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Abstract

As climate change is expected to intensify in the coming years, understanding and

quantifying the relationship between climate, weather, and economic outcomes is be-

coming increasingly essential. This thesis employs a high-dimensional fixed effects

(HDFE) model to estimate the impact of temperature on sector-specific labor pro-

ductivity and quantifies the role of adaptation strategies in mitigating these adverse

effects. The findings reveal that countries with a high per capita air conditioning

stock can effectively mitigate the negative impacts of rising temperatures across

many economic sectors. In contrast, countries with limited access to such technolo-

gies experience more significant declines in labor productivity due to temperature

shocks. Furthermore, the diminishing returns of per capita air conditioning stock on

the attenuation of the temperature effect on labor productivity suggest a saturation

effect.

Keywords: Adaptation; Damage Function; Labor Productivity; Temperature





Introduction

This thesis estimates the role of climate adaptation in moderating the relationship

between temperature and sector-specific labor productivity, aiming to bridge the

gap between micro- and macro-level evidence. The structure comprises five chap-

ters. Chapter One provides the theoretical motivations behind the analysis by in-

troducing Integrated Assessment Models (IAMs) and highlighting their importance

for optimal policy decisions. It also presents the main methods and discusses related

issues in estimating the impact of climate and weather on economic outputs, offering

a comprehensive review of the latest findings regarding the effect of temperature on

labor productivity at both micro and macro levels. Chapter Two proposes a theoret-

ical model and an associated empirical strategy based on a high-dimensional fixed

effects (HDFE) model to estimate the impact of temperature on sector-level labor

productivity. This approach explicitly integrates external adaptation strategies as a

moderating factor, aiming to reconcile the divergent empirical results across the two

scales of analysis. Chapter Three describes and provides context for the main vari-

ables used in the empirical model. These variables include proxies for sector-level

labor productivity, temperature exposure, and the level of adaptation strategies im-

plemented by each country. Specifically, labor productivity is measured as value

added per worker, temperature exposure is quantified using Cooling Degree Days

(CDDs), and the proxy for adaptation strategies is constructed as a country-level

discounted cumulative sum of the value of imported air conditioning machines over

the previous fifteen years. The final section of the chapter outlines the preferred

specification of the empirical model implemented in the statistical analysis. Chap-

ter Four presents the main results of the statistical models, addressing the variability

1
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in estimated temperature impacts caused by differences in adaptation capacities and

sector-level dynamics. Utilizing climate model predictions based on an intermedi-

ate scenario, the final section applies these findings to estimate the hypothetical

effect on current global labor productivity if the projected 2050 climate conditions

were realized today, considering present regional and national adaptation capaci-

ties. Chapter Five discusses the results, confirming the essential role of adaptation

as a moderating factor in the relationship between temperature and sector-level la-

bor productivity. The concluding section emphasizes the thesis’s contribution to

bridging the gap between micro and macro-level evidence in the literature, offering

promising applications for Integrated Assessment Models (IAMs).



Chapter 1

Literature Review

This Chapter provides the theoretical motivations behind the analysis and is divided

into five sections. Section One introduces the Chapter. Section Two describes

Integrated Assessment Models (IAMs), highlighting their importance for optimal

policy decisions. Section Three presents the Climate Damage Function implemented

in these models, discussing the main issues related to its calibration. Section Four

analyzes the primary econometric approaches used in the literature to estimate the

influence of climate on economic outcomes. Section Five reviews the most relevant

evidence concerning the effect of temperature on labor productivity at both micro

and macro levels.

3



4 Chapter 1. Literature Review

1.1 Motivation

The idea that climate can affect our lives is deeply rooted in human history. As

reported by Dell, Jones, and Olken (2012), historical evidence of this can be traced

back to the writings of the Ancient Greeks and continues through to the Enlight-

enment where Montesquieu, in his work “The Spirit of Laws” (1748), observed that

an excess of heat could render people slothful and dispirited. This causal relation-

ship has gained particular attention in the literature of the last decades due to

the increasing awareness of the possible negative consequences of climate change.

Dell, Jones, and Olken (2014) reports that literature on climate and weather eco-

nomics has concentrated on the impact on various key outcomes, including aggregate

economic output, agricultural output, labor productivity, energy demand, health,

conflicts, and economic growth, among others. Estimating these causal relation-

ships—referred to as ex-post analysis—provides the foundation for ex-ante modeling,

which seeks to derive future policy implications from established causal or associa-

tive relationships. Specifically, Integrated Assessment Models (IAMs) have been the

workhorse to guide climate policy design. As the temperature is bound to increase

over the next decades, while we must reduce emissions in order to prevent an even

more rapid rise in the global average temperature, at the same time we need to

cope with a changed climate. IAMs are one of the few economic tools capable of

integrating economic decisions related to adaptation and mitigation with the phys-

ical and biophysical dynamics of our planet and climate. The next section provides

a short description of this tool, explaining how this thesis provides an important

contribution to that literature as well.

1.2 Integrated Assessment Models (IAMs)

The climate literature refers to Integrated Assessment Models (IAMs) as the broad

class of models that integrates economic and geophysical information. These models

are primarily used to predict climate change evolution and assess its consequences.

Usually, the IAMs are built with four main components or blocks : a model predicting
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the future path of GHG emissions, a model to predict how this GHG path will

change the climate, a damage function to quantify the costs of climate change and

an aggregated welfare function for aggregating damages over time and across space

(Dell, Jones, and Olken 2014).

The pioneer IAM has been the DICE model (W. D. Nordhaus 1991; W. D. Nordhaus

1993), developed by the 2018 Nobel Prize William Nordhaus. More recent examples

of DICE/RICE models include (W. D. Nordhaus and Z. Yang 1996; W. D. Nordhaus

and Boyer 2003). Other relevant IAMs are the PAGE model (Hope, Anderson, and

Wenman 1993; Hope 2006) and the FUND model (R. S. Tol 1999; R. S. Tol 2013).

One of the main goals of these models is to obtain the optimal Social Cost of Carbon

(SCC), which is the discounted present value of the damages caused by the emission

of one additional ton of CO2 equivalent (GHG) at a specific point in time.1 The

SCC is a valuable tool for evaluating the optimal allocation of resources over time,

particularly in guiding policy decisions related to climate change mitigation and

adaptation strategies. However, it is important to note that this estimate relies on

a range of model assumptions that involve significant uncertainty. The main ones in

the two geophysical blocks involve: the relationship between greenhouse gas (GHG)

emissions (flows) and GHG concentrations (stocks), the rate of heat transfer into

the deep ocean, and the feedback loops between warming and atmospheric GHG

levels (Hegerl et al. 2006; Weitzman 2013). The main uncertainties of the other two

economic blocks involve: the choice of the discount rate, since the damages have to be

inter-temporally allocated; the time horizon; the changes to risks and the reflection

of uncertainties (Auffhammer 2018; Rose 2012); the shape of the utility function,

since the concavity choice involves re-distributive issues between generation and

between rich versus poor countries; the damage function, which has to translate the

climate information into economic damages. The choice of the concavity has been

commonly addressed with the imposition of the Negishi principle, fixing the current

distribution of income over time (Negishi 1972). The debate around the discount

rate is instead more controversial since the choice largely affects the amount of the

1Note that as the SCC is derived from a dynamic optimization process, and greenhouse gas
(GHG) concentrations in the atmosphere are expected to rise over time, the SCC will increase as
well (Auffhammer 2018)
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SCC. Stern (2007) argues that the choice of the discount rate should be approached

as a normative question, subject to ethical debate within society. In contrast, others

believe that the discount rate should be determined based on empirical estimates,

as discussed by Litterman (2013)) and Weitzman (2013). However, even within this

empirical debate, there is disagreement on which specific market discount rate is

the most appropriate. Dell, Jones, and Olken (2014) compared different outcomes

across some of the most relevant Integrated Assessment Models (IAMs) analysis,

demonstrating significant variations in the Social Cost of Carbon (SCC) based on

the discount rate used. For instance, W. Nordhaus (2008) estimates the SCC to

be $20 when applying a 5.5% discount rate. With a discount rate of 7%, the SCC

estimated by Weitzman (2013) would be $1, $21 with a 3% discount rate and $266

with a 1% discount rate. Stern (2007) shows that with a 1.4% discount rate, the

SCC is approximately $200.

1.3 The Climate-Damage Function

The other key element of the economic component of Integrated Assessment Models

(IAMs) is the climate damage function. This function estimates how fluctuations

in climate, particularly temperature changes, impact economic outcomes at specific

times. Given its crucial role in the dynamic optimization process underlying the

Social Cost of Carbon (SCC), precise calibration based on empirical evidence is

essential.

In the DICE model, the production function follows a Cobb-Douglas form, with

capital (K) and labor (L) as inputs. The formula also includes an external factor,

Total Factor Productivity (TFP), which grows endogenously at a constant rate.

This formula represents the economic output, typically measured as GDP, in a

world without climate change (Dell, Jones, and Olken 2014). To introduce the

climate-damage feedback, the output is reduced using a D(T) factor

D(T ) =
1

1 + π1T + π2T 2
(1.1)
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where T represent the period temperature anomalies and π are parameters that

must be calibrated. Output is then modeled as

Yt = D(Tt)AtF (Kt, Lt) (1.2)

where D(Tt) = 1 denotes the outcome in a world without climate change.2

Parameters can be selected in various ways. Historically, calibrating IAMs using

empirical estimates has always been challenging, as noted by Dell, Jones, and Olken

(2014). For example, the DICE model of W. Nordhaus and Sztorc (2013) has been

calibrated using R. S. J. Tol (2009) cross-sectional estimates increased by 25% to

account for non-monetized damages like biodiversity, ecosystem services, and poten-

tially catastrophic scenarios. While DICE implements the same damage function

for all the world, the PAGE model has been calibrated considering regional-specific

parameters (Hope 2006). In the FUND, climate damages are instead calculated

at the regional-by-sector level and then aggregated.(R. S. J. Tol 2009). Pindyck

(2013) strongly argued that without a precise calibration based on the empirical

evidence, Integrated Assessment Models (IAMs) cannot effectively inform us about

catastrophic events, which the author identifies as the main drivers of the SCC. In

light of these considerations, Dell, Jones, and Olken (2014) highlights a significant

opportunity to improve climate damage functions by rigorously incorporating panel

data evidence. The discussion on the advantages and disadvantages between differ-

ent empirical approaches, including cross-sectional and panel data, will be presented

in Section 1.4.

Given that the objective of the Integrated Assessment Models (IAMs) is to pre-

dict both the short-term and long-term impacts of climate change, a crucial element

to keep in mind during the choice of the damage function is that it is involved in

a dynamic process. In fact, there are two main drivers that can influence the rela-

tionship between temperature and economic outcome over time. The first factor is

the functional form of the damage function. It is crucial to determine if the dam-

2Abatement costs are omitted to improve the clarity of the exposition.



8 Chapter 1. Literature Review

age function affects the levels of the economic outcomes or its growth rates, and in

which way temperature affects the objective outcome. The second relevant factor

is the adaptation process, which can gradually smooth the impact of the climate on

economic outcomes.

1.3.1 The Functional Form

As Dell, Jones, and Olken (2012) and many other contributions shown, the modeler

choice regarding the functional form of the damage function is a crucial aspect of

estimating the long-run effect of climate change.3 The main Integrated Assessment

Models (IAMs) assume that climate impacts only the level of economic outcomes,

as illustrated in Equation 1.2, with the growth rate of Total Factor Productivity (A)

remaining exogenous.

To present the main differences between the two main functional forms, we consider

the empirical framework proposed by Dell, Jones, and Olken (2012).4 In this context,

the effects of temperature in a basic economy can be represented as

Yit = eβTitAitLit (1.3)

∆Ait

Ait

= gi + γTit (1.4)

where Y is aggregate output, L measures population, A measures labor produc-

tivity, and T measures weather. Equation 1.3 captures the level effect of weather

on production, e.g., the effect of current temperature on agricultural production.

Equation 1.4 captures the growth effect of weather, e.g., the effect of temperature

on features such as institutions that influence productivity growth. Clearly, both

effects can be present in real-world dynamics.

Although in a given year the difference between the two types of effects may ap-

3See for example (Dell, Jones, and Olken 2014; S. Hsiang 2016; Heal and J. Park 2016)
4The authors report that it is derived from the one proposed by Bond, Leblebicioǧlu, and

Schiantarelli (2010).
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pear not so relevant, their impact on the evolution of the data-generation process

is substantial. Dell, Jones, and Olken (2014) shows the consequences of this dy-

namic assuming that a permanent increase in temperature has the effect of reducing

current GDP by 1 percent in a given year. If the function is modeled following a

level approach, with an exogenous growth rate, the GDP after 100 years would be

reduced by 1 percent. Using a model based on growth impacts, reducing the growth

rate by 1 percentage point each year would result in GDP being approximately 63

percent lower.

As remarked by Newell, Prest, and S. E. Sexton (2021), there is no definitive theoret-

ical framework that prescribes a specific, estimable structural relationship between

climate variables and economic outcomes. As a consequence, empirical models differ

from the choice of the economic relationship (GDP level effects, growth effects, and

lag effects) and the temperature functional form. For instance, Dell, Jones, and

Olken (2012) employed a log-linear function of temperature and precipitation to

estimate the impact on per capita growth, controlling for country-specific and time-

related trends. Their findings suggest that aggregate per capita level and growth are

both affected by climate variables, but only in poorer countries. Conversely, Burke,

S. M. Hsiang, and Miguel (2015b) hypothesized a quadratic relationship between

temperature and per capita GDP growth, showing how both rich and poor coun-

tries are impacted by climate change. Other studies like (S. Hsiang 2010; Deryugina

and S. M. Hsiang 2014; Deryugina and S. Hsiang 2017) postulate a non-linear rela-

tionship between daily temperature and income levels, instead of GDP growth. In

particular, S. Hsiang (2010) implemented a piece-wise linear production function,

showing that losses occur only on days with mean temperature above 27-29°C.

The choice of whether temperature affects the level or the growth of the economic

outcomes is not trivial, since, as previously shown, it involves very different predic-

tions in the scale of the long-run damages of climate change. The existing microe-

conomics literature, like Cachon, Gallino, and Olivares (2012), appears to suggest

that the temperature affects the level of the economic outcome, even if the pres-

ence of persistent effects does not allow to rule out the possibility of growth rate

impacts (Heal and J. Park 2016). Some contributions, such as Dell, Jones, and
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Olken (2012) and Burke, S. M. Hsiang, and Miguel (2015b), suggest that high tem-

peratures may slow economic productivity growth by reducing cognitive capacity

and diminishing investment in institutions and productive capacity. Newell, Prest,

and S. E. Sexton (2021) argue that while these mechanisms are plausible, they have

not gained significant attention in the growth literature and currently lack robust

empirical support. The literature also disagrees regarding the interpretation of the

coefficients associated with lagged temperature variables. For instance, Dell, Jones,

and Olken (2012) interprets the sign reversal of the lagged effects as evidence of

growth effects, whereas Newell, Prest, and S. E. Sexton (2021) interprets the results

as further evidence of level effects.

Another key dimension where the climate-economy literature diverges, as highlighted

by Newell, Prest, and S. E. Sexton (2021), is the specification of the function that

relates temperature to economic outcomes. For instance, Dell, Jones, and Olken

(2012) employs a linear function, implicitly assuming that a temperature shock af-

fects economic outcomes uniformly, regardless of the baseline temperature level.

S. Hsiang (2010) uses a piecewise linear function, which allows for asymmetric ef-

fects based on deviations from an optimal temperature. Meanwhile, Burke, S. M.

Hsiang, and Miguel (2015b) propose a quadratic relationship between temperature

and growth, suggesting that warming could enhance growth in colder climates while

reducing it in hotter regions.

1.3.2 Adaptation and the Climate-Damage Function

The other dynamic aspect to keep in mind during the estimation of a damage func-

tion is the adaptation process. While a formal explanation of this issue will be

provided in Section 1.4, the intuition behind it is relatively simple. First of all, the

literature refers to climate as the statistical moments of the weather distribution

over the past 30 years for a specific location. For example, the average temperature

in Venice over the last 30 years can represent its climate—although it is essential to

account for other moments and variables such as humidity, wind, and precipitation.

Weather, on the other hand, can be seen as individual outcomes drawn from this

underlying climate distribution. Therefore, climate change is a slow shift in certain
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moments of this distribution over time (Auffhammer 2018).

To quantify the economic damage that a shift in distribution will create, it’s es-

sential to include how people will react to that shift in the weather distribution.

For example, if people believe that heatwaves will be more frequent in the future,

they will adapt their behavior by buying more air conditioners. As formalized by

Auffhammer (2018), there are two types of responses to climate change: the exten-

sive margin response, which involves actions such as installing air conditioning and

sea walls, and the intensive margin response, which involves more frequent usage of

air conditioning and an increasing in energy demand. This means that in the future,

the damage of a heatwave to people’s health and labor productivity can be lower

because they have adapted their behavior to changes in climate distribution. This

adaptation process is costly and involves a trade-off.5 People must determine the

optimal level of adaptation by balancing its costs against the expected benefits.

As Dell, Jones, and Olken (2014) report, the main IAMs integrate adaptation pro-

cesses in different ways. The PAGE model allows the economy to buy units of

adaptation that reduce the climate impact up to a certain degree. The FUND

model incorporates a sector-specific parameter that reduces climate damage by a

constant fraction each year. A major concern is that this parameter is chosen by

the modeler and lacks a solid empirical foundation. Anthoff and R. S. Tol (2012)

highlighted that the parameters in the FUND model documentation are primarily

derived from expert judgments rather than robust data. These observations under-

score the urgent need to enhance the credibility of the damage function by more

closely aligning its parameters and functional form with empirical evidence.

1.4 Climate Econometrics

To obtain reliable future economic estimates from IAMs, it’s fundamental to cali-

brate the damage function in a way that captures as best as possible the real-world

relationship between the climate and the economy. Before analyzing the various

research designs implemented in recent climate econometrics literature - following

5Someone would say that there’s no such thing as a free air conditioner
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the framework proposed by S. Hsiang (2016) - it is essential to provide a formal and

general definition of “climate” from a statistical perspective.

For any position in space i, there exists a vector of random variables at each moment

in time t characterizing the conditions of the atmosphere and ocean that are relevant

to economic conditions at i. Heuristically, one could imagine these random vectors

as

vit = [temperatureit, precipitationsit, humidityit, . . .] (1.5)

For an interval in time τ = [t, t) at i, there exists a joint probability distribution

ψ(Ci,τ ) from which we imagine vit is drawn:

vit ∼ ψ(Ci,τ ) ∀t ∈ τ (1.6)

Ciτ is a vector of K relevant parameters - ideally sufficient statistics - indexed by k

that characterizes distributions in the ψ(.) family of distributions, such as location

and shape parameters. Define Ciτ to be the climate at i during τ , as it characterizes

the distribution of possible realized states vit.

For each period τ , there is an empirical distribution ψ(ci,τ ) that characterizes the

distribution of states vi,t∈τ that are actually realized. Note that ci,τ and Ci,τ are

vectors of the same length with analogous elements, but they are not the same. Ci,τ

characterizes the expected distribution of vit, whereas ci,τ characterizes the realized

distribution of vi,t∈τ . Thus, we describe ci,τ to be a description of the weather dur-

ing τ . S. Hsiang (2016) provides additional examples to allow a better grasp of the

theoretical framework. For instance, ci,τ could represent the count of observed days

with an average temperature exceeding 30°C, while Ci,τ could denote the expected

number of days in this category. Another illustration involves ci,τ represented by

the mean and standard deviation of daily rainfall during a month, whereas the cor-

responding Ci,τ would encompass the true population mean and true population

standard deviation of rainfall that could occur during that period.

The main questions that applied econometricians have to face involve the length of

the time interval τ considered and how to summarize the joint distribution ψ(C) for



1.4. Climate Econometrics 13

the high dimensional vector v. Regarding the first point, historically climate was

defined as an average over 30 years, even if this definition is fairly arbitrary. The

second issue is more complicated to solve, because, at present, there does not exist

an exhaustive list of summary statistics or dimensions of v which fully describe all

social and economic parameters. For example, should a researcher consider only

average value and variance or also multiple dimensions of v such as temperature

and humidity simultaneously? S. Hsiang (2016) suggest that even if there is not a

clear answer, as current research advances the set of considered summary statistics

tends to grow.6

S. Hsiang (2016) also formalize how social outcomes at τ are affected by the cli-

mate in two ways. A direct one (a hot climate generates heatwaves, which can

result in heat exhaustion among individuals) and an indirect one, defined by in-

dividual belief over the structure of C, regardless of what c is realized (if people

believe their climate is hot, some will buy air-conditioners). These actions derived

by beliefs are defined by the vector b of length N, indexed by n. The social outcome,

such as labor productivity, can thus be characterized as

Y(C) = Y [c(C),b(C)] (1.7)

with c(C) defined as a realization of weather characteristics c conditional on cli-

mate characteristics C. The total marginal effect of the climate on outcome Y is

characterized by the K -element vector of derivatives

dY (C)

dC
= ∇cY (C) · dc

dC
+∇bY (C) · db

dC

=
K∑
k=1

∂Y (C)

∂ck
dck
dC

(direct effects)

+
N∑

n=1

∂Y (C)

∂bn

dbn

dC
(belief effects)

6The empirical part of this thesis is based on “Cooling Degree Days”, a summary statistic that
quantifies the number and intensity of extreme heat days.
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where ∇c and ∇b are defined as gradients in the subspaces of c and b, respectively.7

S. Hsiang (2016) remarks also that all partial derivatives are evaluated locally at the

current climate C. This point is important, as beliefs about the climate may alter
∂Y
∂ck

if the actions individuals take based on these beliefs modify the direct effect

of weather realizations c when they occur (for example, individuals who buy air-

conditioners because they believe they are in a hot climate are less susceptible to heat

exhaustion during heatwaves). The literature often refers to adaptation as such in-

teractions between beliefs and direct impacts
(

∂2Y
∂bn∂ck

)
and belief effects themselves.

Although researchers are typically interested in both pathways of influence, credibly

identifying the effects of beliefs often poses a challenge due to their unobservabil-

ity and because they tend to correlate with numerous other factors (S. Hsiang 2016).

Given the formalization above, the ultimate objective of climate econometrics can

be understood as the identification of the climate effect on a population or economy,

holding other factors fixed. Denoting the vector of observable non-climatic factors

that affect the outcome Y as x, S. Hsiang (2016) expresses the average treatment

effect β for a change in climate ∆Ciτ as:

β = E[Yiτ | Ciτ +∆Ciτ ,xiτ ]− E[Yiτ | Ciτ ,xiτ ]. (1.8)

Identifying the real value of β is challenging, as the single population i can never

be exposed to both counterfactuals C and C + ∆C for the exact same interval of

time τ . This issue is known by the literature as the Fundamental Problem of Causal

Inference (Holland 1986).

In an ideal experimental context, β could be recovered assigning at two identical

sample populations i and j two different climates (for example, C at i and C+∆C

at j). The effects of these two treatments on the outcome Y are able to obtain

an answer to the main question. If the two populations are identical, the unit

7Observe that dc
dC and db

dC are K ×K and N ×K Jacobians, respectively.
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homogeneity assumption must hold :

E[Yiτ | C,xiτ ] = E[Yjτ | C,xjτ ], (1.9)

The problem is that the right term is never observed, since we can assign only one

C to a given population at time τ . It is possible to use the observations from the

experiment to construct one unbiased estimator

β̂ = E[Yjτ | C +∆C,xjτ ]− E[Yiτ | C,xiτ ]

= E[Yiτ | C +∆C,xiτ ]− E[Yiτ | C,xiτ ] = β.
(1.10)

even if E[Yiτ | C+∆C,xiτ ] is never observed. Informally, this equivalent to assume

that, conditionally on the covariates and for the experimental purpose, the two

population can be considered the same. So, by randomly assigning to them two

different climates, it is possible to obtain the real value of β. This hypothesis holds

in randomized experiments in which is possible to manually assign the climate ∆C.

An example of one of these experiments can be measuring the difference in the score

of the same logical test for two classes of randomly extracted students, assigning

them to two classes with different climates. In these contexts, Equation 1.10 is

sufficient for inference purposes. The main problem with this empirical strategy is

that in most real-world cases it is not feasible, sometimes for practical purposes,

sometimes for ethical ones, and sometimes for both.8 In all other cases, an applied

researcher requires an empirical design to approximate Equation 1.8 (S. Hsiang

2016). The primary approaches implemented in the climate econometrics literature

are outlined below.9

1.4.1 Cross-Sectional approaches

In cross-sectional designs, following S. Hsiang (2016) notations, different popula-

tions in the same time period τ are compared to one another after conditioning
8For instance, randomly assigning a hurricane to different regions of a country can be challenging

to implement
9For the readers interested in a more comprehensive and advanced explanation of causal infer-

ence methods, see Cunningham (2021)
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on observable xiτ . The key assumption of this approach is the unit homogeneity

assumption as written in Equation 1.9. This implies that the cross-sectional design

assumes that, fixed the level of covariates, if two populations have the same climate

they will also have the same expected (conditional) outcome. So, all the variations

in the observed conditional outcomes are attributed to differences in climate. In a

linear framework, following S. Hsiang (2016), the regression equation has the form

Yi = α̂ +Ciβ̂cs + xiγ̂ + ϵ̂i (1.11)

where τ are omitted because the cross-sectional design considers observations during

the same period. There, α̂ is a constant, γ̂ are the effects of the observable covari-

ates, and ϵ̂i are unexplained variations. In this context, researchers are interested in

the vector of parameters β̂cs, which is a column vector of coefficients describing the

marginal effect of terms in Ci.10 As described by Dell, Jones, and Olken (2014), i

can represent different geographic entities like countries, region or other ones. The

outcome variable can be expressed in levels or logs. The error process is typically

modeled using robust standard error, often clustered at a larger spatial resolution

to allow for spatial correlation in the covariance matrix.11 The vector xi should

include all the variables that are correlated with Ci and affect the outcome of inter-

est. In causal inference terminology, these variables are referred to as confounders.

Examples of these variables also include exogenous geographic characteristics like el-

evation and ruggedness (Dell, Jones, and Olken 2014). Excluding some confounders

can lead to the well-known issue of the omitted variable bias in the estimation of the

coefficient of interest (Wooldridge 2010; Cunningham 2021). Given the complexity

of accounting for all relevant variables, obtaining an accurate estimate of the true

climate coefficients in this context can be extremely challenging.12

10Note that Ci is represented by the set of parameters chosen by the researcher to describe the
probability distribution of v at each location i

11Other techniques of clustering allow the correlation to decay smoothly with distance Conley
(1999)

12Dell, Jones, and Olken (2014) highlight the fact that in given circumstances, adding more
variables as controls does not necessarily lead to a better estimate of the true coefficient. In fact,
if one of these controls is caused by the climate variables and it has an effect on the outcome, this
can lead to the overcontrolling problem, distorting the estimate of the coefficient of interest. The
authors report the example of introducing institutions as a control in a hypothetical regression of
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Assuming that all the relevant controls are included in equation 1.11, and without

controlling for potentially intervening mechanisms, the equation will estimate the

very long-run equilibrium of the relationship between climate and the outcome of

interest, including by any sort of adaptation mechanism. The cross-sectional design

has been the work-horse of earl empirical analysis on the effect on climate, in par-

ticular for the seminal work by Mendelsohn, W. D. Nordhaus, and Shaw (1994),

who regresses farm prices in the US on increasing temperature and observable char-

acteristics of the properties (S. Hsiang 2016). Given that the farmers who have

lived in a location for a long time know very well the climate - the distribution of

the weather - and have expectations about future warming, in a perfect market the

prices are able to reflect the full impact of the climate, including the belief effects.

The prices of the farms should in fact reflect the discounted present value of expected

profits for a given parcel of land (Auffhammer 2018). Even though the ability of

this approach to implicitly account for potential mechanisms of adaptation can be

considered a strength, climate studies often aim to estimate the contemporaneous

effects of temperature on economic activity to assess the potential impacts of fore-

casted temperatures over the coming decades. The cross-sectional approach may

capture mechanisms that operate too slowly to accurately reflect the scale of inter-

est in Integrated Assessment Models (IAMs), or it may include historical dynamics

that are unlikely to occur in the future, such as colonialism (Dell, Jones, and Olken

2014).

1.4.2 Panel-Data approaches

Given the interest in estimating the isolated impact of climatic variables, another

approach involves the use of longitudinal data- either time series or panel data- to

investigate the effects of “weather shocks”. The main idea behind this approach,

which is the foundation of the empirical part of this thesis, is that instead of as-

suming that population i and population j are comparable, the same population i

can be compared to itself over time and observed in different environmental con-

ditions. The main advantage of this approach is that relies on a weaker version of

national income on temperature.
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the unit homogeneity assumption, since it only assumes that a population is com-

parable to itself across moments in time (S. Hsiang 2016). This approach relies on

weather variation i.e. short-run temporal variation, instead of climate variation i.e.

long-run variation in the weather distribution. Given that weather phenomena like

temperature and precipitation vary plausibly randomly over time-since they can be

considered random draws from the climate distribution- the weather-shock approach

can rely on strong identification properties (Dell, Jones, and Olken 2014). Following

(S. Hsiang 2016) notation, the regression equation in this context takes the form

Yiτ = α̂i + ciτ T̂S + xiτ +̂θ̂(i)(τ) + ϵ̂i (1.12)

where α̂i are unit-specific fixed effects that absorb the effect of all time-invariant fac-

tors that differ between units, including unobservables that could not be accounted

for in the cross-sectional research design. θ(i)(τ) are trends in the outcome data, of-

ten accounted for using period fixed effects and/or linear or polynomial time trends,

which may be region- or unit-specific. The inclusion of these trend controls helps

to ensure that the relationship of interest is identified from idiosyncratic local shock

(Dell, Jones, and Olken 2014). Another relevant methodological decision involves the

choice of the inclusion of time-varying observables controls xiτ . Including these con-

trols can help absorb residual variation and improve the estimates of the coefficient

of interest. Even if the panel data approach allows to avoid the omitted variable bias

caused by unobservable time-constant regressors, it remains vulnerable if there are

important time-varying factors that influence the outcome and are correlated with

ciτ or xiτ after conditioning on the trends θ(i)(τ) (S. Hsiang 2016). However, Dell,

Jones, and Olken (2014) highlight that including regressors that are endogenous to

weather variation can introduce the over-controlling problem reported in the cross-

sectional context. Therefore, there exists a relevant trade-off regarding the inclusion

of non-climatic factors xiτ . Some authors, like Heal and J. Park (2013), added in

the regression equation also controls like human capital and the logarithm of the

value of the stock of physical capital per capita, in order to improve the fitting of

the control trend for the dependent variable. Other contributions caution regarding



1.4. Climate Econometrics 19

this idea, because adding factors that are endogenous and affected by the climate

can introduce new biases in the coefficients of interest. This situation is know as bad

controls (Angrist and Pischke 2009; Dell, Jones, and Olken 2014; S. Hsiang 2016).

Given the existence of this challenging debate in the literature, the empirical part

of this thesis will show the consistency, and the difference, of the results under these

different approaches.13

Another issue concerns the choice of the functional form of the independent climatic

variables. In panel data setups, identification typically relies on deviations from

the mean, making the use of level measurements for climate variables a common

approach in the literature. Alternatively, applying logarithmic transformations to

capture percentage deviations from the mean requires that temperature data be

strictly positive. While this condition is satisfied when temperatures are measured

on the Kelvin scale, it poses a problem when using Celsius degrees, which can in-

clude negative values. Moreover, even when data are converted to the Kelvin scale to

ensure positivity, the functional form of the model is still altered. Another common

approach that accounts for non-linear effects involves categorizing temperatures into

different bins and analyzing the frequency with which temperatures fall into each

category. For example, this method might count the number of days in a year that

exceeds 33°C. Although this non-parametric technique offers significant theoretical

advantages, it requires high-resolution data to be effective. Other approaches rely

on climate anomalies (Dell, Jones, and Olken 2014). In general, it is best practice to

follow existing research when selecting the most appropriate functional form of the

temperature variables, particularly concerning the underlying biological processes.

The empirical part of this thesis relies on the concept of “Cooling Degree Days”,

which accounts for prolonged exposure to temperatures above a specific threshold.

As the following section will demonstrate, this choice is guided by the existing lit-

erature on the effects of temperature on labor productivity.

Historically, the first to propose this time series approach was likely Huntington

(1922). However, it has gained prominence in modern literature after the rele-

13A related issue involves the inclusion of lags of the dependent variable in the regression equa-
tion. This topic is an active area of research and should be treated with caution due to the
assumptions it entails. See Dell, Jones, and Olken (2014) for a more comprehensive discussion.
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vant studies of Deschênes and Greenstone (2007) and Auffhammer, Ramanathan,

and Vincent (2006), which examine the effects of weather shocks on agricultural

outcomes. In this framework, econometric identification is achieved through within-

unit, year-to-year variations in weather and economic outcomes (Auffhammer 2018;

S. Hsiang 2016).

Considering that the primary goal of most empirical analyses in this field is to esti-

mate statistical relationships that inform society about the potential implications of

climate change, the panel approach is well-suited for estimating the contemporary

impact of weather shocks—unlike cross-sectional analyses, which typically capture

long-run effects. This focus on immediate impacts is exactly what is required for in-

tegration into Integrated Assessment Models (IAMs), which aim to estimate future

damages resulting from shifts in the distribution of weather patterns. Therefore, the

panel data approach offers advantages not only in terms of identification but also

in aligning with the theoretical objectives of the analysis (Dell, Jones, and Olken

2014).

The main problem with this approach is that short-run responses to weather shocks

are not necessarily analogous to long-run effects. Without a strong understanding of

the assumptions underlying a given empirical framework, the applicability of these

short-run estimates to the long-run economic impact of climate change can be prob-

lematic. Following Dell, Jones, and Olken (2014), the key issues that need to be

considered are briefly outlined below.

Adaptation is likely the key challenge that standard panel data estimates can face,

particularly when analyzing long-term effects. This issue arises because agents have

the capacity to adjust their behavior to mitigate future damages, especially in re-

sponse to environmental or economic shocks. For instance, in the case of a country

experiencing a growing trend in heatwaves during the hotter seasons, it is reason-

able to expect that people will adapt by purchasing air conditioners. However, this

process of adaptation is gradual and is influenced by several factors, such as tech-

nological opportunities — which play a significant role, as air conditioners need to

be invented, commercialized, and made widely accessible before they can be used

as a tool for adaptation — and by the rate of technical change, which determines
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how quickly people can adopt such solutions.14 This means that, while standard

panel models may capture immediate responses, they might fail to fully account for

the delayed and gradual nature of behavioral adjustments, leading to upward-biased

estimates of the coefficient of interest (Dell, Jones, and Olken 2014). The empirical

part of this thesis aims to adjust this bias considering these dynamics.

Intensification of climate effects. It represents a countervailing force to adapta-

tion and may lead to downward bias in the estimate of the coefficient β of interest.

This bias arises because climate change can cause significant damages that are not

immediately apparent in response to small or short-term weather variations. As

noted by Dell, Jones, and Olken (2014), one example is the impact of insufficient

precipitation on agriculture. While a single dry year can often be managed by re-

lying on existing water reserves, a permanent decline in rainfall can lead to severe

and lasting consequences for agricultural productivity and economic activity. Such

intensifying climate effects may not be fully captured by standard panel estimates,

which could miss the longer-term, cumulative damage caused by persistent environ-

mental stressors.

General Equilibrium Effects. When considering the macroeconomic effects of

climate change, it becomes important to account for general equilibrium adjustments

in prices and the reallocation of production factors, such as capital and labor. These

adjustments can significantly influence long-term estimates of weather shocks, as the

mobility of production factors is crucial in shaping the economic response to climate

impacts. If both capital and labor are mobile, the long-term effects of climate change

may be mitigated. However, if labor is immobile, regions facing negative climate

shocks may experience capital outflows as profitability declines. This, in turn, would

further reduce the marginal product of labor in those regions, exacerbating the neg-

ative economic impact (Dell, Jones, and Olken 2014).

Extrapolation beyond historical experience. The final issue arises from the

uncertainty regarding whether past weather variations adequately capture the range

14For example, for a given type of climate, the rate of household ownership of ACs rises with
economic development and incomes — very quickly in the case of the hottest and most humid
countries (IEA 2018). Colelli, Wing, and Cian (2023) obtain similar results using Cooling Degree
Days (CDD) constructed with a threshold of 24°C.
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of future changes. This is a key limitation of panel models, which may provide in-

complete estimates when projecting extreme future scenarios. For example, since

yearly average temperatures rarely deviate by more than 2°C from their historical

average, projecting potential damages under a hypothetical scenario of 7°C warm-

ing at the end of the century is only reliable if the relationship between variables is

linear. If there are non-linearities that differ from those observed in historical data,

the estimated coefficients may be biased, leading to inaccurate predictions (Dell,

Jones, and Olken 2014).

These considerations highlight that, while the panel approach may accurately esti-

mate the causal effects of weather shocks on current economic outcomes, its appli-

cation to future projections—especially in catastrophic scenarios—depends on a set

of highly specific assumptions. This uncertainty is amplified by the fact that it’s

challenging to determine which force—adaptation or intensification—will dominate

in the long run. Consequently, without a clear empirical strategy, panel estimates

cannot be confidently viewed as either a lower or upper bound for future impacts,

as they can fail to fully capture the complex and nonlinear dynamics of long-term

climate change (Dell, Jones, and Olken 2014).

1.4.3 Hybrid approaches

Motivated by concerns regarding the limitations of both cross-sectional and panel-

data approaches, recent years have seen the emergence of hybrid methodologies.

One prominent example is the regression strategy proposed by Burke and Emerick

(2016), which aims to fully account for observable adaptation in crop yields.15 It

is known as long-differences approach and it can be viewed as a cross-sectional

comparison of changes over time, providing a way to capture longer-term adaptation

that standard methods may overlook. Following S. Hsiang (2016) notation, for two

periods of observation {τ1, τ2} the regression is

15Other notable contributions related to this approach include: Dell, Jones, and Olken (2012)
for climate effects on economic growth, Lobell and Asner (2003) for crop yield impacts, and Burke,
S. M. Hsiang, and Miguel (2015a) for climate-related conflicts, as discussed in S. Hsiang (2016).
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Yiτ2 − Yiτ1 = α̂ + (ciτ2 − ciτ1)β̂LD + (xiτ2 − xiτ1)γ̂ + ϵ̂i (1.13)

where α̂ represents the secular change in Y over time and β̂LD represents the ex-

tent to which trends in climate are correlated across space with trends in Y . This

approach is known as long differences because it is primarily used to test whether

gradual changes in c induce gradual changes in Y , so τ1 and τ2 are usually chosen

to be two periods far apart in time. In their estimation, Burke and Emerick (2016)

analyze the differences between five-year moving averages of crop yields taken two

decades apart and regress these differences on corresponding five-year moving aver-

ages of weather variables, also two decades apart, for all agricultural U.S. counties

east of the 100th meridian. The underlying idea is to leverage differential time

trends as a source of econometric identification, acknowledging that climate has

already changed significantly over the past fifty years (Auffhammer 2018). The re-

sults showed that the coefficient calculated using the panel data approach is almost

identical to the one found with the long-differences approach. This led them to

conclude that gradual changes in c induce effects similar to more rapid changes in

c; that is, long-run adaptation has been minimal in this agricultural context (S.

Hsiang 2016; Auffhammer 2018). The advantages of this approach include that it

implicitly accounts for long-run adaptation dynamics in a plausibly causal way. Ad-

ditionally, the distribution of observed climate trends can represent changes similar

in magnitude to those expected over the next century. The main problem with

this approach is its high data requirements, which can make it inapplicable in some

contexts (Auffhammer 2018).

1.5 Labor Productivity

Current research has primarily examined the indirect economic consequences of cli-

mate change, such as its effects on crop production and sea levels. However, less

emphasis has been placed on the direct channels impacting welfare, which can be

critically important. These direct effects include harm to human health, potential
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decreases in human capital development, and, notably, impacts on labor productiv-

ity. All these channels can be considered fundamental drivers in the reduction of

aggregate measures of welfare—like GDP—and understanding the climate dynamics

that involve labor-related impacts can help improve the functional forms of damage

functions in Integrated Assessment Models (Heal and J. Park 2016).

This thesis aims to advance the literature on the impact of temperature on labor

productivity, including the mitigating role of adaptation technologies. Accordingly,

this section provides relevant background on the current knowledge about the rela-

tionship between temperature and labor productivity at the biological, micro, and

macro levels.

1.5.1 The Biology of Temperature Stress

Human beings are biological organisms with specific constraints on the environmen-

tal conditions necessary to live and function optimally. In particular, humans are

easily perturbed and distracted when temperatures deviate above or below our ther-

mal comfort zone—typically between 18°C and 22°C—commonly referred to as room

temperature (Heal and J. Park 2016). The body’s strategy to dissipate heat involves

the production of sweat using water and salt. If exposure to heat is prolonged, many

adverse health consequences can occur, such as dizziness, muscle cramps, increased

blood viscosity, and cholesterol levels (Deschênes, Greenstone, and Guryan 2009),

fever, cardiovascular pressure, inflammation, and many others.16 Literature has also

documented the effects of high temperatures on fetuses, infants, and brain function.

Notably, when the wet-bulb temperature (WBT)17 reaches 35°C, the human body is

no longer able to dissipate metabolic heat, and prolonged periods of outdoor activity

become impossible. This condition is known as hyperthermia (Lai et al. 2023; Heal

and J. Park 2016).

Literature has also demonstrated that temperature can influence human behavior

even in non-extreme contexts. In particular, the decline of relative performance

starts from 22°C, a small deviation from the optimal zone. This phenomenon has
16See (Heal and J. Park 2016) and (Lai et al. 2023) for a more comprehensive list, which includes,

among others, respiratory diseases and damage to the immune system.
17Temperature indicated by a moistened thermometer bulb exposed to air flow
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been shown by numerous lab experiments, where participants were randomly as-

signed to hotter rooms to perform physical and mental tasks.18 Interestingly, Sep-

panen, Fisk, and Lei (2006), in a meta-review, finds that the average productivity

decline for temperatures above 25°C is on the order of 2% per degree Celsius, with

non-linear responses as the temperature further deviates from the optimum of 20°C

(Heal and J. Park 2016). These findings are summarized in Figure 1.

Figure 1: Temperature and normalized task productivity in laboratory setting (Sep-
panen, Fisk, and Lei 2006; Heal and J. Park 2016)

The results presented by Seppanen, Fisk, and Lei (2006) can be considered as the

foundation of the theoretical argument behind the empirical framework of this thesis,

which aims to estimate the semi-elasticity of labor productivity, considering the role

of adaptation, with respect to cumulative deviations from the temperature threshold

of 24°C.

18See, for example, Grether (1973) and Froom et al. (1993), among others.
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1.5.2 Micro-Level evidence

Several studies have analyzed the relationship between temperature and labor pro-

ductivity using plant-level data. For example, Cai, Lu, and J. Wang (2018) used

worker-level data from a factory in Xiamen, China, spanning 2012 to 2014, and found

a symmetrical inverted-U-shaped relationship between temperature and labor pro-

ductivity. Their results show that an additional day with a maximum temperature

above 35°C leads to an 8.5% reduction in productivity compared to a reference

temperature bin centered at 25°C (Lai et al. 2023). Similarly, Stevens (2019) ob-

served an inverted-U-shaped relationship by examining the agricultural productivity

of blueberry pickers in California. They found that temperatures over 37°C lower

productivity by 12% compared to a reference bin centered at 27°C (Lai et al. 2023).

The results obtained by Cachon, Gallino, and Olivares (2012) suggest that using

automobile assembly data, six or more days in a week above 32°C reduces labor

productivity by 8%. Chen and L. Yang (2019) found that an increase in the average

summer temperature of 1°C diminishes labor productivity by 3.4–4.5%. Addition-

ally, Zhang et al. (2018) utilized annual survey data from above-scale industrial

firms in China spanning 1998 to 2007 and discovered that each additional day with

temperatures exceeding 32°C, relative to a reference bin centered at 13°C, decreases

total factor productivity (TFP) by 0.56% and output (measured in value-added)

by 0.45% (Lai et al. 2023). Somanathan et al. (2021) analyze data from various

industries in India to compare the effects of temperature on labor productivity at

the worker level, firm level, and subnational GDP level. They find that if the tem-

perature increases by 1°C every day, worker output is reduced by 3%. In the same

scenario, annual plant output decreases by 2.1%, showing a linear decline once the

maximum daily temperature exceeds 20°C. This comparison suggests that, under

a Cobb-Douglas production function, labor productivity is a key driver in this dy-

namic. Moreover, the results of Somanathan et al. (2021) indicate that if the average

maximum temperature in a year increases by 1°C, annual district industrial output

is reduced by 3.5%. The comparable magnitudes of these effects suggest that labor

productivity represents a key mechanism through which temperature affects macro-
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level economic output (Lai et al. 2023).

Temperature affects not only the quality of the performance but also the quantity.

Part of the output reduction can be explained by an increase in work absenteeism

or a reduction in the hours worked. Graff Zivin and Neidell (2014) find that an

additional day with a maximum temperature above 29°C, considering a baseline

centered at 25°C, reduces the time allocated to work by an hour. Results by Cai,

Lu, and J. Wang (2018) suggest that neither attendance decisions nor working hours

are affected by temperature in a manufacturing factory in China. Lai et al. (2023)

propose that this effect can be explained by the rigidity of the labor market. In

contrast, Somanathan et al. (2021) observe opposite results in an industrial factory

in India, where high temperatures lead to increased absenteeism, especially among

workers with paid leave. This evidence suggests that the impact of temperature on

overall labor productivity is complex and influenced by factors such as the extent of

occupational exposure and the rigidity of the labor market.

1.5.3 Mental Productivity

The relationship between temperature and labor productivity has been studied

not only from an economic perspective, but also by examining how environmen-

tal changes affect factors like learning, cognition, and decision-making. Specifically,

research has explored the impact of temperature on test scores, both in surveys and

student exams, across countries including the U.S., China, India, and Canada (Lai

et al. 2023). The analyzed impacts involve both the current and the cumulative

relationship. Understanding and quantifying in this sense is extremely important

since it can direct the research on the right functional form of the IAMs’ damage

function.

The results on the contemporary impact of temperature converge on similar con-

clusions. For example, Graff Zivin, S. M. Hsiang, and Neidell (2018) shows that

children’s math test (but not reading) performance is affected by the temperature

on that day. Specifically, each degree above 21°C results in a 0.219% decrease in

math scores (Lai et al. 2023). Zivin et al. (2020) analyze data from China’s National

College Entrance Examination, where air conditioning is scarce, and find a 0.34%
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reduction in exam scores for each additional degree Celsius. R. J. Park (2022) ex-

amine high-school exit exams in New York City and find that a 0.55°C increase in

exam-time temperature decreases performance by 0.9% of a standard deviation (Lai

et al. 2023).

The impact of cumulative exposure to high temperature has conclusions less homo-

geneous. In particular, Graff Zivin, S. M. Hsiang, and Neidell (2018) find a limited

effect of climate on human capital accumulation, suggesting that while the tem-

perature may impact immediate cognitive function, compensatory behaviors, in the

long run, can mitigate these effects.19 However, R. J. Park et al. (2020) shows that

cumulative exposure to heat reduces the rate of learning in the long run. In particu-

lar, each increase of 0.55°C in the yearly maximum temperature the year before the

test leads to a decrease in academic achievement by 0.2% of a standard deviation

(Lai et al. 2023). Similarly, Zivin et al. (2020) reports a negative impact of extreme

heat from the previous year on college entrance exam performance in China. Other

studies, such as those by Cho (2017) and Garg, Jagnani, and Taraz (2020), provide

comparable findings.

The cumulative effects of temperature may be influenced by the availability of miti-

gation technologies, such as air conditioning, which vary across regions in the study.

Although the evidence is mixed, the possibility that future climate shocks could

impact the accumulation of human capital cannot be ruled out (Zivin et al. 2020;

R. J. Park 2022). Notably, Lai et al. (2023) note that studies linking workplace

cognitive output to temperature effects are rare, with few exceptions. For instance,

the findings of Heyes and Saberian (2019) demonstrate that a 5.5°C increase in tem-

perature during work hours can adversely affect decision-making processes among

U.S. immigration judges, reducing grant rates by 6.55%. Niemelä et al. (2002) show

that, in a call center, each additional degree in the range 22-29°C is associated with

a reduction of about 1.8% in labor productivity (Dell, Jones, and Olken 2014).

19For instance, if a child misses school or has reduced attention in class due to extreme heat,
additional instructional time from private tutors or parents can help compensate for the resulting
knowledge loss.
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1.5.4 Macro Level: The GDP-Temperature relationship

In Integrated Assessment Models (IAMs), the primary economic outcome of inter-

est is Aggregate Output. Therefore, understanding and quantifying the channels

through which climate can affect it is becoming increasingly important. Although

there is some ambiguity in the literature regarding the appropriate functional form

(Heal and J. Park 2016; Newell, Prest, and S. E. Sexton 2021), the robust relation-

ship between income per capita20 and temperature has been supported by numerous

empirical analyses, both cross-sectional and panel-based (Dell, Jones, and Olken

2014).

Starting with the first type, Gallup, Sachs, and Mellinger (1999) demonstrated that

countries located in the tropics were 50 percent poorer per capita in 1950 and ex-

perienced annual growth rates that were 0.9 percentage points slower between 1965

and 1990. Dell, Jones, and Olken (2009) found that, in a cross-sectional analysis of

the world in the year 2000, national income per capita decreased by 8.5 percent for

each degree Celsius increase in temperature. Additionally, the same study revealed

that within countries, municipal per capita income declined by between 1.2 and 1.9

percent for each degree Celsius rise in temperature. W. D. Nordhaus (2006) showed

that, after controlling for country fixed effects, geographic variables could explain 20

percent of the income differences between Africa and the world’s wealthier industrial

regions (Dell, Jones, and Olken 2014).

The main issue with cross-sectional estimates is their susceptibility to omitted vari-

able bias, as discussed in Section 1.4. To more directly isolate the contemporaneous

impact of temperature, recent climate econometrics literature has increasingly fo-

cused on panel data estimates. In a global sample spanning from 1950 to 2005, Dell,

Jones, and Olken (2012) analyzed the effects of annual variations in temperature

and precipitation on per capita income. Their findings indicate that a 1°C increase

in the yearly average temperature is associated with a 1.4 percent reduction in per

capita income. Notably, this effect is observed only in poorer countries, highlighting

the critical role of climate adaptation, which appears to be closely tied to income

20The macro-level literature has primarily focused on proxies of aggregate labor productivity,
such as income per capita.
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levels. The negative impact of temperature on economic growth includes both a level

effect (reduction in the current level of aggregate income) and a growth effect (dam-

age to growth drivers such as innovations and institutions), as the authors interpret

lagged temperature coefficients as an indication of a persistent impact of shocks in

the medium term, even in the presence of sign reversal.21 Additionally, variations

in mean precipitation were found to have no significant effect on per capita income

(Lai et al. 2023). Also Burke, S. M. Hsiang, and Miguel (2015b) identified a growth

effect in both the agricultural and industrial sectors using a panel of 166 countries

between 1960 and 2010. The study estimates an inverted U-shape response to an-

nual growth rate finding a globally optimal temperature of 13°C, using parametric

country-specific time trends (Lai et al. 2023). It predicts that unmitigated warm-

ing could reduce average global incomes by approximately 23% by 2100, with a

non-linear temperature response affecting both rich and poor countries across the

agricultural and non-agricultural sectors. The analysis conducted by Deryugina and

S. M. Hsiang (2014) also suggests that high temperatures reduce economic outcomes

in wealthy regions. Using a sample of twenty-eight Caribbean-basin countries, (S.

Hsiang 2010) found a level effect between 1970 and 2006. The estimates indicate

a 2.5 percent reduction in value added per capita for each 1°C increase in temper-

ature, but only if the increase occurs during the hottest season. Interestingly, the

results show that the non-agricultural sector is affected twenty times more than the

agricultural sector, with respective declines of 2.5% and 0.1%. Lai et al. (2023)

suggest that this evidence implies that labor productivity losses in labor-intensive

non-agricultural sectors could be a crucial mechanism behind these results.

Given the discordance in existing literature, Newell, Prest, and S. E. Sexton (2021)

estimated eight hundred models, evaluating them using a range of cross-validation

techniques. The authors explored different specifications of the temperature-GDP

relationship, focusing on several key aspects: the functional form of the temper-

ature relationship, the methods used to account for potentially confounding time

trends, the persistence of the temperature effect (including both growth and level

21Newell, Prest, and S. E. Sexton (2021) strongly contests this interpretation, arguing that the
sign reversal of temperature effects in their analysis indicates only a temporary impact on GDP
levels.
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effects), and the inclusion of lags for temperature and precipitation as covariates.

The main results from Newell, Prest, and S. E. Sexton (2021) highlight the greater

uncertainty in future impacts for models that specify the effects of temperature on

GDP growth, due to the structural dynamic that accumulates damages over time.

The 95% confidence interval, accounting for both sampling and model uncertainty

across the best-performing GDP growth models, ranges from 84% GDP losses to

359% gains. Models analyzing GDP level effects show a much narrower range of

GDP impacts, generally centered around 1–3% losses, aligning with the damage

functions used in major IAMs. Models that incorporate lagged temperature effects

suggest impacts on GDP levels rather than GDP growth. The analysis identifies

statistically significant marginal effects of temperature on poor country GDP and

agricultural production, but not rich country GDP, non-agricultural production, or

GDP growth. These results support theories suggesting that richer countries are

less vulnerable to temperature and climate shocks due to their greater capacity to

adapt (Deryugina and S. M. Hsiang 2014; R. S. J. Tol 2009; W. Nordhaus 2008).

Interestingly, Dell, Jones, and Olken (2014) suggest that there exists consistency be-

tween micro and macro evidence regarding the estimated loss in industrial output,

with negative effects averaging around a 2 percent loss per additional 1°C when the

temperature exceeds 25°C.

1.5.5 Other Sector-Level Evidence

Understanding the impacts at the sector level is crucial for identifying the main

drivers of the aggregate effect, which in turn is essential for making optimal policy

decisions. This short part of the review presents several empirical analyses regarding

other key economic outcomes affected by weather shocks. These outcomes include

Agriculture, Health, and Energy.22

Agriculture. Given the intrinsic relationship between the environment and agri-

cultural production, this field has been the focus of numerous academic studies

analyzing climate impacts. Interestingly, it is also the area where many significant

22See Dell, Jones, and Olken (2014) for a brief literature review regarding other channels in the
climate-economy interface like Political Stability, Crime, Market integration, and Innovation
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methodological contributions have emerged (Dell, Jones, and Olken 2014). The early

debate on climate impacts in agriculture was characterized by two main approaches:

the production function approach and the Ricardian approach. The production func-

tion approach models climate variables such as temperature and water as direct in-

puts in agricultural production processes.23 This method has faced criticism because

its reliance on experimental data may not accurately predict the adaptive behaviors

of real-world farmers, such as switching crops in response to changing climatic con-

ditions. The Ricardian approach utilizes cross-sectional regressions of land values

to determine the net impact of climate on agricultural productivity (Dell, Jones,

and Olken 2014). This method is predicated on the assumption that farmers, in

a stationary climate, will adapt their behaviors to maximize profits. Under this

assumption, land values reflect the discounted value of future profits (Auffhammer

2018). Mendelsohn, W. D. Nordhaus, and Shaw (1994) is considered the main

contribution in the field and it estimated that the impacts of climate change on

agricultural production not only are lower than the one estimated with the cross-

sectional approach but might be even positive. This thesis has been criticized by

Schlenker, Michael Hanemann, and Fisher (2005) which, after accounting irrigation,

find robustly negative estimates, similar to those from earlier estimates (Dell, Jones,

and Olken 2014). The main criticisms of the Ricardian approach include: the poten-

tial for omitted variable bias and the causality problems typical of cross-sectional

regressions; the assumption of costless adaptation, which is unrealistic; the find-

ings of Severen, Costello, and Deschenes (2018), which show that farmers already

incorporate expectations about future climate changes, potentially leading to an

underestimation of impacts (Auffhammer 2018). Interestingly, this approach has

been implemented in other fields to estimate the climate impacts. Mansur, Mendel-

sohn, and Morrison (2008) apply it to energy consumption, where adaptation is

fuel-switching. Deschênes and Greenstone (2007) motivated by the omitted vari-

able problem, propose a panel data approach based on year-to-year within-country

variation to understand if agricultural profits are reduced when the year is hotter

or wetter than normal (Auffhammer 2018; Dell, Jones, and Olken 2014). They find

23See (Adams 1989)
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no statistically significant evidence of weather impacts on U.S. agricultural profits,

corn yields, or soil yields. (Fisher et al. 2012) challenged these findings, citing data

errors. After corrections were made, their revised analysis identified a negative im-

pact of climate change on U.S. agriculture, aligning with previous empirical studies.

Nevertheless, the methodological contribution remains extremely important (Dell,

Jones, and Olken 2014). Applying this panel data approach to developing countries

typically reveals consistently negative impacts of adverse weather shocks on agricul-

tural output.24 Part of the literature focused also on nonlinearity in temperature

effect, which can be crucial in agricultural dynamics. For example, the approach

implemented by Schlenker and Roberts (2009) allows flexible estimation of nonlinear

relationships, using bins, polynomials, or piece-wise splines. They find a threshold

for negative output effects starting from 29-32°C. Since global change involves a right

shift in the weather distribution, understanding nonlinearity can be crucial due to

the intensification of extreme weather phenomena (Dell, Jones, and Olken 2014).

Health and Mortality. A great number of recent academic contributions empha-

size the role of temperature on mortality, prenatal health, and human health more

generally (Dell, Jones, and Olken 2014; Deschenes 2014). The panel literature high-

lights several ways through which temperature can affect health, both directly and

indirectly. Directly, extreme temperatures are known to impact health, especially for

individuals with preexisting respiratory and cardiovascular conditions. Indirectly,

temperature can influence health through factors such as pollution levels and food

spoilage rates. Temperature can also influence incomes through the channels out-

lined above, such as agriculture and labor productivity, which can in turn affect

health (Dell, Jones, and Olken 2014). Deschêne and Greenstone (2011) demonstrate

that in the United States, each additional day with a temperature above 32°C, rel-

ative to a moderate day with 10-15°C, increases the annual age-adjusted mortality

rate by 0.11 percent. They also provide evidence of cold-related effects. A. I. Barreca

(2012) obtain similar results, with an increase in mortality of 0.2 percent for each

additional day of extreme heat. Notably, A. Barreca et al. (2016) revealed that the

mortality effects of temperature on weather were significantly higher in the United

24See (Schlenker and Lobell 2010; Guiteras 2009; Welch et al. 2010; Dell, Jones, and Olken 2014)
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States at the beginning of the century compared to more recent periods, with a six-

fold increase in impact. The authors posit that this reduction may be attributed to

the widespread adoption of residential air conditioning, highlighting an important

area of research on adaptation strategies involving the effects of extreme tempera-

tures.25 Other contributions, like Deschênes, Greenstone, and Guryan (2009) and

Kudamatsu, Persson, and Strömberg (2012), focus on the effects of weather on in-

fant health (Dell, Jones, and Olken 2014).

Energy. Similar to agriculture, the energy sector is closely linked to the climate,

particularly in the presence of adaptation responses. Understanding the relationship

between energy consumption and weather variations is crucial for designing optimal

electricity systems and integrating feedback loops into Integrated Assessment Mod-

els (IAMs). An example of these loops involves how adaptation responses related

to energy consumption increase greenhouse gas (GHG) emissions and how, in the

long term, they will influence future energy demand in relation to global warming.

The response of the energy demand to weather shock is influenced by two main con-

cepts: the occurrence of an unusual warm day can either increase or reduce energy

consumption, depending on the location and time of year; the energy-temperature

relationship depends on the available stock of heating and cooling equipment, em-

phasizing the significant role of the extensive margin response in the context of the

study of the intensive one (Dell, Jones, and Olken 2014). In the context of panel

studies, using nine temperature bins, Deschêne and Greenstone (2011) find a clear

U-shape relationship between energy demand and temperature in the United States

between 1968-2002, with an extra day below more or less -12 °C or above 32° rais-

ing annual energy demand by 0.3-0.4 percent. Auffhammer and Aroonruengsawat

(2011), using 2003-2006 California data at the household level, confirm the U-shape

relationship. As Dell, Jones, and Olken (2014) notes, using temperature bins allows

to capture the convexity of the energy-temperature relationship, in which extreme

temperatures provoke a much stronger energy demand increase. A well-known ap-

25A subset of the literature, including studies by Deschenes and Moretti (2009) and Braga,
Zanobetti, and Schwartz (2001), has also explored the concept of harvesting, which refers to the
phenomenon where an extremely hot day might precipitate the death of someone who might have
otherwise died shortly thereafter, even without the high temperatures. Hajat et al. (2005) found
that this effect may vary with income and potentially with access to climate control technologies.
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proach in energy economics literature, as well as in this thesis, involves the use of

Cooling Degree Days (CDDs) and Heating Degree Days (HDDs) as a measure of the

energy required during “extreme” temperature. They are defined as the count of

days below and above a threshold temperature (for example 24°C), with each day

weighted by its temperature difference from the threshold.

Notably, Dell, Jones, and Olken (2014) strongly emphasize that future panel studies

aiming to isolate the effect of air conditioning adoption, particularly in relation to

income, will be crucial for predicting the interaction between energy demand and

adaptive mechanisms. This is particularly relevant for low-middle income countries

where climate control devices per capita are still low but are expected to increase

(Pavanello et al. 2021; Colelli, Wing, and Cian 2023; IEA 2018). Dell, Jones, and

Olken (2014) also suggest that to the extent that adaptation can influence the re-

sponse to positive temperature shocks in economic outcomes - such as labor pro-

ductivity, industrial output, and health - the focus should not be exclusively on

increasing costs in energy demand, but rather on the more comprehensive trade-off

between these costs and the adaptation benefits such energy appliances may provide.

These costs should necessarily include the future damages caused by the greenhouse

gas emissions related to the increase in energy demand. This thesis aims to con-

tribute to the research that seeks to calibrate and incorporate these trade-offs in

Integrated Assessment Models, particularly in the labor productivity dynamics.

1.5.6 Climate Adaptation and Labor Productivity

The literature on climate adaptation can be broadly divided into two main cat-

egories: studies that quantify the effectiveness of adaptation strategies and those

that investigate the presence of these adaptive behaviors (Lai et al. 2023). The first

category primarily focuses on external adaptation strategies, often involving climate

control technologies such as air conditioners (Isen, Rossin-Slater, and Walker 2017;

R. J. Park et al. 2020; Somanathan et al. 2021; Lai et al. 2023). The literature has

also analyzed the complementary role of autogenous adaptation strategies (Cook

and Heyes 2020; Qiu and Zhao 2022; S. Sexton, Z. Wang, and Mullins 2022; Lai
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et al. 2023). Examples of the second category involve the study of compensatory

behaviors and time reallocation (Graff Zivin and Neidell 2014; Garg, Gibson, and

Sun 2020; Lai et al. 2023).

Considering the studies that involve the effectiveness of external devices, Isen,

Rossin-Slater, and Walker (2017) suggest that domestic air conditioning mitigated

nearly all the negative effects of early-life heat exposure on adult earnings for indi-

viduals born in the U.S. between 1969 and 1977 (Lai et al. 2023). Moreover, R. J.

Park et al. (2020) found that the presence of air conditioning reduces the impact of

high temperatures on the performance of high school students in the years leading

up to their standardized PSAT tests. Somanathan et al. (2021) show that adapta-

tion devices eliminate performance reduction in the workplace but do not address

absenteeism in India (Lai et al. 2023). Heal and J. Park (2013) demonstrates that

the penetration of air conditioning can mitigate the impact of high temperature on

a country’s output per capita.

Part of the literature studied the phenomenon of autogenous adaptation, in par-

ticular acclimatization. Acclimatization is defined as “the beneficial physiological

adaptations that occur during repeated exposure to a hot environment” (Lai et al.

2023). For example, Qiu and Zhao (2022) demonstrate that athletes trained in

high-temperature regions are relatively less sensitive to the negative impacts of heat

compared to athletes trained in low-temperature regions. Cook and Heyes (2020)

find evidence of biological adaptation to high temperatures in the performance of

foreign students. Graff Zivin and Neidell (2014) show that labor for high-risk work-

ers is less sensitive to extreme heat in August, suggesting evidence for short-term

acclimatization when heat shocks are more frequent (Lai et al. 2023).

Considering adaptive behaviors, Graff Zivin, S. M. Hsiang, and Neidell (2018) find

evidence of short-term effects on math performance when temperatures exceed 26°C

in a panel data fixed effects model. However, long-differences and cross-sectional es-

timates reveal a significantly weaker relationship between temperature and human

capital, suggesting the presence of compensatory behaviors (Lai et al. 2023).

In conclusion, numerous studies demonstrate how temperature affects labor produc-

tivity at the micro-level and how climate adaptation can significantly mitigate these
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negative impacts. However, when considering key macro-level findings from studies

such as Deryugina and S. M. Hsiang (2014), Dell, Jones, and Olken (2012), and

Burke, S. M. Hsiang, and Miguel (2015a)—with the notable exception of Heal and

J. Park (2013)—evidence of adaptation are very limited. Lai et al. (2023) suggest

that this contrast highlights the need for further research on climate adaptation to

bridge the gap between micro- and macro-level evidence.



Chapter 2

The Conceptual Framework

This chapter is organized into two sections. The first section offers an overview of

the theoretical model underpinning the analysis, highlighting the role of tempera-

ture in economic production. Although the model is in partial equilibrium, it offers

insights into the main channels of impact discussed in Chapter One.

The second section presents the structure of the empirical strategy adopted in

this thesis, discussing the theoretical aspects of the high-dimensional fixed effects

(HDFE) model utilized in the analysis.
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2.1 The Theoretical Model

This thesis aims to take further steps toward reconciling the gap between micro-

and macro-level evidence regarding the role of climate adaptation in the relationship

between temperature and labor productivity. Before outlining the empirical strategy,

the theoretical model is introduced. This framework, developed by Lai et al. (2023),

is based on the model of Deryugina and S. M. Hsiang (2014).

An economy uses labor L and capital K to produce, with AL and AK denoting

labor and capital productivity, respectively. Variables AL and AK respond to con-

temporaneous or past temperature T . In addition, the producer can spend an effort

e ∈ [0, 1] to moderate the sensitivity of labor productivity to temperature, such as

by installing air conditioners. The cost of effort is c(e), which is a convex function

with ∂c
∂e

> 0 and ∂2c
∂e2

> 0. Following the Cobb-Douglas production function, the

quantity of output is written as

q(T ) = (AK(T )K)α(AL(T, e)L)
1−α, (2.1)

where α and (1 − α) are the output elasticities of capital and labor, respectively.

Denote the output price as p, the wage rate as w, and the rent rate of capital as r.

The producer faces the standard profit maximization problem:

max
K,L,e

p · (AK(T )K)α(AL(T, e)L)
1−α − wL− rK − c(e). (2.2)

In Equation 2.1, price variables (p, w, r) are endogenously determined by the econ-

omy in general equilibrium, and the producer is a price taker (Lai et al. 2023).

Given T and price variables, the producer chooses labor and capital inputs, as well

as the effort level to maximize the profit. Denote the optimal labor and capital under

the exogenous temperature T as L∗(T ) and K∗(T ). The thesis aims to investigate

the total marginal effect of temperature on economic output q(T ) and the underlying

channels, given in the following equation:
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d ln q(T )

dT
= (1− α)

1

AL(T, e∗)
· dAL(T, e

∗)

dT
+ (1− α)

1

L∗ · dL
∗(T )

dT

+ α
1

AK(T )
· dAK(T )

dT
+ α

1

K∗ · dK
∗(T )

dT
. (2.3)

The effect of temperature on output is decomposed into four parts, even if this the-

sis focuses on the first two components related to labor. Given that the literature

identifies an inverted U-shaped relationship between temperature and economic ac-

tivities, and considering that the main variable in the empirical analysis is Cooling

Degree Days (CDDs)—a measure of the persistence and intensity of high temper-

atures—rises in T represent a monotonic deterioration of ambient conditions (Lai

et al. 2023).

The first term on the right side of Equation 2.3 reflects the effect of temperature on

aggregate labor productivity. If the temperature crosses the comfortable zone, the

partial effect of labor productivity is expected to be negative with (1− α) 1
AL(T,e∗)

·
dAL(T,e

∗)
dT

< 0, as demonstrated by the literature review presented above.

The second term on the right side of Equation 2.3 presents the impact of temperature

on labor demand. When the economy reaches equilibrium, the labor market is

cleared, and the labor available in production is equal to the labor supply by workers.

That means the impact of temperature on labor supply is implicitly reflected by dL∗

dT

(Lai et al. 2023). Given the limited literature on the impact of temperature on firms’

labor demand, this thesis does not specifically address this aspect of the dynamics

Notably, the total derivative of labor productivity with respect to temperature in

the first term of Equation 2.3 is a combination of two terms:

dAL(T, e)

dT
=
∂AL(T, e)

∂T
+
∂AL(T, e)

∂e
· ∂e
∂T

, (2.4)

where the first term ∂AL(T,e)
∂T

describes the direct effect of temperature on labor

productivity, and the second term ∂AL(T,e)
∂e

· ∂e
∂T

represents the effect of mitigation
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or adaptation efforts (Lai et al. 2023). The empirical part of this thesis aims to

provide a quantitative assessment of both components of the total derivative of labor

productivity, estimating the direct effect of temperature as well as the moderating

role of adaptation efforts.

2.2 The Empirical Strategy

The literature has identified two main approaches to examining the effectiveness of

climate adaptation strategies (Lai et al. 2023). The first approach involves the use

of subsample analyses. For example, Heal and J. Park (2013) found a less concave

relationship between temperature and income per capita for countries in the top

third of the distribution of air conditioning penetration per capita. Other examples

include Graff Zivin and Neidell (2014), Cho (2017), R. J. Park et al. (2020), and

Somanathan et al. (2021). The second approach, which is adopted in the empirical

part of this thesis and follows the panel methodology presented by S. Hsiang (2016)

and Dell, Jones, and Olken (2014), involves incorporating an interaction term into

a high-dimensional fixed effects (HDFE) regression equation. This interaction term

captures the relationship between the function of temperature and the adaptation

strategy used as a moderating factor. Precisely, following the notation of Lai et al.

(2023), the general regression equation to estimate the impact of temperature on

the labor productivity of a worker (or country) i in location c at time t is given by

the high-dimensional fixed effects (HDFE) specification as follows:

Yict = γf(Tct)× Adaptict + βf(Tct) + (ρAdaptict)

+Wctλ+Xictθ + µi + δc + θ(t) + ϕ(c, t) + ϵict

(2.5)

where Tct represents the temperature exposure and f(Tct) is a function of Tct. Yict

is a proxy for the labor productivity. β measures the direct response of labor pro-

ductivity to temperature exposure and Adaptct is an indicator of the existence of

external adaptation strategies (e.g., air conditioners) or a proxy for the experience of

hot days in the past (e.g., a dummy for the high-temperature region, the number of
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hot days, or the average temperature in the past) to examine the effect of autogenous

adaptation (Lai et al. 2023). The decision to include Adaptct without its interaction

with f(Tct) depends on the context of the study. The key coefficient is γ, the one

which measures the moderating effect of the external adaptation strategy. Wct is

a vector of weather variables. Xict is a vector of unit-level time-varying variables,

such as gender, age, education, and others. In a national aggregate context, the

vector represents elements like human capital and stock of capital per capita. Since

temperature and adaptation variables may be contemporaneously correlated with

Wict and Xict, it is essential to include these control variables in Equation 2.5 to

prevent omitted variable bias. µi represents unit fixed effects, δc represents location

fixed effects, and θ(t) refers to flexible time trends (Lai et al. 2023). After controlling

for these fixed effects, residual shocks in temperature are plausibly random. Some

studies include location-by-time fixed effects ϕ(c, t), which absorb location-specific

temperature norms and make the temperature residual more exogenous. However,

this stricter control can remove too many identifying variations and cause atten-

uation bias (Deryugina and S. M. Hsiang 2014). ϵict is the error term, commonly

clustered to allow spatial and serial correlation (Lai et al. 2023).



Chapter 3

Methods

This chapter is organized into two sections. The first section provides an overview

of the variables and data used in the empirical analysis, with the final dataset con-

sisting of a global unbalanced panel covering 116 countries from 1991 to 2019. The

main variables include sector-level labor productivity, Cooling Degree Days (CDDs),

and the stock value of the air conditioning machines per capita.

The second section introduces the preferred empirical model employed in the anal-

ysis, explaining the rationale behind the selection of its key components and exam-

ining its interpretive implications.
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3.1 Data

This section presents the data regarding the main variables implied in the analysis.

The list includes:

• Labor Productivity: A measure of output per worker, reflecting the effi-

ciency and economic performance of a region or sector.

• Cooling Degree Days (CDD): An indicator of the demand for space cool-

ing, representing the cumulative number of degrees by which daily tempera-

tures exceed a threshold, in this case 24°C.

• Stock of Air-Conditioning Machines Per Capita: An estimate of the

value of air-conditioning units available per person in a given country, reflecting

the capacity to meet cooling demand. It can be considered a general proxy for

the level of adaptation effort adopted by a country.

3.1.1 Labor Productivity

Following the definition provided by the International Labour Organization (ILO),

labor productivity represents the total volume of output (measured in terms of

Gross Domestic Product, GDP) produced per unit of labor (measured in terms of

the number of employed persons or hours worked) during a given reference period.

This indicator allows data users to assess the levels and growth rates of GDP relative

to labor input over time. It provides a broad overview of the efficiency and quality

of human capital involved in the production process within a specific economic

and social context, while also considering additional factors such as complementary

inputs and innovations used in production.1

In this thesis, a proxy for the variable “Labor Productivity” is constructed as the

yearly Value Added by sector divided by the number of employed persons. Data on

Value Added by sector are sourced from UNData and refer to the variable "Gross

1See http://ilostat.ilo.org/topics/labour-productivity

http://ilostat.ilo.org/topics/labour-productivity
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Value Added by Kind of Economic Activity at current prices - US dollars".2 Val-

ues are then converted in real terms using the "Price level of CGDPo (PPP/XR),

price level of USA GDPo in 2017=1" from the Penn World Table (version 10.01).3

Data regarding the number of employees across various sectors are sourced from

the ILOEST database, which is maintained by the International Labour Organi-

zation (ILO).4 The sectors included in the analysis are Aggregate (TOT), Non-

Agricultural (NOAGR), Agriculture (AGR), Services (SER), Industry (IND), Man-

ufacturing (man), Construction (con) and Mining&Utilities (minuti).

The unit of measure of the labor productivity used in this thesis is then “Yearly Real

2017 PPP-adjusted Dollars per Employee”. The following figures and tables provide

a detailed description of the labor productivity data used in the analysis. To ensure

clarity in the presentation, only the statistics related to the Aggregate Sector at the

regional level are presented.

Table 1: Regional Average Sectoral Shares (%) of Value Added from 1991 to 2019

Region % AGR % minuti % man % con % SER

Africa 27.4 16.1 17.2 6.9 32.3
Americas 12.0 13.0 25.2 9.8 40.0
Arab States 7.8 39.9 15.0 8.0 29.3
Asia and the Pacific 16.3 8.5 27.8 8.9 38.4
Europe and Central Asia 6.7 8.9 28.2 11.2 45.0

2United Nations Statistics Division. “National Accounts Main Aggregates Database”. *UNSD*,
2024, https://unstats.un.org/unsd/snaama/. Accessed 15 Jul. 2024

3Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), "The Next Gen-
eration of the Penn World Table" American Economic Review, 105(10), 3150-3182, DOI:
10.1257/aer.20130954, available for download at www.ggdc.net/pwt

4International Labour Organization. (2020). ILO modelled estimates database, ILOSTAT
[database]. Available from https://ilostat.ilo.org/data/.

https://unstats.un.org/unsd/snaama/
www.ggdc.net/pwt
https://ilostat.ilo.org/data/.


46 Chapter 3. Methods

Figure 2: Yearly Average by Region of the Labor Productivity of the Aggregate
sector (TOT) expressed in Real 2017 PPP-adjusted Dollars. Notably, the peak in
labor productivity for the Americas in 1992 is attributable to the structure of the
unbalanced panel dataset. Starting that year, the inclusion of U.S. data significantly
increased the annual regional average.

Figure 3: WTI Crude Oil Prices expressed in Real 2017 PPP-adjusted Dollars.
Source: Federal Reserve Economic Data (FRED) database

As Figure 3 shows, the labor productivity of the Arab States in Figure 2 is highly cor-

related with fluctuations in oil prices, highlighting the region’s economic dependence

on this sector. This reliance makes using “Value Added per number of Employees”

as a proxy for labor productivity—understood as worker performance—somewhat

problematic for these countries. Table 1 further confirms this dependency, illus-

trating that a significant portion of the regional value added is concentrated in the

“Mining & Utilities” sector.



3.1. Data 47

Figure 4: Logarithm of the Yearly Average by Region of the Labor Productivity of
the Aggregate sector (TOT) expressed in Real 2017 PPP-adjusted Dollars

Table 2: Descriptive Statistics by Region of the Labor Productivity of the Aggregate
Sector (TOT) from 1991 to 2019 expressed in Thousands of Real 2017 PPP-adjusted
Dollars

Region Mean SD Min Max

Africa 14.90 14.95 1.28 71.44
Americas 32.55 26.02 5.25 125.99
Arab States 78.36 61.38 3.73 261.47
Asia and the Pacific 38.01 32.42 3.65 131.29
Europe and Central Asia 63.95 28.14 6.91 201.81

Table 3: Descriptive Statistics by Region of the Logarithm of the Average Labor
Productivity of the Aggregate Sector (TOT) from 1991 to 2019 expressed in Real
2017 PPP-adjusted Dollars

Region Mean SD Min Max

Africa 9.14 0.98 7.15 11.18
Americas 10.13 0.70 8.57 11.74
Arab States 10.85 1.05 8.22 12.47
Asia and the Pacific 10.13 0.96 8.20 11.79
Europe and Central Asia 10.96 0.50 8.84 12.22
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3.1.2 Cooling Degree Days (CDDs)

As reported in “The future of Cooling” by IEA5, there are several ways of measuring

the impact of the weather on the overall need for cooling. The traditional approach

is by calculating CDDs, which are widely used by electricity utilities to predict load

for cooling in the near future based on weather forecasts. Degree days are defined as

the monthly or annual sum of the difference between a base temperature (Tb) and

daily mean outdoor air temperature (Td). The base temperature is also referred to

as threshold temperature or set-point temperature, as it indicates the temperature

at which the indoor cooling or heating systems do not need to operate in order to

maintain human comfort levels.6 For the purposes of this thesis, CDDs are measured

in °C, with a threshold temperature of 24°C in all countries. The definition of the

variable CDD used in the analysis for a given year in a specific country is

CDD =
n∑

i=1

(Td − Tb)
+ (3.1)

where n represents the number of days in the given year and Tb is set to 24°C.

Normally, CDDs are calculated according to the dry bulb temperature (the temper-

ature of the air measured by a thermometer freely exposed to the air, but shielded

from radiation and moisture). Although the wet-bulb temperature provides a more

accurate measure of thermal discomfort, as it does not overestimate temperature

at low humidity levels (Pavanello et al. 2021), incorporating wet-bulb temperature

into CDDs calculations presents challenges. Specifically, the number of days exceed-

ing the threshold is significantly lower for wet-bulb temperature, which increases

year-to-year and cross-country variability. Furthermore, accounting for factors like

humidity in long-term climate predictions is highly complex, making the results less

directly applicable to Integrated Assessment Models (IAMs). Given these consider-

ations, this thesis employs CDDs based on dry bulb temperature. However, future

improvements to the analysis should incorporate robustness checks to account for

5IEA (2018)
6See https://www.energy-a.eu/historical-degree-days/?cn-reloaded=1

https://www.energy-a.eu/historical-degree-days/?cn-reloaded=1
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these additional climate dimensions.

Using the same data employed in the empirical analysis, Figure 5 reports a graphi-

cal representation of the yearly average of Cooling Degree Days (CDDs) across the

globe. The figure emphasizes that the demand for space cooling is predominantly

concentrated in regions located within a narrow band around the equator. This band

spans the tropics and subtropics, where the need for cooling is significantly higher

due to consistently warm temperatures throughout the year (IEA 2018). IEA (2018)

highlights also how global temperatures due to climate change will significantly in-

crease Cooling Degree Days (CDDs) worldwide, though the impact will vary across

regions. A 1°C rise in global average temperature by 2050 is projected to result in a

25% average increase in CDDs globally (using 18° base temperature). However, this

rise will be uneven, with regions such as Africa, Latin America, southern and east-

ern Asia, and the Middle East expected to experience the largest increases, ranging

from 15% to 40%. Even temperate regions like southern and northern Europe, as

well as the northeastern United States, will see notable growth in CDDs, likely driv-

ing higher demand for air conditioning and increased energy consumption. For an

application of climate projections to the empirical results of this thesis, see Section

4.2.

Figure 5: CDDs across the world by Country, Mean Annual Average 1991-2019 using
a 24°C threshold and dry-bulb temperature.

IEA (2018) emphasizes that the primary climatic factor determining demand for

space cooling is air temperature, although, as noted earlier, humidity also plays a
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significant role. These two factors are often correlated, as higher temperatures in-

crease the air’s capacity to hold water, though certain desert regions may experience

elevated temperatures with relatively low humidity. Increased humidity levels tend

to heighten the necessity for cooling to achieve a specific level of thermal comfort,

and air conditioning units automatically reduce both the humidity and temperature

of the air. To account for humidity’s influence, a heat index, which adjusts Cooling

Degree Days (CDDs) by combining air temperature and relative humidity to deter-

mine the temperature as perceived by humans, can be utilized. Relative humidity

– the degree of air saturation with moisture – can impede the body’s ability to

perspire, thus creating a sensation of heat even when dry temperatures are not par-

ticularly high. For instance, if the dry temperature is 30°C and the relative humidity

is 50%, it will feel like 31°C; however, if the relative humidity reaches 100%, it would

feel like 44°C. In other words, the humidity creates a sweltering effect. Higher rel-

ative humidity results in a higher perceived temperature and, consequently, higher

corrected CDDs. Since this thesis only considered the influence of Cooling Degree

Days (CDDs) without accounting for the impact of humidity, the results may be

subject to a certain degree of bias.

The following Figures and Tables provide a detailed description of the Cooling De-

gree Days (CDD) dataset utilized in this thesis. Population-weighted annual Cooling

Degree Days (CDDs) are derived from gridded daily mean temperature data from

the Global Monitoring for Environment and Security ERA5 reanalysis data (Hers-

bach et al. 2020) and gridded population data from SEDAC (Pages, Gallery, and

Viewer 2018).

region Mean SD Min Max Median

Africa 538.49 483.75 0.00 2033.21 358.82
Americas 309.42 266.28 0.00 1074.92 225.14
Arab States 1191.26 811.35 14.19 2310.40 1612.76
Asia and the Pacific 662.30 446.54 0.00 1765.21 679.26
Europe and Central Asia 57.14 93.49 0.00 484.62 12.30

Table 4: Descriptive Statistics of CDD24 by Region
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3.1.3 Stock of Air Conditioning Machines per Capita

Building on the empirical evidence presented in Section 1.5 regarding the impact of

high temperatures on labor productivity, the primary objective of this thesis is to

evaluate the effectiveness of adaptation strategies in mitigating the adverse effects of

temperature shocks at the macro level. Specifically, a proxy for the effort employed

in these adaptation strategies has been constructed using the value of thermoregu-

latory capital per capita owned by each country.

Data on per capita air conditioning machine penetration is limited to a few aggre-

gate regions and limited years. To address this gap, a proxy has been developed

following the method employed by (Heal and J. Park 2013). Specifically, we con-

structed a proxy for air conditioning machine penetration per capita by calculating a

discounted, moving sum of air conditioning machine imports over the past 15 years,

applying a discount rate of 5%. The idea is that the volume of the imports of air

conditioning equipment can be an estimate of the dimension of the internal demand

for cooling.

Figure 6: Value of the Stock of Air Conditioning Machines per capita in the Year
2019 by Country, expressed in Real 2017 PPP-adjusted Dollars
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The trade data used in this thesis, following the approach of (Heal and J. Park 2013),

is sourced from the United Nations COMTRADE database, which is a subset of

the World Integrated Trade Solution dataset. Specifically, the analysis considers the

value of imports classified under SITC code 7415, which in Revision 4 of the Standard

International Trade Classification (SITC) refers to “Air-conditioning machines com-

prising a motor-driven fan and elements for changing the temperature and humidity,

including those machines where the humidity cannot be separately regulated; parts

thereof”. These import values have been converted to real 2017 PPP-adjusted dol-

lars using the same index applied to labor productivity—the "Price level of CGDPo

(PPP/XR), price level of USA GDPo in 2017=1" from the Penn World Table (ver-

sion 10.01). This conversion ensures consistency in the measurement units across

all variables.

The following Figures and Tables provide a detailed description of the data utilized

in this thesis. For additional country-level data, please refer to the Appendix.
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Table 5: Regional Mean of : the Imports Flow of AC machines in US$ per Capita
from 1990 to 2019 (M); the Stock of Air Conditioning Machines in US$ per Capita
from 1990 to 2019 (S); the Stock of Air Conditioning Machines in US$ per Capita
in 2019 (S19). The columns (lS) and (lS19) represent the logarithm of S and the
logarithm of S19

1990-2019 2019

Region M S lS S19 lS19

Africa 2.94 23.19 3.14 32.99 3.50
Americas 11.83 79.83 4.38 134.66 4.90
Arab States 79.18 555.79 6.32 933.64 6.84
Asia and the Pacific 28.27 234.41 5.46 244.94 5.50
Europe and Central Asia 26.46 193.17 5.26 283.22 5.65

Table 6: Regional Median of : the Imports Flow of AC machines in US$ per
Capita from 1990 to 2019 (M); the Stock of Air Conditioning Machines in US$ per
Capita from 1990 to 2019 (S); the Stock of Air Conditioning Machines in US$ per
Capita in 2019 (S19). The columns (lS) and (lS19) represent the logarithm of S and
the logarithm of S19

1990-2019 2019

Region M S lS S19 lS19

Africa 1.18 8.71 2.16 10.13 2.32
Americas 5.99 39.92 3.69 90.08 4.50
Arab States 37.37 360.84 5.89 987.73 6.90
Asia and the Pacific 5.07 29.21 3.37 70.31 4.25
Europe and Central Asia 21.18 142.42 4.96 256.92 5.55
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(a) Yearly Average by Region of the Flow of Imports of Air Conditioning Machines in
US$ per Capita. Similar to labor productivity, the peak observed in 1992 for Asia and
the Pacific is due to the unbalanced panel and the inclusion of data from Hong Kong and
Malaysia.

(b) Yearly Average by Region of the Value of the Stock of Air Conditioning Machines in
US$ per Capita. This variable can be considered a proxy for Air Conditioning Penetration.

(c) Logarithm of the Yearly Average by Region of the Value of the Stock of Air Condi-
tioning Machines in US$ per Capita.

Figure 7: Yearly Averages of Air Conditioning Variables.
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3.2 The Empirical Model

This section presents the preferred empirical model used in the analysis. In par-

ticular, following the strategy proposed in Chapter 1, the regression equation to

estimate the impact of high temperature on the labor productivity of a country i in

a region r for the sector s at time t is given by the high-dimensional fixed effects

(HDFE) specification as follows:

log(LPist) = β · CDDit + γ · CDDit · log(ACSTOCKit)

+Xitθ + µi + δt + ϕ(r, t) + ϵist

(3.2)

where CDDit represents the number of Cooling Degree Days for the country i at

time t. log(LPist) is a proxy for the labor productivity of the sector s for the country

i at time t. β measures the direct response of labor productivity to temperature

exposure. The logarithm of ACSTOCKit serves as a general indicator of the level

of effort a country invests in its adaptation strategies. While this proxy is based on

an external adaptation measure—the penetration of air conditioners—it can also be

interpreted more broadly to include all adaptive behaviors positively correlated with

external adaptation efforts. Again, the key coefficient is γ, the one that measures

the moderating effect of the adaptation strategies. Xict is a vector of country-level

time-varying variables. Following Heal and J. Park (2013), the vector includes a

Human Capital Index (HC_INDEX) and the logarithm of the Value of Capital

Stock per capita (log_KSpc) in real 2017 PPP- adjusted dollars of the country i

at time t. The source is the Penn World Table (version 10.01).7 These variables

are recognized in the literature as the primary time-varying drivers of labor produc-

tivity (Dieppe 2021)8. Therefore, their inclusion aims to enhance the estimates of

the other coefficients of interest. In particular, because temperature and the proxy

7Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), "The Next Gen-
eration of the Penn World Table" American Economic Review, 105(10), 3150-3182, DOI:
10.1257/aer.20130954, available for download at www.ggdc.net/pwt

8As Dieppe (2021) notes, there are numerous other drivers of labor productivity. Given that
unit fixed effects capture all relevant time-constant factors, the inclusion of these two variables
serves as a reasonable approximation of the most significant time-varying drivers. Notably, due to
data limitations, the proximity driver "Innovation" has been excluded from the analysis.

www.ggdc.net/pwt
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for the adaptation strategies can be contemporaneously correlated with Xict, these

control variables should be included in Equation 3.2 to avoid omitted variable bias.

Considering the debate over whether this set of variables constitutes a bad control,

Chapter 4 presents robustness analyses by also estimating the sector-level models

without this vector (Dell, Jones, and Olken 2014; S. Hsiang 2016). µi represents

country-fixed effects, which aim to include all the country-specific unobservable con-

founders that remain constant over time (such as institutions or geographic charac-

teristics). δt represents time-fixed effects, a set of dummy variables that capture the

variability of global shocks, such as the COVID-19 pandemic. ϕ(r, t) represents a

flexible time trends. In our preferred specification, it is constructed as a quadratic,

region-specific time trend. After controlling for these fixed effects, residual shocks in

temperature are plausibly random (Lai et al. 2023). The selection of the right func-

tional form of the time trend involved balancing the trade-off between incorporating

a non-parametric trend—which requires numerous year-region dummy variables and

increases standard errors—and employing a region-specific parametric trend, which

may compromise the model’s fit but enhance the precision of the standard errors.

Observing the increasing trend in the coefficients of the year-region dummies esti-

mated by the model, the inclusion of a quadratic time trend was deemed an effective

compromise. ϵict is the error term, clustered at the country level to allow for serial

correlation (Lai et al. 2023).

Interpretation of the Marginal Effects

From an econometric point of view, fixed effects (FE) models are a very useful in-

strument to eliminate “unwanted variation” from the data, which Breuer and Dehaan

(2024) defines as the one that is not part of the theory underlying the cause-and-

effect relation of interest. One of the main characteristics of these models is that

the coefficient of interest focuses on within-group variations. This means that the

model’s variability depends on deviations from each group’s mean for both the in-

dependent and dependent variables. For example, in a one-way fixed effects model

where each country represents a single group, and a dummy variable for each coun-

try is included in the regression equation, the estimation of the coefficient of interest
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relies on within-country variation in time in X (i.e., xi,t − x̄i) and Y (i.e., yi,t − ȳi).

Specifically, the coefficient estimates produced by this model are a linear combina-

tion (or weighted average) of the within-group estimates (Breuer and Dehaan 2024).

Importantly, this means that the coefficient of interest can be obtained either by

including a specific dummy for each country-thereby creating a unique intercept for

each-or by regressing the group-demeaned Y on the group-demeaned X.

In a two-way fixed effects (FE) model, which incorporates both country and time

dummy variables, the analysis becomes more intricate. Specifically, country-fixed

effects remove the country-specific means from each variable, while time-fixed effects

simultaneously eliminate the year-specific means. This means that in a two-way FE

model, the double-de-meaned X only varies if a given country experiences a devia-

tion from its mean level that is different from the average deviation of all countries

in the same year.9 As Breuer and Dehaan (2024) highlights, the process of double

de-meaning is particularly complex in unbalanced panels and generally does not al-

low for simple closed-form solutions. Considering that our preferred empirical model

includes country dummies, time dummies, and a quadratic region-specific trend, it

is evident that analytically describing the mechanics of the model is a complex task.

The reliance on fixed effects (FE) models on within-country variation has significant

implications for the interpretation of the estimated coefficients. Specifically, the co-

efficients represent the marginal effect on the dependent variable resulting from a

marginal deviation of the independent variable from its group means, accounting for

the influence of both time dummies and the quadratic region-specific trend included

in the model. For example, considering the preferred model specification without

the interaction term between CDD and log(ACSTOCK), the coefficient for CDD

would describe the marginal effect of an additional CDD above the country mean

on the logarithm of labor productivity, accounting for the role of time fixed effects

in capturing common shocks across countries and the impact of regional quadratic

trends.

9For a detailed explanation of the functioning of fixed effects models and related econometric
issues, refer to “Using and Interpreting Fixed Effects Models” (Breuer and Dehaan 2024).
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Considering the preferred model specification implemented in the empirical part of

this thesis, the conditional marginal effect of an additional CDD on the logarithm

of the sector-level labor productivity is then expressed as

∂ log(LPist)

∂CDDit

= β + γ · log(ACSTOCKit) (3.3)

Notably, the marginal effect of an additional CDD depends on the level of air con-

ditioning stock per capita owned by a country.10 Referring to Equation 2.4, this

result represents the decomposition of the total derivative of the labor productivity

with respect to temperature. The first term captures the direct effect of tempera-

ture on labor productivity, while the second term describes the mitigating effect of

adaptation efforts (Lai et al. 2023). Since the dependent variable is expressed on

a logarithmic scale, the total derivative represents a semi-elasticity. This indicates

the percentage change in the dependent variable in response to a one-unit change

in the independent variable.11

The conditional effect of a marginal increase in the logarithm of ACSTOCK is then

expressed as

∂ log(LPist)

∂ log(ACSTOCKit)
= γ · CDDit (3.4)

Interestingly, the elasticity of per capita air conditioning stock with respect to tem-

perature depends on the level of CDD experienced by the country i.

10Or more generally, on the efforts invested in external adaptation strategies.
11For example, if the estimated overall conditional marginal effect of CDD is equal to −0.01,

this implies that each CDD above the yearly country average is associated with a 1% decrease in
labor productivity, considering the role of time FE and regional trends.
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Results

This chapter is divided into two sections. The first section presents the relevant ta-

bles and figures from the analysis, taking into account the heterogeneity of the mod-

els and sectors. In particular, beyond regression results, the conditional marginal

effect of CDD, log(ACSTOCK) and ACSTOCK are reported for all the sectors,

with tables and graphical representations.

The second section extends the empirical estimates to a possible future scenario, in-

corporating predictions on future levels of CDD from climate models. Specifically, it

aims to estimate the potential damages to yearly sector-level labor productivity re-

sulting from a hypothetical shift in weather patterns projected for 2050 evaluated at

present-day conditions, assuming no significant improvements in current adaptation

strategies.

59
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4.1 Tables and graphics

4.1.1 Aggregate Sector (TOT)

Table 7: Results for the Aggregate sector (TOT) based on the preferred specification.

Dependent Variable: log_LAB_PROD_TOT
Model: (1) (2) (3)

Variables
HC_INDEX 0.468251∗∗∗ 0.063611 0.008013

(0.110175) (0.099489) (0.101920)
log_KSpc 0.590154∗∗∗ 0.479329∗∗∗ 0.450516∗∗∗

(0.077322) (0.072216) (0.071710)
CDD −7.09× 10−5 -0.000442∗∗

(0.000131) (0.000203)
CDD × log_ACSTOCK 8.74× 10−5∗∗∗

(2.78× 10−5)

Fixed-effects
iso3 Yes Yes Yes
time No Yes Yes

Quadratic Regional Trend No Yes Yes

Fit statistics
Observations 2,469 2,469 2,469
R2 0.97749 0.98312 0.98351
Within R2 0.58442 0.31254 0.32817

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 8: Conditional Marginal Effect of log_ACSTOCK calculated at Mean
and Median Regional Values of CDD

Region ME at the Mean ME at the Median

Africa 0.0468 0.0312
Americas 0.0269 0.0196
Arab States 0.1037 0.1401
Asia and the Pacific 0.0575 0.0590
Europe and Central Asia 0.0050 0.0011
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Table 9: Logarithm of the Regional Mean and Median of ACSTOCK in
US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa 3.14 3.50 2.16 2.32
Americas 4.38 4.90 3.69 4.50
Arab States 6.32 6.84 5.89 6.90
Asia and the Pacific 5.46 5.50 3.37 4.25
Europe and Central Asia 5.26 5.65 4.96 5.55

Table 10: Conditional Marginal Effect of CDD calculated at the Logarithm
of the Mean and the Median of ACSTOCK, considering the period 1991-2019 (lS)
and 2019 only (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.000169 -0.000137 -0.000254 -0.000240
Americas -0.000062 -0.000016 -0.000121 -0.000050
Arab States +0.000108 +0.000153 +0.000070 +0.000158
Asia and the Pacific +0.000033 +0.000036 -0.000149 -0.000073
Europe and Central Asia +0.000015 +0.000049 -0.000011 +0.000040

Figure 8: Marginal Effect of CDD Conditional on the Level of log_ACSTOCK
for the Aggregate Sector (TOT). The Vertical Bars Indicate the Logarithm of the
Regional Medians for 2019
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Figure 9: Marginal Effect of CDD Conditional on the Level of ACSTOCK for the
Aggregate Sector (TOT). The Vertical Bars Indicate the Regional Medians for the
period 1991-2019

Figure 10: Marginal Effect of CDD Conditional on the Level of ACSTOCK for the
Aggregate Sector (TOT). The Vertical Bars Indicate the Regional Medians for 2019
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4.1.2 Non-Agricultural Sector (NOAGR)

Table 11: Results for the Non-Agricultural Sector (NOAGR) based on the preferred
specification.

Dependent Variable: log_LAB_PROD_NOAGR
Model: (1) (2) (3)

Variables
HC_INDEX 0.392785∗∗∗ 0.112570 0.058460

(0.099643) (0.112164) (0.114128)
log_KSpc 0.507435∗∗∗ 0.428362∗∗∗ 0.400320∗∗∗

(0.073141) (0.087247) (0.086833)
CDD -0.000120 -0.000481∗∗

(0.000132) (0.000217)
CDD × log_ACSTOCK 8.5× 10−5∗∗

(3.32× 10−5)

Fixed-effects
iso3 Yes Yes Yes
time No Yes Yes

Quadratic Regional Trend Yes Yes Yes

Fit statistics
Observations 2,469 2,469 2,469
R2 0.96125 0.96984 0.97040
Within R2 0.47784 0.27573 0.28919

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 12: Conditional Marginal Effect of log_ACSTOCK calculated at Mean
and Median Regional Values of CDD

Region ME at the Mean ME at the Median

Africa 0.0458 0.0305
Americas 0.0263 0.0191
Arab States 0.1012 0.1372
Asia and the Pacific 0.0563 0.0577
Europe and Central Asia 0.0049 0.0010
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Table 13: Logarithm of the Regional Mean and Median of ACSTOCK in
US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa 3.14 3.50 2.16 2.32
Americas 4.38 4.90 3.69 4.50
Arab States 6.32 6.84 5.89 6.90
Asia and the Pacific 5.46 5.50 3.37 4.25
Europe and Central Asia 5.26 5.65 4.96 5.55

Table 14: Conditional Marginal Effect of CDD calculated at the Logarithm
of the Mean and the Median of ACSTOCK, considering the period 1991-2019 (lS)
and 2019 only (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.000214 -0.000184 -0.000297 -0.000284
Americas -0.000109 -0.000065 -0.000167 -0.000099
Arab States +0.000056 +0.000100 +0.000020 +0.000106
Asia and the Pacific -0.000017 -0.000014 -0.000195 -0.000120
Europe and Central Asia -0.000035 -0.000001 -0.000059 -0.000009

Figure 11: Marginal Effect of CDD Conditional on the Level of log_ACSTOCK
for the Non-Agricultural Sector. The Vertical Bars Indicate the Logarithm of the
Regional Medians in 2019
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Figure 12: Marginal Effect of CDD Conditional on the Level of ACSTOCK for
the Non-Agricultural Sector (NOAGR). The Vertical Bars Indicate the Regional
Medians for the period 1991-2019

Figure 13: Marginal Effect of CDD Conditional on the Level of ACSTOCK for
the Non-Agricultural Sector (NOAGR). The Vertical Bars Indicate the Regional
Medians for 2019
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4.1.3 Agricultural Sector (AGR)

Table 15: Results for the Agricultural Sector (AGR) based on the preferred specifi-
cation.

Dependent Variable: log_LAB_PROD_AGR
Model: (1) (2) (3)

Variables
HC_INDEX 0.676995∗∗∗ 0.160361 0.093062

(0.132153) (0.187179) (0.203175)
log_KSpc 0.473177∗∗∗ 0.216623∗∗ 0.181746∗

(0.097055) (0.105627) (0.106701)
CDD −8.6× 10−5 -0.000535∗∗

(0.000153) (0.000249)
CDD × log_ACSTOCK 0.000106∗∗

(4.55× 10−5)

Fixed-effects
iso3 Yes Yes Yes
time No Yes Yes

Quadratic Regional Trend No Yes Yes

Fit statistics
Observations 2,469 2,469 2,469
R2 0.96389 0.96884 0.96928
Within R2 0.42652 0.07257 0.08568

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 16: Conditional Marginal Effect of log_ACSTOCK calculated at Mean
and Median Regional Values of CDD

Region ME at the Mean ME at the Median

Africa 0.0571 0.0380
Americas 0.0328 0.0238
Arab States 0.1262 0.1708
Asia and the Pacific 0.0702 0.0720
Europe and Central Asia 0.0061 0.0013
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Table 17: Logarithm of the Regional Mean and Median of ACSTOCK in
US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa 3.14 3.50 2.16 2.32
Americas 4.38 4.90 3.69 4.50
Arab States 6.32 6.84 5.89 6.90
Asia and the Pacific 5.46 5.50 3.37 4.25
Europe and Central Asia 5.26 5.65 4.96 5.55

Table 18: Conditional Marginal Effect of CDD calculated at the Logarithm
of the Mean and the Median of ACSTOCK, considering the period 1991-2019 (lS)
and 2019 only (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.000201 -0.000164 -0.000306 -0.000289
Americas -0.000071 -0.000016 -0.000144 -0.000058
Arab States 0.000135 0.000190 0.000089 0.000196
Asia and the Pacific 0.000044 0.000048 -0.000178 -0.000084
Europe and Central Asia 0.000023 0.000064 -0.000010 0.000053

Figure 14: Marginal Effect of CDD Conditional on the Level of log_ACSTOCK for
the Agricultural Sector. The Vertical Bars Indicate the Logarithm of the Regional
Medians in 2019
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Figure 15: Marginal Effect of CDD Conditional on the Level of ACSTOCK for
the Agricultural Sector (AGR). The Vertical Bars Indicate the Regional Medians
for the period 1991-2019

Figure 16: Marginal Effect of CDD Conditional on the Level of ACSTOCK for
the Agricultural Sector (AGR). The Vertical Bars Indicate the Regional Medians
for 2019
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4.1.4 Services Sector (SER)

Table 19: Results for the Services Sector (SER) based on the preferred specification.

Dependent Variable: log_LAB_PROD_SER
Model: (1) (2) (3)

Variables
HC_INDEX 0.327119∗∗∗ 0.142210 0.035715

(0.115121) (0.127363) (0.132101)
log_KSpc 0.464228∗∗∗ 0.426237∗∗∗ 0.371047∗∗∗

(0.089897) (0.103411) (0.098463)
CDD −1.12× 10−5 -0.000721∗∗∗

(0.000141) (0.000251)
CDD × log_ACSTOCK 0.000167∗∗∗

(4.18× 10−5)

Fixed-effects
iso3 Yes Yes Yes
time No Yes Yes

Quadratic Regional Trend No Yes Yes

Fit statistics
Observations 2,469 2,469 2,469
R2 0.93422 0.94337 0.94622
Within R2 0.35744 0.21236 0.25208

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 20: Conditional Marginal Effect of log_ACSTOCK calculated at Mean
and Median Regional Values of CDD

Region ME at the Mean ME at the Median

Africa 0.0899 0.0598
Americas 0.0516 0.0376
Arab States 0.1990 0.2690
Asia and the Pacific 0.1106 0.1134
Europe and Central Asia 0.0095 0.0020
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Table 21: Logarithm of the Regional Mean and Median of ACSTOCK in
US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa 3.14 3.50 2.16 2.32
Americas 4.38 4.90 3.69 4.50
Arab States 6.32 6.84 5.89 6.90
Asia and the Pacific 5.46 5.50 3.37 4.25
Europe and Central Asia 5.26 5.65 4.96 5.55

Table 22: Conditional Marginal Effect of CDD calculated at the Logarithm
of the Mean and the Median of ACSTOCK, considering the period 1991-2019 (lS)
and 2019 only (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.000197 -0.000137 -0.000360 -0.000334
Americas 0.000010 0.000097 -0.000105 0.000031
Arab States 0.000334 0.000420 0.000263 0.000431
Asia and the Pacific 0.000191 0.000198 -0.000158 -0.000011
Europe and Central Asia 0.000157 0.000223 0.000107 0.000206

Figure 17: Marginal Effect of CDD Conditional on the Level of log_ACSTOCK
for the Services Sector. The Vertical Bars Indicate the Logarithm of the Regional
Medians in 2019
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Figure 18: Marginal Effect of CDD Conditional on the Level of ACSTOCK for
the Services Sector (SER). The Vertical Bars Indicate the Regional Medians for the
period 1991-2019

Figure 19: Marginal Effect of CDD Conditional on the Level of ACSTOCK for the
Services Sector (SER). The Vertical Bars Indicate the Regional Medians for 2019
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4.1.5 Industrial Sector (IND)

Table 23: Results for the Aggregate Industrial Sector (IND) and the disaggregated
industrial sectors based on the preferred specification. These sub-sectors include
Manufacturing (man), Construction (con), and Mining & Utilities (minuti). To-
gether, these three sub-sectors form the Aggregate Industrial Sector (IND).

Dependent Variables: log_LP_IND log_LP_man log_LP_con log_LP_minuti
Model: (1) (2) (3) (4)

Variables
HC_INDEX 0.151705 0.217505 -0.254875 0.376156

(0.171087) (0.191640) (0.282254) (0.284839)
log_KSpc 0.497733∗∗∗ 0.430085∗∗∗ 0.469801∗∗ 0.355039

(0.144702) (0.146791) (0.196571) (0.271954)
CDD -0.000309 -0.000369 -0.000386 -0.001074∗∗

(0.000303) (0.000338) (0.000312) (0.000475)
CDD × log_ACSTOCK 2.06× 10−5 4.44× 10−5 3.3× 10−5 0.000241∗∗∗

(4.76× 10−5) (5.89× 10−5) (5.7× 10−5) (7.8× 10−5)

Fixed-effects
iso3 Yes Yes Yes Yes
time Yes Yes Yes Yes

Quadratic Regional Trend Yes Yes Yes Yes

Fit statistics
Observations 2,469 2,466 2,469 2,466
R2 0.96035 0.95287 0.91194 0.92084
Within R2 0.25645 0.21459 0.09629 0.17354

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notably, the preferred specification incorporating the adaptation mediator yields

statistically significant coefficients exclusively for the industrial sub-sector Mining

& Utilities (minuti). Consequently, the following tables and graphs focus solely on

this statistical relationship involving this sub-sector. Results for “IND”, “man”, and

“con” are omitted.



4.1. Tables and graphics 73

Mining & Utilities (minuti) Sub-Sector

Table 24: Results for the Mining & Utilities (minuti) Sub-Sector based on the
preferred specification.

Dependent Variable: log_LAB_PROD_min_uti
Model: (1) (2) (3)

Variables
HC_INDEX 0.590805∗∗ 0.527551 0.376156

(0.268260) (0.325161) (0.284839)
log_KSpc 0.280481 0.441789 0.355039

(0.211512) (0.277246) (0.271954)
CDD −5.45× 10−5 -0.001074∗∗

(0.000283) (0.000475)
CDD × log_ACSTOCK 0.000241∗∗∗

(7.8× 10−5)

Fixed-effects
iso3 Yes Yes Yes
time No Yes Yes

Quadratic Regional Trend No Yes Yes

Fit statistics
Observations 2,466 2,466 2,466
R2 0.90077 0.91839 0.92084
Within R2 0.13912 0.14790 0.17354

Clustered (iso3) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 25: Conditional Marginal Effect of log_ACSTOCK calculated at Mean
and Median Regional Values of CDD

Region ME at the Mean ME at the Median

Africa 0.1296 0.0863
Americas 0.0745 0.0542
Arab States 0.2870 0.3880
Asia and the Pacific 0.1596 0.1636
Europe and Central Asia 0.0138 0.00296
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Table 26: Logarithm of the Regional Mean and Median of ACSTOCK in
US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa 3.14 3.50 2.16 2.32
Americas 4.38 4.90 3.69 4.50
Arab States 6.32 6.84 5.89 6.90
Asia and the Pacific 5.46 5.50 3.37 4.25
Europe and Central Asia 5.26 5.65 4.96 5.55

Table 27: Conditional Marginal Effect of CDD calculated at the Logarithm
of the Mean and the Median of ACSTOCK, considering the period 1991-2019 (lS)
and 2019 only (lS19)

Region Mean lS Mean lS19 Median lS Median lS19

Africa −0.000317 −0.000231 −0.000554 −0.000515
Americas −0.000018 0.000107 −0.000185 0.000011
Arab States 0.000448 0.000571 0.000346 0.000585
Asia and the Pacific 0.000240 0.000251 −0.000262 0.000169
Europe and Central Asia 0.000193 0.000287 0.000121 0.000264

Figure 20: Marginal Effect of CDD Conditional on the Level of log_ACSTOCK
for the Mining & Utilities (minute) Sub-Sector. The Vertical Bars Indicate the
Logarithm of the Regional Medians in 2019
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Figure 21: Marginal Effect of CDD Conditional on the Level of ACSTOCK for the
Mining & Utilities (minute) Sub-Sector. The Vertical Bars Indicate the Regional
Medians for the period 1991-2019

Figure 22: Marginal Effect of CDD Conditional on the Level of ACSTOCK for the
Mining & Utilities (minute) Sub-Sector. The Vertical Bars Indicate the Regional
Medians for 2019



76 Chapter 4. Results

4.1.6 Comparison Between Different Sectors

Table 28: Comparison of the preferred model’s results across various sectors

Dependent Variables: log_LP_TOT log_LP_NOAGR log_LP_AGR log_LP_SER log_LP_minuti

Model: (1) (2) (3) (4) (5)

Variables

HC_INDEX 0.008013 0.058460 0.093062 0.035715 0.376156

(0.102345) (0.114605) (0.203412) (0.132234) (0.285188)

log_KSpc 0.450516∗∗∗ 0.400320∗∗∗ 0.181746∗ 0.371047∗∗∗ 0.355039

(0.071538) (0.086564) (0.106657) (0.098400) (0.271674)

CDD -0.000442∗∗ -0.000481∗∗ -0.000535∗∗ -0.000721∗∗∗ -0.001074∗∗

(0.000203) (0.000217) (0.000248) (0.000251) (0.000474)

CDD × log_ACSTOCK 8.74× 10−5∗∗∗ 8.5× 10−5∗∗ 0.000106∗∗ 0.000167∗∗∗ 0.000241∗∗∗

(2.79× 10−5) (3.32× 10−5) (4.54× 10−5) (4.18× 10−5) (7.77× 10−5)

Fixed-effects

iso3 Yes Yes Yes Yes Yes

time Yes Yes Yes Yes Yes

Quadratic Regional Trend Yes Yes Yes Yes Yes

Fit statistics

Observations 2,469 2,469 2,469 2,469 2,466

R2 0.98351 0.97040 0.96928 0.94622 0.92085

Within R2 0.32818 0.28920 0.08567 0.25208 0.17358

Clustered (iso3) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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4.1.7 Without the “Bad Controls”

Table 29: Comparison of the preferred model results excluding the Human Capital
Index and the logarithm of the capital stock per capita as controls

Dependent Variables: log_LP_TOT log_LP_NOAGR log_LP_AGR log_LP_SER log_LP_minuti

Model: (1) (2) (3) (4) (5)

Variables

CDD -0.000590∗∗∗ -0.000616∗∗∗ -0.000593∗∗∗ -0.000869∗∗∗ -0.001190∗∗

(0.000203) (0.000225) (0.000226) (0.000246) (0.000542)

CDD × log_ACSTOCK 0.000112∗∗∗ 0.000109∗∗∗ 0.000100∗∗ 0.000185∗∗∗ 0.000306∗∗∗

(3.55× 10−5) (3.95× 10−5) (4.51× 10−5) (4.62× 10−5) (9.29× 10−5)

Fixed-effects

iso3 Yes Yes Yes Yes Yes

time Yes Yes Yes Yes Yes

Quadratic Regional Trend Yes Yes Yes Yes Yes

Fit statistics

Observations 2,554 2,554 2,554 2,554 2,551

R2 0.97948 0.96528 0.96767 0.93979 0.91769

Within R2 0.23316 0.22858 0.09497 0.25409 0.12035

Clustered (iso3) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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4.2 Predictions

This section seeks to apply future climate projections to the results discussed above.

Specifically, it aims to estimate the potential damages resulting from a hypothetical

shift in weather patterns projected for 2050 to present-day conditions, assuming no

significant improvement in current adaptation strategies. It is important to note

that this is purely a theoretical exercise, as even regions with the lowest adaptive

capacities are expected to enhance their efforts in response to increasing GDP per

capita and overall development (IEA 2018; Colelli, Wing, and Cian 2023).

Data referring to the future global climate sourced from the CMIP6 climate projec-

tions1 refers to the intermediate scenario RCP 4.5.2 To estimate the hypothetical

climate shock described above, the method involves comparing the 30-year average

of Cooling Degree Days (CDDs) centered around 2050 with the historical average

of annual CDDs centered around 2000. This difference represents the projected

shift in climate conditions. The final simulated climate shock was constructed by

averaging the projected shocks from seven different climate models. This approach

provides a more robust estimate by incorporating a range of potential climate out-

comes. Henceforth, this hypothetical shock will be referred to as Delta CDDs. For

additional country-level projections, please refer to the Appendix.

Region Projected Delta CDDs

Africa 265
Americas 218
Arab States 313
Asia and the Pacific 232
Europe and Central Asia 66

Table 30: Average Delta CDDs Projected for 2050 by Region

1Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections.
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c
(Accessed on 21-09-2024)

2Different scenarios project varying trajectories for future greenhouse gas concentrations. Ac-
cording to Copernicus documentation, Scenario RCP 4.5 describes a possible future where emissions
begin to decline after 2050. This scenario assumes a reduction in meat consumption, stabilization
of methane emissions, large-scale reforestation efforts, and the implementation of new, stringent
climate policies.
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Figure 23: Average Delta CDDs Projected for 2050 by Country

4.2.1 Predictions: Aggregate Sector (TOT)

Table 31: Total Effect by Region of the Projected Delta CDDs on the
Labor Productivity of the Aggregate Sector (TOT). The values have been
calculated by multiplying the projected Delta CDDs by the conditional marginal
effect of a CDD, calculated at the logarithm of different regional descriptive statistics
of ACSTOCK.

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.045 -0.036 -0.067 -0.064
Americas -0.014 -0.003 -0.026 -0.011
Arab States 0.034 0.048 0.022 0.050
Asia and the Pacific 0.008 0.008 -0.035 -0.017
Europe and Central Asia 0.001 0.003 -0.001 0.003

An interpretative example is proposed.3 Examining the last column, the estimate

suggests that for Africa, considering a level of external adaptation equal to the re-

gional median in 2019, Delta CDDs would reduce aggregate labor productivity by

6.4% compared to the current climate. A general discussion of the results is pre-

sented in Chapter 4.

3The notation for the logarithm of the descriptive statistics is consistent with the format previ-
ously outlined in the thesis. In particular: Mean lS refers to the logarithm of the regional mean
of ACSTOCK for the period 1991-2019 and Mean lS19 refers to the logarithm of the regional
mean of ACSTOCK for the year 2019. The same reasoning also applies to Median values.
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Figure 24: Projected Impact of Delta CDDs for the Aggregate Sector (TOT) in 2050
by Country. The values have been calculated by multiplying the projected Delta
CDDs by the Conditional Marginal Effect of a CDD, calculated at the logarithm
of the Country Average of ACSTOCK

Figure 25: Projected Impact of Delta CDDs for the Aggregate Sector (TOT) in 2050
by Country. The values have been calculated by multiplying the projected Delta
CDDs by the Conditional Marginal Effect of a CDD, calculated at the logarithm
of the Country Value of ACSTOCK for 2019
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4.2.2 Predictions: Non-Agricultural Sector (NOAGR)

Table 32: Projected Effect of Delta CDDs on the Labor Productivity of
the Non-Agricultural Sector (NOAGR). The values have been calculated by
multiplying the projected Delta CDDs by the conditional marginal effect of a CDD,
calculated at the logarithm of different regional descriptive statistics of ACSTOCK.

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.032 -0.027 -0.067 -0.060
Americas -0.008 -0.002 -0.028 -0.011
Arab States 0.035 0.048 0.022 0.052
Asia and the Pacific 0.007 0.008 -0.033 -0.015
Europe and Central Asia 0.001 0.003 -0.001 0.003

4.2.3 Predictions: Agricultural Sector (AGR)

Table 33: Projected Effect of Delta CDDs on the Labor Productivity of
the Agricultural (AGR). The values have been calculated by multiplying the
projected Delta CDDs by the conditional marginal effect of a CDD, calculated at
the logarithm of different regional descriptive statistics of ACSTOCK.

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.053 -0.043 -0.081 -0.077
Americas -0.015 -0.003 -0.031 -0.013
Arab States 0.042 0.059 0.028 0.061
Asia and the Pacific 0.010 0.011 -0.041 -0.019
Europe and Central Asia 0.002 0.004 -0.001 0.003
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4.2.4 Predictions: Services Sector (SER)

Table 34: Projected Effect of Delta CDDs on the Labor Productivity of
the Services Sector (SER). The values have been calculated by multiplying the
projected Delta CDDs by the conditional marginal effect of a CDD, calculated at
the logarithm of different regional descriptive statistics of ACSTOCK.

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.052 -0.036 -0.095 -0.089
Americas 0.002 0.021 -0.023 0.007
Arab States 0.105 0.131 0.082 0.135
Asia and the Pacific 0.044 0.046 -0.037 -0.003
Europe and Central Asia 0.010 0.015 0.007 0.014

4.2.5 Predictions: Mining & Utilities Sub-Sector (minuti)

Table 35: Projected Effect of Delta CDDs on the Labor Productivity of the
Mining & Utilities Sub-Sector (minute). The values have been calculated by
multiplying the projected Delta CDDs by the conditional marginal effect of a CDD,
calculated at the logarithm of different regional descriptive statistics of ACSTOCK.

Region Mean lS Mean lS19 Median lS Median lS19

Africa -0.084 -0.061 -0.146 -0.136
Americas -0.004 0.023 -0.040 0.002
Arab States 0.140 0.179 0.108 0.183
Asia and the Pacific 0.056 0.058 -0.061 0.039
Europe and Central Asia 0.013 0.019 0.008 0.017
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Discussion

This study aimed to assess the impact of high temperatures on labor productivity

across different sectors, with a focus on quantifying the role of external adaptation

strategies in mitigating these negative effects. Utilizing a high-dimensional fixed

effects (HDFE) model based on panel data, the analysis provides valuable insights

into both aspects of the research question. The findings contribute to bridging the

gap between micro and macro-level empirical evidence, offering significant implica-

tions for the Integrated Assessment Models (IAMs) literature.

This chapter presents and interprets the results of the empirical models, comparing

them with the existing literature. It also addresses the limitations of the analysis

and provides recommendations for future research. The final section concludes the

analysis, summarizing the key findings of the thesis.

83
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5.1 Discussion

The main findings of the empirical part include that CDD, our proxy for tem-

perature exposure, has a significant impact on the annual productivity of many

economic sectors. This effect is observed in the Aggregate sector (Table 7), the

Non-Agricultural sector (Table 11), the Agricultural sector (Table 15), the Services

sector (Table 19), and the Mining & Utilities sub-sector (Table 24). Interestingly,

the preferred specification does not produce statistically significant results for the

Industrial Sector or its sub-sectors Construction and Manufacturing (Table 23). In

these sectors, neither the coefficients for CDD nor the interaction terms reach sta-

tistical significance at conventional levels, despite existing evidence suggesting that

temperature may have an impact (Cachon, Gallino, and Olivares 2012). One possi-

ble explanation for the Manufacturing sector’s results is its rigid work organization,

the climate-controlled nature of its operations, and the relatively high level of mech-

anization. In the Construction sector, despite its high labor intensity, the findings

may suggest alternative adaptation strategies unrelated to air conditioning, such as

possibly adjusting work hours to the cooler parts of the day. Another hypothesis

involves the presence of compensatory behavior, given that the production structure

in this sector is often characterized by long-term deadlines.

Notably, the variable CDD has a statistically significant impact on labor productiv-

ity only when even the proxy for the adaptation strategies is included in the regres-

sion equation, considering our preferred specifications and the selected sectors. This

can be noticed by comparing Model 2 and Model 3 in each of the previously cited

tables. This finding underscores the risk of obtaining misleading results if adapta-

tion is not accounted for in panel-based regression analyses. Moreover, the results

also show that the interaction coefficient between CDD and log(ACSTOCK), the

moderating factor, is always positive. This implies that the elasticity of labor pro-

ductivity with respect to the stock of air conditioning machines is an increasing

function of CDD.

The results of the total marginal effect of CDD on labor productivity, conditional

on different levels of air conditioning stock for the Aggregate Sector, are presented
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in Figures 8, 9, 10, and Table 10.1 These elements confirm that at low levels of air

conditioning stock, the marginal effect of an additional CDD relative to the country

or regional average is negative. For medium to high levels of air conditioning stock

per capita—such as in the “Europe and Central Asia” case—the model predicts a

marginal contribution close to zero, which varies slightly depending on the time

horizon considered for the level of ACSTOCK. Unexpectedly, the model predicts

a positive marginal effect of CDD for the “Arab States”, where the level of air con-

ditioning stock per capita is exceptionally high compared to the rest of the world.

Figures 9 and 10 illustrate that the total marginal effect of CDD is a concave func-

tion of the level of air conditioning stock per capita. This concave relationship

implies that the marginal contribution of air conditioning stock in mitigating ad-

verse temperature effects decreases as the stock increases. The result provides clear

evidence of a saturation effect, meaning that while the marginal benefit of an addi-

tional unit of air conditioning stock per capita is very high when the stock is low, it

gradually diminishes as the stock increases.

Given that the per capita air conditioning stock can be considered a general proxy

for a country’s overall adaptation capacity, it is not surprising that air condition-

ing also plays a role in a typically outdoor sector like Agriculture. As previously

discussed, adaptation strategies in Agriculture include measures such as improv-

ing infrastructure for water access, crop switching and protecting crops from hail,

among others. Furthermore, given the labor-intensive nature of the Services sec-

tor, it is reasonable to conclude that it is highly sensitive to temperature variations

and stands to gain significantly from climate adaptation strategies. The Mining &

Utilities sector faces a unique trade-off, as hotter-than-average years likely boost

energy demand, which can increase the sector’s value-added—and, consequently,

its labor productivity—even though high temperatures may reduce worker perfor-

mance. This dynamic may contribute to the high sensitivity to CDD and to the

level of ACSTOCK, making the interpretation of the estimates for this sub-sector

particularly delicate.

1For additional country-level data, please refer to the Appendix.
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Table 29 shows the results of the sector-level comparison removing from the regres-

sion equation the variables that part of the literature refers to as “bad controls”,

specifically the Human Capital Index and the Logarithm of the Value of the Capital

Stock per capita. The rationale is that climate variables can cause these controls, so

including them may absorb part of the variation that should be attributed to the

climate variables. As expected, the coefficients of both CDD and its interaction

with log(ACSTOCK) are larger in Table 29, likely because these variables capture

more of the residual variation. However, this scenario, where adaptation is implic-

itly accounted for, introduces a risk of omitted variable bias if the so-called “bad

controls” are removed. For instance, it is plausible that labor productivity might

become less sensitive to high temperatures due to increased capital stock per capita,

independent of the effect of air conditioning units. Thus, if these controls are cor-

related with the variables of interest, excluding them could result in biased estimates.

The section dedicated to future projections applies the results obtained for the total

marginal effect of CDD to the projected climate in 2050, considering an intermedi-

ate emissions scenario and current levels of adaptive capacity. Table 30 and Figure

23 present the predicted regional and national increases in yearly CDD for 2050.

Table 31 shows the predicted impact of the projected Delta CDDs for the Aggre-

gate Sector at the regional level, while Figures 24 and 25 display the national-level

impacts. A comparison of Figures 23 and 24 shows that countries most exposed to

climate change typically have lower levels of adaptation strategies.

A notable exception to this observation is the “Arab States”. In fact, in 2019, these

countries displayed a regional median value of air conditioning stock per capita that

was approximately four times higher than that of Europe (Table 10). For the Arab

States, the projected model results predict that the climate in 2050 would lead to

an increase in the yearly labor productivity of 5%, at the current level of adap-

tation capacity.2 Moreover, given that the “Arab States” are characterized by a

2This is a strange result, that could partially be driven by the fact the economy of the Arab
States highly relies on the Mining & Utilities sector, as shown in Table 1 and in the comparison be-
tween Figures 2 and 3. Furthermore, the significant volatility of Value Added in this region—largely
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high variance in yearly CDDs and a high level of ACSTOCK, data from these

countries play an important role in estimating the coefficients of interest, particu-

larly in sectors like Mining & Utilities and Services. Further analysis should more

thoroughly investigate the role of climate adaptation strategies in these countries,

where the climate is extremely hot and the level of adaptation strategies is very high.

Notably, directly comparing the magnitude of the results from this thesis with those

in the existing literature is challenging, as none of the main reviewed studies in sim-

ilar fields and at comparable scales use Cooling Degree Days (CDD) as the climate

variable, and very few explicitly consider the role of adaptation. Moreover, macro-

level studies often use income per capita as the dependent variable, which, although

highly correlated with labor productivity, does not align precisely with its definition.

Nevertheless, this thesis makes a valuable contribution to the literature by bridging

the gap between micro-level evidence, which clearly demonstrates the negative im-

pact of high temperatures on labor productivity, and macro-level evidence, which at

best suggests that developed countries are less sensitive to temperature shocks but

fails to explicitly quantify the role of climate adaptation in this process.

While this thesis provides valuable insights into the impact of high temperatures

on sector-level labor productivity and the moderating role of adaptation strategies,

it is essential to acknowledge the limitations that may influence the interpretation

of the findings. Firstly, the variable used to measure labor productivity serves only

as an approximation of workers’ actual performance in the real world. For example,

studies that utilize more precise data on output and hours worked by sector could

enhance the reliability of this proxy. The same reasoning applies to the variable

ACSTOCK, which is an import-based proxy that does not directly account for the

real-world cumulative internal demand. Additionally, not controlling for other cli-

matic factors correlated with temperature, such as humidity and wind, can lead to

driven by fluctuations in commodity markets, such as crude oil prices—suggests that using Value
Added per Number of Workers as a proxy for labor productivity may not accurately capture actual
worker performance in this context. Although time controls may absorb part of this effect, they
probably cannot fully account for the volatility caused by commodity price swings. One potential
robustness check is to develop an empirical strategy that includes oil prices as a control variable.
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biased estimates. Future research should aim to incorporate these elements into the

analysis, despite the challenges of defining adequate statistics at the national level

for these factors. Another important area for further research involves studying the

inequality aspects of temperature impacts, with a specific focus on explicitly con-

sidering adaptation capacity. For example, adaptation possibilities may vary not

only between countries within a region due to differing economic characteristics but

also among households within the same city and among workers within the same

firm, depending on their positions within the company hierarchy. Finally, although

this thesis advances the discussion on the role of adaptation in the panel-based ap-

proach context, there are still significant methodological challenges that need to be

addressed. These include considering general equilibrium effects, the risks of ex-

trapolating beyond historical experience, and the potential intensification of climate

impacts.

5.2 Conclusions

This thesis aimed to estimate the impact of high temperatures on sector-level labor

productivity, quantifying the contribution of adaptation strategies in mitigating the

adverse effects. The empirical method involved the use of a panel data approach

relying on country-level weather variations from 1991 to 2019. To assess the overall

extent of external adaptation strategies implemented by a country, a proxy based

on the value of imported air conditioning machines has been developed. The results

highlight a significant level effect on labor productivity of both high-temperature

shocks and adaptation strategies for many economic sectors. Furthermore, the di-

minishing returns of per capita air conditioning stock on the attenuation of the

temperature effect on labor productivity suggest a saturation effect. The findings

are consistent with most of the micro-level evidence, even if the results for industrial

sectors underscore the need for further investigation. Additional analyses are also

required to explore the underlying causes of the estimated positive effect of temper-

ature shocks at higher levels of external adaptation strategies.
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Despite the mentioned limitations, the results can be considered a first step in

providing a general framework to bridge the gap between micro and macro-level evi-

dence. In particular, the empirical estimates presented in this thesis may be relevant

not only to the ex-post analysis literature, which aims to quantify causal relation-

ships using historical data, but also to the ex-ante modeling literature, which seeks to

derive future policy implications from established causal or associative relationships.

The estimated results can provide a foundation for refining the climate damage func-

tions implemented in current Integrated Assessment Models (IAMs), improving the

precision of temperature damage assessments, and integrating the trade-off between

labor productivity benefits and adaptation investment costs. Future research should

integrate this trade-off with projections of future air conditioning penetration, eval-

uating the associated energy consumption and its impact on predicted emission tra-

jectories. Incorporating these dynamics into Integrated Assessment Models (IAMs)

is crucial for refining Social Cost of Carbon (SCC) estimates and guiding society

toward optimal policy decisions.



List of Figures

1 Temperature and normalized task productivity in laboratory setting

(Seppanen, Fisk, and Lei 2006; Heal and J. Park 2016) . . . . . . . . 25

2 Yearly Average by Region of the Labor Productivity of the Aggregate

sector (TOT) expressed in Real 2017 PPP-adjusted Dollars. Notably,

the peak in labor productivity for the Americas in 1992 is attributable

to the structure of the unbalanced panel dataset. Starting that year,

the inclusion of U.S. data significantly increased the annual regional

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 WTI Crude Oil Prices expressed in Real 2017 PPP-adjusted Dollars.

Source: Federal Reserve Economic Data (FRED) database . . . . . . 46

4 Logarithm of the Yearly Average by Region of the Labor Productivity

of the Aggregate sector (TOT) expressed in Real 2017 PPP-adjusted

Dollars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 CDDs across the world by Country, Mean Annual Average 1991-2019

using a 24°C threshold and dry-bulb temperature. . . . . . . . . . . . 49

6 Value of the Stock of Air Conditioning Machines per capita in the

Year 2019 by Country, expressed in Real 2017 PPP-adjusted Dollars 51

7 Yearly Averages of Air Conditioning Variables. . . . . . . . . . . . . . 54

8 Marginal Effect of CDD Conditional on the Level of log_ACSTOCK

for the Aggregate Sector (TOT). The Vertical Bars Indicate the Log-

arithm of the Regional Medians for 2019 . . . . . . . . . . . . . . . . 61

9 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Aggregate Sector (TOT). The Vertical Bars Indicate the Regional

Medians for the period 1991-2019 . . . . . . . . . . . . . . . . . . . . 62

90



LIST OF FIGURES 91

10 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Aggregate Sector (TOT). The Vertical Bars Indicate the Regional

Medians for 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11 Marginal Effect of CDD Conditional on the Level of log_ACSTOCK

for the Non-Agricultural Sector. The Vertical Bars Indicate the Log-

arithm of the Regional Medians in 2019 . . . . . . . . . . . . . . . . . 64

12 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Non-Agricultural Sector (NOAGR). The Vertical Bars Indicate

the Regional Medians for the period 1991-2019 . . . . . . . . . . . . . 65

13 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Non-Agricultural Sector (NOAGR). The Vertical Bars Indicate

the Regional Medians for 2019 . . . . . . . . . . . . . . . . . . . . . . 65

14 Marginal Effect of CDD Conditional on the Level of log_ACSTOCK

for the Agricultural Sector. The Vertical Bars Indicate the Logarithm

of the Regional Medians in 2019 . . . . . . . . . . . . . . . . . . . . . 67

15 Marginal Effect of CDD Conditional on the Level of ACSTOCK

for the Agricultural Sector (AGR). The Vertical Bars Indicate the

Regional Medians for the period 1991-2019 . . . . . . . . . . . . . . . 68

16 Marginal Effect of CDD Conditional on the Level of ACSTOCK

for the Agricultural Sector (AGR). The Vertical Bars Indicate the

Regional Medians for 2019 . . . . . . . . . . . . . . . . . . . . . . . . 68

17 Marginal Effect of CDD Conditional on the Level of log_ACSTOCK

for the Services Sector. The Vertical Bars Indicate the Logarithm of

the Regional Medians in 2019 . . . . . . . . . . . . . . . . . . . . . . 70

18 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Services Sector (SER). The Vertical Bars Indicate the Regional

Medians for the period 1991-2019 . . . . . . . . . . . . . . . . . . . . 71

19 Marginal Effect of CDD Conditional on the Level of ACSTOCK for

the Services Sector (SER). The Vertical Bars Indicate the Regional

Medians for 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



92 LIST OF FIGURES

20 Marginal Effect of CDD Conditional on the Level of log_ACSTOCK

for the Mining & Utilities (minute) Sub-Sector. The Vertical Bars

Indicate the Logarithm of the Regional Medians in 2019 . . . . . . . 74

21 Marginal Effect of CDD Conditional on the Level of ACSTOCK

for the Mining & Utilities (minute) Sub-Sector. The Vertical Bars

Indicate the Regional Medians for the period 1991-2019 . . . . . . . . 75

22 Marginal Effect of CDD Conditional on the Level of ACSTOCK

for the Mining & Utilities (minute) Sub-Sector. The Vertical Bars

Indicate the Regional Medians for 2019 . . . . . . . . . . . . . . . . . 75

23 Average Delta CDDs Projected for 2050 by Country . . . . . 79

24 Projected Impact of Delta CDDs for the Aggregate Sector (TOT) in

2050 by Country. The values have been calculated by multiplying the

projected Delta CDDs by the Conditional Marginal Effect of a CDD,

calculated at the logarithm of the Country Average of ACSTOCK . 80

25 Projected Impact of Delta CDDs for the Aggregate Sector (TOT) in

2050 by Country. The values have been calculated by multiplying the

projected Delta CDDs by the Conditional Marginal Effect of a CDD,

calculated at the logarithm of the Country Value of ACSTOCK for

2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of Tables

1 Regional Average Sectoral Shares (%) of Value Added from 1991 to

2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Descriptive Statistics by Region of the Labor Productivity of the Ag-

gregate Sector (TOT) from 1991 to 2019 expressed in Thousands of

Real 2017 PPP-adjusted Dollars . . . . . . . . . . . . . . . . . . . . . 47

3 Descriptive Statistics by Region of the Logarithm of the Average La-

bor Productivity of the Aggregate Sector (TOT) from 1991 to 2019

expressed in Real 2017 PPP-adjusted Dollars . . . . . . . . . . . . . . 47

4 Descriptive Statistics of CDD24 by Region . . . . . . . . . . . . . . . 50

5 Regional Mean of : the Imports Flow of AC machines in US$ per

Capita from 1990 to 2019 (M); the Stock of Air Conditioning Ma-

chines in US$ per Capita from 1990 to 2019 (S); the Stock of Air

Conditioning Machines in US$ per Capita in 2019 (S19). The columns

(lS) and (lS19) represent the logarithm of S and the logarithm of S19 53

6 Regional Median of : the Imports Flow of AC machines in US$

per Capita from 1990 to 2019 (M); the Stock of Air Conditioning

Machines in US$ per Capita from 1990 to 2019 (S); the Stock of Air

Conditioning Machines in US$ per Capita in 2019 (S19). The columns

(lS) and (lS19) represent the logarithm of S and the logarithm of S19 53

7 Results for the Aggregate sector (TOT) based on the preferred spec-

ification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Conditional Marginal Effect of log_ACSTOCK calculated at

Mean and Median Regional Values of CDD . . . . . . . . . . . . . . 60

93



94 LIST OF TABLES

9 Logarithm of the Regional Mean and Median of ACSTOCK

in US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19) . . . . . 61

10 Conditional Marginal Effect of CDD calculated at the Logarithm

of the Mean and the Median of ACSTOCK, considering the period

1991-2019 (lS) and 2019 only (lS19) . . . . . . . . . . . . . . . . . . . 61

11 Results for the Non-Agricultural Sector (NOAGR) based on the pre-

ferred specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

12 Conditional Marginal Effect of log_ACSTOCK calculated at

Mean and Median Regional Values of CDD . . . . . . . . . . . . . . 63

13 Logarithm of the Regional Mean and Median of ACSTOCK

in US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19) . . . . . 64

14 Conditional Marginal Effect of CDD calculated at the Logarithm

of the Mean and the Median of ACSTOCK, considering the period

1991-2019 (lS) and 2019 only (lS19) . . . . . . . . . . . . . . . . . . . 64

15 Results for the Agricultural Sector (AGR) based on the preferred

specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

16 Conditional Marginal Effect of log_ACSTOCK calculated at

Mean and Median Regional Values of CDD . . . . . . . . . . . . . . 66

17 Logarithm of the Regional Mean and Median of ACSTOCK

in US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19) . . . . . 67

18 Conditional Marginal Effect of CDD calculated at the Logarithm

of the Mean and the Median of ACSTOCK, considering the period

1991-2019 (lS) and 2019 only (lS19) . . . . . . . . . . . . . . . . . . . 67

19 Results for the Services Sector (SER) based on the preferred specifi-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

20 Conditional Marginal Effect of log_ACSTOCK calculated at

Mean and Median Regional Values of CDD . . . . . . . . . . . . . . 69

21 Logarithm of the Regional Mean and Median of ACSTOCK

in US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19) . . . . . 70



LIST OF TABLES 95

22 Conditional Marginal Effect of CDD calculated at the Logarithm

of the Mean and the Median of ACSTOCK, considering the period

1991-2019 (lS) and 2019 only (lS19) . . . . . . . . . . . . . . . . . . . 70

23 Results for the Aggregate Industrial Sector (IND) and the disaggre-

gated industrial sectors based on the preferred specification. These

sub-sectors include Manufacturing (man), Construction (con), and

Mining & Utilities (minuti). Together, these three sub-sectors form

the Aggregate Industrial Sector (IND). . . . . . . . . . . . . . . . . . 72

24 Results for the Mining & Utilities (minuti) Sub-Sector based on the

preferred specification. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

25 Conditional Marginal Effect of log_ACSTOCK calculated at

Mean and Median Regional Values of CDD . . . . . . . . . . . . . . 73

26 Logarithm of the Regional Mean and Median of ACSTOCK

in US$ per Capita from 1990 to 2019 (lS) and in 2019 (lS19) . . . . . 74

27 Conditional Marginal Effect of CDD calculated at the Logarithm

of the Mean and the Median of ACSTOCK, considering the period

1991-2019 (lS) and 2019 only (lS19) . . . . . . . . . . . . . . . . . . . 74

28 Comparison of the preferred model’s results across various sectors . . 76

29 Comparison of the preferred model results excluding the Human Cap-

ital Index and the logarithm of the capital stock per capita as controls 77

30 Average Delta CDDs Projected for 2050 by Region . . . . . . 78

31 Total Effect by Region of the Projected Delta CDDs on the

Labor Productivity of the Aggregate Sector (TOT). The val-

ues have been calculated by multiplying the projected Delta CDDs by

the conditional marginal effect of a CDD, calculated at the logarithm

of different regional descriptive statistics of ACSTOCK. . . . . . . . . 79

32 Projected Effect of Delta CDDs on the Labor Productiv-

ity of the Non-Agricultural Sector (NOAGR). The values have

been calculated by multiplying the projected Delta CDDs by the con-

ditional marginal effect of a CDD, calculated at the logarithm of

different regional descriptive statistics of ACSTOCK. . . . . . . . . . 81



96 LIST OF TABLES

33 Projected Effect of Delta CDDs on the Labor Productivity

of the Agricultural (AGR). The values have been calculated by

multiplying the projected Delta CDDs by the conditional marginal

effect of a CDD, calculated at the logarithm of different regional

descriptive statistics of ACSTOCK. . . . . . . . . . . . . . . . . . . 81

34 Projected Effect of Delta CDDs on the Labor Productivity

of the Services Sector (SER). The values have been calculated by

multiplying the projected Delta CDDs by the conditional marginal

effect of a CDD, calculated at the logarithm of different regional

descriptive statistics of ACSTOCK. . . . . . . . . . . . . . . . . . . 82

35 Projected Effect of Delta CDDs on the Labor Productivity

of the Mining & Utilities Sub-Sector (minute). The values

have been calculated by multiplying the projected Delta CDDs by the

conditional marginal effect of a CDD, calculated at the logarithm of

different regional descriptive statistics of ACSTOCK. . . . . . . . . . 82

36 Country Level Values of: the Logarithm of the Mean ofACSTOCK

from 1991 to 2019 (LM); the Logarithm of ACSTOCK in 2019

(L19); the Conditional Marginal Effect of a CDD for the Aggre-

gate Sector (TOT) at the Logarithm of the Mean of ACSTOCK

(MELM); the Conditional Marginal Effect of a CDD for the Aggre-

gate Sector (TOT) at the Logarithm of ACSTOCK in 2019 (ME19);

Country-Level Delta CDDs Projected (DCDDs); the Total Pre-

dicted Impact of Delta CDDs for the Aggregate Sector (TOT) at LM

ACSTOCK Level (PILM); the Total Predicted Impact ofDeltaCDDs

for the Aggregate Sector (TOT) at L19 ACSTOCK Level (PIL19) 106



Bibliography

Adams, Richard M (1989). “Global climate change and agriculture: an economic

perspective”. In: American journal of agricultural economics 71.5, pp. 1272–1279.

Angrist, Joshua D and Jörn-Steffen Pischke (2009). Mostly harmless econometrics:

An empiricist’s companion. Princeton university press.

Anthoff, David and Richard SJ Tol (2012). “Climate damages in the FUND model:

A comment”. In: Ecological Economics 81, p. 42.

Auffhammer, Maximilian (2018). “Quantifying economic damages from climate change”.

In: Journal of Economic Perspectives 32.4, pp. 33–52.

Auffhammer, Maximilian and Anin Aroonruengsawat (2011). “Simulating the im-

pacts of climate change, prices and population on California’s residential elec-

tricity consumption”. In: Climatic change 109, pp. 191–210.

Auffhammer, Maximilian, V Ramanathan, and Jeffrey R Vincent (2006). “Integrated

model shows that atmospheric brown clouds and greenhouse gases have reduced

rice harvests in India”. In: Proceedings of the National Academy of Sciences

103.52, pp. 19668–19672.

Barreca, Alan et al. (2016). “Adapting to climate change: The remarkable decline

in the US temperature-mortality relationship over the twentieth century”. In:

Journal of Political Economy 124.1, pp. 105–159.

Barreca, Alan I (2012). “Climate change, humidity, and mortality in the United

States”. In: Journal of Environmental Economics and Management 63.1, pp. 19–

34.

97



98 BIBLIOGRAPHY
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Appendix

Table 36: Country Level Values of: the Logarithm of the Mean of ACSTOCK
from 1991 to 2019 (LM); the Logarithm of ACSTOCK in 2019 (L19); the Condi-
tional Marginal Effect of a CDD for the Aggregate Sector (TOT) at the Logarithm
of the Mean of ACSTOCK (MELM); the Conditional Marginal Effect of a CDD
for the Aggregate Sector (TOT) at the Logarithm of ACSTOCK in 2019 (ME19);
Country-Level Delta CDDs Projected (DCDDs); the Total Predicted Impact of
Delta CDDs for the Aggregate Sector (TOT) at LM ACSTOCK Level (PILM);
the Total Predicted Impact of DeltaCDDs for the Aggregate Sector (TOT) at L19
ACSTOCK Level (PIL19)

Country Region LM L19 MELM ME19 DCDDs PILM PIL19

AGO Africa 4.26 3.95 -0.0070% -0.0097% 172 -1.20% -1.67%

ALB Europe and Central Asia 4.71 4.99 -0.0030% -0.0006% 115 -0.349% -0.0641%

ARE Arab States 7.37 7.54 0.0203% 0.0217% 393 7.95% 8.51%

ARG Americas 3.93 4.58 -0.0099% -0.0042% 113 -1.11% -0.467%

ARM Europe and Central Asia 4.31 4.60 -0.0066% -0.0040% 71.7 -0.470% -0.289%

AUS Asia and the Pacific 5.43 5.88 0.0033% 0.0072% 71.6 0.236% 0.512%

AUT Europe and Central Asia 5.39 6.10 0.0029% 0.0091% 27.6 0.0813% 0.251%

AZE Europe and Central Asia 3.94 4.45 -0.0098% -0.0053% 151 -1.47% -0.806%

BEL Europe and Central Asia 6.01 6.50 0.0083% 0.0126% 15.5 0.129% 0.196%

BEN Africa 1.86 1.65 -0.0280% -0.0298% 383 -10.7% -11.4%

BGD Asia and the Pacific 1.40 NaN -0.0320% NaN 233 -7.46% NaN

BGR Europe and Central Asia 5.74 6.19 0.0060% 0.0099% 92.1 0.553% 0.915%

BIH Europe and Central Asia 4.96 5.02 -0.0009% -0.0003% 63.9 -0.0565% -0.0193%

BLR Europe and Central Asia 4.69 4.98 -0.0032% -0.0007% 26.4 -0.0851% -0.0183%

BOL Americas 2.48 3.43 -0.0226% -0.0142% 176 -3.98% -2.50%

BRA Americas 2.90 3.58 -0.0189% -0.0129% 272 -5.14% -3.51%

BWA Africa 5.35 5.26 0.0026% 0.0018% 309 0.802% 0.543%

CAN Americas 6.05 5.97 0.0087% 0.0079% 35.8 0.309% 0.284%

CHE Europe and Central Asia 4.92 5.54 -0.0012% 0.0043% 12.1 -0.0144% 0.0513%

CHL Americas 3.89 4.34 -0.0102% -0.0063% 15.2 -0.154% -0.0951%

CHN Asia and the Pacific 2.56 2.44 -0.0219% -0.0229% 156 -3.40% -3.56%

CIV Africa 2.52 2.57 -0.0222% -0.0218% 363 -8.05% -7.89%

CMR Africa 1.97 2.07 -0.0270% -0.0261% 319 -8.61% -8.34%

COL Americas 2.83 3.89 -0.0195% -0.0102% 174 -3.38% -1.77%

CRI Americas 4.04 4.30 -0.0089% -0.0048% 221 -1.96% -1.24%
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Table 36: (continued)

Country Region LM L19 MELM ME19 DCDDs PILM PIL19

CYP Europe and Central Asia 6.04 6.10 0.0086% 0.0091% 205 1.76% 1.86%

CZE Europe and Central Asia 6.08 6.45 0.0090% 0.0121% 24.3 0.218% 0.295%

DEU Europe and Central Asia 4.77 5.57 -0.0025% 0.0045% 20.5 -0.0513% 0.0912%

DNK Europe and Central Asia 4.41 5.04 -0.0057% -0.0002% 5.12 -0.0291% -0.0010%

DOM Americas 4.66 4.77 -0.0035% -0.0025% 296 -1.03% -0.742%

DZA Africa 4.09 NaN -0.0084% NaN 192 -1.62% NaN

ECU Americas 3.57 4.30 -0.0130% -0.0066% 188 -2.45% -1.24%

EGY Africa 2.92 3.87 -0.0186% -0.0104% 314 -5.85% -3.26%

ESP Europe and Central Asia 5.36 5.85 0.0026% 0.0069% 112 0.295% 0.772%

EST Europe and Central Asia 6.30 6.52 0.0109% 0.0128% 9.88 0.107% 0.126%

ETH Africa -0.0303 1.05 -0.0445% -0.0350% 101 -4.48% -3.52%

FIN Europe and Central Asia 5.04 5.63 -0.0002% 0.0050% 5.62 -0.0011% 0.0281%

FRA Europe and Central Asia 4.70 5.42 -0.0031% 0.0031% 40.1 -0.126% 0.125%

GAB Africa 4.00 4.33 -0.0092% -0.0064% 352 -3.24% -2.24%

GBR Europe and Central Asia 4.60 5.01 -0.00398% -0.00042% 2.14 -0.00851% -0.00089%

GEO Europe and Central Asia 4.74 5.33 -0.0028% 0.0024% 92.7 -0.260% 0.219%

GRC Europe and Central Asia 5.66 5.78 0.00525% 0.00635% 152 0.798% 0.966%

GTM Americas 2.62 3.00 -0.0213% -0.0180% 145 -3.10% -2.61%

HKG Asia and the Pacific 7.60 7.42 0.0222% 0.0206% 231 5.15% 4.77%

HND Americas 3.33 3.68 -0.0151% -0.0121% 224 -3.38% -2.70%

HRV Europe and Central Asia 5.77 6.00 0.0062% 0.0083% 82.7 0.512% 0.684%

HUN Europe and Central Asia 5.72 6.16 0.00582% 0.00964% 71.5 0.416% 0.689%

IDN Asia and the Pacific 3.20 3.85 -0.0163% -0.0106% 317 -5.16% -3.36%

IND Asia and the Pacific 1.54 2.85 -0.0307% -0.0193% 272 -8.35% -5.24%

IRL Europe and Central Asia 4.83 4.99 -0.0020% -0.0006% 0.252 -0.0005% -0.0001%

IRN Asia and the Pacific 4.46 4.46 -0.0052% -0.0052% 213 -1.10% -1.11%

ISL Europe and Central Asia 3.87 4.59 -0.0104% -0.0041% 0 0% 0%

ISR Europe and Central Asia 4.90 5.47 -0.0014% 0.0036% 264 -0.367% 0.950%

ITA Europe and Central Asia 5.02 5.61 -0.0004% 0.0048% 98.0 -0.0356% 0.471%

JAM Americas 3.80 4.50 -0.0110% -0.0049% 298 -3.27% -1.45%

JOR Arab States 4.21 5.08 -0.0074% 0.0002% 267 -1.97% 0.0466%

JPN Asia and the Pacific 4.07 5.20 -0.0086% 0.0013% 102 -0.881% 0.131%

KAZ Europe and Central Asia 4.55 4.88 -0.0045% -0.0015% 88.7 -0.395% -0.134%

KEN Africa 1.51 2.09 -0.0310% -0.0260% 135 -4.19% -3.52%

KGZ Europe and Central Asia 3.04 3.61 -0.0177% -0.0127% 37.4 -0.659% -0.473%

KHM Asia and the Pacific 2.75 2.90 -0.0201% -0.0188% 389 -7.84% -7.33%

KOR Asia and the Pacific 3.60 4.68 -0.0127% -0.0033% 113 -1.44% -0.371%

KWT Arab States 7.17 6.90 0.0185% 0.0161% 404 7.47% 6.49%

LBN Arab States 5.59 5.36 0.00463% 0.00265% 144 0.664% 0.380%

LKA Asia and the Pacific 3.37 3.87 -0.0148% -0.0104% 282 -4.15% -2.93%

LTU Europe and Central Asia 5.24 5.84 0.0016% 0.0068% 15.7 0.0250% 0.107%

LUX Europe and Central Asia 5.75 5.79 0.0060% 0.0064% 24.9 0.150% 0.159%

LVA Europe and Central Asia 5.15 5.55 0.0008% 0.0043% 12.6 0.0103% 0.0542%

MAR Africa 3.26 3.94 -0.0157% -0.0097% 139 -2.18% -1.35%
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Table 36: (continued)

Country Region LM L19 MELM ME19 DCDDs PILM PIL19

MDA Europe and Central Asia 4.14 4.65 -0.00798% -0.00355% 92.6 -0.739% -0.329%

MDG Africa 0.672 1.21 -0.0383% -0.0336% 113 -4.32% -3.79%

MEX Americas 4.41 4.86 -0.0057% -0.0017% 141 -0.801% -0.242%

MLT Europe and Central Asia 6.52 6.34 0.0128% 0.0112% 45.4 0.581% 0.507%

MMR Asia and the Pacific 2.87 3.32 -0.0191% -0.0152% 276 -5.28% -4.21%

MNG Asia and the Pacific 3.50 3.93 -0.0136% -0.0099% 20.2 -0.274% -0.200%

MOZ Africa 2.02 2.39 -0.0265% -0.0233% 290 -7.68% -6.74%

MYS Asia and the Pacific 4.63 5.10 -0.0038% 0.0003% 326 -1.23% 0.109%

NAM Africa 4.55 4.61 -0.0045% -0.0039% 281 -1.26% -1.09%

NER Africa 1.59 1.15 -0.0303% -0.0342% 427 -12.9% -14.6%

NGA Africa 1.78 2.49 -0.0286% -0.0225% 379 -10.8% -8.52%

NIC Americas 3.65 4.06 -0.0123% -0.0030% 346 -4.26% -3.00%

NLD Europe and Central Asia 5.21 5.81 0.00134% 0.00660% 8.04 0.0107% 0.0531%

NOR Europe and Central Asia 5.25 5.96 0.00165% 0.00786% 1.45 0.0024% 0.0114%

NPL Asia and the Pacific 1.72 2.38 -0.0292% -0.0234% 156 -4.57% -3.67%

NZL Asia and the Pacific 4.84 5.47 -0.00189% 0.00362% 1.53 -0.0029% 0.0056%

OMN Arab States 6.41 6.94 0.0119% 0.0164% 305 3.62% 5.02%

PAK Asia and the Pacific 2.57 3.13 -0.0217% -0.0169% 286 -6.22% -4.83%

PAN Americas 5.77 6.53 0.0062% 0.0129% 340 2.11% 4.39%

PER Americas 2.38 2.92 -0.0234% -0.0186% 102 -2.40% -1.91%

PHL Asia and the Pacific 3.13 3.99 -0.0168% -0.0093% 302 -5.08% -2.82%

POL Europe and Central Asia 4.45 5.35 -0.0053% 0.0026% 22.9 -0.121% 0.0586%

PRT Europe and Central Asia 5.36 5.79 0.0026% 0.0064% 46.1 0.121% 0.296%

PRY Americas 4.53 5.27 -0.0046% 0.00185% 276 -1.26% 0.510%

QAT Arab States 7.07 7.41 0.0176% 0.0205% 396 6.96% 8.13%

ROU Europe and Central Asia 4.94 5.40 -0.0010% 0.00297% 78.4 -0.0795% 0.233%

RUS Europe and Central Asia 4.37 4.78 -0.0061% -0.0024% 43.1 -0.261% -0.103%

RWA Africa 1.32 1.74 -0.0327% -0.0290% 35.8 -1.17% -1.04%

SAU Arab States 5.81 6.44 0.0066% 0.0120% 415 2.72% 5.00%

SEN Africa 2.53 2.85 -0.0220% -0.0193% 394 -8.69% -7.60%

SGP Asia and the Pacific 7.10 7.32 0.0178% 0.0198% 353 6.29% 6.98%

SLV Americas 2.87 3.61 -0.0191% -0.0126% 330 -6.31% -4.17%

SVK Europe and Central Asia 6.12 6.38 0.0093% 0.0115% 34.8 0.323% 0.400%

SVN Europe and Central Asia 5.75 6.11 0.0061% 0.0092% 38.7 0.235% 0.356%

SWE Europe and Central Asia 5.04 5.63 -0.0002% 0.00496% 3.69 -0.00065% 0.0183%

SYR Arab States 2.60 NaN -0.0215% NaN 254 -5.45% NaN

TGO Africa 2.49 2.14 -0.0225% -0.0255% 384 -8.61% -9.79%

THA Asia and the Pacific 3.88 4.74 -0.0103% -0.0027% 368 -3.80% -1.01%

TJK Europe and Central Asia 3.29 3.36 -0.0155% -0.0148% 114 -1.77% -1.70%

TTO Americas 4.83 5.63 -0.0020% 0.00498% 328 -0.657% 1.64%

TUN Africa 4.18 4.40 -0.0077% -0.0057% 217 -1.66% -1.24%

TUR Europe and Central Asia 4.40 4.92 -0.0057% -0.0012% 136 -0.776% -0.168%

TZA Africa 2.06 2.23 -0.0262% -0.0247% 231 -6.06% -5.71%

UGA Africa 1.20 1.29 -0.0337% -0.0330% 249 -8.38% -8.20%
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Table 36: (continued)

Country Region LM L19 MELM ME19 DCDDs PILM PIL19

UKR Europe and Central Asia 4.14 4.43 -0.0080% -0.0055% 67.5 -0.541% -0.369%

URY Americas 4.22 4.85 -0.0073% -0.0019% 64.3 -0.468% -0.119%

USA Americas 4.49 5.22 -0.00499% 0.00142% 134 -0.668% 0.190%

VEN Americas 3.56 NaN -0.0131% NaN 357 -4.69% NaN

VNM Asia and the Pacific 4.83 5.10 -0.0020% 0.00034% 319 -0.646% 0.108%

YEM Arab States 2.33 NaN -0.0238% NaN 163 -3.88% NaN

ZAF Africa 4.07 4.16 -0.0087% -0.0078% 107 -0.927% -0.835%

ZMB Africa 1.61 2.22 -0.0301% -0.0248% 257 -7.76% -6.39%

ZWE Africa 2.49 1.68 -0.0224% -0.0295% 217 -4.87% -6.39%
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