki. The length
of that vector is the number of positive costumers in the node and the class
of costumers in position j is represented by the j-th element of the vector. On
the contrary, with PS queues, the state ki is itself a vector and the number of
positive costumers of class c in node i is represented by the c-th element of the
vector. In some cases, G-Networks (with general n + 1 queues) can label the
queue 0 as the ”outside” of system and allow the queues to have a negative
queue.
Considering the general state-dependent intensities, we can define each node
as a source and a costumers queue. The rate of generation of positive cus-
tomers is the following:

Λ(i)
ψ(k − ei)
φ(m)

with k = (k1, ..., kn) is the vector of lengths of queue, e0 is a vector of zeros
with length n and ei (with i > 0) is a n vector of zeros except of a 1 in the i-th
position. Moreover, ψ(·) is a non-negative function in Zn and φ(·) is a positive
function in Zn.
There are also the following definitions:
d+ij is the probability of the routing to queue j of the emitted customer, with
0 ≤ j ≤ n and the subsequently addition of one unit in the length of queue j
(except for queue 0),
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d−ij(t) is the probability of transformation of the emitted costumer into a sig-
nal t and its routing to queue j, with 0 ≤ j ≤ n and the negative batch size is
denoted by t (t ≥ 0)
Then the emission embeds the departure process and the choice of probabil-
ities d+ij , d

−
ij(t) determines triggers and individual (or batch) services depen-

dence.
Let’s consider now, mechanisms of service when they are state-dependent,
having also symmetric queues and general service times. Furthermore, the
system with state-dependent service times is multiple class G-Network. A
positive costumer in a queue i, require a servicing time exponentially dis-
tributed with rate r(i), so it doesn’t depend on the type of class. When ki
costumers are in the queue i the rate of total service is: Φi(ki)r(i).
A costumer, in position l with l = 1, ..., ki of the queue i, has an effort service
that is a γi(l, ki) proportion of the total potential of service. After the comple-
tion of the service of that costumer, other customers in positions l + 1, ..., ki
shift to positions l, ..., ki − 1. A positive or signal arrival trigger the realloca-
tion of costumers and this reallocation is determined by two auxiliary prob-
abilities δ(l, ki) and η(l, ki). Moreover, standard routing probabilities connect
individual queues with one another.
Finally, if we relax the assumption of class homogeneity, assuming that ser-
vice requests of costumers of class c in queue i have exponential time with
rate ric, then we have to make an assumption that the discipline of service is
symmetric (γi(l, ki) = δ(l, ki) = η(l, ki)).
There can be also other models with different assumptions of servicing ef-
forts and the analysis could involve and arbitrary service time distribution
Fic(x). In conclusion, even if it depends on the service time distributions, the
stationary distribution has also its own product form.

4.2 Applications

There are a lot of different fields of applications, in which complex systems
can be modeled by the class provided by G-Networks, such as:

• Computer Networks

• Neural Networks

• Migration Processes
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• Telecommunication Systems

• Production Systems

• Maintenance

From the original ”pure” G-Networks in which inhibitor signals of neural
networks are represented by the negative customers, there has been a wide
and huge extension of that first model. All those applications now can cover
a lot of different fields.
Now I give a non-exhaustive list of some of those fields of interest in G-
Network literature, in order to make a general idea of the potentiality, power
and expressivity of this theory:

• Traveling salesman problem

• Problem of minimum graph covering

• Inventory systems

• Computer networks with infection of virus

• Predator-prey models

• Risk processes

• The deletion of transactions in databases

• Synchronization signals in parallel computation

• Artificial textures generation

• Public service systems

• Parallel processing systems

• Steiner trees

• Job inspection

• Processes of migration

• Manufacturing and production systems
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• Integrated service digital networks

• Packet switching networks

• Signal modeling in neural networks



Chapter 5

Encoding

5.1 Encoding G-Network with PEPA

In this section of the thesis, I will first analyze a general example of a type of
G-Network. I will focus my attention on its behavior that is the main target of
my modeling and try to find out the mechanism under the changes of states
of the system. In this way I form the basis of the subsequently model phase.
Furthermore I search for various aspects of the network:

• dependences between components

• transitions of states in each component

• cooperations between components and their consequences

• limit and particular cases and borderlines (like state 0 or state n)

After that I will try to model it with PEPA language. In this first example I
found five possible encodings with PEPA:

• with the use of Exclusive Addition (ExA)

• with the use of ⊥-Actions (⊥)

• with a Partial Index (PI)

• with a Double Index (DI)

• with a Warden Process (WaP)

55
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Each of them present positive and negative characteristics, analyzed in detail
in the following sections.
Then I start the analysis of a new example to verify and test the expressive-
ness and potentiality of each solution. In that phase I found that there are two
possible solutions more suitable than others and in those two cases I make
their derivation Graphs.
The last phase of this part is the selection of one of the two possible solutions
and its comparison with the original G-Network system. In order to do that
I will compare each possible state and transition of the original system with
those of my model. I will make the comparison using the inductive reason-
ing.
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5.1.1 Analysis and Modeling - Description of the first example

The first example is a G-Network with trigger generated after job completion
in R1 that moves a customer from R3 to R2. It is represented by the following
image:

Figure 5.1: G-Network with trigger

In this specific type of G-Network, an homogeneous Poisson processes de-
fines the arrival of positive customers, which arrive from outside the system
to queue R1 and R3, with rates λ1 and λ3, respectively. Moreover, the rates
µ1, µ2 and µ3 represent the service times in each queue and so they are ex-
ponential random variables, which are independent. A costumer of R1, after
the completion of its service can move to R2 as a regular costumer (a+12) or
can travel to R3 and change its nature into a trigger (a−13). In the second case,
when R3 is a non-empty queue, the length of its queue is reduced by one unit
and a positive costumer is added to the queue R2 (a+32). If R3 is empty when
the trigger arrives, than nothing happen to R3. We have to notice that when
both R1 and R3 are non-empty queues, then the trigger causes the change of
states in all of three queues simultaneously.



58 CHAPTER 5. ENCODING

If we considering the following informal annotations:

(r1, r2, r3) is the state of the system, describing each queue with the
number of its costumers
where:
r1 is the number of positive costumers in R1,
r2 is the number of positive costumers in R2,
r3 is the number of positive costumers in R3.

And:

r+i represents the addition of a positive costumer to queue i (with
i = 1, 2, 3) and is equivalent to r+i = ri + 1
r−i represents the completion of a service of a positive costumer and
its consequently departure from queue i (with i = 1, 2, 3) and is
equivalent to r−i = ri − 1

An overall informal description of this G-Network behavior can be the fol-
lowing:
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1) In R1 can arrive a positive costumer ∀r1 ≥ 0, this implies the
change of overall state to (r+1 , r2, r3)

2) In R3 can arrive a positive costumer ∀r3 ≥ 0, this implies the
change of overall state to (r1, r2, r

+
3 )

3) In R1 a positive costumer can have its service completed ∀r1 > 0
and then it remains a positive costumer and goes to R2, this implies
the change of overall state to (r−1 , r

+
2 , r3)

4) In R1 a positive costumer can have its service completed ∀r1 > 0
and then it becomes a trigger and goes to the empty queue R3 (and
it does nothing in R3), this implies the change of overall state to
(r−1 , r2, 0)

5) In R1 a positive costumer can have its service completed ∀r1 > 0
and then it becomes a trigger and goes to the non-empty queue R3

(∀r3 > 0) forcing a positive costumer in the arrival queue to move in
R2 (∀r2 ≥ 0), this implies the change of overall state to (r−1 , r

+
2 , r

−
3 )

6) In R2 a positive costumer can have its service completed ∀r2 > 0
and then it leaves the system as a positive costumer, this implies the
change of overall state to (r1, r

−
2 , r3)

7) In R3 a positive costumer can have its service completed ∀r3 > 0
and then it leaves the system as a positive costumer, this implies the
change of overall state to (r1, r2, r

−
3 )

To summarize the arrivals and departures in each state:

• 1: arrival in R1

• 3,4,5: departure from R1

• 3,5: arrival in R2

• 6: departure from R2
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• 2: arrival in R3

• 5,7: departure from R3

To summarize relations between state of components and actions:

• r1 ≥ 0 can do 1

• r1 > 0 can do 1,3,4,5

• r2 ≥ 0 can do 3,5

• r2 > 0 can do 3,5,6

• r3 ≥ 0 can do 2,5

• r3 > 0 can do 2,5,7

And actions which change more queues are: 3 and 5

In the following section, I try to capture the behavior of this G-Network with
PEPA language.



5.1. ENCODING G-NETWORK WITH PEPA 61

5.1.2 Analysis and Modeling - Encoding Trials of G-network with
Trigger

I will now present my trials with the encoding of the G-network with Trigger
using PEPA. I adopt the annotation in which Pi is a generic state of R1, Qj of
R2 and Rk of R3.

5.1.2.1 Exclusive Addition (ExA)

In this first trial I use the concept of exclusive addition. An exclusive addition
is an extension of combinators of PEPA and it is very similar to choice. The
difference is that the two components of this combinators aren’t enabled in
the same time but have the same rate, this mean that in P ⊕Q or P is enabled
and can perform an action or Q is enabled and can perform an action.
Moreover, in the corresponding underlying Markov process, the arrows exit-
ing from P ⊕ Q aren’t two but only one, the one of the enabled activity. We
have to consider also, and it is quite important, that the rate of the exclusive
addition combinator is not the sum of the two identical rates but it is only one
at time.
Finally, the concise representation of the exclusive addition combinator in a
normal activity of type α is (αx, r) in which:

• α is the common general name of the exclusive addition

• x is the index which represents one instance of the exclusive addition
and can be itself a set of indexes x = (x1, ..., xm)

• r is the identical rate of all components of exclusive addition

In this way a general exclusive addition (α0, r).P0⊕(α1, r).P1⊕···⊕(αn, r).Pn
can be concisely represented as (αx, r).Px with x = 1, ..., n.
We have to notice that the name of the action and the arrival state Pj are inde-
pendent and we can have (αx, r).Py with x = 1, ..., n and y a set of numbers
∈ N.
Furthermore, if the arriving states (namely P0, ..., Pn) are all the same (namely
P = P0 = ... = Pn) then the concise description can be (αx, r).P .

The encoding of the G-Network in PEPA is the following:
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R1 =


P0 = (τ, λ1).P1

Pn = (τ, λ1).Pn+1 + (a, µ1p).Pn−1 + (ax,

r︷ ︸︸ ︷
µ1(1− p)).Pn−1︸ ︷︷ ︸

(a0,r).Pn−1⊕(a1,r).Pn−1

n > 0

R2 =

{
Q0 = (a,>).Q1 + (a1,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (τ, µ2).Qn−1 n > 0

R3 =

{
R0 = (τ, λ3).R1 + (a0,>).R0

Rn = (τ, λ3).Rn+1 + (τ, µ3).Rn−1 + (a1,>).Rn−1 n > 0

With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (τ, λ3) in R3

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in R1 and by (a0,>) in R3

• 5: represented by (a1, µ1(1− p)) in R1 and by (a1,>) in both R2 and R3

• 6: represented by (τ, µ2) in R2

• 7: represented by (τ, µ3) in R3

5.1.2.2 Solution ⊥-Actions (⊥)

In this second trial I use the concept of ⊥-actions (or Bottom Actions). We can
imagine a ⊥-action as a limit case of a normal action in which its rate is 0.
This mean that the activity with 0 rate intuitively takes place immediately af-
ter the completion of the previous action, in this way there is no waiting time
or duration time of this activity service. In a system, this can represent the
change of its state without any work done.
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For example, a component (α, r).(β,⊥).(γ,⊥).P after the completion of α ac-
tion, it instantly makes also β and γ actions, without any elapsing of time
and behaves as P . Furthermore, if there are other components in the system
which have actions of type (β,>) or (γ,>) and they have a cooperation in
those actions with the first component, then they also perform these actions
instantly and change their behavior according to their next activities (i.e. ac-
tivities after the bottom ones).
Moreover in this encoding, R1 is aware of the changes of R3 state and it is in-
formed by R3 itself, with the use of cooperation combinator in its actions fill
and empty which increase or decrease its positive costumers, respectively. In
this way R1 can choose the right action to enable because it knows if R3 is an
empty or a non-empty queues.
This information is stored in R1 with the apex in the name of its state, thus:

• Pi represents the queue R1 with i positive costumers and the empty
queue R3 with 0 positive costumers, ∀i ≥ 0

• P ′i represents the queueR1 with i positive costumers and the non-empty
queue R3 with the number of positive costumers greater than zero,
∀i ≥ 0

The encoding of the G-Network in PEPA is the following:

R1 =


P0 = (τ, λ1).P1 + (fill,>).P ′0
P ′0 = (τ, λ1).P

′
1 + (empty,>).P0

Pn = (τ, λ1).Pn+1 + (fill,>).P ′n + (a, µ1p).Pn−1 + (a0, µ1(1− p)).Pn−1 n > 0

P ′n = (τ, λ1).P
′
n+1 + (empty,>).Pn + (a, µ1p).P

′
n−1 + (a1, µ1(1− p)).P ′n−1 n > 0

R2 =

{
Q0 = (a,>).Q1 + (a1,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (τ, µ2).Qn−1 n > 0

R3 =


R0 = (fill, λ3).R1 + (a0,>).R0

R1 = (τ, λ3).R2 + (empty, µ3).R0 + (a1,>).(empty,⊥).R0

Rn = (τ, λ3).Rn+1 + (τ, µ3).Rn−1 + (a1,>).Rn−1 n > 1
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The only ⊥-action is in (a1,>).(empty,⊥).R0 because R3 needs to perform
both a1, to satisfy the trigger, and empty to communicate to R1 that it is be-
come an empty queue.
With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (fill, λ3) in emptyR3 (andR1 is informed with (fill,>))
or by (τ, λ3) in non-empty R3

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in R1 and by (a0,>) in R3

• 5: represented by (a1, µ1(1− p)) in R1 and by (a1,>) in both R2 and R3

• 6: represented by (τ, µ2) in R2

• 7: represented by (empty, λ3) in R3 if it has only 1 costumer (and R1 is
informed with (empty,>)) or by (τ, µ3) in R3 in all other cases

5.1.2.3 Solution Partial Index (PI)

This third trial uses the concept of a partial index. This partial index in R1

trace partial information about the state of R3 and also have two different
activities with the same rate.
In this sense it is some sort of merging between the first two ideas of encoding.
It encapsulates the share of information between R1 and R3 in R1 from the
bottom actions and, from exclusive addition, has two activity with the same
rate, even if those two activity aren’t logically part of the same ”family” of
activities. We can see this similarity as a limit case of the exclusive addition,
in which we take only a main case (a1) and a limit case (aempty). Here we
have two cases anyway, but if we had three cases we would only choose two
of them. Furthermore aempty could represent the fusion of (a1,>).(empty,⊥)
in a single action with the rate µ1(1− p) of a1 in R1 and the rate > in R3.
This is coherent with my vision of ⊥-action in which the sums behave as:

• ⊥+> = 0 +> = >

• ⊥+ µ1(1− p) = 0 + µ1(1− p) = µ1(1− p)
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Like in the previous encoding, R1 is aware of the changes of R3 state and it is
informed by R3 itself, with the use of cooperation combinator in its actions:
fill increases its positive costumers and empty or aempty decrease them. In
particular those types of actions mark the border of R3 state between empty
and non-empty queue. Thus, R1 can choose the right action to do because it
knows if R3 is an empty or a non-empty queues but still have uncertainty in
the precise state ofR3: it doesn’t know if the next decrease of costumers ofR3

will change its state to empty queue.
Anyway, like before, this information is stored in R1 with the apex in the
name of its state, thus:

• Pi represents the queue R1 with i positive costumers and the empty
queue R3 with 0 positive costumers, ∀i ≥ 0

• P ′i represents the queueR1 with i positive costumers and the non-empty
queue R3 with the number of positive costumers greater than zero,
∀i ≥ 0

The encoding of the G-Network in PEPA is the following:

R1 =



P0 = (τ, λ1).P1 + (fill,>).P ′0
P ′0 = (τ, λ1).P

′
1 + (empty,>).P0

Pn = (τ, λ1).Pn+1 + (fill,>).P ′n + (a, µ1p).Pn−1 + (a0, µ1(1− p)).Pn−1 n > 0

P ′n = (τ, λ1).P
′
n+1 + (empty,>).Pn + (a, µ1p).P

m
n−1 + (a1, µ1(1− p)).P ′n−1+

+(aempty, µ1(1− p)).Pn−1 n > 0

R2 =

{
Q0 = (a,>).Q1 + (a1,>).Q1 + (aempty,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (aempty,>).Qn+1 + (τ, µ2).Qn−1 n > 0

R3 =


R0 = (fill, λ3).R1 + (a0,>).R0

R1 = (τ, λ3).R2 + (empty, µ3).R0 + (aempty,>).R0

Rn = (τ, λ3).Rn+1 + (τ, µ3).Rn−1 + (a1,>).Rn−1 n > 1
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As usual, with this representation, I can define the following correspondence
between informal description and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (fill, λ3) in emptyR3 (andR1 is informed with (fill,>))
or by (τ, λ3) in non-empty R3

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in R1 and by (a0,>) in R3

• 5: represented by (a1, µ1(1− p)) in R1 and by (a1,>) in both R2 and R3

if R3 has only 1 costumer or by (aempty, µ1(1− p)) in R1 and (aempty,>)
in both R2 and R3 in all other cases

• 6: represented by (τ, µ2) in R2

• 7: represented by (empty, λ3) in R3 if it has only 1 costumer (and R1 is
informed with (empty,>)) or by (τ, µ3) in R3 in all other cases
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5.1.2.4 Solution Double Index (DI)

This fourth trial uses the concept of a double index. Unlike the previous ex-
amples, this double index in R1 trace fully the information about the state of
R3.
This increases the ”dependence” of R1 with respect to R3 but completely
eliminates any possible uncertainty of its possible choices regarding a0 and
a1. R1 knows exactly how many positive costumers are in R3 so it can decide
to perform a0 in case of empty R3 or a1 if R3 has costumers. Furthermore,
R1 knows also if the departure of the following costumer in R3 will leave R3

empty or not.
In this way we don’t need neither exclusive addition nor double actions (like
bottom actions or aempty). Thus, if in one part there is a growing in depen-
dence of R1 from R3 and the increase of the space of states, on the other side
there is a simplification in the complexity of actions and their correspondence
with the behavior of the original system and also in the whole encoding of the
system.
Moreover, in previous encoding the space of state for R1 is n ∗ 2 where n is
the number of its costumer and 2 represents the possible encapsulated states
of R3 (empty or non-empty); in this case the space is n ∗ m where n is the
number of costumers of R1 and m is the number of costumers in R3.
Then similarly to previous encodings, R1 is aware of all changes of R3 and it
is informed byR3 itself, with the use of cooperation combinator in its actions:
fill increases its positive costumers and empty decreases them. In particular
those types of actions helpR1 to keep track of the number of costumers inR3.
This information is stored inR1 with the apex number in the name of its state,
thus:

• Pi represents the queue R1 with i positive costumers and the empty
queue R3 with 0 positive costumers, ∀i ≥ 0

• P ji represents the queue R1 with i positive costumers and the non-
empty queue R3 with j positive costumers ∀i ≥ 0 and ∀j > 0

The encoding of the G-Network in PEPA is the following:
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R1 =



P0 = (τ, λ1).P1 + (fill,>).P ′0
Pm0 = (τ, λ1).P

m
1 + (fill,>).Pm+1

0 + (empty,>).Pm−10 m > 0

Pn = (τ, λ1).Pn+1 + (fill,>).P ′n + (a, µ1p).Pn−1 + (a0, µ1(1− p)).Pn−1 n > 0

Pmn = (τ, λ1).P
m
n+1 + (fill,>).Pm+1

n + (empty,>).Pm−1n + (a, µ1p).P
m
n−1+

+(a1, µ1(1− p)).Pm−1n−1 m > 0;n > 0

R2 =

{
Q0 = (a,>).Q1 + (a1,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (τ, µ2).Qn−1 n > 0

R3 =

{
R0 = (fill, λ3).R1 + (a0,>).R0

Rn = (fill, λ3).Rn+1 + (empty, µ3).Rn−1 + (a1,>).Rn−1 n > 0

As usual, with this representation, I can define the following correspondence
between informal description and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (fill, λ3) in R3 (and R1 is informed with (fill,>))

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in R1 and by (a0,>) in R3

• 5: represented by (a1, µ1(1− p)) in R1 and by (a1,>) in both R2 and R3

• 6: represented by (τ, µ2) in R2

• 7: represented by (empty, λ3) inR3 (andR1 is informed with (empty,>))

5.1.2.5 Solution Warden Process (WaP)

This last trial uses the concept of a warden process. In this trial I add a process
in my model called warden process which purpose is to oversee the changes of
other states (when necessary) and take the right decisions when it is neces-
sary to. In this specific case the warden process has fully the information
about the state of R3, and take the decisions instead of R1.
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This create a dependence of C with R1 and R3 and also R1 ”loses” some of
its identity (i.e. the kind of work it can perform) and gives it to C and this
leads to the split of the original behavior of R1 in the G-Network in more
processes. On the other hand, this concept completely eliminate any possible
uncertainty of the possible choices regarding a0 and a1 because C knows ex-
actly how many positive costumers are in R3 so it can decide to perform a0
in case of empty R3 or a1 if R3 has costumers. Furthermore, C knows also if
the departure of the following costumer in R3 will leave R3 empty or not.
Another advantage is the decrease in complexity of encoding (i.e. there are
only two kind of state in each process: empty or non-empty), a simplification
in the complexity of actions and their correspondence with the behavior of
the original system.
Moreover, the space of state for R1 is only n where n is the number of its cos-
tumer and for both C and R is m where m is the number of costumers of R3.
Then similarly to previous encoding, C is completely aware of all changes
of R3 and it is informed by R3 itself, with the use of cooperation combina-
tor in its actions: fill increases its positive costumers and empty decreases
them. In particular those types of actions help C to keep track of the number
of costumers in R3. In this way I split the complexity of R1 in the previous
encoding in two part: in R1 and C. Then, without letting R1 knows anything
about R3, I decrease the whole complexity of R1.
Information about R3 is no more stored in an apex of some process but is in
the number of C, thus:

• C0 means that R3 is an empty queue R3 with 0 positive costumers

• Ci means that R3 is a non-empty queue R3 with i positive costumers
∀i > 0

The encoding of the G-Network in PEPA is the following:
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R1 =

{
P0 = (τ, λ1).P1

Pn = (τ, λ1).Pn+1 + (a, µ1p).Pn−1 + (a0,>).Pn−1 + (a1,>).Pn−1 n > 0

R2 =

{
Q0 = (a,>).Q1 + (a1,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (τ, µ2).Qn−1 n > 0

R3 =

{
R0 = (fill, λ3).R1 + (a0,>).R0

Rn = (fill, λ3).Rn+1 + (empty, µ3).Rn−1 + (a1,>).Rn−1 n > 0

C =

{
C0 = (fill,>).C1 + (a0, µ1(1− p)).C0

Cn = (fill,>).Cn+1 + (empty,>).Cn−1 + (a1, µ1(1− p)).Cn−1 n > 0

As usual, I can define the following correspondence between informal de-
scription and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (fill, λ3) in R3 (and both R1 and C are informed with
(fill,>))

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in C and by (a0,>) in both R1 and R3

• 5: represented by (a1, µ1(1 − p)) in C and by (a1,>) in R1 and R2 and
R3

• 6: represented by (τ, µ2) in R2

• 7: represented by (empty, λ3) in R3 (and both R1 and C are informed
with (empty,>))

5.1.3 Analysis and Modeling - Description of the second example

I will now proceed with the analysis and encoding of the second example.
The second example is a G-network with iterative customer removals started
with the arrival of an external negative trigger β, this system add also the
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concept of chains of actions in the model, further than the previous example.
This concatenation of a lot of instant actions will stress my trials and enlighten
their advantages and their weaknesses.
It is represented by the following image:

Figure 5.2: G-network with iterative customer removals

In this example there is the use of a negative trigger β. Negative and posi-
tive triggers are very similar, except that a negative one transform a removed
costumer into a trigger itself (which can be positive or negative). Thus, if a
negative trigger is generated from a removed costumer, its arrival to the next
queue will be also a trigger and this can lead to the formation of chains of
negative triggers in a system. Those triggers will stop only if they move to
an empty queue or they become a positive trigger or leave the network (like
ordinary negative customers) and have a strictly specific order of their rout-
ing (i.e. trigger with route 1, 2, 3 has different behavior from one with route
1, 3, 2). In this way a whole subset of queues of the system can be emptied.
In this specific type of G-Network, an homogeneous Poisson processes de-
fines the arrival of positive customers, which arrive from outside the system
to queue R1, with rates λ. Moreover, they are served first in R1 and then in
R2, the rates µ1 and µ2 represent in fact the service times in each queue and so
they are exponential random variables, which are independent. A costumer
of R1, after the completion of its service, moves to R2 as a regular costumer
(a+12). A negative trigger can arrive with rate β in R1 and it reduces the length



72 CHAPTER 5. ENCODING

of its queue by one unit if R1 is a non-empty queue. Moreover, that removed
costumer become a negative trigger and it will instantaneously propagate to
R2, then back to R1, then to R2 again and so on, until one of the two queue is
emptied when the chain of triggers arrives. In this way the chain terminates.
(a−12) represents the propagation of the trigger from R1 to R2 and (a−21) rep-
resents the opposite. Thus, this example allows the construction of chains of
instantaneous transitions from the two queues. These chains are finite even
if they are also unbounded in length. Obviously, we have to notice that when
both R1 and R2 are non-empty queues, then the trigger causes the change
of states in both of them simultaneously and usually with an high change in
their numbers of positive costumers.

If we considering the following informal annotations:

(r1, r2) is the state of the system, describing each queue with the
number of its costumers
where:
r1 is the number of positive costumers in R1,
r2 is the number of positive costumers in R2,

And:

r+i represents the addition of a positive costumer to queue i (with
i = 1, 2, 3) and is equivalent to r+i = ri + 1
r−i represents the completion of a service of a positive costumer and
its consequently departure from queue i (with i = 1, 2, 3) and is
equivalent to r−i = ri − 1

An overall informal description of this G-Network behavior can be the fol-
lowing:
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1) In R1 can arrive a positive costumer ∀r1 ≥ 0, this implies the
change of overall state to (r+1 , r2)

2) In R1 a positive costumer can have its service completed ∀r1 > 0
and then it remains a positive costumer and goes to R2, this implies
the change of overall state to (r−1 , r

+
2 )

3) In R2 a positive costumer can have its service completed ∀r2 > 0
and then it leaves the system as a positive costumer, this implies the
change of overall state to (r1, r

−
2 )

4) In R1 when is an empty queue, can arrive a negative trigger from
both outside the system or R2 and it stops itself and does nothing in
R1, the overall state remains (0, r2)

5) In R1 a negative trigger can arrive from both outside the system or
R2 ∀r1 > 0 and then, after it kills a positive costumer in the queue,
it propagates immediately to R2, this implies the change of overall
state to (r−1 , r2)

6) In R2 when is an empty queue, can arrive a negative trigger from
R1 and it stops itself and does nothing in R2, this doesn’t change the
overall state (r1, 0)

7) In R2 a negative trigger can arrive from R1 ∀r2 > 0 and then, after
it kills a positive costumer in the queue, it propagates immediately to
R1, this implies the change of overall state to (r1, r

−
2 )

To summarize the arrivals and departures in each state:

• 1: arrival in R1

• 2,5: departure from R1

• 2: arrival in R2

• 3,7: departure from R2
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To summarize relations between state of components and actions:

• r1 ≥ 0 can do 1,4

• r1 > 0 can do 1,2,5

• r2 ≥ 0 can do 2,6

• r2 > 0 can do 2,3,7

And the only action which change more queues are 2, but 5 and 7 are part of
a chain of changes.

In the following section, I try to capture the behavior of this G-Network with
PEPA language.



5.1. ENCODING G-NETWORK WITH PEPA 75

5.1.4 Analysis and Modeling - Encoding Trials of G-network with
Iterative Customer Removals

I will now present the stress test of my trials with the encoding of the G-
network with Iterative Customer Removals using PEPA. I adopt the annota-
tion in which Pi is a generic state of R1 and Qj of R2.

5.1.4.1 Exclusive Addition (ExA)

In this trial I use again the concept of exclusive addition but with another con-
cise representation. In this concise representation of the exclusive addition I
use the concept of if/else because there can be two main cases, even if the
functionality of the underlying exclusive addition doesn’t change. The two
cases are:

• the number of costumers of R1 is less than the number of R2, in this
case the negative trigger will empty the R1 queue

• the number of costumers of R1 is more than the number of R2, in this
case the negative trigger will subtract only a certain amount of cos-
tumers in R1 queue

It is more or less the same, also in the case of Q process.
Thus, the general exclusive addition (a0n, β).Pn−1 ⊕ (a1n, β).Pn−2 ⊕ · · · ⊕
(ann, β).P0 ⊕ · · · is split in two parts
(a0n, β).Pn−1 ⊕ (a1n, β).Pn−2 ⊕ · · · ⊕ (an−2n, β) in which x + 1 < n and the
arrival process is Pn−x−1,
(an−1n, β).P0 ⊕ (ann, β).P0 ⊕ (an+1n, β).P0 ⊕ · · · in which x+ 1 ≥ n and the
arrival process is always P0.
This is done in order to avoid negative results from subtractions because neg-
ative states don’t exist in this system.
Like in the other concise description, also here in the extended representation
of the exclusive addition, the x will be replaced by all its possible values.

The encoding of the G-Network in PEPA is the following:
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R1 =


P0 = (τ, λ).P1 + (τ, β).P0

Pn = (τ, λ).Pn+1 + (a, µ1).Pn−1+

+ if(x+ 1 < n)then(axn, β).Pn−x−1else(axn, β).P0︸ ︷︷ ︸
(a0n,β).Pn−1⊕(a1n,β).Pn−2⊕ ···⊕(ann,β).P0⊕ ···

n > 0

R2 =


Q0 = (a,>).Q1 +

(a01,>).Q0⊕ ···︷ ︸︸ ︷
(a0x,>).Q0

Qn = (a,>).Qn+1 + (τ, µ2).Qn−1+

+ if(x < n)then(anx,>).Qn−xelse(anx,>).Q0︸ ︷︷ ︸
(an1,>).Qn−1⊕(an2,>).Qn−2⊕ ···⊕(ann,>).Q0⊕ ···

n > 0

With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (τ, λ) in R1

• 2: represented by (a, µ1) in R1 and by (a,>) in R2

• 3: represented by (τ, µ2) in R2

• 4: represented by (τ, β) in R1 or the conclusion of the subtraction in
(axn, β)-chain, in R1

• 5: represented by the chain (axn, β) in R1

• 6: represented by (a0x,>) in R2 or the conclusion of the subtraction in
(anx,>)-chain, in R2

• 7: represented by the chain (anx,>) in R2

From this example we can see that the complexity of the processes and their
actions increases and also the encoding result less readable because the pos-
sibilities of exclusive addition increase a lot. In the non-concise description of
exclusive addition, a process can have hundreds of possible choices, one for
each pair of possible elements of R1 and R2.
The other big problem is the fact that in the original PEPA, this exclusive ad-
dition compositor is not provided and so I have to study further and give a
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formal definition of it. Moreover, I would have to prove all the property and
theorems that hold for other compositors if I want to make this extension.

5.1.4.2 Solution ⊥-Actions (⊥)

In this trial I use again the concept of⊥-actions but with more concatenations
of subsequent bottom actions. In particular when a negative trigger arrives in
R1, it starts the removal chain which goes from a process to another removing
each time a positive costumer, and so on. All those removal are considered
instantaneous thanks to the ⊥-actions and the chain will terminate when it
will encounter a emptied queue.
For this reason, each process are divided in two parts:

• in the first part there is the normal behavior of the system without the
trigger behavior, when a trigger arrives, then the system switches to the
second part

• in the second part there is the behavior of the negative trigger chain, the
process will remain in this part until the chain ends, then the system
returns to the first part

We have to notice that the entire second part of the system is instantaneous
because it is composed by only bottom actions.
Moreover, each process keeps track of this information about which of its part
it has to currently behaves like. This information is stored in both R1 and R2

with the apex in its state, thus:

• Pi represents the first part of the behavior of queue R1, with i positive
costumers ∀i ≥ 0

• P ′i represents the second part of the behavior of queue R1, with i posi-
tive costumers ∀i ≥ 0

This holds also for Q.

The encoding of the G-Network in PEPA is the following:
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R1 =


P0 = (τ, λ).P1 + (τ, β).P0

Pn = (τ, λ).Pn+1 + (a, µ1).Pn−1 + (rem, β).P ′n−1 n > 0

P ′n = (rem,⊥).P ′n−1 + (stop,>).P ′n−1 n > 0

P ′0 = (stop,⊥).P0

R2 =


Q0 = (a,>).Q1 + (rem,>).(stop,⊥).Q0

Qn = (a,>).Qn+1 + (τ, µ2).Qn−1 + (rem,>).Q′n−1 n > 0

Q′n = (rem,>).Q′n−1 + (stop,>).Q′n−1 n > 0

Q′0 = (stop,⊥).Q0

With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (τ, λ) in R1

• 2: represented by (a, µ1) in R1 and by (a,>) in R2

• 3: represented by (τ, µ2) in R2

• 4: represented by (τ, β) or (stop,⊥) in R1

• 5: represented by (rem, β) or (rem,⊥) in R1

• 6: represented by (stop,⊥) in R2

• 7: represented by (rem,>) in R2

From this example we can see that also here the complexity of the processes
and their actions increases a bit and also the encoding result less readable
because of the two natures of the system behavior. A chain can lead to very
large concatenations of bottom actions, in particular for very large numbers
of positive costumers in each queue.
The other big problem is the fact that in the original PEPA, these⊥-actions are
not provided and so I have to study further and give a formal definition of it.
Moreover, I would have to prove all the property and theorems that hold for
other compositors if I want to make this extension.
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Nevertheless if we make an approximation of the instantaneous bottom ac-
tion, we can re-enter the field of normal PEPA language as rate are no more
≥ 0 but only > 0. In this way, to ensure that bottom actions will take place
immediately one after the other we can define their rate as small as possible.
So small that the probability that they occurs is about 100%.
To summarize:

⊥ = lim
r→0

r for all r > 0

However, we won’t have a strictly representation of the original G-Network
but only an approximation of it.

5.1.4.3 Solution Partial Index (PI)

This type of encoding, with the partial index, is an impracticable solution: it
is useless thatR1 knows only ifR2 is an empty queue or a non-empty one, and
similarly if R2 knows only if R1 is empty or non-empty. Because we have to
know exactly how many positive costumers each queue has, in order to make
the correct subtraction, this kind of solution is unsuitable for the modeling of
this kind of G-Networks.
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5.1.4.4 Double Index (DI)

In this trial I use again the concept of double index but I use a further type of
representation. In this encoding I use the concept of MAX(i, j) because there
are two main cases in both queues.
The two cases are:

• the number of costumers of R1 is less than the number of R2, in this
case the negative trigger will empty the R1 queue

• the number of costumers of R1 is more than the number of R2, in this
case the negative trigger will subtract only a certain amount of cos-
tumers in R1 queue

It is more or less the same, also in the case of Q process.
This is done in order to avoid negative results from subtractions because
negative states don’t exist in this system. Moreover, this represents only a
single choice because in each instantiation of the model MAX(i − n; 0) and
MAX(n− i− 1; 0) are gradually substituted by the result of the MAX oper-
ator (which behave as the normal operator of maximum in mathematics) and
usually they are complementary (i.e. if the first possibility is chosen in the
first MAX then in the second is chosen the second one, and vice versa).
In this case the double indexes in both R1 and R2 mutually trace fully the
information about the states of R2 and R1.
I make this encoding because both R1 and R2 need to know the state of the
other to take an unique and right decision about the outcome of the nega-
tive trigger effect. R1 knows exactly how many positive costumers are in R2

so it can decide how many positive costumers removes from its queue when
there is the arrival of a trigger and R2 behaves in the same way but with re-
spect to R1. Thus, remains the simplification in the complexity of actions and
their correspondence with the behavior of the original system and also in the
whole encoding of the system.
Then, similarly to previous encodings, R1 is aware of all changes of R2 and it
is informed by R2 itself, with the use of cooperation combinator in its action
a2 which decreases the positive costumers in R2 and similarly R2 is informed
by R1 itself with the use of cooperation combinator in its action a0 which in-
creases its positive costumers. In particular those types of actions help R1

and R2 to mutually keep track of their number of costumers.
This information is stored in R1 and R2 with the apex number in the name of
their state, thus:
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• Pi represents the queue R1 with i positive costumers and the empty
queue R2 with 0 positive costumers, ∀i ≥ 0

• P ji represents the queue R1 with i positive costumers and the non-
empty queue R2 with j positive costumers ∀i ≥ 0 and ∀j > 0

And vice versa for Q in R2.

The encoding of the G-Network in PEPA is the following:

R1 =


P0 = (a0, λ).P1 + (τ, β).P0

Pn = (a0, λ).Pn+1 + (a1, µ1).P
′
n−1 + (τ, β).Pn−1 n > 0

P i0 = (a0, λ).P i1 + (a2,>).P i−10 + (τ, β).P i0 i > 0

P in = (a0, λ).P in+1 + (a1, µ1).P
i+1
n−1 + (a2,>).P i−1n + (b, β).P

MAX(i−n;0)
MAX(n−i−1;0) n > 0, i > 0

R2 =


Q0 = (a0,>).Q′0
Qn = (a0,>).Q′n + (a2, µ2).Qn−1 n > 0

Qi0 = (a0,>).Qi+1
0 + (a1,>).Qi−11 i > 0

Qi0 = (a0,>).Qi+1
n + (a1,>).Qi−1n+1 + (a2, µ2).Q

i
n−1 + (b,>).Q

MAX(i−n−1;0)
MAX(n−i;0) n > 0, i > 0

With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (a0, λ) in R1 (and R2 is informed with (a0,>))

• 2: represented by (a1, µ1) in R1 and by (a1,>) in R2

• 3: represented by (a2, µ2) in R2 (and R1 is informed with (a2,>))

• 4: represented by (τ, β) inR1 or the conclusion of the subtraction caused
by (b, β) in R1

• 5: represented by the subtraction caused by (b, β) in R1

• 6: represented by the conclusion of the subtraction caused by (b,>), in
R2

• 7: represented by the subtraction caused by (b,>) in R2
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5.1.4.5 Warden Process (WaP)

In this trial I use again the concept of warden process but with a further con-
cise representation. In this concise representation of the exclusive addition I
use the concept of x; y within the name of an action. This is done because nei-
ther R1 nor R2 know anything about each other, so they cannot decide how
many customers they have to remove and this information is passed by C in
the name of the actions in the form of variable x and y. Those two variable
will be instantiated in each call of the actions.
It is of great importance to notice the difference between exclusive addition,
double index and warden process in this case:

• Exclusive Addition: in each process Pi there are m different choices
combinators, one for each possible value of R2 positive costumers

• Double Index: in each process Pi there is only a single choice combi-
nator of type b and the subtraction is computed by R1 itself because it
knows the numbers of positive costumers in R2

• Warden Process: in each process Pi there are m different choices com-
binators of type b, one for each possible outcome of the subtraction of
costumers, but the subtraction is computed byC that is the only process
that knows the numbers of positive costumers in both R1 and R2

It is more or less the same, also in the case of Q process.
Thus, in the extended representation, x and y will be replaced by all its pos-
sible values.
Also in this case the warden process oversees all the changes of other states and
take the right decisions when it is necessary to, in particular it has fully the
information about the states of R1 and R2, and take the decisions instead of
R1 about the triggering effect.
In this way C knows exactly how many positive costumers are in R1 and R2

so it can decide to perform the right subtraction of normal costumers during
bxy action. Furthermore, with C the complexity in R1 and R2 decreases.
Then similarly to previous encoding, C is completely aware of all changes of
other states and it is informed by R1 and R2 themselves, with the use of co-
operation combinator in its actions: a0,a1 and a2 which inserts, transfers and
moves out a costumer in the chain R1 − R2, respectively. In particular those
types of actions help C to keep track of the number of costumers in queues.
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Information about R1 and R2 is no more stored in an apex of some process
but is in the number and apex of C, thus:

• C0 means that R1 and R2 are empty queue with 0 positive costumers

• Cin means thatR1 is a non-empty queue with n positive costumers ∀n >
0 and R2 is a non-empty queue with i positive costumers ∀i > 0

The encoding of the G-Network in PEPA is the following:

R1 =


P0 = (a0, λ).P1 + (τ, β).P0

Pn = (a0, λ).Pn+1 + (a1, µ1).Pn−1 + (bxy,>).Px︸ ︷︷ ︸
(b0y ,>).P0+(b1y ,>).P1+ ···+(bny ,>).Pn+ ···

n > 0

R2 =


Q0 = (a1,>).Q1

Qn = (a1,>).Qn+1 + (a2, µ2).Qn−1 + (bxy,>).Qy︸ ︷︷ ︸
(bx0,>).Q0+(bx1,>).Q1+ ···+(bxn,>).Qn+ ···

n > 0

C =



C0 = (a0,>).C1

Cn = (a0,>).Cn+1 + (a1,>).C ′n−1 + (bn−1, β).Cn−1 n > 0

Ci0 = (a0,>).Ci1 + (a2,>).Ci−10 i > 0

Cin = (a0,>).Cin+1 + (a1,>).Ci+1
n−1 + (a2,>).Ci−1n +

+(b(MAX(n−i−1;0);MAX(i−n;0)), β).C
MAX(i−n;0)
MAX(n−i−1;0) n > 0, i > 0

With this representation, I can define the following correspondence between
informal description and encoding:

• 1: represented by (a0, λ) in R1 (and C is informed with (a0,>))

• 2: represented by (a1, µ1) in R1 and by (a1,>) in R2 (and C is informed
with (a1,>))

• 3: represented by (a2, µ2) in R2 (and C is informed with (a2,>))

• 4: represented by (τ, β) inR1 or the conclusion of the subtraction caused
by (bxy,>) in R1
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• 5: represented by the subtraction caused by (bxy,>) in R1

• 6: represented by the conclusion of the subtraction caused by (bxy,>),
in R2

• 7: represented by the subtraction caused by (bxy,>) in R2

Moreover, in order to make bxy action work, there is the need of (bxy, β) in C.

In this example we can see that there is a bit growth in choice length of the
processes due to bxy and this solution seems to be a joint point between ex-
clusive addiction and double index solutions.
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5.1.5 Derivation Graphs of G-network with Trigger

In this part I choose two of my trial solutions and draw their derivation
Graphs of G-network with Trigger, to see visually their behaviors. I select the
Double Index and the Warden Process solutions, I have discarded the others
for these reasons:

• Exclusive Addition because in the original PEPA, this exclusive addi-
tion compositor is not provided and so I have to study further and give
a formal definition of it and prove all the property and theorems that
hold for other compositors.

• ⊥-Actions for the same reason of the exclusive addition.

• Partial Index: because it cannot encode the second example, and this is
an unbearable limitation.

I will now present the various derivation graphs.

5.1.5.1 Derivation Graphs - Double Index (DI)

As expected the graph grows in two dimensions: horizontal and vertical. The
various columns represent the number of normal costumers inR1 instead the
rows represent the information stored in R1 about the number of positive
costumers in R3. This means that the state 2′ represents R1 with 2 positive
costumers and R3 with only 1 positive costumers.
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Figure 5.3: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R1

Figure 5.4: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R2
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Figure 5.5: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R3

Those two diagrams didn’t have particular behaviors to argue about.

5.1.5.2 Solution Warden Process (WaP) Diagrams

Figure 5.6: WaP solution of G-network with Trigger: Derivation Graph of
process R1

We can notice that this derivation graph is much less complex with respect
to the first solution thank to the process C which takes a lot of work and
complexity from this process.
Unfortunately there is a flaw in this process, even if they don’t behave as
exclusive addition because they are not active, a0 and a1 are present as a
transition to each state of he process. We will see how this can be a problem
after I show all derivation graphs.
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Figure 5.7: WaP solution of G-network with Trigger: Derivation Graph of
process R2

Figure 5.8: WaP solution of G-network with Trigger: Derivation Graph of
process R3

R2 and R3 are represented by the same derivation graphs in both double
index and warden process solutions.

Figure 5.9: WaP solution of G-network with Trigger: Derivation Graph of
process C

We can see thatC process behavior is almost the same ofR3 except that active
and passive actions are switched. From this we can comprehend that must
exist a dependence from process R3 if we want to capture the exact behavior
of the original G-Network with PEPA, without introduce any extension of it.
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This is caused by the fact that a0 and a1 are passive in R3 but they are de-
pendent on the state (i.e. the number of positive costumers) of R3 itself. This
leads to a dependence on R3 of anyone who want to perform those kind of
actions.
The main difference between double index and warden process solutions is
the process which carries this dependence. In DI is R1 the process which per-
form a0 and a1 and this causes the huge numbers on the space of its states. In
WaP is the warden process C the one that carries this burden, and this brings
to some sort of repetition of the behavior of R3.

Analyzing better the two solutions, I found that in the warden process solu-
tion, even if the actions which behave similarly as the exclusive addition are
passive, they have the same underlying problem. When the system works
on the whole, each process cooperates with each other and in this phase ev-
ery passive action rate > will be substituted by the positive rate of the action
which cooperates. In this way each passive action of R1 in WaP will have the
same rate µ1(1− p) and subsequently has the same behavior of the exclusive
addition. Thus, there is the problem that in the original PEPA it is not pro-
vided and so I would give a formal definition of it if I wanted to use this idea.
Moreover, another big problem is satisfaction of the conditions of the product
form theorem. An anticipation of that topic is that in each state all the passive
actions must be outgoing from each state and all the active actions must be in-
going. This leads to a problem in R1 because a0 and a1 are passive in it but in
state 0 they are not outgoing. If I add any transition from state 0 to anywhere
with type a0 it will synchronize with both R3 and C altering the behavior of
my system. This make the behavior of my model encoding different from the
original one and this cannot be acceptable.
For this reason I decide to choose the Double Index solution for the further
analysis, for comparison with the original system and for the rest of my the-
sis.
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5.1.6 Behavior Comparison between G-Network with Trigger and
My Model

In this section I will compare the behavior of my solution with the behavior
of the original G-Network. In order to verify if they are the same I have to
demonstrate that my model can perform the same actions of the original sys-
tem. If it is so, then they also share the same underlying Markov Process and,
subsequently, my model has the product-form because the original system
has it.
To prove this equivalence I use the inductive reasoning. The induction in this
case work as the following:

• Base Case: considering each base case, to prove that they are equivalent
I have to demonstrate if they could perform the same and only actions,
one with respect to the other.

• Inductive Case: considering equivalent a general n case represented by
a general state of the two systems, I have to prove that the cases n + 1,
reached from this case n, are the same (i.e. have the same behavior).

If I can prove this two conditions then the two systems are equivalent and so
my encoding of G-Network with trigger, using PEPA, is correct and valid.

Firstly, I will state each possible performable action of the two systems, then I
will proceed with the comparison. To prove the base case I will consider each
of their base case and analyze if they can perform the same activities. Then
to prove the inductive case I will consider that the various actions performed
previous to arrive to the general state n are the same (inductive hypothesis)
and then I have to demonstrate that from n I can reach the same states n + 1
with the same actions (i.e. behavior).
Furthermore, to prove the equivalence I have to demonstrate that my system
can perform an action if and only if the original system performs it too. This
implies that my proof has to go in both directions:

• from original G-Network to my model (⇒)

• from my model to original G-Network (⇐)

In this way I will prove the equivalence of the two systems.
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5.1.6.1 Behavioral Correspondence

Now I will demonstrate that my system in PEPA is equivalent to the original
one.
The proof by induction is the following:

Assumptions and Notations:
1) The G-network will be represented by (n1, n2, n3), namely the states of his
queues, where:

• n1: represents the number of positive costumers in queue R1 of G-
Network

• n2: represents the number of positive costumers in queue R2 of G-
Network

• n3: represents the number of positive costumers in queue R3 of G-
Network

So the original system will be (n1, n2, n3)

2) My system will also be represented by ((n11,n13), n2, n3), namely the states
of my processes P (the first two numbers), Q and R, where:

• n11: represents the number i in the state name of a general process P ji ,
i.e. the number of positive costumers in process R1 of my encoding

• n13: represents the number j in the apex name of a general process P ji ,
i.e. the information about the number of positive costumers in process
R3 of my encoding, stored in R1

• n2: represents the number i in the state name of a general process Qi,
i.e. the number of positive costumers in process R2 of my encoding

• n3: represents the number i in the state name of a general process Ri,
i.e. the number of positive costumers in process R3 of my encoding

So my model will be ((n11,n13), n2, n3)
Is important to note that that (n11, n13) is the state of process R1, n2 of R2, n3
of R3 and more important that n13 = n3 always ∀n13 ∧ n3.
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My system will be represented as S = ((n11, n13), n2, n3)

where:
S
def
= R1 1

a,a0,a1,fill,empty
R2 1

a,a0,a1,fill,empty
R3

Thorem:
The two systems (n1, n2, n3) and ((n11, n13), n2, n3) are the same system (i.e.
are equivalent and have the same behavior).
To demonstrate this I will show that their behavior are equal and in order to
do this I have to demonstrate that:

(n1, n2, n3)⇔ ((n11, n13), n2, n3)

That is equivalent to:

∀(n1, n2, n3)⇒ ∃((n11, n13), n2, n3) and ∀((n11, n13), n2, n3)⇒ ∃(n1, n2, n3).

5.1.6.2 Possible Actions of two Systems

The original system (n1, n2, n3) can perform the following actions (i.e. transi-
tion between states), with also the following restrictions and rates:

• Informal description: A positive costumer arrives to queue R1

Action 1: from (n1, n2, n3) to (n1 + 1, n2, n3)
Restriction: ∀n1 ≥ 0
Rate: λ1

• Informal description: A positive costumer arrives to queue R3

Action 2: from (n1, n2, n3) to (n1, n2, n3 + 1)
Restriction: ∀n3 ≥ 0
Rate: λ3

• Informal description: A positive costumer moves from queue R1 to
queue R2

Action 3: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3)
Restriction: ∀n1 ≥ 1 and ∀n2 ≥ 0
Rate: µ1p

• Informal description: A positive costumer moves from queue R1 be-
comes a trigger and arrives to queue R3 when it is empty
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Action 4: from (n1, n2, 0) to (n1 − 1, n2, 0)
Restriction: ∀n1 ≥ 1 and n3 = 0
Rate: µ1(1− p)

• Informal description: A positive costumer moves from queue R1 be-
comes a trigger and arrives to queue R3 when it is non-empty, then a
positive costumer from R3 is forced to move to R2

Action 5: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3 − 1)
Restriction: ∀n1 ≥ 1 and ∀n2 ≥ 0 and ∀n3 ≥ 1
Rate: µ1(1− p)

• Informal description: A positive costumer leaves the system from queue
R2

Action 6: from (n1, n2, n3) to (n1, n2 − 1, n3)
Restriction: ∀n2 ≥ 1
Rate: µ2

• Informal description: A positive costumer leaves the system from queue
R3

Action 7: from (n1, n2, n3) to (n1, n2, n3 − 1)
Restriction: ∀n3 ≥ 1
Rate: µ3

From the derivation graphs, I can now analyze each process of my model,
their actions (i.e. transition between states), with also their restrictions and
rates.
Process P which represents R1 can perform:

• State P0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait R3 action of fill
Rate: >

• State Pn with n > 0
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– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait R3 action of fill
Rate: >

– Action: a
Restriction: none, but there is an active cooperation with R2

Rate: µ1p

– Action: a0
Restriction: none, but there is an active cooperation withR3, more-
over R3 must be empty but this is ensured by the fact that there
wasn’t any fill action in R3 otherwise the state will be P in with
i > 0
Rate: µ1(1− p)

• State P i0 with i > 0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait R3 action of fill
Rate: >

– Action: empty
Restriction: cooperate, has to wait R3 action of empty
Rate: >

• State P in with n > 0 and i > 0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait R3 action of fill
Rate: >
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– Action: empty
Restriction: cooperate, has to wait R3 action of empty
Rate: >

– Action: a
Restriction: none, but there is an active cooperation with R2

Rate: µ1p

– Action: a1
Restriction: none, but there is an active cooperation withR3, more-
over R3 must be non-empty but this is ensured by the fact that
there were one or more fill action in R3 otherwise the state will be
only Pn with i = 0
Rate: µ1(1− p)

Process Q which represents R2 can perform:

• State Q0

– Action: a
Restriction: cooperate, has to wait R1 action of a
Rate: >

– Action: a1
Restriction: cooperate, has to wait R1 action of a1 (so R1 and R3

must be non-empty queues)
Rate: >

• State Qn with n > 0

– Action: a
Restriction: cooperate, has to wait R1 action of a
Rate: >

– Action: a1
Restriction: cooperate, has to wait R1 action of a1 (so R1 and R3

must be non-empty queues)
Rate: >

– Action: τ
Restriction: none
Rate: µ2
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Process R which represents R3 can perform:

• State R0

– Action: fill
Restriction: none, but there is an active cooperation with R1

Rate: λ3
– Action: a0

Restriction: cooperate, has to wait R1 action of a0
Rate: >

• State Rn with n > 0

– Action: fill
Restriction: none, but there is an active cooperation with R1

Rate: λ3
– Action: empty

Restriction: none, but there is an active cooperation with R1

Rate: µ3
– Action: a1

Restriction: cooperate, has to wait R1 action of a1
Rate: >

Where there are no further specifications, when a process waits for a cooper-
ation (i.e. it is passive with respect to that action) means that the conditions
for that activity are imposed only by the active process. Moreover, when a
process doesn’t have any restriction in an activity but there is an active coop-
eration, means that there are no condition in that activity (except the ones in
its state, e.g. if the activity is present only in Pn and not in P0 this means that
one condition on that activity is n > 0)

To summarize, my model encoded from original system ((n11, n13), n2, n3)
can perform the following actions (i.e. transition between states), with also
the following restrictions and rates:

• Action τ : from ((n11, n13), n2, n3) to ((n11 + 1, n13), n2, n3)
Restriction: ∀n11 ≥ 0
Rate: λ1
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• Action fill: from ((n11, n13), n2, n3) to ((n11, n13 + 1), n2, n3 + 1)
Restriction: ∀n13 = n3 ≥ 0
Rate: λ3

• Action a: from ((n11, n13), n2, n3) to ((n11 − 1, n13), n2 + 1, n3)
Restriction:∀n11 ≥ 1 and ∀n2 ≥ 0
Rate: µ1p

• Action a0: from ((n11, 0), n2, 0) to ((n11 − 1, 0), n2, 0)
Restriction:∀n11 ≥ 1 and ∀n13 = n3 = 0
Rate: µ1(1− p)

• Action a1: from ((n11, n13), n2, n3) to ((n11 − 1, n13 − 1), n2 + 1, n3 − 1)
Restriction:∀n11 ≥ 1 and ∀n13 = n3 ≥ 1 and ∀n2 ≥ 0
Rate: µ1(1− p)

• Action τ : from ((n11, n13), n2, n3) to ((n11, n13), n2 − 1, n3)
Restriction: ∀n2 ≥ 1
Rate: µ2

• Action empty: from ((n11, n13), n2, n3) to ((n11, n13 − 1), n2 − 1, n3 − 1)
Restriction: ∀n13 = n3 ≥ 1
Rate: µ3

5.1.6.3 Proof of the Theorem

The first proof direction is from original G-Network to my PEPA encoding.

⇒:

Base Case:
We have the following 7 base cases in the original system:

• (0, 0, 0): all queues are empty.

• (n, 0, 0): R1 has n positive costumers, R2 and R3 are empty.

• (0, n, 0): R2 has n positive costumers, R1 and R3 are empty.

• (0, 0, n): R3 has n positive costumers, R1 and R2 are empty.
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• (n1, n2, 0): R1 has n1 positive costumers, R2 has n2 positive costumers
and R3 is empty.

• (n1, 0, n3): R1 has n1 positive costumers, R3 has n3 positive costumers
and R2 is empty.

• (0, n2, n3): R2 has n2 positive costumers, R3 has n3 positive costumers
and R1 is empty.

Case 1
From state:
(0, 0, 0)

We can have only 2 possible actions with this values: Action 1 and Action 2.
And these are the 2 possible transactions of state:

1. (0, 0, 0)
1,λ1−→ (1, 0, 0)

2. (0, 0, 0)
2,λ3−→ (0, 0, 1)

There exists the following correspondence in my system ((0, 0), 0, 0) with ac-
tions: τ and fill.
And these are the 2 possible transactions of state:

1. ((0, 0), 0, 0)
τ,λ1−→ ((1, 0), 0, 0)

2. ((0, 0), 0, 0)
fill,λ3−→ ((0, 1), 0, 1)

Case 2
From state:
(n, 0, 0)

We can have only 4 possible actions with this values: Action 1 and Action 2,
Action 3, Action 4.
And these are the 4 possible transactions of state:
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1. (n, 0, 0)
1,λ1−→ ((n+ 1), 0, 0)

2. (n, 0, 0)
2,λ3−→ (n, 0, 1)

3. (n, 0, 0)
3,µ1p−→ ((n− 1), 1, 0)

4. (n, 0, 0)
4,µ1(1−p)−→ ((n− 1), 0, 0)

There exists the following correspondence in my system ((n, 0), 0, 0) with ac-
tions: τ , fill, a, a0.
And these are the 4 possible transactions of state:

1. ((n, 0), 0, 0)
τ,λ1−→ ((n+ 1, 0), 0, 0)

2. ((n, 0), 0, 0)
fill,λ3−→ ((n, 1), 0, 1)

3. ((n, 0), 0, 0)
a,µ1p−→ ((n− 1, 0), 1, 0)

4. ((n, 0), 0, 0)
a0,µ1(1−p)−→ ((n− 1, 0), 0, 0)

Case 3
From state:
(0, n, 0)

We can have only 3 possible actions with this values: Action 1 and Action 2,
Action 6.
And these are the 3 possible transactions of state:

1. (0, n, 0)
1,λ1−→ (1, n, 0)

2. (0, n, 0)
2,λ3−→ (0, n, 1)
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3. (0, n, 0)
6,µ2−→ (0, (n− 1), 0)

There exists the following correspondence in my system ((0, 0), n, 0) with ac-
tions: τ , fill, τ .
And these are the 3 possible transactions of state:

1. ((0, 0), n, 0)
τ,λ1−→ ((1, 0), n, 0)

2. ((0, 0), n, 0)
fill,λ3−→ ((0, 1), n, 1)

3. ((0, 0), n, 0)
τ,µ2−→ ((0, 0), n− 1, 0)

Case 4
From state:
(0, 0, n)

We can have only 3 possible actions with this values: Action 1 and Action 2,
Action 7.
And these are the 3 possible transactions of state:

1. (0, 0, n)
1,λ1−→ (1, 0, n)

2. (0, 0, n)
2,λ3−→ (0, 0, (n+ 1))

3. (0, 0, n)
7,µ3−→ (0, 0, (n− 1))

There exists the following correspondence in my system ((0, n), 0, n) with ac-
tions: τ , fill, empty.
And these are the 3 possible transactions of state:

1. ((0, n), 0, n)
τ,λ1−→ ((1, n), 0, n)
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2. ((0, n), 0, n)
fill,λ3−→ ((0, n+ 1), 0, n+ 1)

3. ((0, n), 0, n)
empty,µ3−→ ((0, n− 1), 0, n− 1)

Case 5
From state:
(n1, n2, 0)

We can have only 5 possible actions with this values: Action 1 and Action 2,
Action 3, Action 4, Action 6.
And these are the 5 possible transactions of state:

1. (n1, n2, 0)
1,λ1−→ (n1 + 1, n2, 0)

2. (n1, n2, 0)
2,λ3−→ (n1, n2, 1)

3. (n1, n2, 0)
3,µ1p−→ (n− 1, n2 + 1, 0)

4. (n1, n2, 0)
4,µ1(1−p)−→ (n1 − 1, n2, 0)

5. (n1, n2, 0)
6,µ2−→ (n1, n2 − 1, 0)

There exists the following correspondence in my system ((n1, 0), n2, 0) with
actions: τ , fill, a, a0, τ .
And these are the 3 possible transactions of state:

1. ((n1, 0), n2, 0)
τ,λ1−→ ((n1 + 1, 0), n2, 0)

2. ((n1, 0), n2, 0)
fill,λ3−→ ((n1, 1), n2, 1)

3. ((n1, 0), n2, 0)
a,µ1p−→ ((n1 − 1, 0), n2 + 1, 0)
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4. ((n1, 0), n2, 0)
a0,µ1(1−p)−→ ((n1 − 1, 0), n2, 0)

5. ((n1, 0), n2, 0)
τ,µ2−→ ((n1, 0), n2 − 1, 0)

Case 6
From state:
(n1, 0, n3)

We can have only 5 possible actions with this values: Action 1 and Action 2,
Action 3, Action 5, Action 7.
And these are the 5 possible transactions of state:

1. (n1, 0, n3)
1,λ1−→ (n1 + 1, 0, n3)

2. (n1, 0, n3)
2,λ3−→ (n1, 0, n3 + 1)

3. (n1, 0, n3)
3,µ1p−→ (n− 1, 1, n3)

4. (n1, 0, n3)
5,µ1(1−p)−→ (n1 − 1, 1, n3 − 1)

5. (n1, 0, n3)
7,µ3−→ (n1, 0, n3 − 1)

There exists the following correspondence in my system ((n1, n3), 0, n3) with
actions: τ , fill, a, a1, empty.
And these are the 5 possible transactions of state:

1. ((n1, n3), 0, n3)
τ,λ1−→ ((n1 + 1, n3), 0, n3)

2. ((n1, n3), 0, n3)
fill,λ3−→ ((n1, n3 + 1), 0, n3 + 1)

3. ((n1, n3), 0, n3)
a,µ1p−→ ((n1 − 1, n3), 1, n3)
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4. ((n1, n3), 0, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), 1, n3 − 1)

5. ((n1, n3), 0, n3)
empty,µ3−→ ((n1, n3 − 1), 0, n3 − 1)

Case 7
From state:
(0, n2, n3)

We can have only 4 possible actions with this values: Action 1 and Action 2,
Action 6, Action 7.
And these are the 4 possible transactions of state:

1. (0, n2, n3)
1,λ1−→ (1, n2, n3)

2. (0, n2, n3)
2,λ3−→ (0, n2, n3 + 1)

3. (0, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

4. (0, n2, n3)
7,µ3−→ (0, n2, n3 − 1)

There exists the following correspondence in my system ((0, n3), n2, n3) with
actions: τ , fill, a, τ , empty.
And these are the 5 possible transactions of state:

1. ((0, n3), n2, n3)
τ,λ1−→ ((1, n3), n2, n3)

2. ((0, n3), n2, n3)
fill,λ3−→ ((0, n3 + 1), n2, n3 + 1)

3. ((0, n3), n2, n3)
τ,µ2−→ ((0, n3), n2 − 1, n3)

4. ((0, n3), n2, n3)
empty,µ3−→ ((0, n3 − 1), n2, n3 − 1)
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And with this I have proven the Base Case.
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Inductive Step:

For inductive hypothesis we have the general case n and I have to show that
from here I can reach the same states n+ 1 as explained in the introduction of
this section:

From general n state:
(n1, n2, n3)

We can have only 6 possible actions with this values: Action 1 and Action 2,
Action 3, Action 5, Action 6, Action 7.
And these are the 6 possible transactions of state:

1. (n1, n2, n3)
1,λ1−→ (n1 + 1, n2, n3)

2. (n1, n2, n3)
2,λ3−→ (n1, n2, n3 + 1)

3. (n1, n2, n3)
3,µ1p−→ (n− 1, n2 + 1, n3)

4. (n1, n2, n3)
5,µ1(1−p)−→ (n1 − 1, n2 + 1, n3 − 1)

5. (n1, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

6. (n1, n2, n3)
7,µ3−→ (0, n2, n3 − 1)

There exists the following correspondence in my system ((n1, n3), n2, n3) with
actions: τ , fill, a, a1, τ , empty.
And these are the 6 possible transactions of state:

1. ((n1, n3), n2, n3)
τ,λ1−→ ((n1 + 1, n3), n2, n3)

2. ((n1, n3), n2, n3)
fill,λ3−→ ((n1, n3 + 1), n2, n3 + 1)
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3. ((n1, n3), n2, n3)
a,µ1p−→ ((n1 − 1, n3), n2 + 1, n3)

4. ((n1, n3), n2, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), n2 + 1, n3 − 1)

5. ((n1, n3), n2, n3)
τ,µ2−→ ((n1, n3), n2 − 1, n3)

6. ((n1, n3), n2, n3)
empty,µ3−→ ((n1, n3 − 1), n2, n3 − 1)

I have proven the Inductive Case, so from inductive hypothesis, ∀ states
(n1, n2, n3) there exists a correspondence to a state ((n1, n3), n2, n3) which can
perform the same actions, has the same behavior and has the equivalent ”pre-
decessor” states. In this way I have proven the ⇒ direction of equivalence
between my model and the original system.
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⇐:

It is quite straight the reverse demonstration, since the actions done by my
system are the all and only ones permitted in those cases. I will show any-
way a short version of demonstration:

Base Case:

We have the following 7 base cases in my encoded system:

• ((0, 0), 0, 0): all processes are empty.

• ((n, 0), 0, 0): process R1 has n positive costumers, R2 and R3 are empty.

• ((0, 0), n, 0): process R2 has n positive costumers, R1 and R3 are empty.

• ((0, n), 0, n): process R3 has n positive costumers, R1 and R2 are empty.

• ((n1, 0), n2, 0): process R1 has n1 positive costumers, R2 has n2 positive
costumers and R3 is empty.

• ((n1, n3), 0, n3): processR1 has n1 positive costumers,R3 has n3 positive
costumers and R2 is empty.

• ((0, n3), n2, n3): processR2 has n2 positive costumers,R3 has n3 positive
costumers and R1 is empty.

Case 1
From state:
((0, 0), 0, 0)

We can have only 2 possible actions with this values: τ and fill.
And these are the 2 possible transactions of state:

((0, 0), 0, 0)
τ,λ1−→ ((1, 0), 0, 0)

((0, 0), 0, 0)
fill,λ3−→ ((0, 1), 0, 1)

There exists the following correspondence in the original system (0, 0, 0) with
actions: Action 1 and Action 2.
And these are the 2 possible transactions of state:

(0, 0, 0)
1,λ1−→ (1, 0, 0)
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(0, 0, 0)
2,λ3−→ (0, 0, 1)

Case 2
From state:
((n, 0), 0, 0)

We can have only 4 possible actions with this values: τ ,fill,a,a0.
And these are the 4 possible transactions of state:

((n, 0), 0, 0)
τ,λ1−→ ((n+ 1, 0), 0, 0)

((n, 0), 0, 0)
fill,λ3−→ ((n, 1), 0, 1)

((n, 0), 0, 0)
a,µ1p−→ ((n− 1, 0), 1, 0)

((n, 0), 0, 0)
a0,µ1(1−p)−→ ((n− 1, 0), 0, 0)

There exists the following correspondence in the original system (n, 0, 0) with
actions: Action 1 and Action 2, Action 3, Action 4.
And these are the 4 possible transactions of state:

(n, 0, 0)
1,λ1−→ ((n+ 1), 0, 0)

(n, 0, 0)
2,λ3−→ (n, 0, 1)

(n, 0, 0)
3,µ1p−→ ((n− 1), 1, 0)

(n, 0, 0)
4,µ1(1−p)−→ ((n− 1), 0, 0)

Case 3
From state:
((0, 0), n, 0)

We can have only 3 possible actions with this values: τ ,fill,τ .
And these are the 3 possible transactions of state:

((0, 0), n, 0)
τ,λ1−→ ((1, 0), n, 0)

((0, 0), n, 0)
fill,λ3−→ ((0, 1), n, 1)

((0, 0), n, 0)
τ,µ2−→ ((0, 0), n− 1, 0)

There exists the following correspondence in the original system (0, n, 0) with
actions: Action 1 and Action 2, Action 6.
And these are the 3 possible transactions of state:
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(0, n, 0)
1,λ1−→ (1, n, 0)

(0, n, 0)
2,λ3−→ (0, n, 1)

(0, n, 0)
6,µ2−→ (0, (n− 1), 0)

Case 4
From state:
((0, n), 0, n)

We can have only 3 possible actions with this values: τ ,fill,empty.
And these are the 3 possible transactions of state:

((0, n), 0, n)
τ,λ1−→ ((1, n), 0, n)

((0, n), 0, n)
fill,λ3−→ ((0, n+ 1), 0, n+ 1)

((0, n), 0, n)
empty,µ3−→ ((0, n− 1), 0, n− 1)

There exists the following correspondence in the original system (0, 0, n) with
actions: Action 1 and Action 2, Action 7.
And these are the 3 possible transactions of state:

(0, 0, n)
1,λ1−→ (1, 0, n)

(0, 0, n)
2,λ3−→ (0, 0, (n+ 1))

(0, 0, n)
7,µ3−→ (0, 0, (n− 1))

Case 5
From state:
((n1, 0), n2, 0)

We can have only 5 possible actions with this values: τ ,fill,a,a0,τ .
And these are the 5 possible transactions of state:

((n1, 0), n2, 0)
τ,λ1−→ ((n1 + 1, 0), n2, 0)

((n1, 0), n2, 0)
fill,λ3−→ ((n1, 1), n2, 1)

((n1, 0), n2, 0)
a,µ1p−→ ((n1 − 1, 0), n2 + 1, 0)

((n1, 0), n2, 0)
a0,µ1(1−p)−→ ((n1 − 1, 0), n2, 0)

((n1, 0), n2, 0)
τ,µ2−→ ((n1, 0), n2 − 1, 0)

There exists the following correspondence in the original system (n1, n2, 0)
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with actions: Action 1 and Action 2, Action 3, Action 4, Action 6.
And these are the 5 possible transactions of state:

(n1, n2, 0)
1,λ1−→ (n1 + 1, n2, 0)

(n1, n2, 0)
2,λ3−→ (n1, n2, 1)

(n1, n2, 0)
3,µ1p−→ (n− 1, n2 + 1, 0)

(n1, n2, 0)
4,µ1(1−p)−→ (n1 − 1, n2, 0)

(n1, n2, 0)
6,µ2−→ (n1, n2 − 1, 0)

Case 6
From state:
((n1, n3), 0, n3)

We can have only 5 possible actions with this values: τ ,fill,a,a1,empty.
And these are the 5 possible transactions of state:

((n1, n3), 0, n3)
τ,λ1−→ ((n1 + 1, n3), 0, n3)

((n1, n3), 0, n3)
fill,λ3−→ ((n1, n3 + 1), 0, n3 + 1)

((n1, n3), 0, n3)
a,µ1p−→ ((n1 − 1, n3), 1, n3)

((n1, n3), 0, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), 1, n3 − 1)

((n1, n3), 0, n3)
empty,µ3−→ ((n1, n3 − 1), 0, n3 − 1)

There exists the following correspondence in the original system (n1, 0, n3)
with actions: Action 1 and Action 2, Action 3, Action 5, Action 7.
And these are the 5 possible transactions of state:

(n1, 0, n3)
1,λ1−→ (n1 + 1, 0, n3)

(n1, 0, n3)
2,λ3−→ (n1, 0, n3 + 1)

(n1, 0, n3)
3,µ1p−→ (n− 1, 1, n3)

(n1, 0, n3)
5,µ1(1−p)−→ (n1 − 1, 1, n3 − 1)

(n1, 0, n3)
7,µ3−→ (n1, 0, n3 − 1)

Case 7
From state:
((0, n3), n2, n3)
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We can have only 4 possible actions with this values: τ ,fill,τ ,empty.
And these are the 4 possible transactions of state:

((0, n3), n2, n3)
τ,λ1−→ ((1, n3), n2, n3)

((0, n3), n2, n3)
fill,λ3−→ ((0, n3 + 1), n2, n3 + 1)

((0, n3), n2, n3)
τ,µ2−→ ((0, n3), n2 − 1, n3)

((0, n3), n2, n3)
empty,µ3−→ ((0, n3 − 1), n2, n3 − 1)

There exists the following correspondence in the original system (0, n2, n3)
with actions: Action 1 and Action 2, Action 6, Action 7.
And these are the 5 possible transactions of state:

(0, n2, n3)
1,λ1−→ (1, n2, n3)

(0, n2, n3)
2,λ3−→ (0, n2, n3 + 1)

(0, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

(0, n2, n3)
7,µ3−→ (0, n2, n3 − 1)

And with this I have proven the Base Case.



112 CHAPTER 5. ENCODING

Inductive Step:

For inductive hypothesis we have the general case n and I have to show from
here I can reach the same states n+ 1 as explained in the introduction of this
section to prove the validity of general case:

From state:
((n1, n3), n2, n3)

We can have only 6 possible actions with this values: τ ,fill,a,a1,τ ,empty.
And these are the 6 possible transactions of state:

((n1, n3), n2, n3)
τ,λ1−→ ((n1 + 1, n3), n2, n3)

((n1, n3), n2, n3)
fill,λ3−→ ((n1, n3 + 1), n2, n3 + 1)

((n1, n3), n2, n3)
a,µ1p−→ ((n1 − 1, n3), n2 + 1, n3)

((n1, n3), n2, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), n2 + 1, n3 − 1)

((n1, n3), n2, n3)
τ,µ2−→ ((n1, n3), n2 − 1, n3)

((n1, n3), n2, n3)
empty,µ3−→ ((n1, n3 − 1), n2, n3 − 1)

There exists the following correspondence in the original system (n1, n2, n3)
with actions: Action 1 and Action 2, Action 3, Action 5, Action 6, Action 7.
And these are the 6 possible transactions of state:

(n1, n2, n3)
1,λ1−→ (n1 + 1, n2, n3)

(n1, n2, n3)
2,λ3−→ (n1, n2, n3 + 1)

(n1, n2, n3)
3,µ1p−→ (n− 1, n2 + 1, n3)

(n1, n2, n3)
5,µ1(1−p)−→ (n1 − 1, n2 + 1, n3 − 1)

(n1, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

(n1, n2, n3)
7,µ3−→ (0, n2, n3 − 1)

I have proven the Inductive Case, so from inductive hypothesis, ∀ states
((n1, n3), n2, n3) there exists a correspondence to a state (n1, n2, n3) which can
perform the same actions, has the same behavior and has the equivalent ”pre-
decessor” states. In this way I have proven the ⇐ direction of equivalence
between my model and the original system.
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From this, for induction reason, my system represents all and only the states
of original G-network with trigger, and also their behaviors are equivalent.

I can now state that with my encoding of this system I have modeled a G-
Network using only the definitions of PEPA language, so I prove that its
expressivity can cover also this kind of G-Network.
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Chapter 6

Product Form

6.1 Product Form of G-network with Trigger

In this section I will analyze the derivation graph of both Double Index and
Warden solutions and search where they don’t satisfy the conditions of the
product form theorem. After that, I modify the double index solution in or-
der to satisfy those conditions but without changing its behavior that I al-
ready proved it is equal to the original one.
I add a new state in my processes, the Phantom State F . The purpose of this
stratagem is in fact to satisfy the two conditions without changing the behav-
ior thanks to its property of unreachability. The main property of state F is
exactly that from the starting normal states, every possible and permissible transac-
tion in the system cannot lead in any way to the phantom state F .
After this phase I try to balance the equations of my processes and find out if
their reversal rate are always constant. I found some inconclusive solutions
which put too many bound. Then to avoiding those bounds I developed new
methods for balance the equations and, after their implementation, I finally
succeeded to balance them.
After that I verify the constancies of reverse rate and the computation of the
steady state distribution. The last step is the comparison between my new
model with the original one to state that its behavior is still the same as the
original one.

115



116 CHAPTER 6. PRODUCT FORM

6.1.1 Conditions for the Product Form Theorem

In order to have the product form solution, a system in PEPA must satisfy the
following conditions:

1. Each passive action must be outgoing from each state of the processes in
which it is used at least one time, i.e. each state must have an outgoing
transaction of type of the passive action and with > rate

2. Each active action must be ingoing to each state of the processes in
which it is used at least one time, i.e. each state must have an ingoing
transaction of type of the active action and with a non-> rate

3. all reverse rates of the same action type in a process must be equal, i.e.
all the reverse rates of a passive action with > rate within a process
must be all equal

Another important fact is that all these referred actions are in a cooperation
set.

To satisfy these conditions I will adopt the following techniques:

1. Outgoing Passive Actions: I add an exiting transaction from all states
that don’t have it, of that type of passive action (it doesn’t matter if it is
a self-loop)

2. Ingoing Active Actions: I add an entering transaction to all states that
don’t have it, of that type of active action (it doesn’t matter if it is a
self-loop)

3. I will balance the equations of my processes and after that I compute
the reverse rates of all the passive actions.

Now I pass to the analysis of the derivation graphs.
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6.1.2 Analysis of Derivative Graphs - Double Index (DI) Solution

Figure 6.1: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R1

Analyzing this graph we have the following information regarding action
types:

• Active Actions: a, a0, a1 (τ doesn’t cooperate with anyone)

• Passive Actions: fill, empty

And the following information is about the first two conditions of the product
form theorem:
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• State P0:
Ingoing Active Actions: a, a0, a1
Missing Active Actions: none
Outgoing Passive Actions: fill
Missing Passive Actions: empty

• State Pn:
Ingoing Active Actions: a, a0, a1
Missing Active Actions: none
Outgoing Passive Actions: fill
Missing Passive Actions: empty

• State P0 =i:
Ingoing Active Actions: a, a1
Missing Active Actions: a0
Outgoing Passive Actions: fill, empty
Missing Passive Actions: none

• State Pn =i:
Ingoing Active Actions: a, a1
Missing Active Actions: a0
Outgoing Passive Actions: fill, empty
Missing Passive Actions: none

Analyzing this graph we have the following information regarding action
types:

• Active Actions: none (τ doesn’t cooperate with anyone)

• Passive Actions: a, a1

And the following information is about the first two conditions of the product
form theorem:
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Figure 6.2: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R2

• State Q0:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1
Missing Passive Actions: none

• State Qn:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1
Missing Passive Actions: none

Figure 6.3: DI solution of G-network with Trigger: Derivation Graph of pro-
cess R3

Analyzing this graph we have the following information regarding action



120 CHAPTER 6. PRODUCT FORM

types:

• Active Actions: fill, empty

• Passive Actions: a0, a1

And the following information is about the first two conditions of the product
form theorem:

• State R0:
Ingoing Active Actions: empty
Missing Active Actions: fill
Outgoing Passive Actions: a0
Missing Passive Actions: a1

• State Rn:
Ingoing Active Actions: fill, empty
Missing Active Actions: none
Outgoing Passive Actions: a1
Missing Passive Actions: a0
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6.1.3 Analysis of Derivative Graphs - Warden Process (WaP) Solu-
tion

Figure 6.4: WaP solution of G-network with Trigger: Derivation Graph of
process R1

Analyzing this graph we have the following information regarding action
types:

• Active Actions: a (τ doesn’t cooperate with anyone)

• Passive Actions: a0, a1

And the following information is about the first two conditions of the product
form theorem:

• State P0:
Ingoing Active Actions: a
Missing Active Actions: none
Outgoing Passive Actions: none
Missing Passive Actions: a0, a1

• State Pn:
Ingoing Active Actions: a
Missing Active Actions: none
Outgoing Passive Actions: a0, a1
Missing Passive Actions: none
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Figure 6.5: WaP solution of G-network with Trigger: Derivation Graph of
process R2

Analyzing this graph we have the following information regarding action
types:

• Active Actions: none (τ doesn’t cooperate with anyone)

• Passive Actions: a, a1

And the following information is about the first two conditions of the product
form theorem:

• State Q0:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1
Missing Passive Actions: none

• State Qn:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1
Missing Passive Actions: none

Analyzing this graph we have the following information regarding action
types:

• Active Actions: fill, empty
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Figure 6.6: WaP solution of G-network with Trigger: Derivation Graph of
process R3

• Passive Actions: a0, a1

And the following information is about the first two conditions of the product
form theorem:

• State R0:
Ingoing Active Actions: empty
Missing Active Actions: fill
Outgoing Passive Actions: a0
Missing Passive Actions: a1

• State Rn:
Ingoing Active Actions: fill, empty
Missing Active Actions: none
Outgoing Passive Actions: a1
Missing Passive Actions: a0

Analyzing this graph we have the following information regarding action
types:

• Active Actions: a0, a1

• Passive Actions: fill, empty

And the following information is about the first two conditions of the product
form theorem:
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Figure 6.7: WaP solution of G-network with Trigger: Derivation Graph of
process C

• State C0:
Ingoing Active Actions: a0, a1
Missing Active Actions: none
Outgoing Passive Actions: fill
Missing Passive Actions: empty

• State Cn:
Ingoing Active Actions: a1
Missing Active Actions: a0
Outgoing Passive Actions: fill, empty
Missing Passive Actions: none

6.1.4 Derivative Graphs Summary

I will write now the states in which an action does not satisfy the conditions.
(←) represents an outgoing passive problem, (→) represents an ingoing ac-
tive problem.
This is the summary of the two solutions:

DI solution:


Process Action a Action a0 Action a1 Action fill Action empty
P (→) : P i0, P

i
n (←) : P0, Pn

Q
R (←) : Rn (←) : R0 (→) : R0
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WaP solution:


Process Action a Action a0 Action a1 Action fill Action empty
P (←) : P0 (←) : P0

Q
R (←) : Rn (←) : R0 (→) : R0

C (→) : Cn (←) : C0

We can see from this summary, as I expected, that there is a big problem in
the satisfaction of the first two conditions of the product form theorem in the
warden process solution. In P0 of WaP, we should put a a0 action to satisfy
the condition of outgoing passive actions. If I add any transition from state
P0 to anywhere with type a0 it will synchronize with both R0 and C0 altering
the behavior of my system. This make the behavior of this encoding solution
different from the original one and this cannot be acceptable.
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6.1.5 Addition of Phantom State and Missing ”Conditions” Actions

6.1.5.1 Addition in Double Index Solution

In this section I try to add those missing actions to my double index solution.
I call them impossible actions because they will never occur due to the fact
that they will never cooperate with the correspondent active/passive actions
in another process. I use the annotation of putting a ! before their name to
discern them from the normal actions.
In order to do this, I add a state F , called Phantom state. This state will never
be reachable, because all the actions which lead to it are impossible actions.
In this way all the actions from the unreachable state F will be impossible
too, because they will never occur thanks to the non reachability of F .
This is one possible solution:
We can see from this case that F is unreachable because in state P0, the pro-
cessR0 doesn’t have any positive costumer and so it cannot perform an empty
action. This ensure that empty in Pn with n ≥ 0 doesn’t occur and so F is un-
reachable.
I add also in the phantom state, the action All which represent all possible
actions, in this way the first two conditions of product form theorem are sat-
isfied also for F state. However, they are still impossible.

In the following image, I try also to split the F state in more phantom states.
The meaning is the same, F states are still unreachable and their ingoing and
outgoing actions still impossible. In this way I show that it is the same to
have a single phantom state F or a set of them (F0, F1, ..., Fn).
Moreover, each F state has its action All and like in the previous example,
they satisfy the two conditions and they are still impossible. Another impor-
tant fact is that I can add whichever action from any phantom state Fi to any other
phantom state Fj (included i = j with a self-loop) because they will result still
impossible.
In both solutions I add the passive empty action in all Pn with n ≥ 0 and a0
in all P in with n ≥ 0 and i > 0.
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Figure 6.8: R1 with impossible actions (DI)

Also in this case I add the missing actions with the use of impossible actions
and phantom state F . Moreover, it is the same to add only one or n states F
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Figure 6.9: R1 with impossible actions (DI), alternative

like in the previous example and also All represents the same set of actions.

A possible alternative in this case is the use of only one F phantom state
for the missing actions of state 0 and transform all the others outing missing
actions of states 1, ..., n into self-loops. The state 0 needs to have an ingoing
missing action and in order to not synchronize with anyone I must add a
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Figure 6.10: R3 with impossible actions (DI)

Figure 6.11: R3 with impossible actions (DI), alternative

phantom state F in this case contrarily to other ones.
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6.1.5.2 Addition in Warden Process Solution

Even if I don’t choose the Warden Process solution as my solution for the
product form theorem, I will show that is it possible to add the missing ac-
tions for state R3 and C and that the problem relies entirely in the process R1

and the synchronization of its missing action a0.

Figure 6.12: R3 with impossible actions (WaP)

Figure 6.13: R3 with impossible actions (WaP), alternative

Like in the previous example, also in this case the process R3 can be trans-
formed in this way. It has also two alternatives of addition of missing actions.
For what concerns the process C, it has a specular behavior with respect to
R3 in fact state 0 has an outgoing action, which can be transformed into a
self-loop, and ingoing action for all other states, which need 1, ..., n phantom
states F
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Figure 6.14: C with impossible actions (WaP)

6.1.6 Phantom state F and Impossible Actions

6.1.6.1 Impossible Actions

The definition of an impossible actions is:
An action whose type is part of a cooperation set and never synchronize with anyone
(i.e. it will never occur) is called a impossible action.
This means that impossible actions will never cooperate with their correspon-
dent active or passive actions in other processes and they are usually marked
with a ! before their name to discern them from the normal actions.

To better understand them, I make an example. Considering the following
encoding of a system in PEPA:
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P =

{
P0 = (a,>).P1

P1 = (b, µ1).P0 + (c, µ2).P0

Q =

{
Q0 = (a, µ).Q1 + (c,>).Q1

Q1 = (b,>).Q0

S
def
= P 1

a,b,c
Q

And their derivations graphs are the following two:

Figure 6.15: Example of Impossible Action c in processes P and Q

We can notice that all actions are in the cooperative set and a,b have the same
direction in both processes (from 0 to 1 and from 1 to 0, respectively) but
c has an opposite behavior (1 − 0 direction in P and 0 − 1 direction in Q).
Furthermore a is passive in P and active in Q and b,c are active in P and
passive in Q.
In this way, considering that the starting states are P0 andQ0 (or we will incur
in a dead-lock situation), when the two processes cooperate in general system
S we have the following states:

• General State S0: corresponds to the states of processes P0 and Q0

• General State S1: corresponds to the states of processes P1 and Q1

Moreover, starting from the cooperation of P0 with Q0, process S will have
the following behavior:
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• In S0:

– P0 has only a passive action a and must wait for Q0

– Q0 could perform a and c but both must synchronize with same
type of actions in P0

– Result: Q0 can only synchronize in action awith P0 and it proceeds
in Q1 and similarly P0 proceeds in P1 always performing action a

In this way S0 becomes state S1 and c in this case can’t occur.

• In S1:

– P1 could perform b and c but both must synchronize with same
type of actions in Q1

– Q1 has only a passive action b and must wait for P1

– Result: P1 can only synchronize in action bwithQ1 and it proceeds
in P0 and similarly Q1 proceeds in Q0 always performing action b

In this way S1 becomes state S0 and c also in this case can’t occur.

• We return to state S0 so no other behaviors can occur.

With this behavior, the derivative graph of S is the following:

Figure 6.16: Example of Impossible Action c in cooperation process of P and
Q

We can see how c never occurs in both directions (i.e. either from S0 to S1
or from S1 to S0). In this case c never synchronizes and subsequently never
occurs so in this systems both c actions are impossible actions.
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6.1.6.2 Phantom States F

The definition of an phantom state F is:
A non-starting state in which all ingoing actions are impossible actions is called a
phantom state.
This means that the entering actions in a phantom state F can be of three
types (even if still impossible):

• Impossible actions from other kind of states

• Self-loops of impossible actions

• Impossible actions from other phantom states

This definition ensure that a phantom state is unreachable and not present
in the derivative set of the process because all the actions which lead to it
are impossible actions. In this way all outgoing actions of F are impossible
too because of the state will never be a future state of the process and subse-
quently all its actions will never occur.
So, due to the unreachability of phantom state F , all the actions, both ingoing
and outgoing, of a phantom state F are consequently impossible actions.
This leads the definition of a set of phantom states F :
A set of states in which there isn’t any starting state and all actions (ingoing and
outgoing) from outside the set are impossible actions is called a set of phantom states
F = (F1, ..., Fn).
Similarly to the previous definition all outgoing action from a set of phantom
states are still impossible actions and they can be of three type:

• Actions to outside the set

• Self-loops of actions

• Impossible actions between phantom states

To better understand them, I make an example. Considering the following
encoding of a system in PEPA:
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P =


P0 = (a,>).P1 + (b, µ1).FP

P1 = (b, µ1).P0 + (c, µ2).FP

FP = (a,>).P1

Q =


Q0 = (a, µ).Q1 + (c,>).FQ

Q1 = (b,>).Q0 + (a, µ).FQ

FQ = (a, µ).Q1

S
def
= P 1

a,b,c
Q

And their derivations graphs are the following two:

Figure 6.17: Example of Phantom State F in processes P and Q

We can notice that all actions are in the cooperative set but apart a from P0

andQ0 and b from P1 andQ1, the others actions don’t have the same direction
in both processes. Furthermore a is passive in P and active in Q and b,c are
active in P and passive in Q.
In this way, considering that the starting states are P0 andQ0 (or we will incur
in a dead-lock situation), when the two processes cooperate in general system
S we have the following states:

• General State S0: corresponds to the states of processes P0 and Q0
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• General State S1: corresponds to the states of processes P1 and Q1

Moreover, starting from the cooperation of P0 with Q0, process S will have
the following behavior:

• In S0:

– P0 could perform a and b but both must synchronize with same
type of actions in Q0

– Q0 could perform a and c but both must synchronize with same
type of actions in P0

– Result: Q0 can only synchronize in action awith P0 and it proceeds
in Q1 and similarly P0 proceeds in P1 always performing action a

In this way S0 becomes state S1 and b and c in this case can’t occur.

• In S1:

– P1 could perform b and c but both must synchronize with same
type of actions in Q1

– Q1 could perform b and a but both must synchronize with same
type of actions in P1

– Result: P1 can only synchronize in action bwithQ1 and it proceeds
in P0 and similarly Q1 proceeds in Q0 always performing action b

In this way S1 becomes state S0 and a and c also in this case can’t occur.

• We return to state S0 so no other behaviors can occur.

With this behavior, the derivative graph of S is the following:

Figure 6.18: Example of Phantom State F in cooperation process of P and Q
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The final result process is the same in the two previous examples, this mean
that both impossible actions and phantom state F didn’t affect the main sys-
tem S.
It is important to notice that FP and FQ could have synchronize and per-
formed action a but since P , Q and in general S have never reached both
states FP and FQ then their a actions never synchronize and occur so they are
impossible actions.
We can see how F is never reached from any state (i.e. neither from S0 nor
from S1). In this case no action reach F so in this systems both FP and FQ
states are phantom states.
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6.2 Global Balance Equations of DI Solution

In this part of my thesis I will try to balance the equations of the processes and
to find the reversal rates of the passive actions. The global balance equations
taking into analysis are the ones generated in the Double index solution.
The equations are in product-form and must be at equilibrium because they
represent the steady state distribution of each state of the processes. Each
equation represents a different state and it has all the rates of outgoing ac-
tions of its state in their left part and all the rates of ingoing actions in the
right one. If they are all balanced I can then compute the steady state distri-
bution in product form of the general system. The last thing to do is to verify
that all reverse rate are the same, each one with respect to others of its kind
of action. Moreover, in this computation, each of the > rates will be substi-
tuted by a variable (one for each type of action), until I found the exact value
derived from the rate of its active counterpart.
First of all, I start the analysis of the states of my actual model to find the
equations generated from the product-form. In this phase I have to make a
prediction of the solution of the system because in a ergodic system the solu-
tion in unique and if my solution is correct then, in this way, it is the only and
unique solution of the entire system.
I follow this way because my system and the original G-Network have the
same behavior and subsequently are equivalent and have the same underly-
ing Markov chain and because the original G-Network can have the product
form, also my model has it. I am trying to prove that we can compute the
product form, starting from the global balance equations of my model.
In the second part I show two trials in my balancing operations, the first will
result in some bounds on the rate of the model, but this cannot be acceptable
because there cannot be further bounds on them. Also the second one doesn’t
lead to a result but it introduces a nice way of thinking: first try to balance the
system without impossible actions and phantom states and then add those features.
In the last part of this phase I try to compensate those added actions and
states with other inverse actions. In this way:

• for each outgoing impossible action from a normal state I will add an
outgoing action from a phantom state with the same rate

• for each ingoing impossible action form a phantom state to a normal
state I will add an outgoing action from that normal state to the phan-
tom one with the same rate
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• actions in phantom states will be compensated with other impossible
actions between them. Since they are all impossible, I can add any
amount of them without worrying to alter the cooperation mechanism
or the system behavior

This operation will cause some problem in the synchronization of those im-
possible actions, in particular with the passive actions. This because a passive
action must cooperate with an active one with the same type, in some other
process.
The problem can be summarize in the following steps:

1. To satisfy the two conditions of the product form theorem: I add an
ingoing impossible action from a phantom state F to a normal state (in
the case of active ingoing action)

2. To compensate its rate I have to add an action in the other direction (i.e.
from normal state to phantom one): the outgoing action has to be passive
if we want to keep the conditions of theorem satisfied

3. For the cooperation of that passive action, there must be an active coun-
terpart in some other process

4. Other processes have all action name ”occupied”, if can’t add an action
of those types without altering the system behavior

5. I add another type for that compensating passive action but in order to
do this I have to add an active action of the same new type in another
process

This introduction of a new type of impossible compensating actions leads to
a problem of iterative addition if we consider only two processes where to
add those actions:

1. I add an active action of the new type to cooperate with the passive one,
it has to be ingoing in all states to satisfy the conditions of the theorem

2. That new ingoing action has to be compensated so I have to add a pas-
sive action and it must be outgoing to satisfy the theorem

3. That passive action must cooperate with an active one in another pro-
cess
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4. This addiction in the other process restart the iteration of addition of
point 1

In this way there is no ending in the chain of those addictions of actions. To
solve this problem I studied a solution which involve 3 processes and not
only 2. This method is able to close the previous chains of additions but in
order to not alter another existing process and its behavior, I add a new type
of process: the collapsed process C.
This collapsed state C is a state in which there is only a starting state C0 sur-
rounded by phantom states and connected by impossible actions. This new
kind of process permit to vent the surplus rates of the balancing phase, from
the first impossible actions (i.e. the ones needed to satisfy the two conditions
of the product form theorem). I will also prove that impossible actions can
always be added in a way such that they are cooperating. Furthermore also
the active impossible actions must always cooperate with a passive counter-
part, otherwise without synchronization they can occur and then they will no
more impossible.
The most difficult part of the balancing of global equations is the one related
to process R1 because it is composed by two parts, the one with informa-
tion about its state of process and the one related to R3. For this reason its
derivative graph has two dimensions and consequently its balancing is more
complicate.

6.2.1 Analysis of States of process R1

Process R1 is composed by four main types of states:

1. State P0

2. State Pn with n > 0

3. State P i0 with i > 0

4. State P in with n > 0 and with i > 0

All of its state can be attributed to one of this 4 types.
In the following analysis I will study all and only the actions necessary to
satisfy the first two conditions of the product form theorem. I could only add
some new actions or new type of them but I cannot eliminate any of those in
the following analysis.
I suppose that the product form of R1 will be the following:
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Πrc

Where:
c refers to the number of column of the state (i.e. number of positive cos-
tumers in R1)
r refers to the number of row of the state (i.e. number of positive costumers
in R3)
This because in states of R1 are stored both information about R1 and R3.
Then, thanks to the product form, it can be expressed as:

Πrc = αΠr ·Πc

Finally, it can be further decomposed in the following way:

Πrc = αΠr ·Πc = αρr1ρ
c
2

Where α its a generic constant greater than 0 and can be freely chosen and ρ1
and ρ2 have to be found.
And this is my hypothesis about it.
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6.2.1.1 Analysis of P0

Figure 6.19: State P0 (DI) and its neighbors states

The general case of process R1:

Πrc = αΠr ·Πc = αρr1ρ
c
2

In P0 has r = 0 and c = 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state P1: a with rate µ1p and a0 with rate µ1(1− p), total rate
µ1

– From state P ′1: a1 with rate µ1(1− p)
– From state P ′0: empty with rate >, in this case substituted by xe

• Outgoing Actions:

– To state P1: τ with rate λ1
– To state P ′0: fill with rate >, in this case substituted by xf
– To state F : empty with rate >, in this case substituted by xe
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Then the global balance equation for P0 is:

Π00(rout) = Π01(r01) + Π11(r11) + Π10(r10)

Where: rout is the sum of outgoing rates of P0 and rij are the sum of ingoing
rate from state P ij , and it can be decomposed in the following way:

Π00(

Outgoing Actions︷ ︸︸ ︷
xe + λ1 + xf ) = Π01µ1 + Π11µ1(1− p) + Π10xe

��Π00

��Π00
(xe + λ1 + xf ) =

Π01

Π00
µ1 +

Π11

Π00
µ1(1− p) +

Π10

Π00
xe

= �
�αρ01ρ

1
2

�
��αρ01ρ

0
2

µ1 +
�αρ11ρ

1
2

�
��αρ01ρ

0
2

µ1(1− p) +
�αρ11��ρ

0
2

�
��αρ01ρ

0
2

xe

= ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

In conclusion:
(xe + λ1 + xf ) = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe
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6.2.1.2 Analysis of Pn

Figure 6.20: State Pn (DI) and its neighbors states

The general case of process R1:

Πrc = αΠr ·Πc = αρr1ρ
c
2

In Pn has r = 0 and c = n with n > 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state Pn+1: a with rate µ1p and a0 with rate µ1(1 − p), total
rate µ1

– From state P ′n+1: a1 with rate µ1(1− p)
– From state P ′n: empty with rate >, in this case substituted by xe
– From state Pn−1: τ with rate λ1

• Outgoing Actions:

– To state Pn+1: τ with rate λ1
– To state P ′n: fill with rate >, in this case substituted by xf
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– To state Pn−1: a with rate µ1p and a0 with rate µ1(1− p), total rate
µ1

– To state F : empty with rate >, in this case substituted by xe

Then the global balance equation for Pn is then:

Π0n(µ1 + xe + λ1 + xf ) = Π0n+1µ1 + Π1n+1µ1(1− p) + Π1nxe + Π0n−1λ1

��
�Π0n

��
�Π0n

(µ1 + xe + λ1 + xf ) =
Π0n+1

Π0n
µ1 +

Π1n+1

Π0n
µ1(1− p) +

Π1n

Π0n
xe +

Π0n−1
Π0n

λ1

= �
�αρ01ρ�

n+1
2

��
��αρ01ρ
n
2

µ1 +
�αρ11ρ�

n+1
2

��
��αρ01ρ
n
2

µ1(1− p) +
�αρ11��ρ

n
2

��
��αρ01ρ
n
2

xe +
���

��
αρ01ρ

n−1
2

�
�αρ01ρ�

n
2

λ1

= ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

In conclusion:
(µ1 + xe + λ1 + xf ) = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +

1

ρ2
λ1

6.2.1.3 Analysis of P i0

The general case of process R1:

Πrc = αΠr ·Πc = αρr1ρ
c
2

In P i0 has r = i and c = 0 with i > 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state P i1: a with rate µ1p

– From state P i+1
1 : a1 with rate µ1(1− p)

– From state P i+1
0 : empty with rate >, in this case substituted by xe

– From state P i−10 : fill with rate >, in this case substituted by xf
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Figure 6.21: State P i0 (DI) and its neighbors states

– From state F : a0 with general rate r since it is an impossible action
it can be anything

• Outgoing Actions:

– To state P i1: τ with rate λ1
– To state P i+1

0 : fill with rate >, in this case substituted by xf
– To state P i−10 : empty with rate >, in this case substituted by xe

Then the global balance equation for P i0 is then:

Πi0(xe + λ1 + xf ) = Πi1µ1p+ Πi+11µ1(1− p) + Πi+10xe + Πi−1 0xf + ΠF r

��Πi0(xe + λ1 + xf ) =
Πi1

Πi0
µ1p+

Πi+11

Πi0
µ1(1− p) +

Πi+10

Πi0
xe +

Πi−1 0
Πi0

xf +
ΠF

Πi0
r

= �
�αρi1ρ2

�
��αρi1ρ

0
2

µ1p+
�αρ�

i+1
1 ρ2

�
��αρi1ρ

0
2

µ1(1− p) +
�αρ�

i+1
1 ��ρ

0
2

�
��αρi1ρ

0
2

xe +
���

�
αρi−11 ρ02

�αρ�i1��ρ
0
2

xf +
ΠF

Πi0
r

= ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠF

Πi0
r
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In conclusion:
(xe + λ1 + xf ) = ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +

1

ρ1
xf +

ΠF

Πi0
r

6.2.1.4 Analysis of P in

Figure 6.22: State P in (DI) and its neighbors states

The general case of process R1:

Πrc = αΠr ·Πc = αρr1ρ
c
2

In P in has r = i and c = n with n > 0 and i > 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state P in+1: a with rate µ1p

– From state P i+1
n+1: a1 with rate µ1(1− p)

– From state P i+1
n : empty with rate >, in this case substituted by xe

– From state P in−1: τ with rate λ1p

– From state P i−1n : fill with rate >, in this case substituted by xf
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– From state F : a0 with general rate r since it is an impossible action
it can be anything

• Outgoing Actions:

– To state P in+1: τ with rate λ1

– To state P i+1
n : fill with rate >, in this case substituted by xf

– To state P in−1: a with rate µ1p

– To state P i−1n−1: a1 with rate µ1(1− p)

– To state P i−1n : empty with rate >, in this case substituted by xe

Then the global balance equation for Pn is then:

Πin(µ1p+ µ1(1− p) + xe + λ1 + xf ) = Πi n+1µ1p+ Πi+1n+1µ1(1− p) + Πi+1nxe+
+Πi n−1λ1 + Πi−1nxf + ΠF r

��Πin(µ1 + xe + λ1 + xf ) =
Πi n+1

Πin
µ1p+

Πi+1n+1

Πin
µ1(1− p) +

Πi+1n

Πin
xe +

Πi n−1
Πin

λ1 +
Πi−1n

Πin
xf +

ΠF

Πin
r

= �
�αρi1ρ�

n+1
2

��
��αρi1ρ
n
2

µ1p+
�αρ�

i+1
1 ρ�n+1

2

��
��αρi1ρ
n
2

µ1(1− p) +
�αρ�

i+1
1 ��ρ

n
2

��
��αρi1ρ
n
2

xe +
��

���αρi1ρ
n−1
2

�
�αρi1ρ�

n
2

λ1 +
���

��
αρi−11 ρn2

�αρ�i1��ρ
n
2

xf +
ΠF

Πin
r

= ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf +

ΠF

Πin
r

In conclusion:
(µ1 + xe + λ1 + xf ) = ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +

1

ρ2
λ1 +

1

ρ1
xf +

ΠF

Πin
r

6.2.2 First Trial - Balancing of Equations of Process R1 (DI)

Now I will try to balance the global balance equations of R1.
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6.2.2.1 Summary

The summary of the global balance equations of process R1 is the following:

xe + λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe state P0

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 state Pn

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠF

Πi0
r state P i0

xe + λ1 + xf + µ1 = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf +

ΠF

Πin
r state P in

6.2.2.2 Computation

Now I will try to balance them and find the value of the variables:

• ρ1 and ρ2 to compute the steady state distribution of the process R1

• ΠF which can also be ΠFin for each normal state because this won’t alter
the general behavior of the process

• r rate of ingoing action from F which can be any number greater than 0

The rate xe from states P0 and Pn to phantom state F cannot be any number
because it is passive (i.e. its original action has > rate which will be substi-
tuted during a cooperation).

First of all, let’s notice the difference between states P1 − P0:

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

xe + λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

µ1 =
1

ρ2
λ1

From this we have then:

µ1 =
1

ρ2
λ1

ρ2µ1 =
1

��ρ2
��ρ2λ1
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ρ2�
�µ1

��µ1
=
λ1
µ1

ρ2 =
λ1
µ1

So ρ2 must be equal to
λ1
µ1

in all other equations.

For the difference between states P i0 − 0 we can notice that:

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠF

Πi0
r

xe + λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

0 = −ρ2µ1(1− p) +
1

ρ1
xf +

ΠF

Πi0
r

And similarly for states P in − 1 is almost same:

xe + λ1 + xf + µ1 = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf +

ΠF

Πin
r

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

0 = −ρ2µ1(1− p) +
1

ρ1
xf +

ΠF

Πin
r

So to balance the equation it has to be that:

1

ρ1
xf +

ΠF

Π1z
r = ρ2µ1(1− p)

Where z = 0 ∨ 1

Since that ΠF can be whatever we want and I can have n distinct F, one for
each state (because all of them cannot be reached), I choose ΠF = ΠFi0 =
αρa1ρ

b
2 for Πi0 (state P i0) and ΠF = ΠFin = αρa1ρ

b+n
2 for Πin (state P in). In this

way the two cases are the same because:

ΠFi0

Πi0
=
αρa1ρ

b
2

ρi1ρ
0
2

=
αρa1ρ

b
2

ρi1ρ
0
2

ρn2
ρn2

=
αρa1ρ

b+n
2

ρi1ρ
0+n
2

=
αρa1ρ

b+n
2

ρi1ρ
n
2

=
ΠFin

Πin
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So:

0 = −ρ2µ1(1− p) +
1

ρ1
xf +

ΠF

Πi0
r

1

ρ1
xf +

ΠF

Πi0
r = ρ2µ1(1− p)

1

ρ1
xf +

�αρa1ρ
b
2

�αρi1��ρ
0
2

r = ρ2µ1(1− p)

I choose a in such a way that a = i+ a′, in this way we can simplify the equa-
tion in the following way:

1

ρ1
xf +

ρ�i+a
′

1 ρb2

��ρ
i
1

r = ρ2µ1(1− p)

1

ρ1
xf + ρa

′
1 ρ

b
2r = ρ2µ1(1− p)

If it weren’t for xf , the solution would be easier, so I think I could add an
action of type τ from F states corresponding to the first row of normal states
(i.e. F1, ..., Fn) to all the states of the first row (i.e. P0, ..., Pn). I have to get

something equal to
1

ρ1
xf .

For this reason, I add an ingoing action (τ, r′) to all these states P0, ..., Pn. In
this way I add an action rate on the equation and this subsequently add it in
the left part:

ΠFm

Π0m
r′ with m ≥ 0

And this can be reduced in this way:

ΠFm

Π0m
r′ =

αρc1ρ
d
2

αρ01ρ
m
2

r′

Then I choose the values for c = −1, d = m and r′ = xf such that:

ΠFm = αρ−11 ρm2
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From this I get:

ΠFm

Π0m
r′ =

�αρ
−1
1 ��ρ

m
2

��
��αρ01ρ
m
2

xf =
1

ρ1
xf

Now we have the following new equations in the difference between P i0−P0:

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠFi0

Πi0
r

xe + λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf

0 = −ρ2µ1(1− p) +
ΠFi0

Πi0
r

And the following new equations in the difference between P in − Pn:

xe + λ1 + xf + µ1 = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf +

ΠFin

Πin
r

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf

0 = −ρ2µ1(1− p) +
ΠFin

Πin
r

Now to balance the equation it only has to be that (remember that two cases
are similar):

ΠFi0

Πi0
r = ρ2µ1(1− p)

And I said I choose the ΠFi0 such that ΠFi0 = αρi+a
′

1 ρb2 and then:

�αρ
i+a′

1 ρb2

�αρi1��ρ
0
2

r = ρ2µ1(1− p)

ρ�i+a
′

1 ρb2

��ρ
i
1

r = ρ2µ1(1− p)
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ρa
′

1 ρ
b
2r = ρ2µ1(1− p)

Now I choose r = µ1(1− p) such that:

ρa
′

1 ρ
b
2���

��µ1(1− p) = ρ2���
��µ1(1− p)

ρa
′

1 ρ
b
2 = ρ2

Finally, choosing a′ = 0 and b = 1, I subsequently have:

��ρ
0
1ρ

1
2 = ρ2

ρ2 = ρ2

The last thing to compute is ρ1 and I can compute it from the equation of state

Pn (considering that ρ2 =
λ1
µ1

):

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

ΠFn

Π0n
r′

xe + λ1 + xf + µ1 =
λ1

��µ1
��µ1 + ρ1

λ1

��µ1
��µ1(1− p) + ρ1xe +

1

��λ1
µ1

��λ1 +
�αρ
−1
1 ��ρ

n
2

��
��αρ01ρ
n
2

xf

xe +��λ1 + xf +��µ1 =��λ1 + ρ1λ1(1− p) + ρ1xe +��µ1 +
1

ρ1
xf

xe + xf = ρ1λ1(1− p) + ρ1xe +
1

ρ1
xf

ρ1(xe + xf ) =
ρ21λ1(1− p) + ρ21xe + xf

��ρ1
��ρ1

ρ21xe + ρ21(λ1(1− p)) + xf = ρ1(xe + xf )

ρ21(xe + λ1 − λ1p)− ρ1(xe + xf ) + xf = 0

ρ21(((((
(((xe + λ1 − λ1p)

((((
(((xe + λ1 − λ1p

−
ρ1(xe + xf )

xe + λ1 − λ1p
+

xf
xe + λ1 − λ1p

= 0
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ρ21 −
ρ1(xe + xf )

xe + λ1 − λ1p
= −

xf
xe + λ1 − λ1p

ρ21−
ρ1(xe + xf )

xe + λ1 − λ1p
+

(xe + xf )2

4(xe + λ1 − λ1p)2
= −

xf
xe + λ1 − λ1p

+
(xe + xf )2

4(xe + λ1 − λ1p)2(
ρ1 −

xe + xf
2(xe + λ1 − λ1p)

)2

=
(xe + xf )2

4(xe + λ1 − λ1p)2
−

xf
xe + λ1 − λ1p(

ρ1 −
xe + xf

2(xe + λ1 − λ1p)

)2

=
(xe + xf )2 − 4xf (xe + λ1 − λ1p)

4(xe + λ1 − λ1p)2(
ρ1 −

xe + xf
2(xe + λ1 − λ1p)

)2

=
x2e + x2f + 2xexf − 4xexf − 4xfλ1 + 4xfλ1p

4(xe + λ1 − λ1p)2

Now I have to add the following bound if I want to proceed:

x2e + x2f − 2xexf + 4xfλ1(p− 1) >= 0

Supposing it is greater or equal than 0, then I can proceed with the computa-
tion:

ρ1 −
xe + xf

2(xe + λ1 − λ1p)
= ±

√
x2e + x2f − 2xexf + 4xfλ1(p− 1)

4(xe + λ1 − λ1p)2

ρ1 =
xe + xf

2(xe + λ1 − λ1p)
±

√
x2e + x2f − 2xexf + 4xfλ1(p− 1)

4(xe + λ1 − λ1p)2

The valid case is the one with −, so in conclusion, I have that:

ρ1 =
xe + xf

2(xe + λ1 − λ1p)
−

√
x2e + x2f − 2xexf + 4xfλ1(p− 1)

4(xe + λ1 − λ1p)2

ρ2 =
λ1
µ1

But I have to add another bound to ensure that ρ1 is greater than 0.
In conclusion this solution is not acceptable due to these two bounds. The
only permitted and fixed bound is that all rates must be greater than 0.
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6.2.2.3 Alternative

Since that
1

ρ1
xf brings complexity to the global balance equations system, an

alternative to the previous computation can be found with the following ad-
dition:
I will add an action of type τ from all phantom states F , each of them corre-
sponding to a normal states, to all other normal states. So I add an ingoing
action (τ, r′′) to all the normal states. In this way I add an action rate on the
equation and this subsequently add in it the left part:

ΠFij

Πij
r′′ with i ≥ 0 and j ≥ 0

And this can be reduced in this way:

ΠFij

Πij
r′′ =

αρa
′′

1 ρ
b′′
2

αρi1ρ
j
2

r′

Then I choose the values for c = i− 1, d = j, r′′ = (nρ1 − 1)xf and n >
1

ρ1
(to

ensure that the rate r′′ > 0), such that:

ΠFij = αρi−11 ρj2

From this I get:

ΠFij

Πij
r′′ = �

���
�

αρi−11 ρm2

�αρ�i1��ρ
m
2

xf =
1

ρ1
xf

Then I won’t alter the balance of previous equations because this rate is added
in the left part of all of them. Then we have the following computation of ρ1
from state Pn:

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

ΠFn

Π0n
r′ +

ΠFn

Π0n
r′′

xe+λ1+xf +µ1 =
λ1

��µ1
��µ1+ρ1

λ1

��µ1
��µ1(1−p)+ρ1xe+

µ1

��λ1
��λ1+

1

ρ1
xf +

1

ρ1
(nρ1−1)xf

xe +��λ1 + xf +��µ1 =��λ1 + ρ1λ1(1− p) + ρ1xe +��µ1 +
�1 + nρ1 − �1

ρ1
xf
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xe + xf = ρ1λ1(1− p) + ρ1xe +
n��ρ1

��ρ1
xf

xe + xf (1− n) = ρ1(λ1(1− p) + xe)

ρ1
(((

((((
(

λ1(1− p) + xe

(((
((((

(
λ1(1− p) + xe

=
xe + xf (1− n)

λ1(1− p) + xe

So, in this case I have that:

ρ1 =
xe + xf (1− n)

λ1(1− p) + xe

But I have also here to ensure that ρ1 > 0 and to do that I have to put condi-
tions on xe and xf . In conclusion also this solution is not acceptable due to
the extra bound I have to put on rates.

6.2.3 Second Trial - Balancing of Equations of Process R1 (DI) using
Pre-computation without states F

The second methodology I have tried use the concept of pre-computation.
This will find interesting values for ρ1 and ρ2. These values will be very sim-
ilar to those found in the previous literature in the original G-Network.
I will first computing the values of ρ1 and ρ2 in the process R1 without any
phantom states F . After that I will add the impossible actions and phantom
states and try to balance the global balance equations and calculate the vari-
ous ΠFij (with i ≥ 0 and j ≥ 0).
I have the following starting equations (without states F ):



λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe state 0

λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 state n

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf state 0i

xe + λ1 + xf + µ1 = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf state ni
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From this we can compute ρ2 comparing state 0 and state n (or 0i and ni is
the same):

λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

µ1 =
1

ρ2
λ1

And finally get:

µ1 =
1

ρ2
ρ2λ1

ρ2µ1 =
1

��ρ2
��ρ2λ1

ρ2�
�µ1

��µ1
=
λ1
µ1

ρ2 =
λ1
µ1

Now to find ρ1, I compare state 0 and 0i (or n and ni is the same):

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf

λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

xe = −ρ2µ1(1− p) +
1

ρ1
xf

And then finally get also ρ1:

xe = −ρ2µ1(1− p) +
1

ρ1
xf

xe + ρ2µ1(1− p) =
1

ρ1
xf

ρ1(xe +
λ1

��µ1
��µ1(1− p)) =

1

��ρ1
xf��ρ1

ρ1
(((

((((
(

xe + λ1(1− p)
((((

((((xe + λ1(1− p)
=

xf
xe + λ1(1− p)
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ρ1 =
xf

xe + λ1(1− p)

In this case I don’t have to add any bound to ensure the positivity of ρ1
because xf , xe and λ1 are all greater than 0 because they are all rates and
(1 − p) ≥ 0 because it is a probability from 0 to 1 so 0 ≤ p ≤ 1. From this, ρ1
will be always greater than 0.

Now I have to add also the impossible actions, but with them also the equa-
tions will change. For keeping them balanced I have to fractionate one of
them and since among ρ1 and ρ2, ρ1 is more complicated to compute, I will
add a constant in ρ1 instead of ρ2 to have more working space. This constant
δ will be greater than 0.
To summarize, I have the following values for ρ:

ρ1 = δ
xf

xe + λ1(1− p)

ρ2 =
λ1
µ1

Now I will substitute them in the global balance equations ofR1 (without im-
possible actions and states F ).
I add also a

⊕
, in the end of balancing computation of each state, it repre-

sents one or more impossible actions, where they have to be inserted:

State P0

λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

λ1 + xf =
λ1

��µ1
��µ1 + δ

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1− p) + δ

xf
xe + λ1(1− p)

xe

��λ1 + xf =��λ1 + δ
xf

xe + λ1(1− p)
λ1(1− p) + δ

xf
xe + λ1(1− p)

xe

xf = δ
xf

xe + λ1(1− p)
(λ1(1− p) + xe)

xf = δ
xf

((((
((((xe + λ1(1− p)((

(((
((((xe + λ1(1− p))

xf = δxf

Finally, I add the
⊕

in the left part of the equation:



6.2. GLOBAL BALANCE EQUATIONS OF DI SOLUTION 159

⊕
+xf = δxf

(With basic ρ1 (i.e. without
⊕

) this would be xf = xf .)

State Pn

λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

λ1+xf +µ1 =
λ1

��µ1
��µ1+δ

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1−p)+δ

xf
xe + λ1(1− p)

xe+
1
λ1
µ1

λ1

��λ1 + xf + µ1 =��λ1 + δ
xf

xe + λ1(1− p)
λ1(1− p) + δ

xf
xe + λ1(1− p)

xe +
µ1

��λ1
��λ1

xf +��µ1 = δ
xf

xe + λ1(1− p)
(λ1(1− p) + xe) +��µ1

xf = δ
xf

((((
((((xe + λ1(1− p)((

((((
((

(xe + λ1(1− p))

xf = δxf

Finally, I add the
⊕

in the left part of the equation:

⊕
+xf = δxf

(Also here with basic ρ1 (i.e. without
⊕

) this would be xf = xf .)

State P i0

xe + λ1 + xf = ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf

xe + λ1 + xf =
λ1

��µ1
��µ1p + δ

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1 − p) + δ

xf
xe + λ1(1− p)

xe +

1

δ
xf

xe+λ1(1−p)
xf

xe+λ1+xf = λ1p+δ
xf

xe + λ1(1− p)
λ1(1−p)+δ

xf
xe + λ1(1− p)

xe+
xe + λ1(1− p)

δ��xf
��xf

xe + λ1 + xf = λ1p+ δ
xf

xe + λ1(1− p)
(λ1(1− p) + xe) +

xe + λ1(1− p)
δ

xe + λ1 + xf = λ1p+ δ
xf

((((
((((xe + λ1(1− p)((

((((
((

(xe + λ1(1− p)) +
xe
δ

+
λ1(1− p)

δ
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xe + λ1 + xf = λ1p+ δxf +
xe
δ

+
λ1(1− p)

δ

Finally, I add the
⊕

in the right part of the equation:

xe + λ1 + xf = λ1p+ δxf +
xe
δ

+
λ1(1− p)

δ
+
⊕


Here with basic ρ1 (i.e. without

⊕
) this would be:

xe + λ1 + xf = λ1p+ xf + xe + λ1(1− p)
xe + λ1 + xf = xe + λ1(�p+ 1− �p) + xf
xe + λ1 + xf = xe + λ1 + xf



State P in

xe + λ1 + xf + µ1 = ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf

xe+λ1+xf +µ1 =
λ1

��µ1
��µ1p+δ

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1−p)+δ

xf
xe + λ1(1− p)

xe+

1
λ1
µ1

λ1 +
1

δ
xf

xe+λ1(1−p)
xf

xe + λ1 + xf + µ1 = λ1p + δ
xf

xe + λ1(1− p)
λ1(1 − p) + δ

xf
xe + λ1(1− p)

xe +

µ1

��λ1
��λ1 +

xe + λ1(1− p)
δ��xf

��xf

xe+λ1+xf +��µ1 = λ1p+δ
xf

xe + λ1(1− p)
(λ1(1−p)+xe)+��µ1+

xe + λ1(1− p)
δ

xe + λ1 + xf = λ1p+ δ
xf

((((
((((xe + λ1(1− p)((

((((
((

(xe + λ1(1− p)) +
xe
δ

+
λ1(1− p)

δ

xe + λ1 + xf = λ1p+ δxf +
xe
δ

+
λ1(1− p)

δ

Finally, I add the
⊕

in the right part of the equation:

xe + λ1 + xf = λ1p+ δxf +
xe
δ

+
λ1(1− p)

δ
+
⊕
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
Also here with basic ρ1 (i.e. without

⊕
) this would be:

xe + λ1 + xf = λ1p+ xf + xe + λ1(1− p)
xe + λ1 + xf = xe + λ1(�p+ 1− �p) + xf
xe + λ1 + xf = xe + λ1 + xf


Now, the balance equations to solve are the followings (P0 is the same to Pn
and also P i0 and P in):

⊕
+xf = δxf

xe + λ1 + xf = λ1p+ δxf +
xe
δ

+
λ1(1− p)

δ
+
⊕

In particular the problem is in the second equation because, substituting
⊕

with general r rate greater than 0, then we have the following cases:

• if δ > 1 then δxf > xf and we have to add r < 0 to balance the equation;

• if δ < 1 then
xe
δ
> xe and we have to add r < 0 to balance the equation;

• if δ = 1 then xe +λ1 +xf = λ1p+xf +xe +λ(1− p) but we have to add
r = 0 to maintain the balance.

In all cases r ≤ 0 but the main condition of rates is that all of them must be
greater than 0, so this solution is not acceptable.
To solve those problem I will explain two methods for the balance of the equa-
tions in the following sections.

6.3 Generate Safe-Impossible actions in Input and Out-
put

Sometime, to balance the equations, we need outgoing actions to add rate in
the left part of equation or ingoing actions to add rate in the right part.
In the following example, I will show how to add actions toward and from a
”phantom” state F , in such a way that:

• F remains an unreachable state

• The system will behave in the same way



162 CHAPTER 6. PRODUCT FORM

• Added ”impossible” Passive actions are outgoing in all the states

• Added ”impossible” Active actions are ingoing in all the states

Let’s consider the following processes:

P =

{
P0 = (a, λ).P1 + (b,>).P1 + (a, λ).P0

P1 = (b,>).P0

Q =

{
Q0 = (a,>).Q1 + (b, µ).Q1

Q1 = (b, µ).Q0 + (a,>).Q1

S
def
= P 1

a,b
Q

And the starting states are P0 and Q0:

As shown in their derivative graphs of figure 6.23, each state has at least one
outgoing passive action and one ingoing active action of the types in the co-
operation set.

Figure 6.23: Example of two Cooperating Processes P and Q

As already explained before, it is the same to add only one state F or one
for each normal state in the process, in this example I will consider only one
phantom state F in each process (or also one for each subset of states of pro-
cess).
Now I add the phantom state F and link it with P (called FP ) and Q (called
FQ) through action c1. (c1,>) is added to P0 and (c1, r) is added to FQ. I must
put c1 in the cooperation set, otherwise the process could go on state F and it
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would be unreachable no more.
Remember that passive actions must be outgoing (in this case in P ) and active
ones must be ingoing (in this case inQ). F states are still unreachable because
P0 must cooperate with Q to go in FP but from either Q0 and Q1 there is no
action type c1 outgoing but only ingoing. P should cooperate with FQ to go
in FP but the latter is unreachable, so there is no way to go from P0 or Q0 to
FP and FQ respectively.

The system now is:

S′ = P 1
a,b,c1

Q

And the derivative graph is the following:

Figure 6.24: Example of two Cooperating Processes P and Q with impossible
action c1

Now the rate xc1 is added on the left of the global balance equation of P0, and
similarly the rate r is added on the right of the global balance equation of Q0.
As I did before, now I will add action c2, specularly as I did for c1. In this
way, (c2, r

′) is added to FP and (c2,>) is added to Q0. F is still unreachable
because P and Q cannot synchronize neither on c1, nor on c2, like in the pre-
vious passage.
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The final system is:

S′′ = P 1
a,b,c1,c2

Q

And the derivative graph is the following:

Figure 6.25: Example of two Cooperating Processes P and Q with impossible
actions c1, c2

The rate r′ is added on the right of the global balance equation of P0 and the
rate xc2 is added on the left of the global balance equation of Q0.
As the final step, I add c1 and c2 to all states in the system, taking care that on
process P , c1 actions are always outgoing and c2 ingoing and vice versa on
Q, c1 actions are ingoing and c2 outgoing. In this way FP and FQ remain un-
reachable and since all new actions involve these F states, the new system S′′

behaves in the same manner as S. Moreover, in all the states, all impossible
passive actions are outgoing and all impossible active actions are ingoing.

And the derivative graph of this system is the following:
There is only one exception in the states FP and FQ. These two states don’t
have outgoing passive impossible actions and ingoing active impossible ac-
tions, but it is easy to solve, I just add one self-loop for every missing outgoing
and ingoing action. Since they are unreachable, these actions are still impos-
sible and all of this doesn’t affect the behavior of the entire system, however
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Figure 6.26: Example of Final System with impossible actions c1, c2

it satisfy the two conditions of the theorem (regarding impossible actions).

Finally, the derivative graph of the final and complete system is the following:

Figure 6.27: Example of Final System with impossible actions c1, c2 also in F

The final processes are now:
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P =


P0 = (a, λ).P1 + (b,>).P1 + (a, λ).P0 + (c1,>).F

P1 = (b,>).P0 + (c1,>).F

FP = (c1,>).FP + (c2, r
′).FP + (c2, r

′).P0 + (c2, r
′).P1

Q =


Q0 = (a,>).Q1 + (b, µ).Q1 + (c2,>).F

P1 = (b, µ).Q0 + (a,>).Q1 + (c2,>).F

FQ = (c2,>).FP + (c1, r).FP + (c1, r).Q0 + (c1, r).Q1

S′′
def
= P 1

a,b,c1,c2
Q

And the starting states are still P0 and Q0:

In conclusion, in any system, I can add rates on the global balance equations,
both left and right, without changing the behavior of the initial system. With
this method, I can help the balancing especially when the only other solution
is to add a negative rate (that is not permitted).

6.4 Balance of Equations between Normal and Phantom
States F

If we want to apply the product form theorem of Harrison in a process, all
passive actions in the cooperation set must be outgoing in every state and all
active actions must be ingoing. In order to ensure these properties, sometimes
we have to add impossible actions from and toward a phantom state F . We
have seen that we can always add safe-impossible actions in the system, but
to balance them there are to main cases:

• Actions added are active from phantom state F to all other normal
states

• Actions added are passive from all normal states to phantom state F

I will use a process with only two states in the following examples, but it
would be easy to apply to more complex ones. A usual, instead of having
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only one phantom state F , I suppose I can have a lattice of phantom states F ,
one for each normal state.

6.4.1 Balance Passive Actions toward phantom state F

I analyze now the balancing of the first case in which there are passive outgo-
ing actions toward a phantom state F .

Considering the following process:

P =

{
P0 = (empty,>).F0

F0 = (empty,>).F0

With the starting state P0 and another cooperating process Q. P and Q coop-
erate with the action empty and (empty, r) is active in Q.
The action (empty,>) is passive in P and in the following derivation graph
the > rate is substituted with rate xe as usually happen in the global balance
equations where the> rates are substituted by variables, one for each kind of
actions.

The derivation graph of the process P is:

Figure 6.28: Process P0 with added outgoing passive safe-impossible action
empty

Usually in the global balance equations, it is safe to assume that ΠF0 = Π0,
then in this case, both equations are unbalanced:
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State F0 : ΠF0(xe) = Π0xe + ΠF0xe

���
�ΠF0(xe) = Π0xe +����ΠF0xe

0 = Π0xe

State P0 : Π0(xe) = 0

Remember that both Π0 and xe have to be greater than 0.
To solve this problem, I can simply add a empty action from state F0 to P0 to
balance the equations of both F0 and P0 without the need of further changes.

The process is now changed as follow:

P =

{
P0 = (empty,>).F0

F0 = (empty,>).F0 + (empty,>).P0

And the derivation graph is now the following:

Figure 6.29: Balanced Process P0 with added outgoing passive safe-
impossible action empty

The process P0 is now balanced (remember that ΠF0 = Π0):
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State F0 : ΠF0(xe + xe) = Π0xe + ΠF0xe

�
�
�ΠF0

ΠF0

(xe + xe) =
�
�
�Π0

ΠF0

xe +
�
�
�ΠF0

ΠF0

xe

xe + xe = xe + xe

State P0 : Π0(xe) = ΠFxe

�
�
�Π0

Π0
(xe) =

�
�
�ΠF0

Π0
xe

xe = xe
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6.4.2 Active actions to F to balance

I analyze now the balancing of the second case in which there are active in-
going actions from a phantom state F .
To balance active added actions is more difficult because we have to add an
action from state P0 to a phantom state F which must be in the cooperation
set and doesn’t synchronize in any way with other processes of the system.
In this way the process cannot proceed in F state because of the missing syn-
chronization. Moreover, we cannot usually add an action with type from the
preexisting cooperation set because in most cases the majority of states have
already all action types already used. Therefore, I just need to add a new ac-
tion type also to avoid problem in synchronization with preexisting actions.
In the following example I will show this problem and how to resolve it, step
by step.

Considering the following process P which has an active cooperating action
to balance:

P =
{
FP = (fill, λ).FP + (fill, λ).P0

With the starting state P0 and another cooperating process Q. P and Q coop-
erate with the action fill and (fill,>) is passive in Q.

The derivation graph of the process P is:

Figure 6.30: Process P with added ingoing active safe-impossible action fill

Usually in the global balance equations, it is safe to assume that ΠF0 = Π0,
then in this case, both equations are unbalanced:



6.4. BALANCE OF EQUATIONS BETWEEN NORMAL AND PHANTOM STATESF171

State FP : ΠFP
(λ+ λ) = ΠFP

λ

��
�ΠFP

(λ+ λ) =��
�ΠFP
λ

λ = 0

State P0 : 0 = ΠFP
(λ)

Remember that both ΠF0 and λ have to be greater than 0.
To solve this problem, first of all I add the new action type impfill, to make
the system balanced. This action is added from state P0 to the phantom state
F and it is put in the cooperation set because it must be impossible or the
phantom state F will be no more unreachable. Due to its outgoing direction
from P0 it must also be passive to satisfy the conditions of the product form
theorem. Moreover, also in F0 is add the action (impfill,>) to satisfy the con-
ditions but in this case as a self-loop, so it is impossible and doesn’t alter the
system behavior.
The action added (impfill,>) is passive in P and in the following derivation
graph the > rate is substituted with rate xf as usually happen in the global
balance equations where the> rates are substituted by variables, one for each
kind of actions.
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This is the derivation graph:

Figure 6.31: Process P with added impossible action impfill to balance the
system

Unfortunately impfill is passive and there must exist its active counterpart
somewhere, in another process. For this reason, I add it in Q which has al-
ready a cooperation with P , in the following way:

Figure 6.32: Processes P and Q with added impossible action impfill to bal-
ance the system

I don’t care (and don’t draw) for the other actions of Q and consider them
balanced, if they weren’t, I would simply apply the method of this section
also in Q after its application on P .
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Now process P is balanced, in fact xf , as a passive rate, on cooperation will
only take values of active action impfill in process Q and all rates of impfill in
Q are λ.
Unfortunately this leads to unbalance the process Q (like it was at the begin-
ning off this section). To balance it I cannot add fill because it can be also
used from Q0 to another state Qn and so with it I can go from Q0 to F and
this cannot be acceptable. I cannot add impfill either, because it would syn-
chronize with impfill of P0 and both P0 and Q0 would go in phantom states
F .
So I add another new action endfill. This action is added from state Q0 to
the phantom state F and it is put in the cooperation set because it must be
impossible or the phantom state F will be no more unreachable. Due to its
outgoing direction from Q0 it must also be passive to satisfy the conditions of
the product form theorem. Moreover, also in F0 is add the action (endfill,>)
to satisfy the conditions but in this case as a self-loop, so it is impossible and
doesn’t alter the system behavior.
The action added (endfill,>) is passive in P and also in the following deriva-
tion graph the > rate is substituted with rate xef as usually happen in the
global balance equations where the > rates are substituted by variables, one
for each kind of actions.
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This is the derivation graph:

Figure 6.33: Processes P and Q with added impossible actions impfill and
endfill to balance the system

As usual endfill is passive and there must exist its active counterpart some-
where, in another process.
If I use it in P , it would unbalanced the process P and to balance it I have to
put a passive impossible action with an active counterpart and if I put that
counterpart in Q, I would enter in a cyclic process of adding impossible ac-
tions without reaching the balance.
For this reason:
For balance an active impossible action I must have 3 processes in cooper-
ation and only with a triangular addition of impossible action (both active
and passive) I can finally balance all of the processes.
For this reason, I will create another process C called Collapsed Process to close
the ”chain” of balancing, and add the active action endimp in it, in the follow-
ing way:
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Figure 6.34: Processes P and Q and Collapsed Process C with actions impfill
and endfill

C has only the stating state C0 and one phantom state F , moreover this pro-
cess has a cooperation with P and Q in the actions impfill and endfill.
Now process Q is balanced, in fact xef , as a passive rate, on cooperation will
only take values of active action endfill in process C and all rates of endfill in
C are λ.
Unfortunately this leads to unbalance the process C (like it was at the begin-
ning off this section) but now I have the possibility to balance it without any
other addition of actions. To balance it I cannot add fill because it can syn-
chronize with Q0 or P0 and so with it I can go from C0 to F and this cannot
be acceptable. Moreover, I cannot add endfill or it would synchronize with
Q0 and both Q and C could go into their phantom states F .
However, I can add instead impfill as a passive action (and this satisfy also
the conditions of theorem), because it is active only in process Q. In this way
I have P , Q and C cannot cooperate in the action impf ill because the starting
states are P0, Q0 and C0 but only in P0 and C0 the action impfill is outgoing
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and in Q0 it is only ingoing.

The final system is the following:

P =

{
P0 = (impfill,>).FP

FP = (impfill,>).FP + (fill, λ).FP + (fill, λ).P0

Q =

{
Q0 = (endfill,>).FQ

FQ = (endfill,>).FQ + (impfill, λ).FQ + (impfill, λ).Q0

C =

{
C0 = (impfill,>).FC

FC = (impfill,>).FC + (endfill, λ).FC + (endfill, λ).C0

S
def
= P 1

impfill,endfill
Q 1

impfill,endfill
C

The starting states are P0, Q0 and C0 and the derivation graph is now the
following:

The processes P , Q and C are now balanced (remember that ΠF = Π0 and
xf = xef = λ):
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Figure 6.35: Final system of processes P , Q and collapsed process C, all bal-
anced

Process P : State P0 : Π0(xf ) = ΠFP
λ

�
�
�Π0

Π0
(xf ) =

�
�
�ΠFP

Π0
λ

xf = λ

State FP : ΠFP
(xf + λ+ λ) = Π0xf + ΠFP

(xf + λ)

�
�
�ΠFP

ΠFP

(xf + λ+ λ) =
�
�
�Π0

ΠFP

xf +
�
�
�ΠFP

ΠFP

(xf + λ)

��xf +�λ+ λ =��xf + xf +�λ

λ = xf
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Process Q : State Q0 : Π0(xef ) = ΠFQ
λ

�
�
�Π0

Π0
(xef ) =

�
�
�ΠFQ

Π0
λ

xef = λ

State FQ : ΠFQ
(xef + λ+ λ) = Π0xef + ΠFQ

(xef + λ)

�
�
�ΠFQ

ΠFQ

(xef + λ+ λ) =
�
�
�Π0

ΠFQ

xef +
�
�
�ΠFQ

ΠFQ

(xef + λ)

��xef +�λ+ λ =��xef + xef +�λ

λ = xef

Process C : State C0 : Π0(xf ) = ΠFC
λ

�
�
�Π0

Π0
(xf ) =

�
�
�ΠFC

Π0
λ

xf = λ

State FC : ΠFC
(xf + λ+ λ) = Π0xf + ΠFC

(xf + λ)

�
�
�ΠFC

ΠFC

(xf + λ+ λ) =
�
�
�Π0

ΠFC

xf +
�
�
�ΠFC

ΠFC

(xf + λ)

��xf +�λ+ λ =��xf + xf +�λ

λ = xf
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6.5 Balancing the Global Balance Equations of DI Solu-
tion

Now we know that on both sides of equations we can add actions such that
they are impossible and they can be balanced. So I restart the computation
from the beginning and only when I will compute various ρ, then I will add
the actions that involve states F with the addition of new rates of new safe-
impossible actions in one or both sides of equations when necessary. More-
over, I assume that:

• when necessary to satisfy the condition of product form theorem, I cre-
ate a lattice of phantom states F , one for each normal state

• to balance the various ingoing active impossible actions, I create a col-
lapsed process C

I assume also that Π of a general phantom state F is equal to Π of his corre-
spondence normal state, in this way:

• ΠFij = Πij with i, j ≥ 0 in R1

• ΠFm = Πm with m ≥ 0 in R2 and R3

6.5.1 Balancing the Global Balance Equations of R1

Now I restart the computation of R1 from the beginning and only when I will
compute ρ1 and ρ2, then I will add the impossible actions to satisfy the condi-
tions of theorem. In particular I will add rates on the right and on the left of
all of the equations. As I said, since we have to add both active and passive
safe-impossible actions I need a lattice of phantom states F , one for each state
and for simplicity I choose Π of state Fxy equal to Π of the correspondence
state Pxy
After that I prove the balancing of all the new global balance equations of R1.

For now (from the analysis in the previous sections), we have the following
equations without impossible actions:
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

λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe state P0

λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 state Pn

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf state P i0

xe + λ1 + xf + µ1 = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf state P in

As usual, I compare state P0 and state Pn (or P i0 and P in is the same) to find ρ2:

xe + λ1 + xf + µ1 = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1

xe + λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

µ1 =
1

ρ2
λ1

And finally get:

µ1 =
1

ρ2
ρ2λ1

ρ2µ1 =
1

��ρ2
��ρ2λ1

ρ2�
�µ1

��µ1
=
λ1
µ1

ρ2 =
λ1
µ1

Now I compare state P0 and P i0 (or Pn and P in is the same), to find ρ1:

xe + λ1 + xf = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf

λ1 + xf = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe

xe = −ρ2µ1(1− p) +
1

ρ1
xf

And then finally we can get ρ1:
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xe = −ρ2µ1(1− p) +
1

ρ1
xf

xe + ρ2µ1(1− p) =
1

ρ1
xf

ρ1(xe +
λ1

��µ1
��µ1(1− p)) =

1

��ρ1
xf��ρ1

ρ1
((((

((((xe + λ1(1− p)
((((

((((xe + λ1(1− p)
=

xf
xe + λ1(1− p)

ρ1 =
xf

xe + λ1(1− p)

Also in this case I don’t have to add any bound to ensure the positivity of ρ1
because xf , xe and λ1 are all greater than 0 (due to the fact that they are rates)
and (1− p) ≥ 0 because it is a probability from 0 to 1 so 0 ≤ p ≤ 1. From this,
ρ1 will be always greater than 0.
Now I will check the balancing of equations, with all the actions involving
phantom states F . This include three kind of actions:

• Actions needed to satisfy condition 1 and 2 of Product-form Theorem
(for cooperation actions, all passive must be ingoing and all active must
be outgoing from all states)

– (empty,>) from states P0 and Pn which is (empty, xe) with the >-
rate substitution

– (a0, ri0) to states P i0
– (a0, rin) to states P in

• Actions from phantom state F not in cooperation set, they will not in-
fluence the satisfaction of condition 1 and 2 (since they don’t cooperate)
so I can add them freely

– (τ, r0) to states P0

– (τ, rn) to states Pn

• Safe-Impossible outgoing passive action imp1 from all states to their
correspondence F states (remember that they also have to be added in
the cooperation set)

– (imp1,>) from states P0, Pn, P i0, P in which is (imp1, xi) with the
>-rate substitution
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The rates of a0 actions, added from states F to P i0 and P in are active but impos-
sible so I can freely choose their rates (and for now I put them as variables).
Moreover, the satisfaction of two conditions in F states is ensured with the
self-loops of all actions types in the cooperation set.

Then the summary, with impossible actions, is the following:

xe + λ1 + xf + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
ΠF0

Π00
r0 state P0

xe + λ1 + xf + µ1 + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

ΠFn

Π0n
rn state Pn

xe + λ1 + xf + xi = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠFi0

Πi0
ri0 state P i0

xe + λ1 + xf + µ1 + xi = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf +

ΠFin

Πin
rin state P in

With:
ρ1 =

xf
xe + λ1(1− p)

ρ2 =
λ1
µ1

Now I will substitute them in the global balance equations:

State P0

xe + λ1 + xf + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
ΠF0

Π00
r0

xe+λ1+xf+xi =
λ1

��µ1
��µ1+

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1−p)+

xf
xe + λ1(1− p)

xe+
ΠF0

Π00
r0

xe +��λ1 + xf + xi =��λ1 +
xf

xe + λ1(1− p)
λ1(1− p) +

xf
xe + λ1(1− p)

xe +
ΠF0

Π00
r0

xe + xf + xi =
xf

xe + λ1(1− p)
(λ1(1− p) + xe) +

ΠF0

Π00
r0

xe + xf + xi =
xf

((((
((((xe + λ1(1− p)((

(((
((((xe + λ1(1− p)) +

ΠF0

Π00
r0

xe +��xf + xi =��xf +
ΠF0

Π00
r0

xe + xi =
�αρa1ρ

b
2

��
�

αρ01ρ
0
2

r0

xe + xi = ρa1ρ
b
2r0
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I choose, as I said before, a = 0, b = 0 to make the equivalence of two Π:

xe + xi =��
�ρ01ρ
0
2r0

r0 = xe + xi

State P0 is balanced.

State Pn

xe + λ1 + xf + µ1 + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

ΠFn

Π0n
rn

xe+λ1+xf +µ1+xi =
λ1

��µ1
��µ1+

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1−p)+

xf
xe + λ1(1− p)

xe+

1
λ1
µ1

λ1 +
ΠFn

Π0n
rn

xe +��λ1 + xf + µ1 + xi =��λ1 +
xf

xe + λ1(1− p)
λ1(1 − p) +

xf
xe + λ1(1− p)

xe +

µ1

��λ1
��λ1 +

ΠFn

Π0n
rn

xe + xf +��µ1 + xi =
xf

xe + λ1(1− p)
(λ1(1− p) + xe) +��µ1 +

ΠFn

Π0n
rn

xe + xf + xi =
xf

((((
((((xe + λ1(1− p)((

((((
((

(xe + λ1(1− p)) +
ΠFn

Π0n
rn

xe +��xf + xi =��xf +
ΠFn

Π0n
rn

xe + xi =
ΠFn

Π0n
rn

(Remember that ΠFn = ρa1ρ
b
2 and I choose a = 0, b = n so ΠFn = ρ01ρ

n
2 = Πn)

xe + xi = �
�
��αρ01ρ
n
2

��
��αρ01ρ
n
2

rn

xe + xi = rn
rn = xe + xi

State Pn is balanced.
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State P i0

xe + λ1 + xf + xi = ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf +

ΠFi0

Πi0
ri0

xe+λ1+xf +xi =
λ1

��µ1
��µ1p+

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1−p)+ρ1xe+

1

ρ1
xf +

ΠFi0

Πi0
ri0

xe+λ1 +xf +xi = λ1p+
xf

xe + λ1(1− p)
λ1(1−p)+

xf
xe + λ1(1− p)

xe+
1

ρ1
xf +

ΠFi0

Πi0
ri0

xe+λ1+xf+xi = λ1p+
xf

xe + λ1(1− p)
(λ1(1−p)+xe)+

1
xf

xe+λ1(1−p)
xf+

ΠFi0

Πi0
ri0

xe+λ1 +xf +xi = λ1p+
xf

((((
((((xe + λ1(1− p)((

((((
((

(xe + λ1(1− p))+
xe + λ1(1− p)

��xf
��xf +

ΠFi0

Πi0
ri0

��xe + λ1 +��xf + xi = λ1p+��xf +��xe + λ1(1− p) +
ΠFi0

Πi0
ri0

λ1 + xi = λ1(�p+ 1− �p) +
ΠFi0

Πi0
ri0

��λ1 + xi =��λ1 +
ΠFi0

Πi0
ri0

xi =
ΠFi0

Πi0
ri0

(Remember that ΠFi0 = ρa1ρ
b
2 and I choose a = i, b = 0 so ΠFi0 = ρi1ρ

0
2 = Πi0)

xi = �
��αρi1ρ

0
2

��
�

αρi1ρ
0
2

ri0

xi = ri0
ri0 = xi

State P i0 is balanced.

State P in

xe+λ1 +xf +µ1 +xi = ρ2µ1p+ρ1ρ2µ1(1−p)+ρ1xe+
1

ρ2
λ1 +

1

ρ1
xf +

ΠFin

Πin
rin
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xe + λ1 + xf +µ1 + xi =
λ1

��µ1
��µ1p+

xf
xe + λ1(1− p)

λ1

��µ1
��µ1(1− p) + ρ1xe +

1
λ1
µ1

λ1 +

1

ρ1
xf +

ΠFin

Πin
rin

xe+λ1 +xf +µ1 +xi = λ1p+
xf

xe + λ1(1− p)
λ1(1−p)+ρ1xe+

µ1

��λ1
��λ1 +

1

ρ1
xf +

ΠFin

Πin
rin

xe + λ1 + xf +��µ1 + xi = λ1p+
xf

xe + λ1(1− p)
λ1(1− p) +

xf
xe + λ1(1− p)

xe +

��µ1 +
1

ρ1
xf +

ΠFin

Πin
rin

xe+λ1+xf+xi = λ1p+
xf

xe + λ1(1− p)
(λ1(1−p)+xe)+

1
xf

xe+λ1(1−p)
xf+

ΠFin

Πin
rin

xe+λ1 +xf +xi = λ1p+
xf

((((
((((xe + λ1(1− p)((

(((
((((xe + λ1(1− p))+

xe + λ1(1− p)

��xf
��xf +

ΠFin

Πin
rin

��xe + λ1 +��xf + xi = λ1p+��xf +��xe + λ1(1− p) +
ΠFin

Πin
rin

λ1 + xi = λ1(�p+ 1− �p) +
ΠFin

Πin
rin

��λ1 + xi =��λ1 +
ΠFin

Πin
rin

xi =
ΠFin

Πin
rin

(Remember that ΠFin = ρa1ρ
b
2 and I choose a = i, b = n so ΠFin = ρi1ρ

n
2 = Πin)

xi = �
��
�

αρi1ρ
n
2

��
��αρi1ρ
n
2

rin

xi = rin
rin = xi

State P in is balanced.

In conclusion we have that:
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
r0 = xe + xi
rn = xe + xi
ri0 = xi
rin = xi

The final global balance equations, with all impossible actions, are the follow-
ing:

xe + λ1 + xf + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe + xe + xi state P0

xe + λ1 + xf + µ1 + xi = ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 + xe + xi state Pn

xe + λ1 + xf + xi = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf + xi state P i0

xe + λ1 + xf + µ1 + xi = ρ2µ1p + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf + xi state P in

And the impossible actions are:

• (a0, xi) from Fi0 to states P i0

• (a0, xi) from Fin to states P in

• (τ, xe + xi) from F0 to states P0

• (τ, xe + xi) from Fn to states Pn

• (imp1, xi) form F states to states P0, Pn, P i0, P in

6.5.1.1 Balancing of F -Lattice

Now I have to check that also F -lattice is balanced. I have to check 4 main
kinds of states:

• F0

• Fn with n > 0

• Fi0 with i > 0

• Fin with n > 0 and i > 0
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The summary of their global balance equations is the following:

xi + δ + xe + x0 = xi + δ + xe +
ΠF1

ΠF0

r01 +
ΠF10

ΠF0

r02 state F0

xi + δ + xe + xn = xi + δ + xe +
ΠFn−1

ΠFn

rn1 +
ΠFn+1

ΠFn

rn2 +
ΠF1n

ΠFn

rn3 state Fn

xi + δ + xi0 = xi + δ +
ΠFi1

ΠFi0

ri01 +
ΠFi−1 0

ΠFi0

ri02 +
ΠFi+1 0

ΠFi0

ri03 state Fi0

xi + δ + xin = xi + δ +
ΠFi n−1

ΠFin

rin1 +
ΠFi n+1

ΠFin

rin2 +
ΠFi−1n

ΠFin

rin3 +
ΠFi+1n

ΠFin

rin4 state Fin

Consider that δ = µ1p+µ1(1−p) +µ1(1−p) +xe+xf +xi = µ1 +µ1(1−p) +
xe + xf + xi. It represents the rates of all cooperating actions in the self-loop
of each phantom states F and it is the rate of the action All studied in the
analysis. In this way all active and passive actions in the cooperation set are
either ingoing and outgoing in F lattice.
Moreover, xm and xmn with n ≥ 0 and m ≥ 0 represent the sum of outgoing
rates, one for each neighbor and I add also in the right part of the equations
an ingoing rate of action for each neighbor of each phantom state.

Let’s start the analysis:

State F0

xi + δ + xe + x0 = xi + δ + xe +
ΠF1

ΠF0

r01 +
ΠF10

ΠF0

r02

��xi + �δ +��xe + x0 =��xi + �δ +��xe +
αρ01ρ

1
2

αρ01ρ
0
2

r01 +
αρ11ρ

0
2

αρ01ρ
0
2

r02

x0 =
αρ01ρ

1
2

αρ01ρ
0
2

r01 +
αρ11ρ

0
2

αρ01ρ
0
2

r02

Now I split x0 in two variables (i.e. two rates of two different actions outgo-
ing from F0 and toward each of its neighbor), because F0 has only 2 neighbor.

x01 + x02 = �
�αρ01ρ

1
2

��
�

αρ01ρ
0
2

r01 +
�αρ11��ρ

0
2

��
�

αρ01ρ
0
2

r02

x01 + x02 = ρ2r01 + ρ1r02
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State F0 is balanced.

In conclusion we have that:
x01 = ρ2r01
x02 = ρ1r02

I choose a generic rate ω for both r01 and r02 so:

• From state F1 to state F0 there is an action with rate ω (from the chosen
value of r01)

• From state F0 to state F1 there is an action with rate ρ2ω (from value of
x01)

• From state F10 to state F0 there is an action with rate ω (from the chosen
value of r02)

• From state F0 to state F10 there is an action with rate ρ1ω (from value of
x02)

In this way, generalizing the previous reasoning, we know that considering
Fmn a generic F -state, every action (if there is any):

• From Fmn−1 (i.e. column = n − 1; row = m) to Fmn there will be and
action with rate ρ2ω

• From Fmn+1 (i.e. column = n + 1; row = m) to Fmn there will be and
action with rate ω

• From Fm−1n (i.e. column = n; row = m − 1) to Fmn there will be and
action with rate ρ1ω

• From Fm+1n (i.e. column = n; row = m + 1) to Fmn there will be and
action with rate ω

• From Fmn to Fmn+1 (i.e. column = n + 1; row = m) there will be and
action with rate ρ2ω

• From Fmn to Fm+1n (i.e. column = n; row = m + 1) there will be and
action with rate ρ1ω
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Moreover, consider also that we know all Πxy and for all of them holds:
Πxy

Πwz
= ρx−w1 ρy−z2 .

I also split xn and xi0 in 3 variables, one for each neighbor and xin in 4 vari-
ables, also here one for each neighbor.
I can update the system of global balance equations of the F -lattice with in-
formation about Π and F0:

xi + δ + xe + ρ2ω + ρ1ω = xi + δ + xe + ρ2ω + ρ1ω state F0

xi + δ + xe + xn1 + xn2 + xn3 = xi + δ + xe + ρ−12 rn1 + ρ2rn2 + ρ1rn3 state Fn
xi + δ + xi01 + xi02 + xi03 = xi + δ + ρ2ri01 + ρ−11 ri02 + ρ1ri03 state Fi0
xi + δ + xin1 + xin2 + xin3 + xin4 = xi + δ + ρ−12 rin1 + ρ2rin2 + ρ−11 rin3 + ρ1rin4 state Fin

I can now proceed with the analysis:

State Fn

Remember that Fn (column = n; row = 0) has following rate of actions:

• rn1 from column = n− 1; row = 0, so it is ρ2ω

• rn2 from column = n+ 1; row = 0, so it is ω

• rn3 from column = n; row = 1, so it is ω

• xn2 to column = n+ 1; row = 0, so it is ρ2ω

• xn3 to column = n; row = 1, so it is ρ1ω

Then we have that:
xi + δ + xe + xn1 + xn2 + xn3 = xi + δ + xe + ρ−12 rn1 + ρ2rn2 + ρ1rn3
((((

((xi + δ + xe + xn1 + xn2 + xn3 =((((
((xi + δ + xe + ρ−12 rn1 + ρ2rn2 + ρ1rn3

xn1 + xn2 + xn3 = ρ−12 rn1 + ρ2rn2 + ρ1rn3
xn1 + ρ2ω + ρ1ω = ρ−12 ρ2ω + ρ2ω + ρ1ω
xn1 +��ρ2ω +��ρ1ω =�

�ρ−12 ��ρ2ω +��ρ2ω +��ρ1ω
xn1 = ω

State Fn is balanced.
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If the reasoning is the same, also the actions from a state with same column
and previous row will be equal to ω. I can conclude the reasoning and in this
case, considering a generic F -state Fmn, every action (if there is any):

• From Fmn−1 (i.e. column = n − 1; row = m) to Fmn there will be and
action with rate ρ2ω

• From Fmn+1 (i.e. column = n + 1; row = m) to Fmn there will be and
action with rate ω

• From Fm−1n (i.e. column = n; row = m − 1) to Fmn there will be and
action with rate ρ1ω

• From Fm+1n (i.e. column = n; row = m + 1) to Fmn there will be and
action with rate ω

• From Fmn to Fmn−1 (i.e. column = n − 1; row = m) there will be and
action with rate ω

• From Fmn to Fmn+1 (i.e. column = n + 1; row = m) there will be and
action with rate ρ2ω

• From Fmn to Fm−1n (i.e. column = n; row = m − 1) there will be and
action with rate ω

• From Fmn to Fm+1n (i.e. column = n; row = m + 1) there will be and
action with rate ρ1ω

Now I can further update the system with this information:
xi + δ + xe + ρ2ω + ρ1ω = xi + δ + xe + ρ2ω + ρ1ω state F0

xi + δ + xe + ω + ρ2ω + ρ1ω = xi + δ + xe + ρ−12 ρ2ω + ρ2ω + ρ1ω state Fn
xi + δ + ρ2ω + ω + ρ1ω = xi + δ + ρ2ω + ρ−11 ρ1ω + ρ1ω state Fi0
xi + δ + ω + ρ2ω + ω + ρ1ω = xi + δ + ρ−12 ρ2ω + ρ2ω + ρ−11 ρ1ω + ρ1ω state Fin

With a semplification, we get:
xi + δ + xe + ρ2ω + ρ1ω = xi + δ + xe + ρ2ω + ρ1ω state F0

xi + δ + xe + ω + ρ2ω + ρ1ω = xi + δ + xe + ω + ρ2ω + ρ1ω state Fn
xi + δ + ρ2ω + ω + ρ1ω = xi + δ + ρ2ω + ω + ρ1ω state Fi0
xi + δ + ω + ρ2ω + ω + ρ1ω = xi + δ + ω + ρ2ω + ω + ρ1ω state Fin

And finally it is trivial to see that stat Fi0 and Fin are balanced.
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6.5.2 Updating Analysis of Process of R1 with Safe-impossible Ac-
tions

Since I add some actions in my model and I also found the value of some
variables, I will now update states and their analysis. All the data I found,
are the following:

ρ1 =
xf

xe + λ1(1− p)

ρ2 =
λ1
µ1

r0 = xe + xi
rn = xe + xi
ri0 = xi
rin = xi
ΠFxy = αρx1ρ

y
2 (with x ≥ 0 and y ≥ 0)

Consider that x rates are the substitution of > rates, the actions, between
normal and phantom states, are:

• (a0, xi) to states P i0 and P in

• (τ, xe + xi) to states P0 and P in

• (imp1, xiq) to states P0, Pn, P i0, P in

And between the phantom lattice, the actions are:

• (τ, ρ2ω) from column −1; same row

• (τ, ω) from column +1; same row

• (τ, ρ1ω) from same column; row −1

• (τ, ω) from same column; row = +1

• (τ, ω) to column −1; same row

• (τ, ρ2ω) to column +1; same row

• (τ, ω) to same column; row −1

• (τ, ρ1ω) to same column; row +1
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The first state to analyze is state P0 (row = 0, column = 0), I will show action
names only of those involved in state F . Remember that Πrc = αΠr · Πc =
αρr1ρ

c
2

Π00(

Out︷ ︸︸ ︷
xe + λ1 + xf + xi) = Π01µ1 + Π11µ1(1− p) + Π10xe + ΠF0(xe + xi)

��Π00

��Π00
(xe + λ1 + xf + xi) =

Π01

Π00
µ1 +

Π11

Π00
µ1(1− p) +

Π10

Π00
xe +

ΠF0

Π00
(xe + xi)

= �
�αρ01ρ

1
2

��
�

αρ01ρ
0
2

µ1 +
�αρ11ρ

1
2

��
�

αρ01ρ
0
2

µ1(1− p) +
�αρ11��ρ

0
2

��
�

αρ01ρ
0
2

xe +�
��αρ01ρ

0
2

��
�

αρ01ρ
0
2

(xe + xi)

= ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe + xe + xi

The derivation graph is the following:

Figure 6.36: State P0 (DI) and its neighbors states
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Then I analyze state Pn (row = 0, column = n ≥ 1).

Π0n(xe+λ1 +xf +µ1 +xi) = Π0n+1µ1 +Π1n+1µ1(1−p)+Π1nxe+Π0n−1λ1 +
ΠFn(xe + xi)

��
�Π0n(xe + λ1 + xf + µ1 + xi) =

Π0n+1

Π0n
µ1 +

Π1n+1

Π0n
µ1(1− p) +

Π1n

Π0n
xe +

Π0n−1
Π0n

λ1 +
ΠFn

Π0n
(xe + xi)

= �
�αρ01ρ
��n+1
2

�
��
�

αρ01ρ
n
2

µ1 +
�αρ11ρ

��n+1
2

�
��
�

αρ01ρ
n
2

µ1(1− p) +
�αρ11��ρ

n
2

�
��
�

αρ01ρ
n
2

xe +
���

��
αρ01ρ

n−1
2

�
�αρ01ρ�

n
2

λ1 +�
��
�

αρ01ρ
n
2

�
��
�

αρ01ρ
n
2

(xe + xi)

= ρ2µ1 + ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 + xe + xi

The derivation graph is the following:

Figure 6.37: State Pn (DI) and its neighbors states
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Now I analyze state P i0 (row = i ≥ 1, column = 0).

Πi0(xe+λ1+xf +xi) = Πi1µ1p+Πi+11µ1(1−p)+Πi+10xe+Πi−1 0xf +ΠFi0xi

��Πi0(xe + λ1 + xf + xi) =
Πi1

Πi0
µ1p+

Πi+11

Πi0
µ1(1− p) +

Πi+10

Πi0
xe +

Πi−1 0
Πi0

xf +
ΠFi0

Πi0
xi

= �
�αρi1ρ�

1
2

��
�

αρi1ρ
0
2

µ1p+
�αρ�
�i+1

1 ρ�12

��
�

αρi1ρ
0
2

µ1(1− p) +
�αρ�
�i+1

1 ��ρ
0
2

��
�

αρi1ρ
0
2

xe +
���

�
αρi−11 ρ02

�αρ�i1��ρ
0
2

xf +�
��αρi1ρ

0
2

��
�

αρi1ρ
0
2

xi

= ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ1
xf + xi

Its derivation graph is the following:

Figure 6.38: State P i0 (DI) and its neighbors states

Finally I analyze state P in (row = i ≥ 1, column = n ≥ 1).

Πin(xe + λ1 + xf + µ1p+ µ1(1− p) + xi) = Πi n+1µ1p+ Πi+1n+1µ1(1− p) + Πi+1nxe + Πi n−1λ1+

+ Πi−1nxf + ΠFinxi
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��Πin(xe + λ1 + xf + µ1 + xi) =
Πi n+1

Πin
µ1p+

Πi+1n+1

Πin
µ1(1− p) +

Πi+1n

Πin
xe +

Πi n−1
Πin

λ1 +
Πi−1n

Πin
xf +

ΠFin

Πin
xi

= �
�αρi1ρ
��n+1
2

��
��αρi1ρ
n
2

µ1p+
�αρ�
�i+1

1 ρ�
�n+1

2

��
��αρi1ρ
n
2

µ1(1− p) +
�αρ�
�i+1

1 ��ρ
n
2

��
��αρi1ρ
n
2

xe +
Πi n−1

Πin
λ1 +

Πi−1n
Πin

xf +
ΠFin

Πin
xi

= ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
���

��
αρi1ρ

n−1
2

�
�αρi1ρ�

n
2

λ1 +
��

���αρi−11 ρn2

�αρ�i1��ρ
n
2

xf +�
�
��αρi1ρ
n
2

��
��αρi1ρ
n
2

xi

= ρ2µ1p+ ρ1ρ2µ1(1− p) + ρ1xe +
1

ρ2
λ1 +

1

ρ1
xf + xi

Its derivation graph is the following:

Figure 6.39: State P in (DI) and its neighbors states
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Now it is necessary to look also at the phantom lattice of states F and their
equations. I will show now how the phantom lattice (and so states F ) inter-
acts with the rest of the system and its balance equations.

consider that:
δ = µ1p+ µ1(1− p) + µ1(1− p) + xe + xf + xi = µ1 + µ1(1− p) + xe + xf + xi
and as a self-loop it doesn’t count in the equation because:
ΠFxy( δ︸︷︷︸

outgoing

) = ΠFxy(δ)︸ ︷︷ ︸
ingoing


The first state I analyze is F0 (row = 0, column = 0):

ΠF0(

out︷ ︸︸ ︷
xi + xe + ρ2ω + ρ1ω) = Π00(xi + xe) + ΠF1ω + ΠF10ω

��
�ΠF0(xi + xe + ρ2ω + ρ1ω) =

Π00

ΠF0

(xi + xe) +
ΠF1

ΠF0

ω +
ΠF10

ΠF0

ω

= �
��αρ01ρ

0
2

��
�

αρ01ρ
0
2

(xi + xe) +�
�αρ01ρ

1
2

��
�

αρ01ρ
0
2

ω +
�αρ11��ρ

0
2

��
�

αρ01ρ
0
2

ω

= xi + xe + ρ2ω + ρ1ω
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The derivation graph is the following:

Figure 6.40: State F0 (DI) and its neighbors states

All = (a, µ1p).F0 + (a0, µ1(1 − p)).F0 + (a1, µ1(1 − p)).F0 + (empty,>).F0 +
(fill,>).F0 + (imp1, xi).F0

Then I analyze the states of the lattice Fn (row = 0, column > 0):

ΠFn(xi + xe + ω + ρ2ω + ρ1ω) = Π0n(xi + xe) + ΠFn−1ρ2ω + ΠFn+1ω + ΠF1nω

��
�ΠFn(xi + xe + ω + ρ2ω + ρ1ω) =

Π0n

ΠFn

(xi + xe) +
ΠFn−1

ΠFn

ρ2ω +
ΠFn+1

ΠFn

ω +
ΠF1n

ΠFn

ω

= �
��
�

αρ01ρ
n
2

��
��αρ01ρ
n
2

(xi + xe) +
���

��
αρ01ρ

n−1
2

�
�αρ01ρ�

n
2

ρ2ω + ρ2ω + ρ1ω

= xi + xe + ω + ρ2ω + ρ1ω

The derivation graph is the following:

Now I analyze the states of the lattice Fi0 (row > 0, column = 0):

ΠFi0(xi + xe + ρ2ω + ω + ρ1ω) = Πi0(xi + xe) + ΠFi1ω + ΠFi−1 0ρ1ω + ΠFi+1 0ω
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Figure 6.41: State Fn (DI) and its neighbors states

�
��ΠFi0(xi + xe + ρ2ω + ω + ρ1ω) =

Πi0

ΠFi0

(xi + xe) +
ΠFi1

ΠFi0

ω +
ΠFi−1 0

ΠFi0

ρ1ω +
ΠFi+1 0

ΠFi0

ω

= �
��αρi1ρ

0
2

�
��αρi1ρ

0
2

(xi + xe) + ρ2ω + ρ−11 ρ1ω + ρ1ω

= xi + xe + ρ2ω + ω + ρ1ω

Its derivation graph is the following:

Figure 6.42: State F i0 (DI) and its neighbors states

Finally I analyze the states of the lattice Fin (row > 0, column > 0):
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ΠFin(xi + xe + ω + ρ2ω + ω + ρ1ω) = Πin(xi + xe) + ΠFi n−1ρ2ω + ΠFi n+1ω +
ΠFi−1nρ1ω + ΠFi+1nω

��
�ΠFin(xi + xe + ω + ρ2ω + ω + ρ1ω) =

Πin

ΠFin

(xi + xe) +
ΠFi n−1

ΠFin

ρ2ω +
ΠFi n+1

ΠFin

ω +
ΠFi−1n

ΠFin

ρ1ω +
ΠFi+1n

ΠFi0

ω

= �
�
��αρi1ρ
n
2

��
��αρi1ρ
n
2

(xi + xe) + ρ−12 ρ2ω + ρ2ω + ρ−11 ρ1ω + ρ1ω

= xi + xe + ω + ρ2ω + ω + ρ1ω

Its derivation graph is the following:

Figure 6.43: State F in (DI) and its neighbors states

The final process R1 is the following:
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R1 =



P0 = (τ, λ1).P1 + (fill,>).P ′0 + (empty,>).F0 + (imp1,>).F0

Pm0 = (τ, λ1).P
m
1 + (fill,>).Pm+1

0 + (empty,>).Pm−10 + (imp1,>).Fm0

Pn = (τ, λ1).Pn+1 + (fill,>).P ′n + (a, µ1p).Pn−1 + (a0, µ1(1− p)).Pn−1+
+(empty,>).Fn + (imp1,>).Fn

Pmn = (τ, λ1).P
m
n+1 + (fill,>).Pm+1

n + (empty,>).Pm−1n + (a, µ1p).P
m
n−1+

+(a1, µ1(1− p)).Pm−1n−1 (imp1,>).Fmn

F0 = (τ , xe + xl).P0 + (tau, ρ2ω).F1 + (tau, ρ1ω).F10 +A0

Fm0 = (a0, xl).Pm0 + (tau, ρ2ω).Fm1 + (tau, ω).Fm−1 0 + (tau, ρ1ω).Fm+10 +Am0

Fn = (τ , xe + xl).Pn + (tau, ω).Fn−1 + (tau, ρ2ω).Fn+1 + (tau, ρ1ω).F1n +An

Pmn = (a0, xl).Pmn + (tau, ω).Fmn−1 + (tau, ρ2ω).Fmn+1 + (tau, ω).Fm−1n+

+(tau, ρ1ω).Fm+1n +Amn

withm > 0 and n > 0 andAxy = (a, µ1p).Fxy+(a0, µ1(1−p)).Fxy+(a1, µ1(1−
p)).Fxy + (empty,>).Fxy + (fill,>).Fxy + (imp1, xiq).Fxy + (imp3,>).Fxy

The final derivation graph of R1 is the following:

6.5.2.1 Steady State Distribution of Process R1

To find the steady state distribution of process R1, the last thing to compute
is α in such a way that:( >∑
n=0

>∑
m=0

Πnm + ΠFnm

)
= 1

Since Πnm = ΠFnm I can write:( >∑
n=0

>∑
m=0

2Πnm

)
= 1

But this is trivial, using the sum of geometric series, since:( >∑
n=0

>∑
m=0

2αρn1ρ
m
2

)
= 1
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Figure 6.44: Process R1 (DI) with impossible actions

2α

( >∑
n=0

>∑
m=0

ρn1ρ
m
2

)
= 1

2α

( >∑
n=0

ρn1
>∑

m=0
ρm2

)
= 1

2α

(
1

1− ρ1
1

1− ρ2

)
= 1

2α
1

���
�1− ρ1�
���(1− ρ1)

1

���
�1− ρ2�
���(1− ρ2) = 1(1− ρ1)(1− ρ2)

2

2
α =

(1− ρ1)(1− ρ2)
2
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α =
(1− ρ1)(1− ρ2)

2

So in conclusion the steady state distribution of R1 is the following:
Πnm = ΠnΠm = αρ1ρ2

Where: ρ1 =
xf

xe + λ1(1− p)

ρ2 =
λ1
µ1

α =
(1− ρ1)(1− ρ2)

2
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6.5.3 Analysis and Balancing the Global Balance Equations of R2

Process R2 is composed by only two main types of states:

1. State Q0

2. State Qn with n > 0

All of its state can be attributed to one of this 2 types.
I suppose that the product form of R2 will be the following:

Πn = αρn

6.5.3.1 Analysis of Q0

Figure 6.45: State Q0 (DI) and its neighbors states

The general case of process R2:

Πn = αΠn = αρn

In Q0 has n = 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state Q1: τ with rate µ2

• Outgoing Actions:

– To stateQ1: awith rate> in this case substituted by xa and a1 with
rate > in this case substituted by xa1 , total rate xa + xa1
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Then the global balance equation for Q0 is:

Π0(

out︷ ︸︸ ︷
xa + xa1) = Π1µ2

��Π0

��Π0
(xa + xa1) =

Π1

Π0
µ2

=
�αρ�1

�
�αρ0
µ2 = ρµ2

In conclusion:

xa + xa1 = ρµ2
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6.5.3.2 Analysis of Qn

Figure 6.46: State Qn (DI) and its neighbors states

The general case of process R2:

Πn = αΠn = αρn

In Qn has n = n.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state Qn−1: a with rate > in this case substituted by xa and
a1 with rate > in this case substituted by xa1 , total rate xa + xa1

– From state Qn+1: τ with rate µ2

• Outgoing Actions:

– To state Qn−1: τ with rate µ2

– To state Qn+1: a with rate > in this case substituted by xa and a1
with rate > in this case substituted by xa1 , total rate xa + xa1

Then the global balance equation for Qn is:
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Πn(xa + xa1 + µ2) = Πn+1µ2 + Πn−1(xa + xa1)

��Πn(xa + xa1 + µ2) =
Πn+1

Πn
µ2 +

Πn−1
Πn

(xa + xa1)

=
�αρ�

�n+1

�
��αρn

µ2 +
���

�αρn−1

�αρ�n
(xa + xa1)

= ρµ2 +
1

ρ
(xa + xa1)

In conclusion:

xa + xa1 + µ2 = ρµ2 +
1

ρ
(xa + xa1)

6.5.3.3 Summary xa + xa1 = ρµ2 state Q0

xa + xa1 + µ2 = ρµ2 +
1

ρ
(xa + xa1) state Qn

6.5.3.4 Balancing

First of all, let’s try to compare states Qn and Q0:

xa + xa1 + µ2 = ρµ2 +
1

ρ
(xa + xa1)

xa + xa1 = ρµ2

µ2 =
1

ρ
(xa + xa1)

From this:

ρµ2 =
1

�ρ
(xa + xa1)�ρ

ρ�
�µ2

��µ2
=
xa + xa1

µ2
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ρ =
xa + xa1

µ2

Now I substitute it in the balance equations:

State Q0

xa + xa1 = ρµ2

xa + xa1 =
xa + xa1

��µ2
��µ2

xa + xa1 = xa + xa1

State Q0 is balanced.

State Qn

xa + xa1 + µ2 = ρµ2 +
1

ρ
(xa + xa1)

xa + xa1 + µ2 =
xa + xa1

��µ2
��µ2 +

1
xa+xa1
µ2

(xa + xa1)

��xa +��xa1 + µ2 =��xa +��xa1 +
µ2

��
���xa + xa1

���
���(xa + xa1)

µ2 = µ2

State Qn is balanced.

6.5.3.5 Steady State Distribution of Process R2

To find the steady state distribution of process R2, the last thing to compute
is α in such a way that:( >∑
n=0

Πn

)
= 1

But this is always trivial, using the sum of geometric series, since:

>∑
n=0

αρn = 1



208 CHAPTER 6. PRODUCT FORM

α
>∑
n=0

ρn = 1

α
1

1− ρ
= 1

���
�(1− ρ)α

1

���
�1− ρ1

= 1(1− ρ)

α = 1− ρ

So in conclusion the steady state distribution of R2 is the following:
Πn = αρ

Where: ρ =
xa + xa1

µ2
α = 1− ρ
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6.5.4 Analysis and Balancing the Global Balance Equations of R3

Process R3 is composed by only two main types of states:

1. State R0

2. State Rn with n > 0

All of its state can be attributed to one of this 2 types.
I suppose that the product form of R3 will be the following:

Πn = αρn

Also in this case we have a lattice of phantom states F to coordinate with
safe-impossible action of R1. I will underline the rates related with states F
because, like I did for state R1, I will first analyze the system without the im-
possible actions.

6.5.4.1 Analysis of R0

Figure 6.47: State R0 (DI) and its neighbors states

The general case of process R3:

Πn = αΠn = αρn

In R0 has n = 0.

Moreover, its actions with neighbor states are:

• Ingoing Actions:
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– From state F0: imp1 with rate r and fill with rate rf , total rate
r + rf

– From state R1: empty with rate µ3 and a1 with rate > in this case
substituted by xa1 , total rate µ3 + xa1

• Outgoing Actions:

– To state F0: a1 with rate > in this case substituted by xa1 and impc
with rate > in this case substituted by xc, total rate xa1 + xc

– To state R1: fill with rate λ3

• Self-Loop Actions:

– From R0 to itself: a0 with rate > in this case substituted by xa0

Then the global balance equation for R0 is:

Π0(

out︷ ︸︸ ︷
λ3 + xa0 + xa1 + xc) = Π0xa0 + Π1(µ3 + xa1) + ΠF0(rf + r)

��Π0

��Π0
(λ3 + xa0 + xa1 + xc) = �

�Π0

��Π0
xa0 +

Π1

Π0
(µ3 + xa1) +

ΠF0

Π0
(rf + r)

= xa0 +
�αρ�1

�
�αρ0

(µ3 + xa1) +�
�αρ0

�
�αρ0

(rf + r)

= xa0 + ρµ3 + ρxa1 + rf + r

In conclusion:

λ3 + xa0 + xa1 + xc = xa0 + ρµ3 + ρxa1 + rf + r

6.5.4.2 Analysis of Rn

The general case of process R3:

Πn = αΠn = αρn
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Figure 6.48: State Rn (DI) and its neighbors states

In Rn has n = n.

Moreover, its actions with neighbor states are:

• Ingoing Actions:

– From state Fn: imp1 with rate r

– From state Rn−1: fill with rate λ3

– From stateRn+1: empty with rate µ3 and a1 with rate> in this case
substituted by xa1 , total rate µ3 + xa1

• Outgoing Actions:

– To state Fn: impc with rate > in this case substituted by xc

– To state Rn−1: empty with rate µ3 and a1 with rate > in this case
substituted by xa1 , total rate µ3 + xa1

– To state Rn+1: fill with rate λ3

• Self-Loop Actions:

– From Rn to itself: a0 with rate > in this case substituted by xa0

Then the global balance equation for Rn is:
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Πn(λ3 + xa0 + xa1 + xc + µ3) = Πnxa0 + Πn+1(µ3 + xa1) + Πn−1λ3 + ΠFnr

��Πn

��Πn
(λ3 + xa0 + xa1 + xc + µ3) = �

�Πn

��Πn
xa0 +

Πn+1

Πn
(µ3 + xa1) +

Πn−1
Πn

λ3 +
ΠFn

Πn
r

= xa0 +
�αρ�1

�
�αρ0

(µ3 + xa1) +
��

��αρn−1

�αρ�n
λ3 +�

�αρ0

�
�αρ0
r

= xa0 + ρµ3 + ρxa1 +
1

ρ
λ3 + r

In conclusion:

λ3 + xa0 + xa1 + xc + µ3 = xa0 + ρµ3 + ρxa1 +
1

ρ
λ3 + r

6.5.4.3 Summary

As usually, I start without impossible actions: λ3 + xa0 = xa0 + ρµ3 + ρxa1 state R0

λ3 + xa1 + µ3 = ρµ3 + ρxa1 +
1

ρ
λ3 state Rn

6.5.4.4 Balancing

First of all, let’s try to compare states Rn and R0:

λ3 + xa1 + µ3 = ρµ3 + ρxa1 +
1

ρ
λ3

λ3 + xa0 = xa0 + ρµ3 + ρxa1

µ3 + xa1 − xa0 = −xa0 +
1

ρ
λ3

From this:
µ3 + xa1 − xa0 = −xa0 +

1

ρ
λ3
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µ3 + xa1 −��xa0 = −��xa0 +
1

ρ
λ3

ρ(µ3 + xa1) =
1

�ρ
λ3�ρ

ρ�
��

��µ3 + xa1

���
��µ3 + xa1

=
λ3

µ3 + xa1

ρ =
λ3

µ3 + xa1

Now I substitute it in the following balance equations (with impossible ac-
tions): λ3 + xa0 + xa1 + xc = xa0 + ρµ3 + ρxa1 + rf + r state 0

λ3 + xa0 + xa1 + xc + µ3 = xa0 + ρµ3 + ρxa1 +
1

ρ
λ3 + r state n

State R0

λ3 + xa0 + xa1 + xc = xa0 + ρµ3 + ρxa1 + rf + r
λ3 +��xa0 + xa1 + xc =��xa0 + ρ(µ3 + xa1) + rf + r

λ3 + xa1 + xc =
λ3

���
��µ3 + xa1
���

���(µ3 + xa1) + rf + r

��λ3 + xa1 + xc =��λ3 + rf + r
xa1 + xc = rf + r

State 0 is balanced.

State Rn

λ3 + xa0 + xa1 + xc + µ3 = xa0 + ρµ3 + ρxa1 +
1

ρ
λ3 + r

λ3 +��xa0 + xa1 + xc + µ3 =��xa0 + ρ(µ3 + xa1) +
1
λ3

µ3+xa1

λ3 + r

λ3 + xa1 + xc + µ3 =
λ3

��
���µ3 + xa1

���
���(µ3 + xa1) +

µ3 + xa1

��λ3
��λ3 + r

��λ3 +��xa1 + xc +��µ3 =��λ3 +��µ3 +��xa1 + r
xc = r

State n is balanced.
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From this:
xc = r
xa1 + xc = rf + r

So:

xa1 = rf

6.5.4.5 Steady State Distribution of Process R3

To find the steady state distribution of process R3, the last thing to compute
is α in such a way that:( >∑
n=0

Πn

)
= 1

But this is always trivial, using the sum of geometric series, since:

>∑
n=0

αρn = 1

α
>∑
n=0

ρn = 1

α
1

1− ρ
= 1

���
�(1− ρ)α

1

��
��1− ρ1

= 1(1− ρ)

α = 1− ρ

So in conclusion the steady state distribution of R3 is the following:
Πn = αρ

Where: ρ =
λ3

µ3 + xa1
α = 1− ρ
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