
UNIVERSITÀ CA’ FOSCARI – VENEZIA
Corso di Laurea magistrale (ordinamento ex D.M. 270/2004)

in Informatica - Computer Science

a.a. 2012-2013

Tesi di Laurea

Enterprise Distributed Systems:
the case of the Sybase Unwired Platform

Laureando: Daniele De Rosa
Matricola: 813917

Relatore: Chiar.mo prof. Renzo Orsini

Contents

1 Abstract 1

2 Introduction 3

3 Distribuited Systems 7

3.1 Trasparencies . 7
3.2 Middleware . 8
3.3 Architectural models . 10

3.3.1 Client-Server model 10
3.3.2 Client-Server model with multiple server 10
3.3.3 Peer-to-peer model 11
3.3.4 Proxy Server model 12

3.4 Architectural patterns . 13
3.4.1 Layering . 13
3.4.2 Tiered architecture 14

3.5 Addressing . 16
3.5.1 LAN . 16
3.5.2 Broadcast . 16
3.5.3 Name Server . 16

3.6 Remote Invocation . 17
3.6.1 Request-reply protocols 17
3.6.2 Interfaces . 19
3.6.3 Remote Procedure Call (RPC) 20
3.6.4 Remote Method Invocation(RMI) 21
3.6.5 Events . 22

iii

3.7 Processes’ scheduling . 22
3.8 Mutual Exclusion . 23

3.8.1 The central server algorithm 23
3.8.2 Distribuited algorithm 24
3.8.3 Ring-based algorithm 25

3.9 Time . 26
3.9.1 Cristian algorithm 27
3.9.2 Berkeley algorithm 27
3.9.3 Network Time Protocol (NTP) 27

3.10 Replication . 28

4 Sybase Unwired Platform 31

4.1 Platform Solution . 32
4.1.1 Sybase Unwired Platform Runtime 32

4.2 Cluster and Non-cluster systems 36
4.2.1 Cluster Types . 38

4.3 Mobile Business Object (MBO) 41
4.4 Data Synchronization and Data refresh 48

4.4.1 Unwired Server Cache 49
4.4.2 Data Refresh . 50
4.4.3 Cache Refresh schedules 52
4.4.4 Data Change Notification (DCN) 55
4.4.5 Synchronization . 58

5 Implementation of an HTML5/JS Hybrid Application 63

5.1 The purpose of the application. 65
5.2 Implementation of Mobile Business Object 65

5.2.1 Data Source and Profile Connection 66
5.2.2 Method Definition 67
5.2.3 Load Arguments 69
5.2.4 Relationship . 70

5.3 Cache Group and Synchronization Group 72
5.4 Workflow . 75

5.4.1 Code HTML5 and Javascript 75
5.4.2 Online Request . 80

6 Conclusions 89

List of Figures

3.1 Client-server . 10
3.2 Client-server with multiple server 11
3.3 Proxy server . 12
3.4 Layering . 13
3.5 Two-tier solution . 15
3.6 Three-tier solution . 15
3.7 Name server . 17
3.8 Request-reply protocols . 18
3.9 Remote Method Invocation 21
3.10 Remote Method Invocation 22
3.11 Central Server algorithm 24
3.12 Ring algorithm . 25
3.13 Replication system . 29
3.14 Passive Replication . 30
3.15 Active Replication . 30

4.1 Sybase Unwired Platform 31
4.2 Sybase unwired Platform Runtime 33
4.3 Relay Server . 35
4.4 Non-clustered systems . 37
4.5 Unwired Platform servers in clusters 38
4.6 Unwired Server cluster . 39
4.7 Unwired Server connection to Relay Servers in cluster . . . 40
4.8 Mobile Business Object . 42
4.9 Mobilize EIS data . 43
4.10 Bind attributes of two MBO 45

vii

4.11 Relationship between MBO 46
4.12 Data Synchronization and Data Refresh 48
4.13 Data Refresh . 51
4.14 Data Refresh Initiated by Unwired Server 53
4.15 Data Change Notification 55
4.16 Data Change Notification without payload 56
4.17 Data Change Notification with payload 57
4.18 Synchronization . 58
4.19 Combine Synchronization and Data Refresh strategies . . . 60
4.20 Synchronization initiated by Unwired Server 61

5.1 Hybrid Web Container . 64
5.2 Possible Data Source . 66
5.3 Connection Profile . 67
5.4 Method definition . 67
5.5 Attributes mapping . 68
5.6 MBO of the output tables 69
5.7 Search person BP scrren 69
5.8 Personalization Key . 70
5.9 Load Arguments . 70
5.10 Relationships . 71
5.11 One-to-many and composite 71
5.12 Relationship between MBO 72
5.13 Cache Group Policies . 72
5.14 Cache Group . 73
5.15 Cache Group divided . 74
5.16 Synchronization . 74
5.17 Synchronization interval 74
5.18 Start page . 75
5.19 Pop-up confirmation window closing 80
5.20 Search person BP scrren 84
5.21 Online Request . 84
5.22 Personalization Key mapping 85
5.23 List of the person BP with surname Monti 85
5.24 Details of person BP Ambrogio Monti 86

Chapter 1

Abstract

Analysis of a distributed system, open problems and challenges. Descrip-
tion the distributed system Sybase Unwired Platform (SUP) and how it
solves such problems. Implementation of a mobile application hybrid
through the SUP.

1

Chapter 2

Introduction

In this paper we will analyze two systems that are spreading more and
more in our everyday lives. One is more visible, and it is the mobile
system, the other is the distributed system.
The advent of smartphones, and the continuous growing of their comput-
ing power, has meant that they can often replace the normal computer,
with the significant advantage of being always handy, in the true sense
of the word. They can now in fact perform various activities, from those
working to those of leisure.
The services available are very often used on our devices thanks to the
implementation of distributed systems: they in fact allow the collabo-
ration of several calculation units, independent of each other, for the
achievement of the intended purpose, for example the use of a mobile
application.
Distributed systems, however, present many challenges to their imple-
mentation and use, due to the diversity of the devices involved, the va-
riety of communication protocols to connect them to each other, for the
di↵erent platforms and programming languages used by each of them. It
also added the di�culties related to the scalability of the system, with-
out reducing the performance and consistency of the data. A number of
issues, as can be noted, which must from time to time find answer.

I had the opportunity to meet with all of these issues when I did my

3

internship, scheduled for my university curriculum.
The company at which I had the opportunity to do so, having decided to
transfer part of its services on mobile had to lean precisely to a distributed
system. Critical component is the Sybase Unwired Platform (SUP): my
job, during the training period, was to create a hybrid application capa-
ble of being able to run on any mobile platform (Android, iOS, Windows
Phone, BlackBerry), it can connect to CRM test environment of Bocconi
University and then transfer some of the services o↵ered by the CRM
server on mobile devices via SUP.
Therefore, it is through this experience that I had the opportunity to be
able to see up close a distributed system, its implementation and its use,
clashing with its problems and possible solutions.

The application that I was going to make would have to read the per-
sonal data of a Business Partner (BP) - person or company that was -
such as full name, company name, relationships with other BP, etc., it
would allow the user to set activities performed or to be performed by
the BP in the CRM environment testing, such a course that a teacher
would have to hold, and finally, would have to read the leads relative to
a BP and to be able to change their state (where for lead means an event
that happened to BP, for example, a donation).
The question that one is entitled to ask, and that I did in starting my
job, is: why having to go through the Sybase Unwired Platform to com-
municate with the server CRM Bocconi, instead of allowing direct com-
munication of mobile devices with these servers?

Driven by this curiosity, I started studying the documentation provided
by SAP for understanding the behaviour of the Sybase Unwired Plat-
form, its interaction with the SAP server and mobile devices. So I found
out what were the advantages of this method: the SUP together with the
CRM server and the mobile devices goes to form a distributed system,
whose calculation unit collaborate and communicate with each other, al-
lowing a user to be able to read, create, and modify data within the CRM
test enviroment of Bocconi, simply using their smartphone, and the rea-
son because the SUP is used to communicate with the CRM server is

that it solves all those problems and transparencies which must resolve
and provide a distributed system.
It became immediately evident as the SUP was going to solve the problem
of scalability, since potential mobile devices that communicate with the
CRM grow in number over time, and the multiple interactions through
direct communication may be clogging it. Not to mention that an in-
crease in the workload of the CRM server would reduce the performance
of the entire distributed system: however the SUP o↵ering, for example,
caching capacity, avoids equal requests to the server, allowing perfor-
mance transparency, even in case of increase of workload. The caching
also enables a fault transparency for the CRM server, so that, even if the
server is dropped, however, allow mobile devices to continue to commu-
nicate with the SUP. The latter allows, again, the competition among
the multitude of mobile devices that operate on shared resources without
interfering with each other. In conclusion, the SUP may be installed as
a cluster system, in order to allow the replication of the data, increasing
the availability of the resources and increasing the overall performance of
the system. Not to mention that the replication helps to provide many
of the transparencies already discussed, such as scalability and fault tol-
erance.

The heart of the SUP is its middleware layer, called Mobile Business
Object (MBO), which provides another set of transparencies, such as lo-
cation: mobile devices has no knowledge of where the CRM server is, but
for them is su�cient connect to the SUP, easily accessible via a proxy
server, called Relay Server. The MBO also provides two other important
transparency: the platform and programming languages. The SUP in fact
not only allows you to communicate to a server with the SAP platform,
but also with di↵erent types of Web Server or Database: the MBO is that
interface that hides the di↵erent types of platforms and gives a common
vision.

To implement an application for each type of mobile platform (Android,
iOS, BlackBerry, Windows Phone) was no longer a risk, because the
SUP provides a development environment that can be able to create hy-

brid applications - that is written in HTML5, Javascript and CSS - and,
thanks to a web engine, to be used as Web Applications that run inside
the smartphone and communicate with the SUP. The web engine made
available by SAP is a container, written in the native language of the
platform on which it runs, and it is provided of libraries that allow the
communication with the SUP. The hybrid application is loaded into the
container that takes care of translating the HTML5, Javascript and CSS
code in the native code of the platform in question. The container stand
for the middleware layer within the mobile device providing platform and
programming language transparency. Then the advantages that a hy-
brid application provides are evident: its ease of development(HTML5,
Javascript and CSS code instead of native code) and the ability to resolve
a fundamental question, namely to write application code once, without
having to repeat this with the native code for each mobile platform used.

With this document I will go to through all the problems since here
briefly illustrated, first through the analysis of a distributed system in
general, and then descibing how they have been addressed and resolved
in a particular distributed system, the SUP. Finally I will show how a
hybrid application was implemented, discussing its capability to solve
problems discussed.

Chapter 3

Distribuited Systems

A distributed system is a system consisting of multiple autonomous pro-
cessing units that support a set of processes and/or data bases and that
interact cooperating to achieve a given objective. The processes coordi-
nate and exchange information via a communication network and pas-
saging messages.

3.1 Trasparencies

The challenges and problems that a distributed system is facing are:

• Concurrency transparency : allows a set of processes to op-
erate concurrently sharing resources and without interference be-
tween them. The operations that work on the shared data must be
synchronized, so as to maintain the data in a consistent state.

• Replication transparency : allows the use of multiple copies of
resources to increase the reliability and performance, without the
users becoming aware of them.

• Fault transparency : allows the masking to faults so that users
can complete the requested operations even in the presence of faults
of hardware and software components.

7

• Mobility transparency : allows you to move resources and cus-
tomers in a system without a↵ecting the operations of user.

• Performance transparency : allows to reconfigure the system
to vary the load to improve the performance.

• Scalability transparency : if a system is scalable then the system
and applications expands in a scalable manner, that is there is a
significant increase in the number of resources and the number of
users, without changing the structure of the system or application
algorithms. The problem of scalability is a recurring theme in the
development of distributed systems. The main techniques that suc-
cessfully address this problem are: data replication, caching tech-
nique, deployment of multiple server and the use of processes that
work concurrently.

3.2 Middleware

The middleware layer using protocols based on message passing between
processes to provide a high level of abstraction as a remote invocations
and events. An important aspect of the middleware is the provision of
transparency and independence from the details of underlying commu-
nication protocols, operating systems, hardware and programming lan-
guages. In addition to solving the problems of heterogeneity, middle-
ware provides a uniform computational model to use by the programmers
of servers and distribuited applications. It o↵ers the following types of
transparency:

• Location transparency : for example with the comunication pro-
tocol Remote Procedure Call (RPC), the client calls a procedure
that can not distinguish whether it runs in the same process or
a di↵erent process, possibly on a di↵erent PC. Neither the client
needs to know the location of the server. Similarly, with the com-
munication protocol Remote Method Invocation (RMI), the objects
done invocations can not distinguish whether the invoked object is
local or not, and without knowing its location.

• Protocol transparency : The protocols that support the middle-
ware are independent from underlying transport protocols.

• Platform transparency : Hides the di↵erence between two hard-
ware and software architectures.

• Programming languages transparency : Some middleware are
designed to allow applications of distributed systems to utilize more
than one programming language. Such as Common Object Request
Broker (CORBA) allows clients written in a programming language
to invoke methods in objects that live in server programs written
in other languages.

3.3 Architectural models

A distributed system can take di↵erent architectural models. The model
is chosen according to the role playes by the various processes within the
distributed system to achieve the purpose assigned to it.

3.3.1 Client-Server model

Client processes require shared resources and shared services to a server
process. Client and server processes runs almost always in a di↵erent
hosts as well as the client can run on di↵erent hosts. In the client server
model most of the work load is assigned to the process server.

Figure 3.1: Client-server

Server

Server

Client

Client

Key

Process: Computer:

Invocation Invocation

Result
Result

3.3.2 Client-Server model with multiple server

It is a client-server model in which there are multiple host servers that
interact with each other to o↵er their services to clients. The resources
and services are divided among the di↵erent server or replicated across
multiple servers. This model is designed to not award the entire workload
to a single server.

Figure 3.2: Client-server with multiple server

Client

Client

Server

Server

Server

Service

3.3.3 Peer-to-peer model

In this architectural model, all the processes involved play similar roles,that
is run the same program,in pratical they interact with each other without
distinction between client and server processes. While the client-server
model is a centralized type model, where services and resources are shared
among the clients, served by the server, in peer-to-peer each peer is able
to provide resources and services.
This model is driven by the need to distribute resources between the host
in such a way to share the computing and communication loads due to
the increasing number of clients that access to shared resources. In this
model the network and computing resources owned by the user using the
service can be made available also to o↵er such service.
Essentialy the purpose of a peer-to-peer model is to achieve the fulfilment
of a given task through the use of the resources held between the various
peer and not from a single host server, in order to spread the workload
among all participants.

3.3.4 Proxy Server model

A proxy server or reverse server is a server process intermediary between
the clients and the server. Clients connect directly to the proxy server
instead of the real server with the aim of increasing the avaiability and
performance of the service by reducing the load of the servers, in the
figure below Web Server.

Figure 3.3: Proxy server

Client

Client

Proxy
server

Web
server

Web
server

The response of the real server is sent to the proxy server which in turn
sends to the clients, so the clients are not aware of the address of the real
client.
The installation of a proxy server leads to many advantages. Including
caching, namely the use of a cache which stores the information used
most recently. When you receive a resource from the server it is stored
in the cache by deleting or updating existing information in the cache.
When a client requests a resource, it checks if it is already present in
the cache, otherwise you have to make a new request to the server. The
cache can then be positioned within a proxy server so as to be shared
between the di↵erent clients. Another advantage of the proxy server
is load balancing by distributing the load across servers. Moreover the
proxy server is internet facing providing access only to certain services,

protecting server from attacks.

3.4 Architectural patterns

3.4.1 Layering

A system divided into di↵erent layers, each of which provides services to
the next layer. This architectural pattern provides an abstraction layer
between the various layers as a layer does not know the implementation
of the underlying layers, but is able to use the services o↵ered by them.
For a distributed system, the subdivision of the layers can be represented
by the figure:

Figure 3.4: Layering

The layers “Operating Systems and Computer and Network hardware”
represent together the platform on which the distributed system runs.
They o↵er services to the higher layers that can be implemented regard-
less of how it is made up the underlying platform: di↵erent operating
systems and communication protocols.
While middleware consists of processes and objects that interact with
each other to provide services for communication and sharing of resources
to distributed applications.

3.4.2 Tiered architecture

The layering takes care of the vertical organization of services, while the
tiering is responsible for organizing the functionality within each layer,
positioning each functionality in a given server.
There are two types of tiering: two-tiered and three-tiered. Before going
into details of both types of architectures, we divide an application into
three functional parts. The first concerns the presentation logic, that is
how the application is displayed to the user allowing him to interact with
it. Then it regards how to display views and how that views should be
updated depending on the user interactions. The second concerns the
application logic, that is goes into more detail on how the application is
implemented, is also called business logic. The third concerns the data
logic, tha is the storage data used by the application, tipicaly a database
management system.

Two-tier solution

The three functional parts of an application, mentioned before, are di-
vided between two processes, the client process and the server. This
subdivision is achieved by the division of the application logic into two
parts, one located in the client and the other in the server. The advantage
of this type of architecture is the speed with which the interaction can
take place as an operation may be invoked by the exchange of a single
message. The disadvantage is due to the fact that the application logic is
divided into two parts and then it can not always be a direct invocation
of a part of the logic with another.

Three-tier solution

Through this solution, each of the three functional parts of an applica-
tion is associated with a physical server. So each tier has a more specific
role, for example, the first tier may be a graphical user interface, while
the third tier a database.
The disadvantage is due to the management of three server, and then the
increase of messages to each operation.

Figure 3.5: Two-tier solution

User view, controls and
data manipulation

User view, controls and
data manipulation

Application and data
management

Application and data
management

Personal computers or
mobile devices

Server

Tier 1 Tier 2

Figure 3.6: Three-tier solution

User view and
controls

User view and
controls

Application
logic

Application
logic

Database
manager

Personal computers
or mobile devices

Application server

Database server

Tier 2Tier 1 Tier 3

3.5 Addressing

Addressing means the localization of the servers from the processes that
need to request services.

3.5.1 LAN

Requests shall be sent to the physical address, it implies that the client
knows the physical address of the servant, so it lacks the transparency
of the location. Also not convenient when you need to reallocate servant
because as result you have to change the code of the client.

3.5.2 Broadcast

To solve the problem of reallocation of servant, is sent via broadcast a
special package of localization and servant responds with a message “I’m
here!”, with its own physical address. Then the client sends the request
to that address and the servant sends a reply to the client.

3.5.3 Name Server

We can see that with the broadcasting we have the disadvantage of the
considerable network tra�c. A more e↵ective method is the use of a
Name Server which knowns adresses of all server. The Name Server
maintains the mapping between the logical names and physical addresses
of the servers.
The client sends a request to the Name Server to obtain the address of
server. The Name Server responds with a reply containing the physical
address of the server. Now the client can send the request to the server
and the latter respond to the client.
The Name Server is a centralized component may therefore be appropri-
ate to replicate it.

Figure 3.7: Name server

http://www.cdk5.net:8888/WebExamples/earth.html

55.55.55.55 8888 WebExamples/earth.html

2:60:8c:2:b0:5a

URL

DNS lookup Resource ID (IP number, port number, pathname)

Network address
Web server

!le

3.6 Remote Invocation

Now we will discuss the main techniques of communication between pro-
cesses of a distributed system.

3.6.1 Request-reply protocols

This type of communication is widely used in client-server architectures.
The client sends a request to perform an operation on the server, which
executes it and sends the response back to the client. This type of op-
eration can be synchronous or asynchronous, in the first case, the client
stops executing and waits for the server’s response, while in the second
case, the client waits for the server’s response, and continues with the
execution of its process.
The figure 2.8 shows an example of a request-reply protocol, in which the
client sends a request through the method doOperation containing the
address of the server to send the request, the operation to be performed
and any arguments required by the operation. At this point the client
process waits for the response of the server or continues its execution,
depending on the case that the protocol is synchronous or asynchronous.

Figure 3.8: Request-reply protocols

Client Server

doOperation
.
.

(wait)
.
.

(continuation)

getRequest

select operation

execute operation

send reply

Request

message

Reply

message

Request-reply communication

The server takes the request via the getRequest method. Once you get
the request will analyze its contents, then select the required operation,
executes it and sends the response back to the client.
Any messages exchanged through the request-reply protocol has an iden-
tifier that uniquely identifies it in the distributed system.

Invocation Semantic

After sending the request doOperation by the client, if the server goes
down or the request or response messages are lost, then there exists a
time called timeout for which the client must wait for the expiration of
this time, after which the client can begin various actions , depending on
the delivery guarantees o↵ered by the request-reply protocol in question.
In the case of guarantees very low, after the expiration of the timeout,
the doOperation does nothing and simply inform the client process that
the request has failed. In the case of an higher delivery guarantee, the
doRequest continues to send the request until it receives a reply. The
number of attempts is finished, if after that number the client receives
no response, the problem may be that which server has failed
In the case in which the request message is transmitted more than once

there is the risk that the server can perform the same operation requested
by the client several times. For example, if the server receives a request
message, but if the time to execute it and the time that the reply message
reaches the client is longer than the timeout period, then the client will
send a second request and the servant re-run the same operation. To
avoid this type of problem, request messages have a request identifier in
such a way as to be identified and to avoid that the server execute a
duplicate request. When the server receives a duplicate request discards
it and when it finishes executing the first request sends the response.
If the reply message is lost the protocols to have a greater guarantee
of delivery allow sending from the client an acknowledge message, so
the server receiving this message knows that the reply has arrived at its
destination. If not arrive then returns the reply.The server then stores
the reply to avoid having to start over.
So the request reply protocol can be classified according to their level of
delivery guarantee in this way:

• the request (R) protocol. After the timeout the request ends.

• the request-reply (RR) protocol. After the timeout sends the re-
quest again.

• the request-reply-acknowledge (RRA) protocol. Use the acknowl-
edge message.

3.6.2 Interfaces

The most modern programming languages allow to represent a program
as a set of modules that communicate between them. The comunication
may be through procedure calls between modules or through direct ac-
cess to variables in another module. However, if we wanted to impose
the possible interactions between the modules then we can indicate which
are the only procedures that can be called or just the only variables that
can be accessed through an interface.
The interface hides the implementation of each procedure, and then in
the course of time, the interface can remain the same even if the imple-
mentation of the procedures inside changes, without the user noticing.

It is not possible for a module in a process to directly access variables
in a module of another process, at least that the interface permits the
access.

• Services interface: In the client-server model, each server pro-
vides a set of procedures that are available for the use of clients.
The services interface specification these procedures.

• Remote interface: In distributed object models a remote inter-
face specifies methods of a remote object that is invoked by other
processes. The other processes can then invoke only the methods
that belong to that interface.

3.6.3 Remote Procedure Call (RPC)

Remote Procedure Call is a call pattern of procedures that allows a client
program to call procedures in a server program that runs in separate
processes generally on di↵erent computers from the customer’s computer.
The semantics of communication in the RPC are:

• Maybe semantics: with the maybe semantics the remote proce-
dure may be called once or not at all. It does not apply any delivery
guarantees. If the client does not receive a reply the request is not
forwarded again, so do not know if the request has been executed
once or the message of reply was lost, or not even that.

• At-least-once semantics: with this semantics if the invoker re-
ceives a response then know that the request has been executed
at least once, otherwise an exception informs him that it have not
received any results. These semantics can be reached via the re-
transmission of the message request. The server does not store the
reply and there is no filtering for multiple request.

• At-most-once semantics: the invoker receives a result, in which
case it knows that the method was executed exactly once, or an
exception that informs him that no result has been received. These
semantics is achieved by using all delivery guarantees.

3.6.4 Remote Method Invocation(RMI)

More recently the model in object-oriented programming has been ex-
tended to allow objects in di↵erent processes to communicate through
the Remote Method Invocation (RMI). It is an extension of the local
method invocations that allows an object in one process to invoke the
methods of an object in another process. At this point we must distin-
guish between two types of invocation:

• Remote method invocation: it is an invocation to a method
that belongs to an object of another process, whether it is or not
on the same computer.

• Local method invocation: it is an invocation of a method of an
object within the same process.

Figure 3.9: Remote Method Invocation

A B

C

D

FE

remote
invocation

remote
invocation

local

invocation

local
invocation

local

invocation

An object capable of receiving a remote invocation is called remote object.
An object can invoke methods of another remote object only if it has
its remote object reference. Using the remote object reference, you can
specify a remote object uniquely in the distributed system.
Each remote object has a remote interface with which specifies which
methods are accessible remotely.

Figure 3.10: Remote Method Invocation

{m1
m2
m3

m4
m5
m6

remote
interface

remote object

Data

Implementation
of methods

3.6.5 Events

The idea that underlies the use of events is that an object can react
to change occurred into another object. For example, in an interactive
application, the actions that the user performs in an object, such as
pressing a button, are seen as events that cause changes in the state of
the object.
Distributed systems based on events allowing multiple objects in di↵erent
locations, to be notified of events that take place in a given object.
An object that generates events, publishes the type of events that it makes
available to other objects. Objects that want to receive notifications from
an object that has published its events, subscribe to the types of events
that are of interest to them.

3.7 Processes’ scheduling

The process scheduling algorithms are designed to optimize system per-
formance while minimizing the average response time, maximizing the
use of resources and balance the workload between the host. In dis-

tributed systems, the processes queue is not unique, so you have to
decide who to allocate the process and if you need to migrate the process.
There are di↵erent scheduling algorithms:

• Centralized systems: in this case exists a single processes queue
and the scheduler is a component of the operating system with
the task of managing the processes queue and apply a scheduling
algorithm. For the centralized scheduling algorithms are: FIFO,
round-robin and priority.

• Probes algorithm: when the processor is running on the process
becomes overloaded, he decides to move the process. So probe
eventually another processor, and if it is underused then it transfers
the process in this processor.

• Deterministic algorithm: if we have n processes to distribute
on k processors, with n > k, and we know the tra�c between each
pair of processes, then the algorithm distributes the load so as to
minimize the total tra�c between processes.

• Centralized algorithm: for each host is assigned a score. If a
processor sends processes to other, the score increases, while if it
get processes from other then the score decreases. A free processor
receives processes from a host with a lower score.

3.8 Mutual Exclusion

When a collection of processes sharing a resource or a collection of re-
sources, then mutual exclusion is required to prevent interference between
the processes and ensure the consistency of shared data. In a distributed
system this problem is called distributed mutual exclusion.
There are several algorithms to maintain mutual exclusion.

3.8.1 The central server algorithm

The easiest way to achieve mutual exclusion is to use a server that grants
you permission to enter the critical section. To enter the critical section,

a client sends a request message to the server and waits for the answer.
The response consists of a token that allows you to enter the critical
section.
If the critical section is free, server gives you the token immediately,
otherwise unresponsive to the client and queues the request. When the
process that occupied the critical section free it, it releases the token to
the server, which will pick the oldest request from the queue and sends
the token to the client of that request.

Figure 3.11: Central Server algorithm

4

2

p p

pp

1

2 3

4

Queue of
request

Server

1. Request
token

2. Release
token

3. Grant
token

3.8.2 Distribuited algorithm

A process that wants to enter the critical section sends a message to all
the multicast with the following information: name of the critical section,
its identifier, and local timestamp. Waits for the response of all. Once
you get the OK from everyone, enters the critical section and as it leaves
sends the okay to all the jobs in the queue.
A process that receives the request can:

• Not be in the requested critical section and does not want to enter
in it, then sends the okay to the sender.

• Be in the critical section and then not responding. Puts the request
message to a local queue.

• He also wants to enter in the critical section. It then compares its
timestamp with that of the sender of the request. The oldest has
higher priority. If the sender is the oldest sends ok, otherwise it
places the message in the queue.

Problems:

• If there are N processes requires 2 (N-1) messages.

• If a process fails, no one else can enter in the critical section.

• Each process can be the bottleneck, because all the processes in-
volved in every decision.

3.8.3 Ring-based algorithm

Order processes in circular order. At first, the process 1 has a token
which then passes to the next. The process that has the token is enabled
to enter in the critical section.

Figure 3.12: Ring algorithm

Token

p1 p2

p3

p4

pn

If N are the processes this technique uses [1, N-1] messages because a
process obtains the token, 1 to get out and [1, N-1] to synchronize the
critical section. If a process fails, you must reconfigure the ring, and if it
fails, the process with the token you have to re-elect the next owner of
the token.

3.9 Time

The time in distributed systems is an important and interesting problem
to deal with.
The problem of time in distributed systems consists in being able to know
the exact instant of time in which two or more events are successes on
di↵erent machines, and consequently the possibility to understand the
order in which they are successes or if they are successes simultaneously.
The problem stems from the fact that in a distributed system,

there is not a global time at which appeal.
Each computer contains an internal physical clock, that is an electronic
device that calculates the time within the computer. Unfortunately, the
physical clock like everything else are imperfect. The di↵erence between
two clocks on di↵erent computers is called skew, while the di↵erence of a
given clock with an ideal clock is called drift rate.
Coordinated Universal Time (UTC) is a highly accurate external clock,
based on atomic time, to which any clock can refer to synchronize.
The type of synchronization can be divided between:

• External synchronization: when the clock is synchronized with an
external source, such as UTC.

• Internal synchronization: the clock between the various computers
are synchronized between them with a certain degree of accuracy.
Each computer understanding their level of accuracy compared to
the other computers can refer to its own clock.

There are di↵erent synchronization algorithms.

3.9.1 Cristian algorithm

Cristian suggested the use of a time server, connected to a device that
receives signals from a source of type UTC. This server provides the time
at the request of clients. Upon receipt of the response, the client checks
the clock time t just received. After that calculates the network delay
t
round

(the sending time of the request and the response) it sets its own
clock as t+ t

round/2

Problem

If the central server falls is a problem, then you have multiple servers that
the client contacts in multicast. Will use the first response it receives.

3.9.2 Berkeley algorithm

A computer coordinator is chosen to synchronize periodically the other
computers. The computers send their clock value to the coordinator who
value their local clock considering the round-trip time and calculates an
average of the values obtained.
The coordinator instead of answering the current time date, which could
introduce additional uncertainty due to the time of transmission, it sends
the amount of time than the average just computed. The amount will be
distinct for each computer. In short indicates who should speed up and
who should slow down.
The value sent can be either positive or negative and the media does not
consider the timing too far away or outliers.

3.9.3 Network Time Protocol (NTP)

The previous algorithms are designed for intranet, while NTP defines an
architecture for a time service and a protocol to distribute information
of time on the internet. Provides a service that enables clients through
the internet, to be accurately synchronized to UTC, to provide a reliable
service that can survive even with lengthy losses of connectivity: there
are redundant servers and more roads between servers. Allows clients to

resynchronize frequently enough to compensate for the drift rate found
in many computers. Therefore it is scalable, allowing a high number of
clients.
NTP is provided by a network of servers allocated on the internet. Pri-
mary servers are directly connected to a source of time as UTC, while the
secondary servers are synchronized with the primary server. The servers
are connected in a hierarchical manner, and servers on the higher floors
are more accurate because errors are introduced at every level.

3.10 Replication

For data replication means the preservation of copies of data on multiple
computers. Replication is a key to make a more e↵ective distributed sys-
tem, as it is able to o↵er more performance, high availability and fault
tolerance. Caching is di↵erent from replication, it does not necessarily
increase availability.
When the data are replicated, however, must comply with the trans-
parency of replication: clients ignore the presence of multiple physical
copies, they interact with a single serving. The replication also needs to
be fault tolerant.

Model of a replication system

The model involves replicas held by distinct Replication Managers. They
contain copies and run, ensuring the consistency of the replicas. The
operations in a replication manager does not have to leave inconsistent
result if these operations fail.

The set of replication manager may be static or dynamic. In a dynamic
system, you may see new replication manager (for example a secretary
copy a file into your laptop), instead this is not allowed in a static system.
In a dynamic system the replication manager may fail, not a static one.
Each client request is first handled by a component called Front End,
its role is to communicate through message passing with one or more
replication manager, instead of having it done at the client, it allows the

Figure 3.13: Replication system

properties of transparent replication. The requests are forwarded as well:
the front-end issues request for one or more replica managers, ie either
the front end communicates with a single replica manager who imme-
diately communicates with the other replica manager, or the front end
communicates in multicast whit replication managers.
The replication manager will coordinate to decide the order of execution
of a request in accordance with the other requests, all to ensure data
consistency.

Service fault tolerance

1. Passive Replication (Primary Backup)

In the passive model or primary-backup for fault tolerance in the
replication, there is a single primary replication manager and one
or more secondary replication manager (backup or slaves).
The front end only communicate with the primary replication man-
ager, which collects the requests in the same order in which they
arrive. Check if it has already run once, if so then sends the re-
sponse, otherwise executes the request and records the response. If
it is an update request then sends a copy of the updated data to
the backups, which should send an ack. The primary answer to the
front end, which forwards it to the client.
If the primary fails, one of the backups is promoted to primary.

Figure 3.14: Passive Replication

2. Active Replication In the model of active replication for fault tol-
erance, the Replication Manager all have the same role. The front
end sends multicast their requests to all the replication manager,
which process requests independently, but as the requests were sent
to all in the same order, then it will be processed in the same way
by everyone. Each replication manager sends the response back to
the front end.

Figure 3.15: Active Replication

The requests of the front end are served in FIFO order (as the front-end
waits for a response before making the next request) which is the same
order of the program. This ensures sequential consistency.

Chapter 4

Sybase Unwired Platform

In this chapter we will discuss of a distributed system in particular,
Sybase Unwired Platform (SUP). It allows a company having databases,
Web servers or SAP servers that provide services within the scope of en-
terprise to expose them outside. So that a service o↵ered by these servers
can be accessed from any smartphone, tablet or any other mobile device.

Figure 4.1: Sybase Unwired Platform

Being a distributed system, faces many of the issues described in the pre-

31

vious chapter, for example scalability. In fact, allowing access to services
to any mobile device, the numerous requests from outside could overload
the server, so the SUP allows that does not happen, so that even a grow-
ing number of mobile devices can access these services.
This is just one of the problems facing the SUP, so we’ll see how the issues
set out in the previous chapter are resolved in a particular distributed
system adopted by many companies worldwide.

4.1 Platform Solution

Sybase Unwired Platform acts as a hub that connects the back end of the
enterprise system and its data sources to mobile device. It is essentially
divided into two parts:

• Sybase Mobile SDK: the development platform that allows you
to create your own application.

• Sybase Unwired Platform Runtime: the deployment and man-
agement architecture and services used to run and manage mobile
applications.

This architecture enables the development and deployment of applica-
tions, allowing the connection between mobile devices of di↵erent plat-
forms with di↵erent data resources belonging to heterogeneous back-end
enterprise systems, wherever the latter is in.
So we can see that the SUP provides a middleware layer that can provide
location, protocol, platform and programming languages transparency.
Now we will see the architectural model of the platform SUP.

4.1.1 Sybase Unwired Platform Runtime

In this type of distributed system, there are one or more servers that
provide shared resources and services. These servers are enclosed in an
environment, called Enterprise Information System (EIS) or Enterprise
Application.
Clients wishing to access the shared resources or services do not directly

access the EIS, but communicate with another server or cluster of servers,
which grouped form the Sybase Unwired Platform Runtime (SUP). The
SUP is able to provide the transparency necessary for a distributed sys-
tem, such as transparency of competition, replication, fault, mobility,
performance, and scalability. The SUP is also able to provide even the
caching service.
Inside the SUP there is a server or a cluster of servers called Relay Server,
which function as a proxy server for SUP and then in turn to the EIS.
We can therefore deduce that the architectural model of the distributed
system under consideration is proxy server, with or without multiple
servers.

Figure 4.2: Sybase unwired Platform Runtime

The SUP is a distributed system, whose architectural pattern is on sev-
eral layers, as defined in section 2.3.1. Regarding the tiered architecture,
the three functional parts of an application are each assigned to a phys-
ical host, then we can say that it adopts the three-tier solution. Where
the presentation logic is represented by the client, the application logic
to the SUP and the data logic to the EIS.
In this chapter we focus on the lower layer of the vertical system, Com-
puter and Network Hardware, while for the horizontal organization we
focus on application and data tier.

Unwired Server

Unwired Server belongs to the Application tier and manages the com-
munication and data exchange process between the mobile devices and
Enterprise Information System (EIS) data source. Optimizes access to
the back-end system and it is interposed between the di↵erent mobile
devices and the di↵erent data source of an EIS, it receives data from
back-end systems and forwards them to mobile device, and vice versa.
The Unwired server enables the connection between di↵erent platforms
and operating systems, with di↵erent communication styles:

• Replication-based synchronization: a synchronization method
in where cached data is downloaded to and uploaded from client to
server via replication.

• Messaging-based synchronization: Data in manteined integry
on device client using a synchronization via messaging.

The unwired server can do this because it has a set of objects called
Mobile Business Object (MBO) that can provide the transparency o↵ered
by the middleware layer. We’ll talk more with presicione in the next
chapter.

Data Tier

It belong to the Data tier and it is a set of databases used by Unwired
Server:

• Cache Database(CDB): retains the data retrieved from the back
end. Mobile devices can access this cache to retrieve the data with-
out having to log on several times a backend to always have the
same data, allowing you to ease the workload on the back end. It
o↵ers the caching service provided by SUP.

• Cluster database: keeps all the information that allows the co-
ordination within the cluster of Unwired Server.

• Messaging Databases: stores all asynchronous messages that
then the application layer will have to process.

Relay Server

The relay server behaves like a proxy server and allows secure communi-
cation and load balancing between Unwired Server and mobile devices.
So it is able to ensure the scalability transparency. It allows the transit
of data safely, without having to open any ports on the firewall, as well
as to bypass any restrictions in the firewall.

Figure 4.3: Relay Server

It’ s a component of the runtime architecture within the enterprise de-
militarized zone (DMZ).

• Provides a single point of contact between the mobile devices and
the Unwired Server. Thus allowing the location transparency.

• Accepts requests from mobile devices and forwards to the Unwired
Server.

• It is implemented as a pair o Web server extensions: one to manage
communications with clients from the internet, and the other to
manage the communications with the Unwired server in the internal
LAN. Supports two types of Web Server: IIS on Windows and
Apache on Linux.

• It is fully embedded within the security policies of Web servers,
thereby avoiding the need to change the corporate policies of fire-
walls and IT.

The end-to-end communication between the mobile devices and the Relay
Server using an encrypted communication via HTTPS. As said earlier, the
relay server also provides a rudimentary load balancing in a platform Un-
wired Server cluster, distributing the requests of clients in a round-robin
manner. So for process scheduling, relay server uses a classic algorithm
of a centralized systems.
Each Unwired server has one or more Outbound Enablers (RSOEs) to
manage communications with the relay server, while the relay server re-
lies on open communication by RSOE to communicate with the Unwired
server.
The RSOE is an Unwired server process in a particular Unwired server
port, it opens outbound HTTPS connections to relay server, for commu-
nication both incoming and outgoing with Unwired server.
You can also use any hardware or software load balancer to improve
performance, along with the relay server.

4.2 Cluster and Non-cluster systems

The SUP allows to obtain, in case of need, a model with multiple servers.
Thus ensuring scalability, performance and fault transparency.
So we can install a single server, or more than one, so we have to distin-
guish between Clustered and Non-Clustered Systems.

• Non-clustered Systems: all Unwired Platform server compo-
nents are installed in a single host. A non-clustered Unwired Plat-
form Runtime system is simpler and less expensive to maintain,
however, has many limitations:

– Is not scalable, so you can not add or subtract servers to adapt
the system to changes in load and performance requirements.

– Is not able to provide a load balancing and a mechanism for
fault tolerance.

– The only way to increase the performance of the system is to
increase the potential host: CPU, RAM, etc.

Figure 4.4: Non-clustered systems

• Clustered Systems: All the benefits that a non-cluster does not
provide, are o↵ered by a cluster of server: scalability, by adding or
subtracting the server, to adapt the system to changes in load and
performance. Multiple servers also allow for load balancing and
fault tolerance mechanisms.
So if we want a scalable system with higher availability and higher
system performance we have to choose a system of cluster type.

4.2.1 Cluster Types

In an Unwired Platform system there are two types of clusters: Unwired
Server cluster and Data Tier cluster, and Unwired Platform system is a
cluster if it include at least one of the two type of cluster.

Figure 4.5: Unwired Platform servers in clusters

Unwired Server cluster

The Unwired Server cluster enables load balancing of client request, shar-
ing the client workload, moreover it improves the system availability and
its performance.
Each server in the cluster serves the same set of clients, users, and mo-
bile devices and shares common data tier resources and rely on the same
set of EIS, so all Unwired Servers in the cluster have acces to the same
cached data from the EIS, messaging data for clients and cluster and
server configuration data.
This data sharing enables the Unwired Server cluster to scale easily by
adding or removing servers at any time.

Figure 4.6: Unwired Server cluster

In the Unwired Server cluster the application is deployed to multiple
servers within the cluster, but only one copy at a time is online. As that
application fails, or that server goes down, the application is restarted on
another server of cluster. This is a form of replication of type Passive

Replication.
Moreover, thanks to the Relay Server or load balancer the Unwired Server
can share the workload to improve performance and e�ciency, and give
the client a single point of access, regardless of the server in the cluster
that will access.

Data Tier Cluster

Data Tier Cluster provides support in case of failure to improve system
availability and fault tolerance.
The Data Tier Cluster consists of at least two hosts, one is redundant:
one is active and other passive. The cluster has a shared directory that
all hosts have permission to read and write.
So we can see that the Sybase Unwired Platform (SUP) uses data repli-
cation with a foult tolerance service of type Passive Replication.

Ralay Server Cluster

To further improve load balancing and system availability, it is possbile
to use a Relay Server cluster. It consists of two or more relay server, each

of which serves the same set of RSOE
s

, which in turn is associated with
a specific Unwired Server.

Figure 4.7: Unwired Server connection to Relay Servers in cluster

4.3 Mobile Business Object (MBO)

As we have said many times the Sybase Unwired Platform must ensure
communication between devices with di↵erent platforms, such as An-
droid, IOS, Windows Phone, BlackBerry, and di↵erent data sources like
SAP server, Web Server and di↵erent type of datbases. This communica-
tion is guaranteed by Mobile Business Object (MBO), that in the vertical
organization of services it represent the middleware layer. So MBO is
able to ensure communication o↵ering Platform and Programming Lan-
guages transparency. In addition to the location transparency, since the
mobile device does not know where is the Enterprise Information System
(EIS), but they connect to EIS through the MBO in the Sybase Unwired
Platform(SUP).

The Mobile Business Object is the cornerstone of all the architectural
solution of the Sybase Unwired Platform.
Represents the businnes logic in the three-tier solution, stored in the Un-
wired Server, defining the data that must be taken from the back-end
system to be displayed to the user through the mobile application.
MBO represents an object data models that defines connections to the
back-end EIS systems, operations, attributes, and relationships that al-
low application mobile to filter from the back-end system only data that
it want and synchronize data with mobile devices. Infact, MBO is consid-
ered an interface that indicates which of the possible data or operations
provided by the EIS can be used from the mobile application. MBO in-
dicates the input arguments to be delivered to the remote procedure and
what should be the output data, but the implementation of the proce-
dure remains completely unknown. So in the time, implementation could
change, for example, could be updated and made more e�cient, without
the application, which connects to the MBO, should be modified. The
important thing is that you do not change the interface of the procedure
whereby MBO is connected to it.
As stated in Section 2.5.2, there are two types of interfaces, serevices and
remote interface, MBO is a services interface as it is a client-server
model, where clients demand the execution of a procedure in the EIS.

The MBOs are deployed in the Unwired Servers and they are accessed
by mobile applications from client devices.
The main task of the Mobile Business Object is to provide a layer of ab-
straction to allow the iterations between di↵erent types of mobile devices
with di↵erent types of back-end data sources, as depicted in the figure:

Figure 4.8: Mobile Business Object

They are reusable, as if a new mobile device is added, it can use the same
MBO, allowing the system to be scalable.
Once implemented the MBO, are placed in a package. This package is
deployed inside the Unwired Server.
Now, how do mobile applications communicate with the MBO within the
Unwired Server?
Each mobile application is developed using special libraries, called Object
API, developed for each mobile platform that can run the application:
Android, iOS, Windows Mobile and Blackberry. Such Object APIs allow
the mobile application to communicate with the MBO, providing data
transport services, reliability and security, exchange of messages and no-
tifications in case of change of data occurred in the back-end or in the
mobile application. In short, all those services to be able to synchronize
mobile devices with the data inside the Unwired Server, and to keep the
data in the EIS, Unwired Server and mobile devices in a consistent state,

as we will see later. So the Object API is an interface for all mobile
platforms, to communicate with the MBO in the Unwired Server.

Now we can understand as the Sybase Unwired Platform is a three-tier
solution, as the three functional parts of an application are displayed on
three di↵erent hosts: the presentation logic on mobile devices, the appli-
cation logic, represented by the MBO is deployed in the Unwired Server,
while the data logic is in the EIS system.

An MBO also o↵ers the service of virtualization, that normalizes the data
to allow the interaction between di↵erent enterprise information systems
(EIS), each having its own interface connection, data, operations and
data structures.

MBO Attributes

The data inside the EIS are represented by tables. A Mobile Business
Object (MBO) is associated with only one of these tables. The columns
of this table are the attributes of the MBO, so the MBO attributes define
the structure in the MBO of the data associated with the EIS and mobile
application. Attributes define the scope of the device-side data store.

Figure 4.9: Mobilize EIS data

Operations

MBO can incorporate operations that can or can not change the retrived
data from enterprise information system (EIS).

They are of various kind:

• Create, Update, Delete(CUD)operations: the arguments of
these operations are mapped to the arguments of the operations
of the EIS, and can create, update and delete data, and cause the
change of state of the MBO.

• Read/Load: operations that load data from EIS to the cache of
Unwired Server.

• OTHER: any other type of operation that do not cause state
change.

MBO contains the operations that the client may request to the EIS. The
client requesting the execution of an operation, sends a request through
the request-reply protocol to the server that contains the MBO in
question. After that, the request is forwarded to the EIS, again via the
request-reply protocol. Then the client does nothing else to make a Re-

quest Procedure Call (RPC) to the EIS through MBO. Among the
three invocation semantics, set out in section 2.6.3, SUP uses the one
with more guarantees, ie at most once semantic.

Analyzing how the request is made from the point of view of the ver-
tical and horizontal system, described in sections 2.4.1 and 2.4.2, we can
see how the request part from the application layer in the tier relative
to the presentation logic. The request goes down to middleware layer,
in which the request is reformulated through Object API and reported
at the lower-layer network. Arrived at the SUP, that is the tier relative
the application logic, from the network layer, go to middleware, ie the
MBO, which in turn forwards it to the EIS, that is the tier relative the
data logic, passing through the network layer. When it reaches the EIS
ascend the layers and finally executed. The answer will retrace the same
route in reverse.

Multiple Mobile Business Object

A Mobile Business Object (MBO) is associated with a table in the EIS,
but you can create multiple Mobile Business Object (MBO) from a single
read operation, which allows selection of multiple output tables from a
single call to the Enterprise Information System (EIS) to which the MBO
is bound. To create a multiple mobile businness object we need a read
operation that returns more than one table in ther output. Each table is
an indipendent result set and will be mapped to a corresponding MBO.
The MBOs created from a single read operation are treated as a single
block, so as to be able to upgrade all MBO performing the operations
EIS once.

Relationship

A relationship define the data association between two MBO by linking
attributes and load arguments (the read operation’s parameters, we will
see in detail in the next section) in one MBO to attributes and load
arguments in another MBO.

Figure 4.10: Bind attributes of two MBO

Relationships help to provide the data as one unit, and properly sequence
the operations on the related MBO.
Relationship type allowed are:

• One to many

• One to one

• Many to one

• Bi-directional

• Composite: changes in the parent MBO are propagated to the
childs MBO.

Figure 4.11: Relationship between MBO

Personalization Key

Personalization Key allow the mobile user do define certain input field
values within the mobile application, by associating his name with a

simple or complex datatype value.

Object Query

Object queries are SQL statements associated with a mobile business
object (MBO) running in the mobile device. They return a subset of
the data of the MBO. For example, an object query is used to filter data
already downloaded from the CDB to display a single row of a table when
triggered.

4.4 Data Synchronization and Data refresh

Inside the Enterprise Information System (EIS) changes may occur in
the data, such as mobile devices could change the data within the Mo-
bile Business Object (MBO) in the Unwired Server. So there is a need
to maintain data consistency between the EIS, SUP and mobile devices.
Therefore SUP provides techniques to update the data and make consis-
tent the data held by mobile devices with the copy of the data stored
in the Unwired Server Cache(CDB), before copying everything in the
Enterprise Information System (EIS). These techniques are called:

• Synchronization: synchronizes the data in the Unwired Server
Cache with the data in the mobile devices. It is essential to keep
data synchronyzed between Unwired server and device client.

• Refresh: synchronizes the data in the Unwired Server Cache with
the data in the Enterprise Information System. If the connection or
the enterprise information system fail, however, the devices would
still have access to the data in the Unwired Server cache.

Figure 4.12: Data Synchronization and Data Refresh

1. Each mobile device requests data from the Unwired Server and
keeps one copy of the data. Even Unwired Server Cache and En-
terprise Information System maintain a single version of the data.

2. If changes occur in the enterprise information system, through the
refresch also Unwired Server Cache is updated, after which, through
synchronization, mobile devices will be updated.

Along the section we discuss in more detail of both techniques, but first
we need to better understand what is the Unwired Server cache.

4.4.1 Unwired Server Cache

The Unwired Server Cache (or cache databases CDB) caches data re-
quired by device application.
The data in a cache can have two states: valid or invalid. In the second
case, are no longer relevant and can be overwritten. The advantage of
an hardware cache is that is extremely fast, as the data can be inserted
or deleted inside extremely rapidly. So when the processor at any given
time who need them, can get them quickly, without having to go get
them in main memory.
The CDB however, is di↵erent from a normal cache hardware, as while
the second is always consistent and is even able to replace the system
memory, the CDB is not able to ensure the consistency with the EIS,
for example, if the connection between EIS and SUP goes down, clients
continue to comunicate with the SUP, but it is not said that the data
into it are still consistent with the EIS.
The data residing in the CDB is used only to detect data changes be-
tween SUP and mobile device, so only the di↵erence is transferred to the
device.
The CBD, however, performs some important functions:

• Contains a local copy of enterprise data recently used.

• Manages updates between CDB and EIS server (data refresh).

• Manages updates between CDB and mobile devices (synchroniza-
tion), even in the case of thousands of simultaneous synchroniza-
tions.

• Is able to create partitions of the data belonging to a MBO, for
example, the user is able to provide a particular value of a param-
eter mapped with a given attribute of the MBO, so as to filter and
return to the client only the data corresponding to that value. You
will also create a partition in the CDB containing these values, for
future requests. In addition, multiple partitions allow simultaneous
synchronizations, as we will see shortly.

Managing the Unwired Server cache ensures that enterprise data remains
stable, available and consistent across sources.

Thus we can see that many mobile devices, through the SUP, ask to
read and modify the data in the EIS. So what the SUP have to do is to
ensure mutual exclusion. It guarantees the mutual exclusion in a cen-
tralized manner, as described in Section 2.8.1, through the CBD, whose
task is to maintain the consistency of data.

A cluster system can have any number of Unwired Server, but only a
CDB shared among all. More number of Unwired Server increases and
the more the number of worker threads dedicated to CDB increases.

4.4.2 Data Refresh

Data Refresh is the technique which maintains data consistency be-
tween the Enterprise Information System (EIS) and Unwired Server cache
(CDB). A Data Refresh occurs when EIS data updates are propagated
to the CDB. There are two types of Data Refresh:

• Cache Refresh schedules: Update data in the unwired server
cache with the latest data from the Enterprise Information System
at scheduled intervals or on demand.

• Data change notification (DCN): when the data used by the
application change, then the Enterprise Information System notify
the Unwired Server that it needs to synchronize itself with the
updates, and mobile devices with such modifications.

Figure 4.13: Data Refresh

When a refresh is called, all the rows returned by the Enterprise
Information System are compared with the rows that already exist in the
CDB in the following manner:

• If the CDB is empty, it is filled with all the rows returned by the
EIS.

• The Unwired Server scans the rows returned by the EIS through
the primary key, and check if these rows already exist in the CDB

– Refresh the rows that are di↵erent and the next synchroniza-
tion called by mobile devices, returns only the rows updated,
rather than return them all. This is to increase performance
and e�ciency.

– Rows that do not exist are inserted

Data Refresch behaviour for every mobile business object (MBO) is spec-
ified in a group, called Cache Group, in which reside the MBO that share
the same behahvior. This behavior is specified by a Cache Policy.

Cache Policy

Specifies how the Mobile Business Object (MBO) within a cache group
must be loaded and updated from the Enterprise Information System
(EIS) to the Unwired Server cache (CDB).
Setting a cache policy for an MBO allows you to control the interactions
between the EIS and Unwired Server cache. To better manage these
interactions improves application performance.

4.4.3 Cache Refresh schedules

In this case the refresh requests are sent through the request-reply protocol
with an invocation of type Request Procedure Call (RPC), and we can
have two types of policy:

• On-Demand: the cache becomes invalid after a certain period
of time, called cache interval. The cache after this interval is not
immediately updated, but expect it to be a request made by the
user. In order not to overload EIS, if not necessary. The refresh
request is done through an invocation of type Request Procedure
Call (RPC), as it is requested by the client a read operation to the
EIS through MBO.

• Scheduled: the cache becomes invalid at the end of the cache in-
terval, but then this time the Unwired Server immediately asks the
updates to the EIS. This technique is used when the cache interval
is large and the data during this period do not have great need
to be updated. So, is not required consistency between the data
during the cache interval.
Configure Unwired Server to “poll” the enterprise information sys-
tem (EIS) at scheduled intervals to determine if data has changed.
If it has, the EIS refreshes cached MBO data.

Figure 4.14: Data Refresh Initiated by Unwired Server

1. Unwired Server polls the EIS at an interval determined by the
Unwired Server administrator.

2. If data changes, the CDB is refreshed.

This simple and flexible data refresh strategy uses more system
resources than data change notification (DCN).

With the On-Demand and Schedule policies, all MBO within the same
cache group are updated in block. So more data contains the MBO and
the longer it will take to update the cache. If we did not want to up-
date all the MBO within a cache group, then we should divide the cache
group favors the needs of updating of various MBO. This makes update
operations less heavy and therefore improves the performance.
The division of MBO between multiple cache groups, allows the parallel
upgrade between more cache group, therefore decreasing the update time
than updating a single cache group with all the MBO in.

Thus the division of MBO in more cache group provides the performance
transparency, since, if the number of MBO at some point begins to be
too high, just divide them between multiple cache group. This allows
you to update in parallel multiple MBO. All this, as already mentioned,
increases the performance without having to radically change the system.

Cache Interval

The cache interval is used both in Schedule and On-Demand policies, and
can have various widths: hours, minutes, seconds, and so on.
If a user performs a synchronization before the interval cache expires,
then it will receive the data from the CDB, without making a request to
the EIS, as the data in the CDB are considered still valid.
If you make a synchronization after the interval cache has expired, then
the data within the CBD are considered invalid, then the CDB have to
synchronize with EIS. Such request shall be made at the end of the cache
interval with the schedule policy, when the request is made with On-
Demand policy.
With On-Demand policy you can set the cache interval to 0, so when the
user performs the synchronization request, the CDB requests data from
the EIS and then forwards them to the user. The data within the CBD
are immediatly rendered invalid, so at the next synchronization request,
the data is requested again to EIS.
This technique ensures the user to receive the updated information with
EIS, ensuring a maximum consistency of the data, but if the requests are
many, then it increases the workload for the EIS and the response time,
so we have a reduction of the performance.
Moreover, with this technique the response time increases, because every
time the request of Synchronization is forwarded to the EIS.

Load Arguments and Cache Partitions

A Load Argument can be considered as an argument passed to the refresh
request. It allows you to download from the EIS only the data indicated
by the value assigned to him.
Each Argument Load creates a partition in the CBD, based on the value

assigned to him. By creating multiple partitions within the CDB, al-
lows a refresh parallel and independent of the various partitions, thereby
increasing the refresh rate. For example, you can refresh multiple parti-
tions in parallel, or query one partition while another is being refreshed.
In general, partitions prevent serialized access to the cache. So we have
a considerable increase in performance.
Partition granularity is an important consideration during model devel-
opment. Coarse-grained partitions incur long refresh times, whereas fine
grained partitions create overhead due to frequent interaction between
EIS and Unwired Server.

4.4.4 Data Change Notification (DCN)

In this case the refresh requests are not sent via an invocation of type
Request Procedure Call (RPC), as in the Data Refresh schedule, but by
events. In fact, when there will be a change in the data of the EIS, an
event will be triggered, and notified the SUP.

Figure 4.15: Data Change Notification

1. A change of data occurs in the EIS.

2. The DCN notification is issued to Unwired Server.

3. A result response is returned to the EIS.

Date Change Notification (DCN) is an update mechanism that allows
an EIS to send updates to the CBD, as soon as they happen. So it is
no longer Unwired Server cache (CDB) to ask for an upgrade to the EIS,
but the EIS that sends updates to the CBD. The data in the CDB never
become invalid, because with the DCN as soon as there is a change in
the data of the EIS, they are immediately updated.

DCN with or without Payload

In the DCN without payload, in the DCN request is included the opera-
tion of the MBO, which Unwired Server have to run to update the date.

Figure 4.16: Data Change Notification without payload

1. The DCN sends a request to perform an operation of an MBO,
including the parameters.

2. Unwired Server performs the operation and updates the data.

3. Unwired Server sends an ack to the EIS.

While in the case of DCN with payload, EIS sends the updated data
directly, and Unwired Server only needs to perform the insert, update,
or deletion of data, to perform the upgrade.

Figure 4.17: Data Change Notification with payload

1. The DCN sends the new data.

2. Unwired Server insert, update or delete data.

3. Unwired Server sends an ack to the EIS.

4.4.5 Synchronization

The synchronization allows the mobile device to filter the data to upload
and download from the Unwired Server cache (CDB) and to decide how
often to do so. Is done by invocations of type Remote Procedure Call
(RPC) using the request-reply protocol. It allows to maintain consistency
between the data held by mobile devices, and those contained in the
Unwired Server cache (CDB).

Figure 4.18: Synchronization

Synchronization parameter

The mean that allows you to filter data is the Synchronization parameter
by which you can reduce the number of rows downloaded from CDB to
the mobile device.
When an MBO is bound to a data source, the attributes of the Mobile
Business Object (MBO) are mapped to the database columns of the data
source. Then you can control the amount of data to be filtered by defin-
ing a Synchronization parameter mapped to the attributes of MBO.

Here’s an example with an MBO, called Custumer:

of which only attribute “state” you are interested to synchronize:

Filter the data to be downloaded to the mobile device can be useful for
those MBOs which possess a large amount of data that does not change
frequently. Then they are downloaded wholesale in the CBD or up-
dated with a cache interval very wide and filtered from the mobile device
through a Synchronization parameter to extract only the data of interest.
If you do not define synchronization parameters, a client may download
all data in the CDB, and, in the worst case, cause device application to
crash.
Synchronization is also possible to map a parameter with a Load Argu-
ments, so as to partition the CDB through a synchronization request. If
the data are valid in the CDB, then there will not be a refresh.
Pairing a load argument with a synchronization parameter indicates that
the user will supply values for this argument over time and the aggregate

set of data based on the values provided over time are synchronized with
the mobile device.

Figure 4.19: Combine Synchronization and Data Refresh strategies

1. The user starts a synchronization providing a value to the Synchro-
nization parameter, for example through a Personalization Key.

2. Load Argument is mapped with the same Personalization Key, and
Unwired Server passes the query to the EIS.

3. The EIS sends to Unwired Server the updates.

4. Unwired Server creates a partition with the result in the CDB or
updates the partition if the user has previously synchronized.

5. Unwired Server synchronizes the device with the data in the CDB
partition for the user.

This provides more fine-grained CDB partitioning and concurrency, but
may introduce more partition refresh overhead.

Synchronization initiated by Unwired Server

Synchronization can also start from the Unwired Server instead of the
mobile device.

Figure 4.20: Synchronization initiated by Unwired Server

1. Unwired Server becomes aware of a change in the data in the CDB,
for example by means of a data change notification or a data refresh.

2. Unwired Server notifies the mobile device that has been a change
in CDB. If configured, the server may force synchronization.

3. If the server does not force synchronization, then the application
will be implemented to synchronize when it receives a synchroniza-
tion notification.

Synchronization group

A synchronization group specifies the synchronization behavior for all
MBO within it. If the mobile device initiates a synchronization to an
MBO within the group, then all the others MBOs within the group are
synchronized.

Through a synchronization group you can control which MBO synchro-
nize, thus allowing also a prioritization of the synchronization, ie to decide
which MBO synchronize before other. It thus provides a form of mutual
exclusion, as applied to di↵erent mobile applications an order of access
to shared resources.
Within a synchronization session you can specify multiple Synchroniza-
tion group. A session with more than one group is more e�cient than
more sessions with a group only. More sessions means more transactions
and more overhead.

Chapter 5

Implementation of an

HTML5/JS Hybrid

Application

In this chapter we discuss of the highest layer, the application layer, in
particular describe how you create a hybrid application using the Sybase
Unwired Platform (SUP).The main types of applications that can be built
using SUP, are native applications and HTML5/JS Hybrid Application.
A native application is developed with a code for the mobile platform
on which it will run, such as Objective-C for iOS, Java for Android. By
using the Object API, which we discussed in section 3.3, the native ap-
plication is able to communicate with the SUP and the Mobile Business
Object (MBO) inside.
This type of application then uses compiled code for a particular oper-
ating system, depending on the platform on which it must run, and its
implementation is extremely flexible, because it uses native code. It also
provide o✏ine capability. The problem is that a native application must
be provided to each individual mobile device after being completed, even
small changes must be reported individually on each mobile device.
An HTML5/JS hybrid application is instead a fully generated Web appli-
cation package. So it is an application developed in HTML5, JavaScript
and CSS, completely independent of the platform on which it should run.

63

After that this package is automatically deployed within a container in
the mobile device. This container is built with native code of the plat-
form on which it will run.
The container is an embedded browser that contains the Object API with
which it can communicate with the MBOs in the SUP and provides all
the services necessary for the application, such as connectivity, guaranted
and reliable messaging, caching and security.

Figure 5.1: Hybrid Web Container

Date transport and access relies on messaging protocol of type request-
reply protocol between the SUP and the container on the mobile device.

An HTML5/JS hybrid application allows the development of simple ap-
plications, compared to the native ones, but utilize the power of native

device services, beacuse by using the HybridWeb Container for each type
of platform in a mobile device you can create a single HTML5 applica-
tion that performs advanced device specific operations on all the di↵erent
devices.
Another advantage of a hybrid application is that it allows you to write
code once for all platforms. With this approach, a hybrid web container
is developed and deployed to a device, then one or more hybrid applica-
tion are deployed to the container.

So in essence, the container can be seen as a service interface with which
the hybrid application can communicates with the MBO in the Unwired
Server. It corresponds to the middleware layer in the stack of layers of
the mobile device.

5.1 The purpose of the application.

The hybrid application that we are going to develop, connect our mobile
to the CRM servers of SAP in the CRM test enviroment of the Bocconi
University. The application will be able to request to the server the
Business Partners (BP) of Bocconi, person and company, that the user
wants by getting their personal data. Furthermore, given a BP, we could
request the leads associated with it, and change their state. In the end
we could create an activity of a given BP.
To lead means an event that happened at the BP, as a donation received
to BP, while activity means a real activity that BP has made or plans to
make such a course to play at the university.

5.2 Implementation of Mobile Business Ob-

ject

Firstly you must implement the Mobile Business Object, which must be
deployed in the Unwired Server. As mentioned in the previous chapter
the Mobile Business Object (MBO) is in the stack of layers of the archi-

tectural pattern the middleware layer, providing the transparency of
location, platform, protocol and programming language. In this section
we show how it is implemented a simple Mobile Business Object, trying
to highlight the transparency o↵ered by it.
Among the three functional parts of an application the MBO is part of
the application logic, which will be deployed in the Unwired Server in
the application tier.

5.2.1 Data Source and Profile Connection

MBO needs to know which data source in the Enterprise Information
System (EIS) must be bound and hence such data, in the form of table
of attributes, must represent. Those possible are shown in figure.

Figure 5.2: Possible Data Source

Once loaded into the Unwired Server, the MBO will need to know the lo-
cation of the EIS, in order to connect to it. The location information will
be provided through a Connection Profile. So we will create a Connec-
tion Profile, informations of which we do not show for reasons of privacy,
where we will indicate the location of the EIS. The Connection Profile
will call Bocconi CRM-development.
Here we once again highlight the location transparency, in fact, mobile
devices will not know where is the EIS which require data and services,
but rely on Mobile Business Object. So the location of the EIS can
change, without that mobile devices noticing, just need to modify the
Connection Profile of MBO in the SUP.
In addition to the location transparency, here it also becomes more evi-
dent that the MBO o↵ers the platform and programming language

Figure 5.3: Connection Profile

transparency. Indeed, the data source o↵ered by EIS are more than
one. This, however, is completely indi↵erent for mobile devices, which
by their connection to the data source does not have to make any kind
of discrimination.

5.2.2 Method Definition

Suppose we want to build the MBO relating to person BP. The function in
the EIS that allows the reading of the person BP is called ZUB READ BP 1.
At this function, you must provide the input parameters and it will re-
turn values in output. The values in the output are tables containing the
personal data of BP. These data are sorted by attributes, such as name,
surname, etc..

Figure 5.4: Method definition

From the figure you can see that you can choose the input parameters

and output data desired.

So the mobile device will make the remote invocations to the EIS
through the MBO and the function that will call for BP to have the
desired person will ZUB READ BP 1. What is shown in the figure is
the interface of this function, the device or the mobile application know
nothing about how it is implemented, they can only request it, giving any
input parameters and requests the tables you want to get out. The calls
of type Remote Procedure Call will refer to such services interface.

From the figure below:

Figure 5.5: Attributes mapping

we can see on the left the attributes that form the MBO, while on the
right we have the table attributes E BP PERS output returned by the
function. These links are indi↵erent on the type of EIS data source
chosen, thanks to the transparency of the platform. Whatever the
chosen EIS data sourceis, the data returned by a function will always be
represented in tabular form.

The MBOs of the output tables are the following:

Figure 5.6: MBO of the output tables

5.2.3 Load Arguments

The input parameters are supplied by the user through a form in a screen
of the application:

Figure 5.7: Search person BP scrren

The user-supplied values are stored in the Personalization Key, one for
input parameter, specially created by the application developer:

Figure 5.8: Personalization Key

After that the Personalization Key Arguments are used as Load Argu-
ments:

Figure 5.9: Load Arguments

Such Load Arguments allow you to download from the EIS only BP cor-
responding to the value provided by them. So can greatly reduce the flow
of data from the EIS to the SUP.
In addition, the Load Argumetns allow you to partition the Unwired
Server cache (CDB) to allow parallel refresh in each partition, increasing
the performance of the system.

5.2.4 Relationship

The MBOs can be joined together by relationships, using as primary and
secondary keys attributes and input parameters.
To create a relationship between the MBO BP Person and Addresses BP Person,
binding the following attributes.

Figure 5.10: Relationships

By setting the relationship as one to many and composite, so as to
allow the changes to MBOs parents, are propagated to the children.

Figure 5.11: One-to-many and composite

Creating a relationship also between the MBO Adresses BP Person and
Email BP Person, the MBO related to the BP person are so closely
linked:

Figure 5.12: Relationship between MBO

5.3 Cache Group and Synchronization Group

In this section we will discuss how it is implemented the Data Refresh
between the Enterprise Information System (EIS) and the Sybase Un-
wired cache (CDB), and the Synchronization between the mobile devices
and the CDB.

The three MBO are derived from three output tables of a single function,
so they must stay within the same cache group, in which we define the
Data Refresh behavior.

Figure 5.13: Cache Group Policies

We have chosen the Data Refresh schedule type, on demand policy. So

the refreshes with EIS can be done on user request and then reduce the
workload of the EIS. We also notice that as the cache interval put all the
parameters to 0, so when a user makes a request, every time the data
will be requested from the EIS, thus keeping the data always consistent.

If we instead wanted to request a company BP, then we should call an-
other function, ZUB READ BP 2. In output we decide to return the
same tables of ZUB READ BP 1, except now the data are related to the
company BP. Once you have created the MBO for these tables in out-
put, we can note that will be included within the same cache group of
the MBO of the function ZUB READ BP 1.

Figure 5.14: Cache Group

So if a Data Refresh is performed also for only one of these MBO, will
be made a refresh also all other MBO within the same Cache Group,
although not required. So when does a refresh for the MBO of person
BP, a refresh automatically will be made for the MBO of the company
BP. This leads to an overload of work and a greater flow of unnecessary
data. To remedy this problem then the cache group is divided into two
cache groups, one containing the MBO of the person BP and the other
of company BP.
This phase of the subdivision of the cache group can also be made outside
of the development phase. So if at some point the system administrator
realizes that the cache group has too many MBO, may decide to split the
cache group so as to reduce the workload and the flow of useless data. So
we can see that the system, making it possible to divide the cache group,
o↵ers a transparency of performance in case of increased workload.

Figure 5.15: Cache Group divided

As regards synchronization, instead we can safely keep all MBO within
a single Synchronization Group:

Figure 5.16: Synchronization

Which requires a synchronization between the mobile devices and Un-
wired Server cache (CDB) every 10 minutes.

Figure 5.17: Synchronization interval

Since the data of MBO in question are not subject to major changes,
if we keep them within a single Synchronization Group does not cause
large workloads.

5.4 Workflow

Among the three functional parts of an application, Workflow represents
the presentation logic, which resides within mobile devices in the hor-
izontal organization of the system. It is deployed inside the container
into the mobile device and it consists of th code HTML5, JavaScript and
CSS of the Hybrid Application that implements user view and controls.
It communicates with the container to make online requests or to exploit
the potential of the mobile device as the camera. Between the layers of
the architectural model of the system, it represents the highest layers,
the application layer.

5.4.1 Code HTML5 and Javascript

The entire HTML5 code is contained within a file, hybridapp.html. It
contains all the screens of the hybrid application, each within its own div
element. For example, consider the initial screen of the application:

Figure 5.18: Start page

Its HTML5 code corresponds to the following div, inside the file hybri-
dapp.html :

<div id=”StartScreenDiv ” s u p s c r e e n t i t l e=”Star t ”
s t y l e=”d i sp l ay : none”
sup menuitems=”Chiudi App , Chiudi App”
sup okact ion=”doCancelAction () ”
sup autoarrangemenus=”true”>
<s c r i p t>

i f (hwc . isIOS ())
{

document . w r i t e l n (
”<h3 id=\”S t a r tS c r e enT i t l e \”
c l a s s=\” s c r e e nT i t l e \”>Start</h3>”) ;

}
</s c r i p t>
<ul id=”StartScreenDivMenu” c l a s s=”menu”>

< l i >
<a c l a s s=”nav” h r e f=” j a v a s c r i p t : void (0) ”

name=”Chiudi App” id=”StartChiudi App”
on c l i c k=”menuItemCallbackStartChiudi App ()

;”>Chiudi App

</ l i >

<form s t y l e=”margin : 0px ; ” name=”StartForm”

id=”StartForm” onSubmit=”return f a l s e ; ”
autocomplete=”on”
s up s h ow a l e r t o n v a l i d a t i o n e r r o r=”true”>

<t ab l e c l a s s=”sc r e en”>
<tr>

<td co l span=”2”>
<span id=”StartForm help ”

c l a s s=”help”>

</td>
</tr>
<tr>

<td co l span=”2” id=”topOfStartForm”></td>
</tr>
<tr>

<td co l span=”2”>
<img s r c=”” width=”65%” he ight=”25%”

id=”key95”

s u p s t a t i c o p t i o n s=”true ”
name=”” a l t=””/>

</td>
</tr>

</tab le>
<div id=”key96” sup html type=”htmlview”>

Benvenuti ,

questa l a vos t ra nuova app l i c a z i on e CRM mobile . S e l e z i ona

l a t i p o l o g i a d i r i c e r c a da f a r e :

</div>
<t ab l e c l a s s=”sc r e en”>

<tr>
<td co l span=”2”>

<!�� Note : us ing button tag seems doesn ’
t work f o r iOS when we have both text
and image , worked f i n e with BB6,
android and WM 7 ��>
<button type=”button”
data�r o l e=”none” ignored=”true ”

on c l i c k=”menuItemCallbackStartCerca BP persona () ; ”
id=”Cerca BP persona”
value=”Cerca BP persona ”
l abe l�po s i t i o n=” l e f t ” >Cerca BP

persona
</button>

</td>
</tr>
<tr>

<td co l span=”2”>
<!�� Note : us ing button tag seems doesn ’

t work f o r iOS when we have both text
and image , worked f i n e with BB6,
android and WM 7 ��>

<button type=”button”
data�r o l e=”none” ignored=”true ”

on c l i c k=”menuItemCallbackStartCerca BP azienda () ; ”
id=”Cerca BP azienda”
value=”Cerca BP azienda ”
l abe l�po s i t i o n=” l e f t ” >Cerca

BP azienda
</button>

</td>

</tr>

<tr><td co l span=”2” id=”bottomOfStartForm”></td></
tr></tab le>

</form>
</div> <!�� end o f s c r e en Sta r t ��>

As we can see in the code there are calls to JavaScript functions, de-
fined and implemented within the HybridApp.js file. This file contains
functions for common menu, screen and database operations, that is, all
those operations to be performed, for example, when you type a button
on the screen or a menu option, or when an online request is made to SUP.

From the HTML5 code in the hybridapp.html file, we can see that when
I type the menu button “Chiudi”, it is called the function menuItemCall-
backStartChiudi App (). This function is resident in the HybridApp.js file
and has the following code:

f unc t i on menuItemCallbackStartChiudi App () {
i f (! hwc . customBeforeMenuItemClick (’ Start ’ , ’ Chiudi App ’))
{

r e turn ;
}
hwc . c loseWorkf low () ;
hwc . customAfterMenuItemClick (’ Start ’ , ’ Chiudi App ’) ;

}

Such function via the function hwc.closeWorkflow() causes the closure of
the workflow, and then the application.
The function hwc.closeWorkflow() is contained within the API.js file
which is a library of JavaScript functions that allow you to communicate
with the Hybrid Web Container. Then the function hwc.closeWorkflow()
does nothing more than communicate with the container to close the ap-
plication.

Here we have a first taste of how the code HTML5/JS of a hybrid appli-
cation communicates with the Hybrid Web Container within any mobile
platform, using JavaScript functions of a library previously provided.
Thus it becomes evident that the container in mobile devices is the mid-

dleware layer, allowing the workflow, representing the application layer,
to carry out any operation, such as the closure of the workflow itself, with
a JavaScript function, regardless of the platform on which the work-
flow runs, providing platform and programming language trans-

parency.

Taking another example, we can see that in the code of the function menu-
ItemCallBackStartChiudi App() another function is called, hwc.custom-
BeforeMenuItemClick (), which resides within the Custom.js file, con-
taining all the functions to be performed before and after the happening
of any event, such as typing any button or loading of any page.
So before performing the closing operation performed by the function me-
nuItemCallbackStartChiudi App (), following the pressing of any button
having label “Chiudi”, the function performed is hwc.customBeforeMenu-
ItemClick ().
Usually all functions within Custom.js are empty, it is the application
developer to implement them to customize the graphical interface of the
application. So if the developer wanted to bring up a confirmation clos-
ing popup when typing the “Chiudi” button present on any window, the
code of the hwc.customBeforeMenuItemClick() is as follows:

hwc . customBeforeMenuItemClick = func t i on (screen , menuItem) {
i f (menuItem == ’Chiudi App ’) {

r e turn hwc . showConfirmDialog (” S i curo d i vo l e r
ch iudere l ’ app l i c a z i on e ?” ,
”Chiudi app l i c a z i on e ”) ;

}
r e turn true ;

} ;

where with the function hwc.showConfirmDialog(), we are able to bring
up a confirmation popup:

Figure 5.19: Pop-up confirmation window closing

If we were to write this application in native code, the operation
display of the popup would require a specific function for the mobile
platform that would run the application. In this case, thanks to the
container is not necessary, as it will be the same container to retrieve the
native code for the appearance of the popup.

5.4.2 Online Request

What we want to do now is make an online request at the Enterprise
Informatio System (EIS) to request the personal data of a BP person.
The following HTML5 code in the hybridapp.html file is generated to
implement the search page for a person BP:

<div id=”Cerca PersonaScreenDiv ” s u p s c r e e n t i t l e=”Cerca
Persona” s t y l e=”d i sp l ay : none” sup menuitems=”Cerca , Cerca”
sup okact ion=”doSaveActionWithoutReturn () ”

sup autoarrangemenus=”true”>
<s c r i p t> i f (hwc . isIOS ()) {

document . w r i t e l n (
”<h3 id=\”Cerca PersonaScreenTi t l e \”

c l a s s=\” s c r e e nT i t l e \”>Cerca Persona
</h3>”) ;

}
</s c r i p t>
<ul id=”Cerca PersonaScreenDivMenu” c l a s s=”menu”>

< l i ><a c l a s s=”nav” h r e f=” j a v a s c r i p t : void (0) ”
name=”Cerca” id=”Cerca PersonaCerca ”
on c l i c k=”menuItemCallbackCerca PersonaCerca ()

;”>Cerca

</ l i >
< l i ><a c l a s s=”nav” h r e f=” j a v a s c r i p t : void (0) ”

name=”Cancel ” id=”Cerca PersonaCancel ”
n c l i c k=”menuItemCallbackCerca PersonaCancel

()”>Cancel

</ l i >

<form s t y l e=”margin : 0px ; ” name=”Cerca PersonaForm”

id=”Cerca PersonaForm”
onSubmit=”return f a l s e ; ” autocomplete=”on”
s up s h ow a l e r t o n v a l i d a t i o n e r r o r=”true”>

<t ab l e c l a s s=”sc r e en”>
<tr><td co l span=”2”>

</td>

</tr>
<tr>

<td co l span=”2”
id=”topOfCerca PersonaForm”></td>

</tr>
</tab le>
<div id=”key83” sup html type=”htmlview”>

<h4>
I n s e r i s c i i da t i per r i c e r c a r e l a

persona da v i s i t a r e :
</h4>

</div>
<t ab l e c l a s s=”sc r e en”>

<tr>
<td c l a s s=” l e f t ”>

< l a b e l f o r=”CognomeKey”>Cognome</
l abe l></td>

<td c l a s s=”r i gh t”>
<input c l a s s=”r i gh t ” type=”text ”

id=”CognomeKey” sup html type=”text ”
sup max length=”32767”
sup num of dec imals=”0”/>

<span id=”Cerca Persona CognomeKey help”
c l a s s=”help”>

</td>

</tr>
<tr>

<td c l a s s=” l e f t ”>
< l a b e l f o r=”EmailKey”>Email</l abe l></

td>
<td c l a s s=”r i gh t”>

<input c l a s s=”r i gh t ” type=”text ”
id=”EmailKey” sup html type=”text ”
sup max length=”32767”
sup num of dec imals=”0”/>

<span id=”Cerca Persona EmailKey help ”
c l a s s=”help”>

</td>

</tr>
<tr>

<td c l a s s=” l e f t ”>
< l a b e l
f o r=”Cod ice F i sca l e Key”>Cod . F i s c a l e
</l abe l>

</td>
<td c l a s s=”r i gh t”>

<input c l a s s=”r i gh t ” type=”text ”
id=”Cod ice F i sca l e Key ”
sup html type=”text ”
sup max length=”32767”
sup num of dec imals=”0”/>

<span id=”
Cerca Per sona Cod i ce F i s ca l e Key he lp
”
c l a s s=”help”>

</td>

</tr>
<tr>

<td co l span=”2”>
<!�� Note : us ing button tag seems doesn ’

t work f o r iOS when we have both text
and image , worked f i n e with BB6,
android and WM 7 ��>

<button type=”button” data�r o l e=”none”
ignored=”true ”
on c l i c k=”menuItemCallbackCerca PersonaCerca ()

; ”
id=”Cerca” value=”Cerca”
l abe l�po s i t i o n=” l e f t ” >
Cerca

</button>
</td>

</tr>

<tr>
<td co l span=”2”

id=”bottomOfCerca PersonaForm”>
</td>

</tr>
</tab le>

</form>
</div> <!�� end o f s c r e en Cerca Persona ��>

The result of which is the following page:

Figure 5.20: Search person BP scrren

Each textbox in the code corresponds to the HTML5 tags <input>.
The values entered in a textbox is stored within a key. For example in
the case of the textbox “Cognome”, the key corresponds to CognomeKey,
for “Email” the key is called EmailKey, while for the “Codice Fiscale”
Codice Fiscale Key. Such keys in HTML5 code are indicated inside the
<input>tag, as the attribute ID of the tag.

The online request to obtain the data of the BP person, must be for-
warded to the Mobile Business Object (MBO) implemented specifically
to require such data to the EIS. The MBO in question, as seen in the
previous sections is the BP Person.

Figure 5.21: Online Request

When the data arrives at the mobile device, are analyzed through a query,
findAll(), which scans line by line of the output table.

When we created the MBO BP Person, we bound each Load Argumets
with a Personalization Key, so you can filter the amount of data down-
loaded from the EIS, and get only the person BP corresponding to the
value of “Cognome”, “Email” and “Codice Fiscale” provided by the user.
So you have to pass these values to the corresponding Personalication
Key. This is done by bindding the Personalization Key to the keys of the
textbox containing the values entered by the user.

Figure 5.22: Personalization Key mapping

So when the user types “Monti” in the textbox “Cognome”, then the
mobile device will receive from the EIS only the person BP with the sur-
name “Monti”.

Figure 5.23: List of the person BP with surname Monti

Going into more detail of the BP Ambrogio Monti:

Figure 5.24: Details of person BP Ambrogio Monti

So we have seen how to implement an online request, that is as an
application on a mobile device makes a request to the EIS, through the
MBO within the SUP. In addition we have also seen how, through the
keys of the textbox mapped to Personalization Key, the user provides the
input parameters to the function ZUB READ BP 1 that the EIS must
perform to meet and exceed the request.

When you push the button “Cerca”, within the search page of a person
BP, you call a JavaScript function, menuItemCallbackCerca PersonaCerca()
in the file HybridApp.js, making the online request:

f unc t i on menuItemCallbackCerca PersonaCerca () {
i f (! hwc . customBeforeMenuItemClick (’ Cerca Persona ’ , ’

Cerca ’)) {
r e turn ;

}
var rmiKeys = [] ;
var rmiKeyTypes = [] ;
var rmiInputOnlyKeys = [] ;
var rmiInputOnlyKeyTypes = [] ;
rmiKeys [0] = ’CognomeKey ’ ;

rmiKeyTypes [0] = ’TEXT’ ;
rmiKeys [1] = ’EmailKey ’ ;
rmiKeyTypes [1] = ’TEXT’ ;
rmiKeys [2] = ’ Codice Fisca le Key ’ ;
rmiKeyTypes [2] = ’TEXT’ ;
rmiInputOnlyKeys [0] = ’CognomeKey ’ ;
rmiInputOnlyKeyTypes [0] = ’TEXT’ ;
rmiInputOnlyKeys [1] = ’EmailKey ’ ;
rmiInputOnlyKeyTypes [1] = ’TEXT’ ;
rmiInputOnlyKeys [2] = ’ Codice Fisca le Key ’ ;
rmiInputOnlyKeyTypes [2] = ’TEXT’ ;
var dataMessageToSend = hwc .

getMessageValueCol lect ionForOnl ineRequest (’
Cerca Persona ’ , ’ Cerca ’ , rmiKeys , rmiKeyTypes) ;

var inputOnlyDataMessageToSend = hwc .
getMessageValueCol lect ionForOnl ineRequest (’
Cerca Persona ’ , ’ Cerca ’ , rmiInputOnlyKeys ,
rmiInputOnlyKeyTypes) ;

i f (hwc . va l i da t eSc r e en (’ Cerca Persona ’ ,
hwc . getCurrentMessageValueCol l ect ion () ,
rmiKeys) && hwc . saveScreens (t rue))

{
hwc . doOnlineRequest (’ Cerca Persona ’ , ’ Cerca ’ ,

100 , 0 , ’ ’ , nu l l , dataMessageToSend ,
inputOnlyDataMessageToSend . s e r i a l i z eToS t r i n g ()) ;

}
hwc . customAfterMenuItemClick (’ Cerca Persona ’ , ’ Cerca ’) ;

}

The JavaScript code is interpreted by the Hybrid Web Container and
translated into native code, so as to make the online request. In this case,
since the step is an online request, it becomes more obvious as the con-
tainer, which is the middleware layer, as well as o↵ering the transparency
of platform and programming language, as seen in the previous chapter,
provides location and protocol transparency. As the implementer
of the JavaScript function does not take into account where are the SUP
and what type of protocol to be used to achieve it.

Chapter 6

Conclusions

After the study of the entire documentation of the Sybase Unwired Plat-
form (SUP) to learn about its capabilities, how it works, how to build
with it a hybrid application and after creating an application, see the
finished product was very rewarding.
This experience has allowed me to combine many notions that before I
had only studied in university books and that seemed distant and inde-
pendent of each other: from pure theoretical concepts in my mind, they
have taken shape, connecting to each other, until the implementation and
use of the application.

As you can see from reading the document, the Sybase Unwired Plat-
form is the component that provides the transparency necessary for a
distributed system. There are many techniques to solve the problems
inherent in a distributed system, and with this study we were able to
find out which of these are used by the Sybase Unwired Platform.
What struck me the most was the ease with which the SUP allows you
to create hybrid applications and communication with di↵erent types
of back end platforms, through the realization of the middleware layer,
which in the SUP is called Mobile Business Object.

Once you have made the hybrid application, I could see that it was less
fluid of a native application. And the only way to improve this is to

89

increase the computing power of the mobile device. On this front, then
there should be no major concerns: smartphones are becoming more and
more powerful, doing so will make such applications equivalent to the
native ones.
Moreover from later versions of the SUP, the implementation is made
even easier. By chance, also, to translate the HTML5 code, JavaScript
and CSS in native code, allowing greater flexibility in the implementation
of the application.

In many cases, the transfer of resources from the Enterprise Informa-
tion System (EIS) is still too slow.A future development in fact is to not
install the Sybase Unwired Platform in a server cluster of the company,
but to make available a cloud system, in order to increase the computing
power of the entire distributed system.
Also others communication systems will be use, such as XML, JSON,
and OData, for bi-directional communication of the user interface and
the data between the mobile devices and the cloud, so to make lighter
and faster data transfer and more simple and flexible implementation
of the graphical interface and the mobile application in whole. SAP is
investing heavily in its mobile platform to make it more e�cient, and
simple to implement applications.

Acknowledgements

First I wanted to thank those who have contributed directly and indi-
rectly to the development of this document. First my parents, who have
allowed me to begin the path of the academic studies, the conclusion of
which is represented by this document. And my sister who shared with
me his university career.

And then I would like to thank my friend Cesco, who just heard the
proposal for an internship in Altevie , contacted me immediately , allow-
ing me to start the internship . The colleague Marco Favero , with whom
I had the first interview and the first contact in Altevie . The company
tutor Francesco Garbellotto who followed me despite his busy schedule
, colleagues Manuel Xicato and Diandra Morello I pestered with many
questions, but always available to answer , even in spite of their numer-
ous work commitments . My colleague Matteo Bonas who gave me a big
help with the ABAP code and the CRM platform . My advisor Renzo
Orsini and my university tutor for the internship Michele Bugliesi , who
helped me in transforming the Sybase Unwired Platform in a possible
thesis. And finally, but not least, my friend Cristi that willing helped me
in the creation of many of the images in this document.

But I would also like to thank all those who have accompanied me on this
journey university, which was one of the best times of my life. Starting
with my colleague and friend Vito with which I started, and now I am
going to conclude, sharing the di�culties and satisfactions of this route.
But also Max and Jona, always ready to help me and partying. Marco,
who has spent with me last summer on the books, and also the compan-

91

ions of projects and breaks during the long days of study, such as Davide,
Kele and Popa.

And last, but not less important, on the contrary, I would like to thank
all the friends who have shared with me long days in the library Civica in
Mestre and Marghera, making me the way to this my personal results an
experience lighter and fun, beginning by Saretta, faithful companion of
study, but also Fava, Silvietta, Chiaretta, Kekka, Wewa, Annaki, Berto,
Michi. Not to mention that Toni several times gave me to eat before the
afternoon study.

Bibliography

[1] George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair
Distributed Systems Concepts and Design.
Pearson Prentice Hall
Fifth Edition
2012.

[2] Andrew S. Tanenbaum, Maarten Van Steen
Distributed Systems Principles and Paradigms.
Pearson Prentice Hall
2nd Edition
2006.

[3] Neeta Deshpande, Snehal Kamalapur
Distributed Systems.
Technical Publications Pune
2nd Edition
2008.

[4] Ajay D. Kshemkalyani, Mukesh, Singhal
Distributed Computing Principles, algorithms, and systems.
Cambridge University Press
1st Edition
2011.

[5] Andrew S. Tanenbaum
Reti di calcolatori.
Pearson Prentice Hall

93

4th Edition
2008.

[6] John M. Wargo
PhoneGap Essentials Building Cross-Platform Mobile Apps.
Addison-Wesley Pearson Education
1st Edition
2012.

[7] Lee S.Barney
Developing Hybrid Applications for the iPhone: Using HTML, CSS,
and JavaScript to Build Dynamic Apps for the iPhone.
Addison-Wesley Pearson Education
1st Edition
2009.

[8] Jamie Munro
20 Recipes for Programming PhoneGap: Cross-Platform Mobile De-
velopment for Android and iPhone.
OReilly Media
1st Edition
2012.

[9] Nizamettin Gok, Nitin Khanna
Building Hybrid Android Apps with Java and JavaScript.
OReilly Media
1st Edition
2013.

[10] Silbershatz, Galvin, Gagne
Sistemi Operativi Concetti ed esempi.
Pearson Addison Wesley
7th Edition
2013.

[11] Antonio Albano, Giorgio Ghelli, Rennzo Orsini
Fondamenti di basi di dati.

Zanichelli
2nd Edition
2005.

[12] Antonio Albano
Costruire Sistemi Per Basi Di Dati.
Addison-Wesley Pearson Education
1st Edition
2001.

[13] Elliotte Rusty Harold
XML 1.1 Bible.
Wiley
3rd Edition
2004.

[14] Shelly Powers
Learning JavaScript.
OReilly Media
1st Edition
2006.

[15] Bruce Lawson and Remy Sharp
Introducing HTML5.
New Riders
1st Edition
2011.

[16] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Fundamentals.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[17] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Installation Guide for

Runtime.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[18] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Sybase Unwired Workspace
Mobile Business Object Development.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[19] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Mobile Data Models Using
Mobile Business Objects.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[20] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Sybase Control Center for
Sybase Unwired Platform.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[21] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: System Administration.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[22] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Developer Guide Mobile
WorkFlow Package.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[23] SAP Mobile Platform
Sybase Unwired Platform 2.1 ESD #3: Sybase Unwored WorkSpace
Mobile Workflow Package Development.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SUP-2.1.3/doc/html/title.html&docSetID=1838
2012.

[24] SAP Mobile Platform
SAP Mobile Platform 2.3 Developer Guide: Hybrid Apps.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SMP-2.3.0/doc/html/title.html&docSetID=1939
2012.

[25] SAP Mobile Platform
SAP Mobile Platform 2.3 SAP Mobile WorkSpace Hybrid App
Package Development.
Sybase Product Documentation
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.pubs.docset-
SMP-2.3.0/doc/html/title.html&docSetID=1939
2013.

