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Abstract

Developing increasingly efficient and accurate algorithms for approximate nearest neighbor
search is a paramount goal in modern information retrieval. A primary approach to
addressing this question is clustering, which involves partitioning the dataset into distinct
groups, with each group characterized by a representative data point. By this method,
retrieving the top-k data points for a query requires identifying the most relevant clusters
based on their representatives—a routing step—and then conducting a nearest neighbor
search within these clusters only, drastically reducing the search space.

The objective of this thesis is not only to provide a comprehensive explanation of
clustering-based approximate nearest neighbor search but also to introduce and delve into
every aspect of our novel state-of-the-art method, which originated from a natural ob-
servation: The routing function solves a ranking problem, making the function amenable
to learning-to-rank. The development of this intuition and applying it to maximum in-
ner product search has led us to demonstrate that learning cluster representatives using
a simple linear function significantly boosts the accuracy of clustering-based approximate
nearest neighbor search.

Keywords

Information Retrieval; Clustering; Approximate Nearest Neighbor Search; Learning to
Rank.
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Notation

This section offers a concise reference detailing the notation and special symbols used
throughout this thesis.

a, b, c, . . . Vector

q Query point

u∗ Resulting element of a problem

A,B,C, . . . Matrix

U Dataset

X Collection of vectors

D Collection of documents

I Collection of items

Q Collection of queries

S Exact set of the k most similar vectors to the query

S̃ Set of the top-k most similar vectors to the query,
returned by an ANN algorithm

{xi}Ni=1 Set of N elements

{µi}Li=1 Set of L standard representative points

{νi}Li=1 Set of L learnt representative points

x, (xi)
N
i=1 Tuple of N elements

Z+ Set of positive integers

Rn Euclidean n-dimensional vector space

C(·) Clustering function

L Number of clusters

{ci}Li=1 Set of L non-overlapping clusters
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δ(·, ·) Distance function

⟨·, ·⟩ Inner product of two vectors

∥·∥i Li norm of a vector

| · | Absolute value

| · | Cardinality of a finite set

[0, 1] Unit interval

f(·, ·) Ranking function

τ(·) Routing function

τ́(·) Learnt linear routing function

τ̃(·) Learnt nonlinear routing function

ℓ Number of top clusters retrieved by a routing function

φ(·) Encoder (embedding model)

η(·) Numerical representation function

l(·, ·), L(·, ·) Loss function

m(·) Evaluation metric
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Code Implementation

To ensure transparency and reproducibility, the code underlying this thesis is publicly
available at https://github.com/tomvek/mips-learnt-ivf.

This repository contains the official code implementation at the base of our paper
“A Learning-to-Rank Formulation of Clustering-Based Approximate Nearest Neighbor
Search” [95], thereby providing the specific implementation of our new proposed method.
By utilizing this code, readers can replicate the experiments presented in this work, employ
the code for future research, or integrate it into other systems or projects.

Specifically, the code implementation was exclusively carried out in Python1. The
Python version and all required libraries are documented in the ‘README.md’ of the
aforementioned repository. The experiments were conducted on a server running Ubuntu2

18.04.6 LTS equipped with an Intel3 Xeon Platinum 8276L CPU, 503GiB of RAM, and
an NVIDIA4 Tesla T4 16GiB GPU.

1https://www.python.org
2https://ubuntu.com
3https://www.intel.com
4https://www.nvidia.com
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Chapter 1

Introduction

It may be opportune to begin with the definition of Information Retrieval:

Information Retrieval (IR) is the scientific discipline concerned with the effi-
cient and effective retrieval of relevant material from large collections to satisfy
the information needs.

IR is having a profound and far-reaching impact, shaping the way we live, work, and
learn. This is evident in every facet of contemporary society, as demonstrated by our use
of search engines, recommendation systems, digital libraries, social media, and dialogue
or question-answering systems among others. Extending its influence to significant fields
such as education, research, healthcare, and business.

Taking an abstract standpoint, we can view IR as a gateway to knowledge. And, as
the English philosopher Francis Bacon famously stated in 1597, ‘knowledge is power’.

This “game of knowledge” in IR is fundamentally defined by two major players: a
collection of documents, representing the entirely of information available within a system;
and the user’s query, which describes the specific information the user seeks. The final
objective is to return the best documents that most effectively address the query. In the
IR community this “game” is called top-k retrieval.

One of the most prevalent and widely used methods for the top-k retrieval problem is
to map both documents and queries into a vector space. A well-defined distance function is
then applied to calculate the similarity between the corresponding vector representations,
enabling the system to determine how well a document matches the user’s query. A visual
representation is shown in Figure 1.1.

However, despite its simplicity and elegance, this methodology presents a significant
challenge: how can we optimally represent our documents and queries as vectors, ensuring
that the actual similarity between these entities is accurately reflected in the vector space?

The literature abounds with numerous works on the presented technique and to provide
increasingly accurate answers to the aforementioned question. Among the earliest achieve-
ments, we find the vector space model based on the bag-of-words assumption [82, 84].
Subsequently, other noteworthy methods emerged, such as TF-IDF [83] and BM25 [80].
However, a significant advancement was achieved only when Machine Learning (ML) [12]
and Deep Learning (DL) [39] techniques were used to obtain the vector representation
[44, 88, 105, 57]. In particular, the turning point came with the Pre-trained Language
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Learning Cluster Representatives for Approximate Nearest Neighbor Search

Figure 1.1: Top-k retrieval problem based on the representation of documents and queries through vectors.

Models (PLMs), which, based on Transformer architectures [94], have a deep understand-
ing of the language and consequently representing documents and queries in an optimal
manner: the resulting vectors are referred to as dense vectors or embeddings. The re-
markable success of PLMs, thanks especially to the pre-training followed by fine-tuning
paradigm, has led to the creation of many retrieval models based on them, opening the
door to (PLM-based) dense retrieval models, a new generation of effective retrieval meth-
ods [106].

With the dense vector representation in hand, the subsequent step involves retrieving
the top-k most relevant documents. To accomplish this, Nearest Neighbor (NN) search
algorithms are applied. NN algorithms perform an exhaustive search, computing the
distance function between the query vector and each individual document vector within
our collection.

But NN search algorithms suffer from a significant computational cost issue. In fact, for
extensive document collections, applying these algorithms during online search becomes
infeasible. This poses another fundamental challenge given the ever-increasing volume
of information and dataset sizes. Approximate Nearest Neighbor (ANN) search [16] has
emerged as one of the most prevalent approach to tackle this problem and is currently a
hot research topic in modern IR.

ANN search algorithms are a form of approximate retrieval and are designed to trade off
accuracy for speed. This implies that the output of the algorithm is often an approximation
of the exact solution, but results are achieved significantly faster. In order to accomplish
this goal, ANN search algorithms rely on data structures known as indexes, which are
constructed in an offline phase by processing the collection of vectors. Indexes are essential
for space partitioning, enabling efficient navigation to locate the closest vectors to the query
point, according to a distance function. Conceptually, indexes act as guides that direct
the search to specific regions of the data space, without examining the entire dataset.
Analogously, if one were searching for the Eiffel Tower, an index would guide the search
directly to Paris, bypassing the need to search of all of France.

2



Chapter 1. Introduction

A prominent ANN search method is clustering-based approximation, where data points
are grouped into L geometric partitions using a clustering algorithm, and each partition is
characterized by a representative vector. Partitions and their corresponding representative
vectors constitute the index. At search time, in the online phase, a distance function is
computed between the input query point and the representative vectors of the clusters to
determine the ℓ closest partitions, a process referred to as routing. Once these partitions
are identified, multiple strategies can be adopted to extract the top-k documents, such
as employing an another ANN algorithm or performing an exhaustive search with these
partitions.

In the standard clustering-based ANN search, the design choice include: employing
Standard KMeans [61] as the clustering algorithm to partition the data points into L
clusters; utilizing the mean of the cluster data points as the representative point; selecting
the inner product (used in this work), L1 norm, L2 norm, or cosine similarity as the dis-
tance function; and setting ℓ significantly smaller than L to substantially reduce the search
space. At query time, to retrieve the top-ℓ partitions, the routing process is performed.
Using the inner product as distance function, this process can be described by the function
τ(q) = argmaxℓMq, where q ∈ Rn is the query and M ∈ RL×n is a matrix whose rows
correspond to the cluster centroids.

It is evident that the representative point is crucial in the routing process, as it deter-
mines the selection of partitions. Thus, this point must effectively encapsulate its cluster
to maximize the accuracy of retrieving top-k documents relative to the query within the
returned partitions. Consequently, the following inquiries present themselves: Is the use
of the mean the optimal choice? How can we obtain the vector that best represents the
partition?

In this work, we address these questions, developing a novel state-of-the-art clustering-
based ANN search methodology and demonstrating that learning cluster representatives
using a simple linear function significantly improves ANN search accuracy.

At the core of our research, we made a simple yet insightful observation:

The routing function solves a ranking problem, making the function amenable
to Learning-to-Rank (LTR) [17].

By developing this insight, we simply learn a linear function τ́(q; W ) = Wq, where given
a query q ∈ Rn as input and the learnt matrix W ∈ RL×n, it returns the ranking scores for
each of the L partitions. Each row of the matrixW corresponds to the learnt representative
vector for each cluster. Considering the top-1 scenario as an example, the function τ́ ranks
the partitions according to their likelihood of containing the nearest neighbor to the query.

Interestingly, all the required elements to learn this routing function are easily ac-
cessible: The training data consists of a set of queries; The ground-truth for each query
comprises the partitions containing the exact top-k documents; To determine the routing
function’s quality, we employ ranking metrics such as Mean Reciprocal Rank (MRR) [59],
which is appropriate for our task; Cross-entropy as loss function to maximize MRR [19, 15]
for the top-1 case, where each query has a single correct partition, and its generaliza-
tion [15] for top-k with k > 1.

Through experiments on diverse text datasets, embeddings and clustering algorithms,
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we demonstrate empirically that learning a simple linear routing function leads to signifi-
cant accuracy gains, establishing a new advancement in clustering-based ANN search.

1.1 Why This Thesis Matters

Approximate Nearest Neighbor (ANN) search is a hot topic today that implicitly influences
our lives. Its pervasive use touches upon areas such as recommendation systems, image and
video search, natural language processing, fraud detection, music streaming services, and
many more. ANN search is a focal point of interest within the realm of vector databases.
Numerous companies utilize ANN search algorithms and invest in them. Several prominent
models, such as ColBERTv2 [87] and PLAID [86], incorporate this technique. Moreover, it
is a widely studied research topic within the IR community due to its substantial impact.

Clustering-based ANN search is one of the primary methods for ANN search and is
central to the aforementioned discussion. This thesis not only provides an in-depth ex-
planation of this methodology, delving into its intricacies and foundational principles to
ensure a comprehensive understanding, but also introduces a novel state-of-the-art for
clustering-based ANN search through a method we have developed [95]. Additionally, our
proposed method is distinguished by its ease of integration into existing production sys-
tems utilizing clustering-based ANN search. By merely replacing the old centroids with
the newly learnt representatives, the overall implementation remains unchanged, while
significant accuracy improvements are realized.

Our findings demonstrate the potential of merging two major IR fields: LTR and ANN.
Motivating the community to explore this junction in future research.

In summary, we make the following contributions in this work:

• We provide an in-depth explanation of clustering-based ANN search and present a
general overview of LTR, outlining its core concepts;

• We present our novel clustering-based ANN search algorithm that is based on learn-
ing cluster representatives;

• We show, by means of extensive experiments, significant gains in accuracy using our
proposed method compared to the state-of-the-art baseline, for both top-1 and top-k
cases;

• We give a detailed analysis of our method, along with alternatives and variations.

1.2 Organization

The thesis is structured into six chapters.

Chapter 2, 3 and 4 respectively delve into Vector Search, Clustering-Based Approxi-
mate Nearest Neighbor Search and Learning-to-Rank. The following chapters are essential
for a complete understanding of the research presented in the Chapter 5. In particular,
Chapter 2 introduces Vector Search, starting from the concept of a vector and focus-
ing on dense vectors. The chapter concludes by presenting the Maximum Inner Product
Search problem. Chapter 3 discusses Clustering-Based Approximate Nearest Neighbor
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Chapter 1. Introduction

Search, where the focus is on its two main components: clustering and approximate nearest
neighbor search, which are explained. Regarding clustering, we concentrate on centroid-
based clustering algorithms, specifically Standard Kmeans, Spherical Kmeans and Shallow
Kmeans. Chapter 4 addresses Learning-to-Rank, providing an overview of the topic and
explaining what it means to learn a ranking function and the necessary ingredients for
doing so.

Chapter 5 provides our research project in detail. We start by offering a general
overview and then delve into the technical methodology, ensuring a comprehensive un-
derstanding of learning cluster representatives for Approximate Nearest Neighbor search,
building upon the concepts introduced in previous chapters. Subsequently, the experimen-
tal setup and results are presented, demonstrating empirically that our proposed approach
outperforms the state-of-the-art baseline. The chapter concludes with further analysis of
our method and by exploring variations of it.

The general strategy employed in Chapters 2, 3, 4 and 5 involves first presenting the
intuition and the idea underlying the method under consideration, followed by a concrete
explanation.

Finally, Chapter 6 conclude the thesis by recapitulating the main points and outlining
potential avenues for future work.

The front and the end matter of the thesis contains: Abstract, Acknowledgements,
Notation, Code Implementation, and Bibliography.
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Chapter 2

Vector Search

Vector search is a retrieval technique based on finding similar items, represented as vectors,
within large collections by considering their semantic and contextual meanings, all while
maintaining efficiency. In essence, vector search transforms the vast and chaotic expanse
of data into a navigable and manageable world through the utilization of vectors.

This technique leverages Machine Learning (ML) models, commonly referred to as en-
coders [97, 75], to transform data into high-dimensional vectors, also know as dense vectors
or embeddings. As the term embedding implicitly suggests, these vectors encapsulate the
semantic meaning behind the data they represent within their numerical representation.
It is worth noting that the nature of the data we are discussing can be of various types,
including text, images, audio, tabular data, and others. For the sake of simplicity, we will
exclusively focus on textual data in the remainder of this document.

In this context, we can conceptualize an encoder model as a function φ that maps a
document x ∈ D, where D is the collection of documents, to a vector d: φ(x) → d ∈ Rn.

A particularly effective strategy within this domain is to think of vectors as points in
a multidimensional space, with each vector element defining a position along a particular
dimension.

The fundamental property of the φ function, which is exploited by this technique,
is that the semantic and contextual similarity between items is reflected in their vector
representation. Consequently, conceptually similar items will be located in close proximity
within the high-dimensional space. This implies that we can employ a distance function δ
between these vectors as a measure of similarity to determine which items are semantically
related.

Given a query point q ∈ Rn and a collection of data points X ⊂ Rn derived from D
using φ, we can compute the distance function between q and each individual data point
u ∈ X and, based on the score of the distance metric, retrieve the top-k most semantically
similar documents, which will be in the nearest neighborhood of our query. Formally, we
can write:

(k)

argmin
u∈X

δ(q, u). (2.1)

Since a lower distance value corresponds to a higher degree of similarity. Figure 2.1
provides a visual depiction of the concepts discussed thus far.
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Chapter 2. Vector Search

Figure 2.1: A visual representation of the vector search problem within the R3 space. Given a collection
of documents, they are transformed into vector representations using an encoder. During online search,
a query q is vectorized using the same encoder, and a distance function is applied to retrieve the top-k
similar documents. In practical applications, not only are the number of documents extremely large, but
the vectors themselves are often represented by hundreds or thousands of dimensions.

Having explored vector search and its three core components—dense vectors, encoders
(embedding models), and distance functions—we will now delve deeper into each. Before
proceeding, it’s crucial to note that the relationship between items in the high-dimensional
space vary based on the chosen encoder, which may focus on certain semantic aspects over
others, and the distance function employed.

2.1 Dense Vector Retrieval

The concept of representing text as vectors is not new; early forms of such representa-
tions emerged between 1950 and 2000, with techniques like bag-of-words [82, 84], TF-
IDF [83], PPMI [26, 28], LSI [30, 81], and BM25 [80]. Subsequent advancements were
driven by Machine Learning (ML), initially leading to static embedding through models
as Word2Vec [64, 65], GloVe [71], and FastText [13], and later with more sophisticated
and expressive dynamic (or contextual) embeddings1. Among the first prominent models
for obtaining dynamic embeddings was ELMo [72]. However, the real turning point came
in 2018 with the introduction of Transformers [94], whose architecture radically changed
the landscape of dynamic embedding representation. Since then, associated technologies
like BERT [31], GPT [76], XLNet [101], and T5 [78] have consistently enhanced semantic
vector representations, particularly after 2020 with the advent of “Large” Transformers.
Large Transformers are Transformers with a larger architecture and trained on substan-
tially larger datasets (e.g., GPT-3 [14] or GPT-4 [1]). These models have demonstrated an

1While static embeddings provide a single, global representation for a given word, subword o n-gram,
contextual embeddings can assign also different representations based on the surrounding context, leading
to a more accurate understanding of the word’s, subword’s or n-gram’s meaning.
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exceptional ability to understand the language and map text to high-dimensional vector
spaces, capturing intricate semantic nuances.

While our focus lies on dense vectors, it is important to also acknowledge the existence
of sparse vectors for text representation. Sparse vectors are extremely high-dimensional,
containing many zero values, and the information is sparsely located. They are optimal
for tasks that rely on syntax, lexicon, and exact or fuzzy text matching and are generated
by algorithms such as BM25, TF-IDF, and SPLADE [35].

However, sparse vectors, due to their sparse nature, are generally less computation-
ally efficient than dense vectors. Indeed, with the latter, we can operate on contiguous
regions of memory, unlike the former. In addition, dense vectors, compared to sparse
vectors, generally capture semantic meaning and underlying abstract concepts of a text
more effectively. This makes them preferable for conducting efficient and high-performing
semantic search.

While still high-dimensional, dense vectors have a significantly lower dimensionality
than sparse vectors, containing mostly non-zero values, and effectively utilize the entire
space to represent the text. Vector search models are based on dense vectors. Dense
vectors are typically generated by machine learning models such as Transformers.

The vector space where dense vectors, generated by a given model, reside has a well-
defined structure: semantically and contextually similar objects are mapped close together,
while dissimilar objects are mapped far apart. The concept of distance and proximity
within this space, and thus the similarity or dissimilarity between elements, is precisely
defined by a distance function δ. This structure is particularly well-suited for the funda-
mental problem of top-k retrieval, where vectors serve as retrieval units and the relevance
between a query and a document is determined by measuring their similarity.

At the heart of numerous applications, including web search, recommendation systems,
question answering systems, legal search, chatbots, and more, lies the fundamental prob-
lem of top-k retrieval [16]. This problem is central to vector search and involves finding and
retrieving the k most similar objects within a collection given a query q. By representing
objects as vectors and defining similarity using a distance function δ, the top-k retrieval
problem reduces to finding the k points that minimize δ with respect to the query.

Let us now formalize the aforementioned intuition in Definition 2.1.1.

Definition 2.1.1 (Top-k Retrieval). Let be given a query point q ∈ Rn, a collection of
data points X ⊂ Rn and a distance function δ(·, ·), the data point u∗ ∈ X is one of the
top-k data points, if

u∗ ∈
(k)

argmin
u∈X

δ(q, u). (2.2)

Thus far, we have considered the embedding function (encoder) φ and the distance
function δ as given. In Section 2.2 and 2.3, we will explore their internal mechanisms.

2.2 Embedding Models

There exist various embedding models for creating dense vector representations, some
of which were mentioned in the previous section. However, the predominant approach
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Chapter 2. Vector Search

involves the use of Transformer-based Pre-trained Language Models (PLMs), due to their
superior performance [27].

PLMs are (Large) Language Models (LLMs) [67] pre-trained on massive datasets in
a self-supervised [8] manner, enabling them to understand language and capture a wide
range of syntactic and semantic properties across diverse linguistic contexts. Moreover,
these models can be fine-tuned for specific downstream tasks. Fine-tuning involves further
training the PLM on specific task-oriented datasets, leveraging the pre-acquired knowledge
to specialize it for a particular domain. This paradigm of “pre-training followed by fine-
tuning” has enable state-of-the-art performance across a broad spectrum of tasks [72, 43,
31, 78].

Transformer-based PLMs are built upon the Transformer architecture, an encoder-
decoder neural network model, based on the self-attention mechanism [94]. Self-attention
is the cornerstone for enabling the model to understand the underlying meaning of language
and construct an internal mathematical representation of it. Specifically, self-attention ef-
fectively captures the relationships and dependencies inherent in data by attending to
how the different components of the text influence each other. Transformers are inher-
ently highly parallelizable, enabling them to process large amounts of data simultaneously.
This characteristic allows for efficient pre-training of large language models. Additional
characteristics include the ability to effectively handle long text sequences and scale very
well with massive datasets.

Based on variations in the original Transformer architecture, training methods, model
dimensionality in terms of parameters, dataset type and size, number of encoder and/or
decoder layers, and other differences, a multitude of Transformer-based Pre-trained Lan-
guage Models (PLMs) have emerged, including BERT [31], DistilBERT [85] RoBERTa [60],
ALBERT [55], XLNet [101], LLaMA [93], GPT-1 [76], GPT-2 [77], GPT-3 [14], GPT-4 [1],
T5 [78], mT5 [100], BART [56], and many others.

The key point of interest is that all Transformer-based Pre-trained Language Models,
whether fine-tuned or not, and regardless of their specific characteristics, can generate
dense vector representations of input texts that encapsulate their semantic meaning.

This section has introduced modern embedding models and provided a basic under-
standing of the φ function. A more in-depth discussion of the presented models and their
specific operations is beyond the scope of this work. Readers interested in a deeper dive
into this topic may consult [67, 34, 107, 40, 66, 74, 58, 106, 57, 97].

2.3 Distance Functions

Once vector representations of both the corpus documents and the input query are ob-
tained, the subsequent and necessary step to retrieve the top-k documents is to compute
the distance function between the query point and each document point in the collec-
tion (Definition 2.1.1). We will now define the distance function, reformulating the top-k
retrieval problem according to the specific metric used.

Manhattan distance, Euclidean distance, Cosine distance, and Inner Product distance
are the most frequently employed metrics for vector distance calculation.
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(a) (b) (c) (d)

Figure 2.2: Distance metrics applied to two vectors, represented by the gray and orange dots, in a two-
dimensional space R2. (a) Manhattan distance, L1 norm; (b) Euclidean distance, L2 norm; (c) Cosine
distance; (d) Inner Product distance.

2.3.1 Manhattan Distance

The Manhattan distance, or L1 norm, (Figure 2.2a) measures the distance between two
points in a grid-like pattern, analogous to the distance traveled by a taxicab along city
blocks in R2. It is computed by summing the absolute differences of the corresponding
coordinates of the two points. In other words, imagine two points in an n-dimensional
space Rn; the Manhattan distance from one point to the other is the sum of the distances
traveled along each coordinate axis to reach the destination.

Formally, L1 norm between two points q, u ∈ Rn is defined as:

δ(q, u) = ∥q − u∥1 =
n∑

i=1

|qi − ui| (2.3)

The top-k retrieval problem using the L1 norm as a distance function to compute
similarity between the query and documents is referred to as k-Nearest Neighbors search
with L1 norm (k-NN1).

Definition 2.3.1 (k-Nearest Neighbors search with L1 norm). Let be given a query point
q ∈ Rn and a collection of data points X ⊂ Rn, the k-Nearest Neighbors search with L1
norm (k-NN1) consists in finding:

{u∗1, u∗2, · · · , u∗k} ⊆
(k)

argmin
u∈X

∥q − u∥1. (2.4)

2.3.2 Euclidean Distance

The Euclidean distance, also known as the L2 norm, (Figure 2.2b) measures the distance
between two points in straight-line. It is computed by taking the square root of the
sum of the squared differences of the corresponding coordinates of the two points under
consideration. In simple terms, the Euclidean distance is the length of the line segment
connecting the two points.

Formally, L2 norm between two vectors q, u ∈ Rn is defined as:

δ(q, u) = ∥q − u∥2 =

√√√√ n∑
i=1

(qi − ui)2 (2.5)

10



Chapter 2. Vector Search

The top-k retrieval problem using the L2 norm as a distance function is known as
k-Nearest Neighbors search with L2 norm (k-NN2).

Definition 2.3.2 (k-Nearest Neighbors search with L2 norm). Let be given a query point
q ∈ Rn and a collection of data points X ⊂ Rn, the k-Nearest Neighbors search with L2
norm (k-NN2) consists in finding:

{u∗1, u∗2, · · · , u∗k} ⊆
(k)

argmin
u∈X

∥q − u∥2 =
(k)

argmin
u∈X

∥q − u∥22. (2.6)

2.3.3 Cosine Distance

The cosine distance (Figure 2.2c) is defined as one minus the cosine similarity. The cosine
similarity measures the similarity between two vectors in Rn based on the cosine of the
angle between them, irrespective of their magnitude. It is calculated by computing the
dot product of the two vectors and dividing it by the product of their Euclidean norms.
Intuitively, the smaller the angular distance between vectors, the greater their similarity.

Formally, the cosine distance between two vectors q, u ∈ Rn, with an angle θ between
them, is defined as:

δ(q, u) = 1− cos(θ) = 1− ⟨q, u⟩
∥q∥2∥u∥2

= 1−
∑n

i=1 qiui√∑n
i=1 q

2
i

√∑n
i=1 u

2
i

(2.7)

The top-k retrieval problem using the cosine distance as a distance function is referred
to as k-Maximum Cosine Similarity Search (k-MCS).

Definition 2.3.3 (k-Maximum Cosine Similarity Search). Let be given a query point
q ∈ Rn and a collection of data points X ⊂ Rn, the k-Maximum Cosine Similarity Search
(k-MCS) consists in finding:

{u∗1, u∗2, · · · , u∗k} ⊆
(k)

argmin
u∈X

1− ⟨q, u⟩
∥q∥2∥u∥2

=
(k)

argmax
u∈X

⟨q, u⟩
∥q∥2∥u∥2

. (2.8)

2.3.4 Inner Product Distance

The inner product distance, also known as the dot product distance, (Figure 2.2d) between
two vectors is defined as the negative of their inner product. The inner product measures
the similarity between two vectors in Rn, considering both their magnitude and direction.
In simple terms, the longer two vectors are, i.e., the greater their magnitude, and the
more closely aligned they are, i.e., the smaller the angle between them, the higher their
similarity.

Geometrically, the inner product can be interpreted as the projection of one vector onto
the line defined by the other. The similarity between the two vectors is then computed by
multiplying the length of this projection by the length of the vector that defines the line.
The result is positive if the vectors point in the same direction and negative otherwise.

Formally, the inner product distance between two vectors q, u ∈ Rn is defined as:

δ(q, u) = −⟨q, u⟩ = −
n∑

i=1

qiui (2.9)
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k-Maximum Inner Product Search (k-MIPS) is a variant of the top-k retrieval problem
where similarity between the query point and a data point is measured using the inner
product.

The k-NN2 and k-MCS problems are both particular cases of the broader k-MIPS
problem [16].

Definition 2.3.4 (k-Maximum Inner Product Search). Let be given a query point q ∈ Rn

and a collection of data points X ⊂ Rn, the k-Maximum Inner Product Search (k-MIPS)
consists in finding:

{u∗1, u∗2, · · · , u∗k} ⊆
(k)

argmin
u∈X

−⟨q, u⟩ =
(k)

argmax
u∈X

⟨q, u⟩. (2.10)

This work focuses on the k-MIPS problem.
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Chapter 3

Approximate Nearest Neighbor
Search

Having explored the most widely used vector similarity metrics and defined the variants of
the top-k retrieval problem (k-NN1, k-NN2, k-MCS, and k-MIPS) in relation to them, we
now turn our attention to applying an algorithm to retrieve the top-k data points given a
query point. For simplicity and given that the distance function used in this work is the
inner product distance, we focus our discussion on the k-MIPS problem.

In order to accurately retrieve the top-k most relevant documents for a given query,
thus providing an exact solution to the k-MIPS problem, an exhaustive search algorithm,
also known as a brute-force algorithm, is required. This algorithm first computes the
inner product between the query point and every data point within the collection, and
then retrieves the k data points with the highest similarity scores.

Although this approach is conceptually straightforward, the associated computational
cost is substantial, rendering it impractical and highly inefficient at query time, especially
in modern systems that handle extremely large numbers of high-dimensional vectors. As
evidence, we can consider the time complexity of computing the dot product between a
query point and every data point in the collection, which is O(|X |n), where |X | represents
the number of data points and n represents the dimensionality of the vector space. This
makes it evident that exhaustive search algorithm is prohibitive for billions of vectors with
thousands of dimensions.

Approximate Nearest Neighbor (ANN) search emerges as the technique to address this
challenge, providing an efficient and scalable solution. The efficiency and scalability of an
ANN search method are achieved by sacrificing perfect accuracy and introducing a degree
of approximation in the search results. Indeed, ANN is an approximate retrieval technique
that returns an approximate top-k set as output, rather than an exact one.

In order to assess the effectiveness of an approximate top-k solution provided by an
ANN search algorithm, and quantify the accuracy of the search, we calculate the propor-
tion of data points in the returned solution that are also present in the exact top-k set.
Formally, this can be expressed as: |S ∩ S̃|/k, where S represents the set of relevant items
(exact top-k) and S̃ represents the set of retrieved items returned by the ANN algorithm.

ANN search algorithms are instrumental in modern vector search systems, offering
an optimal trade-off between accuracy and efficiency. By sacrificing a small degree of
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precision, ANN can rapidly identify a promising subset of vectors from the vector collection
that is likely to contain the desired results. This subset is then subjected to more rigorous
search methods, such as a secondary ANN algorithm with a stronger emphasis on accuracy
or, for sufficiently small subsets, an exhaustive search.

In essence, vector search systems operate as pipelines, beginning with the entire corpus
and primarily leveraging ANN algorithms to iteratively reduce the search space, where at
each stage, the algorithm selects a smaller subset of vectors, ultimately returning the top-
k most relevant results. These results can subsequently be fed into more sophisticated
ranking algorithms for further refinement.

This approach enables the development of extremely fast search systems capable of
achieving nearly flawless accuracy.

Technically, an ANN setup first builds a data structure—the index—from the given
collection of vectors, in an offline phase. This index is then used to rapidly identify the
most similar vectors to a new query point.

The landscape of ANN algorithms is vast, encompassing a wide array of approaches,
including tree-based [16, 9, 37, 29, 11, 5], hashing-based [16, 47, 45, 38, 96], graph-based [16,
62, 36, 69, 51], and clustering-based [16, 52, 18, 25, 7] methods. This work concentrates
on the clustering-based approach, also known as the Inverted File (IVF) method.

3.1 Clustering-Based ANN Search

Clustering-based ANN search is a prominent ANN search method, demonstrating strong
empirical performance [7] and widespread adoption in production systems1. This method-
ology is grounded in a simple yet acute intuition: Leveraging the intrinsic clustering
behavior of data points within the search space. By exploiting these natural partitions,
top-k data points for a query can be retrieved by examining solely the most similar clus-
ters, thus significantly reducing the search space while maintaining a high level of retrieval
accuracy.

More specifically, the clustering-based ANN methodology first takes the given collec-
tion of P data points X ⊂ Rn and applies a clustering function to them, mapping each
point to a specific cluster, C : Rn → {1, 2, . . . , L}, thereby partitioning the vectors un-
der consideration. Subsequently, each partition is represented by a vector. The resulting
partitions and their respective representative vectors constitute the index.

At query time, when a query point q is provided as input, a routing function τ : Rn →
argmaxℓRL is invoked to calculate the similarity between the representative vectors and q.
The function then returns the clusters associated with the top-ℓmost similar representative
points to the query q. Put differently, the routing function τ maps a query vector q to
the ℓ most similar partitions to it, within which the top-k data points are most likely to
be found. In order to retrieve the ℓ most similar partitions, τ essentially solves a top-
ℓ retrieval problem where the collection of points is represented by the representatives
points of clusters. Figure 3.1 offers a visual depiction of the core ideas underlying the
clustering-based ANN method discussed so far.

1https://turbopuffer.com/blog/turbopuffer,
https://www.pinecone.io/blog/serverless-architecture
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Figure 3.1: Clustering-Based Approximate Nearest Neighbor (ANN) Search. The left-hand side presents
a visual representation of the space partitioned into clusters, while the right-hand side illustrates the
corresponding index structure. Both figures depict the process of computing the similarity between a
query point and the cluster representative points.

Once the ℓ partitions have been obtained, to retrieve the top-k data points relative to
the query q, a second search phase is conducted considering only the data points within
those partitions. The search within these clusters can be exhaustive—as performed in
this work—using a brute-force algorithm, or by employing another ANN algorithm. It is
trivial to observe that by using ℓ ≪ L, the search space for the second phase is significantly
reduced, leading to more efficient search at the cost of potential accuracy loss.

A standard choice [7, 16, 52] for clustering-based ANN is to use the Standard KMeans [61]
as the clustering algorithm C, setting the number of clusters to L = O(

√
P ), and defining

the routing function τ as:

τ(q) =
(ℓ)

argmin
i=1,...,L

δ(q, µi), (3.1)

where µi, the representative of the i-th cluster, is the cluster centroid defined as the
mean of the data points within it: µi = 1

|C−1(i)|
∑

u∈C−1(i) u, with C−1(i) := {u |u ∈
X , C(u) = i}.

As we have observed, clustering plays a pivotal role in this approach, with the Standard
KMeans algorithm serving as the default choice. Consequently, in the subsequent section,
we delve deeper into these concepts. Firstly, we provide an overview of clustering, followed
by a detailed explanation of the Standard KMeans and two other interesting variants
employed in this work: Spherical KMeans [32] and Shallow KMeans [25].

3.1.1 Clustering

The initial question that must be addressed is: what is clustering?
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Given a collection of objects, clustering is a technique designed to group similar
objects into the same cluster and dissimilar objects into different clusters.

The application of clustering is ubiquitous, finding utility in fields such as machine learn-
ing, bioinformatics, pattern recognition, social network analysis, information retrieval,
computer vision, climatology, healthcare, economics, and many more. Its application
across such diverse fields is not surprising, given the inherent tendency of objects or data
points to form natural clusters. This makes clustering an optimal approach for many
applications.

It is crucial to emphasize that a clustering function, designed to uncover structures and
patterns within a given collection of objects to create groups or partitions, necessitates a
key element: a metric for comparing these objects. This metric is the core of the objective
function. Indeed, clustering is an optimization problem where the goal is to achieve groups
with the highest intra-cluster similarity and the lowest inter-cluster similarity.

In relation to the problem described in the preceding chapters of retrieving the top-k
documents with the highest accuracy and efficiency from a large collection of data points,
it is intuitive that clustering aligns well with this task. As discussed in Section 2.1, the
vector representation has the property that semantically similar objects are mapped close
together in the space, while dissimilar objects are mapped far apart. Hence, by clustering
semantically similar objects, we can accelerate the search for the top-k documents, because
we can focus our attention solely on the vectors within the clusters most similar to a given
query q. Resulting in an effective ANN algorithm.

The literature presents a variety of types of clustering [98], including partition-based,
density-based, distribution-based, hierarchical, and graph-based, each optimal in specific
scenarios. However, in this context, we will focus on the partitioning approach and examine
the default algorithm employed for clustering-based ANN, namely the KMeans algorithm.

3.1.2 Standard KMeans

Partition-based clustering is a type of clustering that groups data points into non-overlapping
partitions. The KMeans algorithm is a prominent example of this type of clustering.

The KMeans algorithm is an iterative clustering algorithm that returns a local optimum
for the KMeans optimization problem, which is defined in 3.1.1.

Definition 3.1.1 (KMeans problem). The KMeans problem, given L ∈ Z+ and a collec-
tion of data points X ⊂ Rn, consists of identifying L centroids {µi}Li=1 that minimize the
objective function E , defined as:

E({µi}Li=1) =
∑
x∈X

∥x− argmin
µi∈{µi}Li=1

∥x− µi∥22∥22. (3.2)

Considering the definition 3.1.1, it is clear that problem is intrinsically linked to the
concept of clustering. Specifically, the KMeans problem can be reformulated as finding
the L partitions of a collection of data points X such that the centroids of these partitions
minimize the Equation 3.2.

The KMeans clustering algorithm aims to create L partitions that minimize the ob-
jective function E (Equation 3.2), also known as inertia. To achieve this, after an initial
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centroids initialization phase, the algorithm iteratively performs two steps: first, each
data point is assigned to the nearest centroid; then, the centroids are recalculated based
on the new cluster memberships. This iterative process ensures a decrease in inertia until
a local optimum is reached [6]. The algorithm terminates when a stopping criterion is sat-
isfied, such as after t iterations or when the change in E is less than a specified threshold,
|E({µi}Li=1)

(i) − E({µi}Li=1)
(i+1)| < ϵ.

The pseudocode for the Standard KMeans clustering algorithm is presented in Algo-
rithm 1.

Algorithm 1 Standard KMeans Algorithm

1: Input: number of clusters L, collection of data points X ⊂ Rn

2: Output: cluster centroids [µ1, . . . , µL] ∈ Rn×L, non-overlapping partitions {ci}Li=1

3: Randomly select L cluster centroids µ1, . . . , µL

4: repeat
5: {ci}Li=1 = {}
6: for each x ∈ X do
7: ci = ci ∪ {x}, where i := argmini=1,...,L∥x− µi∥22
8: for i ∈ {1, . . . , L} do
9: µi =

1
|ci|

∑
x∈ci x

10: until µ1, . . . , µL converge

The KMeans algorithm is one of the most widely used, recognized, and popular clus-
tering algorithms [49, 103, 98, 46, 3, 10]. In general, the Standard KMeans algorithm
and its variants, in addition to being intrinsically simple to understand and implement,
are also efficient algorithms with low time complexity and high computational efficiency,
making them well-suited to use on massive datasets [98, 103, 46, 23, 89, 99].

However, the KMeans algorithm is not without its drawbacks, such as sensitivity to
the initial choice of centroids, the requirement of specifying the number of clusters a priori,
difficulties in achieving a global minimum for complex datasets, sensitivity to noise data
and outliers, and suboptimal performance on non-convex data; although numerous studies
and variants have been proposed to address these issues [98, 46, 3, 10, 6].

Let us now turn our attention to two variants of the Standard KMeans algorithm:
Spherical KMeans and Shallow KMeans.

3.1.3 Spherical KMeans

Both Spherical KMeans [32] and Standard KMeans are commonly employed in clustering-
based ANN [18].

The fundamental distinction between the two aforementioned algorithms lies in their
respective focus on similarity measures and the consequent objective functions. While
Standard KMeans algorithm minimizes an objective function based on Euclidean distance
(Definition 3.1.1), Spherical KMeans minimizes an objective function that employs cosine
distance (Equation 2.7) to form L partitions. By L2-normalizing all x ∈ X to unit length,
Spherical KMeans is an iterative algorithm that aims to find L partitions maximizing the
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following objective function:

P({µi}Li=1) =
∑
x∈X

⟨x, argmax
µi∈{

µi
∥µi∥2

}Li=1

⟨x, µi⟩⟩. (3.3)

As with the KMeans problem [4], determining the globally optimal partitions in this
case is also NP-hard [54]. Thus, Spherical KMeans, like Standard Kmeans, is an approx-
imation algorithm for the optimal solution. Nonetheless, it is an efficient and effective
iterative heuristic, prone to local optima, and capable of yielding reasonable results [32].

Algorithm 2 provides the pseudocode for the Spherical KMeans clustering algorithm.

Algorithm 2 Spherical KMeans Algorithm

1: Input: number of clusters L, collection of data points X ⊂ Rn

2: Output: cluster centroids [µ1, . . . , µL] ∈ Rn×L, non-overlapping partitions {ci}Li=1

3: Randomly select L cluster centroids µ1, . . . , µL on the unit sphere
4: x = x

∥x∥2 ∀x ∈ X
5: repeat
6: {ci}Li=1 = {}
7: for each x ∈ X do
8: ci = ci ∪ {x}, where i := argmaxi=1,...,L⟨x, µi⟩
9: for i ∈ {1, . . . , L} do

10: µi =
1
|ci|

∑
x∈ci x

11: µi =
µi

∥µi∥2 ▷ µi is projected on the unit sphere

12: until µ1, . . . , µL converge

Comparing Algorithm 1 with Algorithm 2, the Spherical KMeans algorithm introduces
the following modifications: initial L2-normalization of all vectors x ∈ X ; cluster assign-
ment based on inner products between data points and centroids during iterations; and,
the projection of centroids onto the unit sphere at the end of each iteration.

The Spherical KMeans clustering algorithm, as defined, is a suitable choice for clustering-
based ANN with cosine distance (Equation 2.7) or inner product distance (Equation 2.9)
as the distance metric of interest.

3.1.4 Shallow KMeans

We now turn our attention to a particularly simple, computationally efficient, and inter-
esting clustering algorithm, which we refer to as Shallow KMeans. The corresponding
pseudocode is presented in Algorithm 3.

Shallow KMeans can be viewed as a single iteration of the KMeans algorithm. It
involves randomly selecting L data points from X as initial cluster representatives, followed
by assigning each data point to the nearest representative. The cluster representatives can
then be updated, for example, by computing the mean of the points in each cluster or
employing other strategies. However, this update step is not mandatory, and the initial L
points can be used as final representatives. In our implementation, the distance function
employed is the inner product distance (Equation 2.9), and the final cluster representatives
coincide with the initial ones.
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Algorithm 3 Shallow KMeans Algorithm

1: Input: number of clusters L, collection of data points X ⊂ Rn

2: Output: cluster representatives [r1, . . . , rL] ∈ Rn×L, non-overlapping partitions
{ci}Li=1

3: Randomly select L data points s1, . . . , sL from X
4: {ci}Li=1 = {}
5: for each x ∈ X do
6: ci = ci ∪ {x}, where i := argmini=1,...,L δ(x, si)

7: Select a representative point for each cluster r1, . . . , rL

The Shallow KMeans clustering algorithm was originally introduced in [25], where
the authors proposed an extremely simple pruning scheme, termed cluster pruning, to
efficiently address the top-k retrieval problem (Definition 3.1.1) while maintaining good
retrieval quality. The clustering algorithm, in particular, is used in the preprocessing phase
of cluster pruning scheme with some variations. Furthermore, [25] demonstrated that the
proposed approach, and consequently the underlying clustering algorithm, is both efficient
and accurate in retrieving the top-k documents for a given query, achieving remarkable
performance. As we will also see in this work.
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Chapter 4

Learning-to-Rank

To realize the proposed method, which will be detailed in the subsequent chapter, we
have employed a widely studied and researched technique within the scientific community:
Learning-to-Rank (LTR). By developing a model that harnesses the power of LTR to
enhance ANN search. The results obtained highlight the potential of combining these two
fields, thus motivating the community to further investigate into this intersection.

The objective of this chapter is to provide an overview of LTR and equip readers with
the necessary knowledge to fully understand the ranking model employed in our work. For
a deeper dive into LTR, we suggest referring to [59, 17].

We will now introduce Learning-to-Rank through the following fundamental question:
what is LTR?

Learning-to-Rank (LTR) is a supervised Machine Learning (ML) technique
aimed at learning a function to solve a ranking problem.

More specifically, the learnt function is a ranking model or ranking function f : Q×IU →
RU , which, given a query q ∈ Q and a set of U items d = (di)

U
i=1 ∈ IU as input, computes

a score si ∈ R for each query-item pair: f(q, (di)
U
i=1) = (si)

U
i=1 = s ∈ RU . These scores are

then used to order the items by relevance. A visual depiction is provided in Figure 4.1.

To illustrate LTR more clearly, image our ranking function f as a pastry chef. The
chef’s task is to arrange a set of pastries according to a customer’s preferences. By as-
signing a relevance score to each pastry based on the customer’s order, the chef create
a ranked list. Through training and learning from mistakes, the chef can improve their
ability and generate more accurate rankings.

Staying within the analogy, in the next section we will delve deeper into the pastry
chef and explore how they actually learn.

4.1 Learnt Ranking Function

The learnt ranking function is the mathematical function learnt through supervised learn-
ing techniques by LTR models. To learn this function, we need the following key ingredi-
ents.
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Figure 4.1: A ranking system is proposed that, given a set of documents and a query as input, outputs the
documents ordered by their relevance to the query. This relevance is obtained through a ranking model,
which assigns a score to each document-query pair, reflecting the document’s pertinence to the query.

• Dataset U
The dataset U serves as the raw material for learning the function f , providing the
data required to train, validate, and test it. Typically, an LTR dataset consists of a
set of triplets (q,d,y) ∈ Q× IU ×YU , where q symbolizes the query, d = (di)

U
i=1 is

the collection of items to be ranked in relation to q, and y = (yi)
U
i=1 represents the

ground-truth relevance judgment for each query-item pair.

Formally, U := {(qj ,dj ,yj)}Nj=1.

• Numerical Representation Function η

The function η takes as input a triplet from the dataset U and outputs the corre-
sponding numerical representation that will be used to train, validate, or test f in
practice. The nature of the η’s output is determined by the strategy employed to
solve the ranking problem, and consequently on the learning algorithm, the input
and output spaces, and additional relevant factors.

To illustrate the function more clearly, let us consider some examples. η might take
as input an image query, a collection of text documents, and a binary ground-truth
with ‘yes’ and ‘no’ labels; it could then generate a vector representation of the image
using ResNet [41], a vector representation of the documents using BERT [31], and a
binary vector representing relevance. Alternatively, η could receive a textual query,
a collection of textual documents, and a relevance score for each query-document
pair; producing a feature vector for each pair and a corresponding vector where the
relevance score is normalized between 0 and 1.
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• Evaluation Metric m

The evaluation metric m is indispensable for assessing the quality of rankings pro-
duced by the ranking function, providing an objective measure of the model’s per-
formance and effectiveness on the specific ranking task. In other words, it offers a
quantitative evaluation that enables us to understand how well the model is per-
forming.

Various metrics exist, each measuring different aspects of the ranking. The choice
of the most appropriate metric depends on the specific ranking problem. In the
following, we provide a selection of ranking metrics: Mean Reciprocal Rank [104],
Mean Average Precision [104], Normalized Discounted Cumulative Gain [50], Rank-
Biased Precision [68], and Expected Reciprocal Rank [24].

• Loss Function l

The loss function l, also known as the error function, cost function, or objective
function, quantifies the error between the predicted value (output of f) and the true
value (ground-truth). The loss function is instrumental in training the function f ,
serving as a guiding objective for optimization algorithms [90]. During training, op-
timization algorithms aim to minimize the loss function by updating the parameters
of f , thereby improving the accuracy of the resulting rankings. The mathematical
formalization of the loss function is as follows: l(f(q,d),y) = l(ŷ,y).

In the context of ranking, minimizing a loss function is equivalent to maximizing
a ranking metric. However, the non-continuous and non-differentiable nature of
ranking metrics presents an obstacle for optimization algorithms. To circumvent
this issue, surrogate objective functions [20, 21, 22, 15, 73, 91] are utilized. These
are continuous and differentiable functions derived from ranking metrics. Their use
allows optimization algorithms to run smoothly and optimize objective functions
consistent with ranking metrics.

• Hypothesis Class of f

The hypothesis class represents the family of functions to which f belongs. Hy-
pothesis classes can be linear functions, polynomial functions, and, among the most
commonly used in LTR, decision forests and deep neural networks [17]. The goal is
to identify the most suitable hypothesis class for a given problem, as using all the
other aforementioned ingredients (U , η, and l with an optimization algorithm), we
will obtain the optimal function within that class, which will be our learnt ranking
function f(·, ·; θ), where θ represents the learnt parameters that minimize the loss
function.

To make this more intuitive, consider the analogy of a nail in a wall. Our goal is
to remove this nail using a specific tool (f). To achieve this, we can employ various
tools (which represent the hypothesis classes), such as the ‘class of pliers’, the ‘class
of hammers’, the ‘class of screwdrivers’, and many others. After careful analysis,
we decide, based on our considerations, to select the ‘class of pliers’ (the chosen
hypothesis class), which contains a variety of pliers (family of functions), including
the particular pair of pliers (f) recommended by a domain expert who selected it
according to specific analyses.
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Through the careful selection and combination of these ingredients, it is possible to develop
highly effective learnt ranking functions capable of solving ranking problems satisfactorily.

To gain a more comprehensive understanding of the learning process for the ranking
function f , we revisit the necessary components and illustrate how these elements interact.

Central to our learning and evaluation process for function f is the dataset U :=
{(qj ,dj ,yj)}Nj=1, which is typically partitioned into three subsets: training, validation, and
test sets [12]. The training set comprises the triples used to train the ranking function,
the validation set is used to evaluate the model’s performance during training and to tune
hyperparameters, and the test set is used to assess the performance of the final learnt
ranking function f .

Once the dataset is acquired, the subsequent step involves applying a numerical rep-
resentation function, η. This function transforms each dataset instance into a numerical
representation tailored to the specific ranking problem and chosen solution strategy. The
resulting representations are then employed to train and evaluate the ranking function f .
The quality and characteristics of f are heavily influenced by η.

While η plays a vital role, the selection of a suitable ranking metric m is equally
important. A ranking metric is essential for objectively evaluating the performance of a
ranking function. Our goal is to learn a function f that maximizes the chosen ranking
metric, which is achieved by minimizing a surrogate objective function l that is correlated
with the metric to be maximized. The function l is then employed to train f .

The final step prior to training the ranking function f involves selecting the hypothesis
class. This choice defines the space of possible functions from which the learnt ranking
function will be extracted. It is important to note that, similar to the selection of the
numerical representation function η, the ranking metric m, and the loss function l, there
is no universally optimal choice for the hypothesis class. Instead, this selection requires
careful consideration of the specific ranking problem.

Having prepared all the necessary components, we can now proceed with the actual
training of the ranking function f . Specifically, we utilize the training set and validation
set, appropriately transformed by η, along with the loss function l and an optimization
algorithm [90]. The training process involves optimizing the parameters of f(·, ·; θ) using
an optimization algorithm to minimize the loss function on the training set. Beyond
the training set, which is essential for parameter estimation, the validation set plays a
pivotal role for hypothesis (function) selection. By assessing the predictive performance
of different functions within the hypothesis class on the validation set, we can determine
the function that is most likely to generalize well to new, unseen data, thereby enabling
us to select the optimal learnt ranking function f .

Once the final learnt ranking function, f , has been obtained, it is evaluated on the test
set using the selected metric, m, to determine its effectiveness in solving the given ranking
task.
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Learning Cluster Representatives

In this chapter, we delve into the details of our novel methodology for MIPS-based
clustering-based ANN search, which represents the state-of-the-art in the field. This
methodology was presented at SIGIR 20241 in paper [95]. In this thesis, we expand
upon [95] and provide a more in-depth analysis. We begin by exploring the intuition and
motivations behind our research. Subsequently, we formalize the methodology rigorously,
outlining its fundamental principles and components. We then present the experimental
setup and discuss the obtained results, extending beyond those reported in the afore-
mentioned paper. Finally, we dedicate a section to further analysis, where we explore a
variation of the methodology and evaluate its corresponding results.

5.1 Intuition

In Section 3.1 on clustering-based ANN search, we saw that at query time, the fundamen-
tal element analyzed by the routing function τ , to return the ℓ most similar partitions
to a given query, is the representative element of each cluster. The standard approach
consists of computing the mean of the points within the cluster as the representative point
(Equation 3.1).

However, a natural question arises: Does there exist a representative point that better
captures the semantics of the cluster and its internal elements, such that when a distance
function δ is applied, the returned score more accurately reflects the true similarity between
the query and the cluster? Our work provides an affirmative answer to this question by
introducing learnt representative points.

Let us begin with a simple yet crucial observation to understand how the learnt repre-
sentative points are obtained: The routing function τ is a ranking function that addresses
the problem of ordering partitions from the most similar, which has the highest probability
of containing the actual top-k documents for a given query, to the least similar, where we
have the lowest probability of finding the resulting top-k documents.

This observation implies that the function τ can be learnt using Learning-to-Rank
(Section 4), and in particular, we can learn it using a simple linear function τ́(q; W ) = Wq,
with q ∈ Rn and W ∈ RL×n, where the i-th row of W is the learnt representative vector

1https://sigir-2024.github.io/
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Figure 5.1: Visual representation of the learning process of the routing function τ́ using LTR to obtain the
learnt representative points. Specifically, three phases are depicted: dataset creation, learning the routing
function, and visualization of clusters with the learnt points.
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of the i-th partition. This yields a learnt ranking function τ́(q; W ) = Wq that, given a
query q, outputs a ranking score for each of the L partitions under consideration, with W
containing the new representatives of the partitions.

Concretely, to learn the routing function τ́ , we consider the top-k case with k = 1.

It is straightforward to observe that the quality of routing can be evaluated using a
ranking metric: Given a query, the routing function assigns to each partition a likelihood
of containing the nearest neighbor, while the single relevant response (ground-truth) is the
partition that actually contains the nearest neighbor. An appropriate metric we can use is
MRR [104]. Consequently, with MRR as the appropriate metric and since each query has
a single relevant answer, the most suitable surrogate objective to optimize is cross-entropy
loss [15, 19].

Regarding the dataset, it is also easily obtainable. All that is needed is a set of
queries where, for each query, as ground-truth relevance label, we have the corresponding
partition that contains its nearest neighbor. The corresponding partition can be found by
simply retrieving the relevant top-1 document with an exhaustive search and subsequently
identifying its cluster of belonging.

Finally, by representing the query as a vector in Rn and the ground-truth as a binary
vector with a 1 set for the partition containing the top-1 document, and selecting a hy-
pothesis class of linear neural networks [39] with only an input layer (with the number of
units equal to the dimension of the query vector) and an output layer (with units equal
to the number of clusters) followed by with a softmax function, we have all the necessary
components to learn τ́ , where the learnt representative points in this case are the weights
W of the neural network. A graphical illustration of the aforementioned is presented in
Figure 5.1.

Building upon this intuition, we have experimentally demonstrated that the learnt
representative points significantly improve the accuracy of clustering-based ANN search.
Moreover, an appealing aspect of this methodology lies in its easy integration into a
production system that already implements a routing mechanism. By merely replacing
the old representative points with the learnt points, without any additional modifications.

5.2 Methodology

In this section, we formally introduce the methodology employed to learn the L representa-
tive points, where L denotes the number of clusters. We provide a rigorous mathematical
formulation, detailing the steps involved, starting from the problem to be solved.

Given a collection of data points X ⊂ Rn and a query q ∈ Rn, obtained from an
embedding function φ, we aim to retrieve the top-k most similar data points to q, as
measured by the inner product, thereby solving the k-MIPS problem (Definition 2.3.4):

{u∗1, u∗2, · · · , u∗k} ⊆ argmax
(k)
u∈X ⟨q, u⟩ (Equation 2.10). As shown in Section 3.1, an efficient

practical solution for this problem, though approximate, involves employing clustering-
based ANN search approach.

Clustering-based ANN search applies a clustering algorithm C : Rn → {1, 2, . . . , L} to
partition the dataset X into a set of L non-overlapping clusters {ci}Li=1, where each cluster
is represented by a representative point µi. In the standard approach, µi is computed as
the mean of the points in cluster ci. Subsequently, given a query q, a routing function
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τ : Rn → argmaxℓRL retrieves the top-ℓ clusters. To retrieve the top-ℓ clusters, τ first
assigns a similarity score to each cluster by computing the inner product between q and
each µi, and then returns the ℓ clusters with the highest scores.

Mathematically, τ can be represented as τ(q; M) = argmax
(ℓ)
i=1,...,L(Mq), where q ∈ Rn

and M ∈ RL×n whose i-th row is µi. The search space for the final top-k documents will
be restricted to points contained in the top-ℓ clusters.

In this work, we propose to replace {µi}Li=1 with learnt representative points {νi}Li=1.
To this end, we learn a routing function τ́(q; W ) = Wq, where W ∈ RL×n, using LTR.
W will substitute M in the original formulation.

In order to learn the linear function W , the training dataset consists of a set of pairs:
(q, (bi)

L
i=1). Here, q is a query point ∈ Rn, and (bi)

L
i=1 is a binary vector of length equal

to the number of clusters, with exactly one element set to 1. The 1 is located in the i-th
position corresponding to the i-th cluster, ci, that contains the top-1 document for query
q. (bi)

L
i=1 represents the ground-truth for q.

To train τ́ another necessary ingredient is to define a loss function. Given that we aim to
maximize the Mean Reciprocal Rank (MRR), a metric well-suited for this task, the cross-
entropy loss emerges as an appropriate choice. Notably, prior research, as demonstrated in
[15] and [19], has established cross-entropy loss as a consistent surrogate for MRR under
the assumption that each query has at most one relevant item with probability 1, as is the
case in our setting.

For completeness, we provide the mathematical definitions of MRR and cross-entropy
loss for a single query q. MRR is given by:

MRR(q) =
1

|q|

|q|∑
i=1

1

r(qi)
, (5.1)

in which |q| is the cardinality of the query set, and r(qi) represents the rank position of
the first relevant item for the query qi. The cross-entropy loss (CE) for a single query q
is computed as:

lCE(s, b) = −
L∑
i=1

bi log softmax(s)i = −
L∑
i=1

bi log
exp(si)∑L

j=1 exp (sj)
, (5.2)

whereby s = Wq = τ́(q; W ) and b = (bi)
L
i=1.

Specifically, our final objective function, which we aim to minimize to learn the function
τ́ , is the cross-entropy loss across the entire training query set, defined as:

LCE(S,B) =
1

N

N∑
i=1

lCE(Si, Bi), (5.3)

where S = (si)
N
i=1 = (Wqi)

N
i=1 and B = (bi)

N
i=1. N is the number of samples in the

training query set.
With the training query set and cross-entropy loss in place, coupled with the selection

of an optimizer, we are now equipped to learn τ́ and obtain the learnt representative points
{νi}Li=1.
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5.2.1 Generalizing to Top-k

The foregoing provides a formal description of how to learn a function that, given a query,
accurately identifies the cluster containing the top-1 document. This approach will be
used throughout our experiments, demonstrating satisfactory performance not only in the
1-MIPS case but also in the 10-MIPS and 100-MIPS scenarios.

However, generalizing the learning approach for the routing function τ́ to the top-k
problem with k > 1 is straightforward. We will now demonstrate why, by defining the
training query set and loss function for this context.

The training query set consists of a collection of pairs: (q, (bi)
L
i=1), where q represents

a query, and (bi)
L
i=1 is a binary vector. The i-th position of (bi)

L
i=1 is set to 1 if and only

if the i-th cluster contains at least one of the top-k documents relevant to q. Formally,
given a set S containing the top-k data points for query q, the set of clusters that contain
at least one element of S is defined as: {ci | ci ∈ {ci}Li=1, ci ∩ S ≠ ∅}.

Regarding the cross-entropy loss function over the entire training query set, it can be
updated following the formulation outlined in [15] as follows:

Ltop−k
CE (S,B) = − 1

N

N∑
i=1

L∑
j=1

2Bij − γij∑L
z=1 2

Biz − γiz
log

exp(Sij)∑L
z=1 exp(Siz)

(5.4)

with S, B and N as defined in LCE(S,B), and γ’s sampled uniformly from [0, 1].

With this formulation, it is possible to learn a function τ́ that, given a query, is trained
to identify the partitions containing the top-k documents, thus generalizing from the top-1
training case.

5.3 Experimental Setup

The following section presents the experimental setup used in this work.

Datasets

Three publicly available datasets were utilized for this research2.

• MS MARCO [70]: Large scale MAchine Reading COmprehensive dataset focused
on deep learning in search. It comprises of 8,841,823 short passages and 909,824
train queries.

• HotpotQA [102]: Large scale Wikipedia-based question answering dataset, com-
prising of 5,233,235 documents and 97,852 queries.

• FEVER [92]: Fact Extraction and VERification dataset consists of 5,396,138 doc-
uments and 13,332 queries.

2https://ir-datasets.com
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Embedding Models

To transform queries and documents into n-dimensional dense vectors, we employed em-
bedding models. Specifically, we utilized the following Transformer-based Pre-trained
Language Models (PLMs).

• TAS-B3 [42]: The model projects text inputs into 768-dimensional dense vectors.
A distinguishing feature of this model is the employment of balanced topic aware
sampling.

• Contriever4 [48]: The model outputs 768-dimensional dense vector representations
of the input texts. Contrastive learning is the principal distinguishing technique in
the model.

• all-MiniLM-L6-v25, all-mpnet-base-v26 and all-distilroberta-v17 [79]: Sen-
tence transformer models that map text into dense vector spaces of dimensionality
384, 768, and 768, respectively. These models were obtained by fine-tuning a pre-
trained base model8 on a massive and diverse dataset comprising over 1 billion text
pairs.

Baseline

The baseline used for comparison with our learnt routing function is defined as follows:
τ(q) = Mq, where the rows of M represent the centroids of the clusters returned by
the clustering algorithm. In other words, to assess the effectiveness of our strategy, we
compare the learnt representative points {νi}Li=1 with the standard representative points
{µi}Li=1.

Implementation Details

The routing function τ́ is learnt via a linear neural network with a single input and
output layer, no biases, and a final softmax activation function. The input layer has
a dimensionality equal to that of the vector space in which the query and document
points reside, while the output layer has a dimensionality equal to the number of clusters.
The softmax activation function transforms the network’s output into probability scores,
allowing for the computation of the cross-entropy loss lCE, Equation 5.2. To minimize
the loss function, the Adam [53] optimizer is employed with a learning rate of 10−4. A
batch size of 512 is used, and training is conducted for a maximum of 100 epochs. Upon
training completion, the network weightsW correspond to the learnt representative points,
resulting in the learnt routing function τ́(q;W ) = Wq, with W ∈ RL×n.

The pipeline for obtaining learnt representative points and evaluating their effective-
ness is as follows. First, a dataset and an embedding model are employed to transform

3https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
4https://huggingface.co/facebook/contriever
5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
6https://huggingface.co/sentence-transformers/all-mpnet-base-v2
7https://huggingface.co/sentence-transformers/all-distilroberta-v1
8https://www.sbert.net/docs/sentence_transformer/pretrained_models.html
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queries and documents within the dataset into vector representations using the given em-
bedding. Subsequently, a clustering algorithm is applied to partition the set of document
vector points {di}Pi=1 ⊂ Rn into L =

√
P clusters. In this study, we consider Standard

KMeans, Spherical KMeans (implemented using the FAISS library [33]), and Shallow
KMeans. Following clustering, for each query qi ∈ Rn in the query set {qi}Ni=1 ⊂ Rn, we
obtain the pair (qi, bi) as described in Section 5.2. The resulting set of pairs is divided
into training (60%), validation (20%), and test (20%) sets. Finally, our neural network is
trained on the training set, with the best model selected based on the loss function on the
validation set. The learnt representative vectors {νi}Li=1 and the standard representative
points {µi}Li=1 are evaluated on the test set.

5.3.1 Evaluation Metric

The learnt representative points {νi}Li=1 and standard representative points {µi}Li=1 are
evaluated in terms of top-k accuracy. Top-k accuracy is obtained by retrieving the top-ℓ
partitions for each query q based on the routing function, i.e., τ(q) = Mq for the baseline
and τ́(q) = Wq for our method, and then computing the percentage of the top-k documents
contained within these top-ℓ partitions.

5.4 Experimental Results

In this section, we present the experimental results obtained by evaluating the performance
of our proposed method, Learnt, against the standard clustering-based ANN search, Base-
line. The evaluation is conducted on the datasets, embedding models, and clustering
algorithms discussed in the previous section using the top-k accuracy metric.

5.4.1 Top-1 Retrieval

Tables 5.1 and 5.2 represent the top-1 accuracy of the Baseline method, with standard
representative points {µi}Li=1, and the Learnt method, with learnt representative points
{νi}Li=1, on theMS MARCO,HotpotQA, and FEVER text datasets. Table 5.1 employs

Table 5.1: Top-1 accuracy of Baseline and Learnt methods using all-MiniLM-L6-v2 on MS MARCO,
HotpotQA, and FEVER datasets. Results are reported for Standard, Spherical, and Shallow KMeans
clustering algorithms, considering top-ℓ partitions with ℓ equal to 0.1% and 1% of L.

Dataset Method
Standard Spherical Shallow

0.1% 1% 0.1% 1% 0.1% 1%

MS MARCO
Baseline 0.392 0.779 0.627 0.869 0.517 0.815

Learnt 0.746 0.940 0.751 0.938 0.670 0.923

HotpotQA
Baseline 0.089 0.481 0.328 0.684 0.258 0.724

Learnt 0.488 0.844 0.493 0.833 0.412 0.827

FEVER
Baseline 0.102 0.443 0.249 0.562 0.279 0.621

Learnt 0.663 0.865 0.662 0.872 0.633 0.912
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Table 5.2: Top-1 accuracy of Baseline and Learnt methods using TAS-B on MS MARCO, HotpotQA,
and FEVER datasets. Results are reported for Standard, Spherical, and Shallow KMeans clustering
algorithms, considering top-ℓ partitions with ℓ equal to 0.1% and 1% of L.

Dataset Method
Standard Spherical Shallow

0.1% 1% 0.1% 1% 0.1% 1%

MS MARCO
Baseline 0.480 0.835 0.680 0.915 0.553 0.869

Learnt 0.727 0.936 0.724 0.933 0.612 0.896

HotpotQA
Baseline 0.258 0.724 0.372 0.783 0.345 0.756

Learnt 0.525 0.882 0.507 0.867 0.405 0.797

FEVER
Baseline 0.235 0.675 0.314 0.690 0.303 0.704

Learnt 0.836 0.930 0.834 0.925 0.819 0.917

the all-MiniLM-L6-v2, while Table 5.2 uses the TAS-B embedding. Standard, Spherical,
and Shallow KMeans clustering algorithms are employed to generate partitions. For each
algorithm, top-1 accuracy is measured considering the top 0.1% and 1% of clusters relative
to the total number, i.e., ℓ = 0.1%× L and ℓ = 1%× L.

Tables 5.1 and 5.2 clearly demonstrate that our proposed Learnt method consistently
outperforms the Baseline. For instance, considering Standard KMeans with ℓ = 0.1% ×
L, {νi}Li=1 exhibit a significant accuracy improvement compared to {µi}Li=1, achieving
+90.3% on MS MARCO, +448.3% on HotpotQA, and +550.0% on FEVER when
using all-MiniLM-L6-v2, and +51.5% on MS MARCO, +103.5% on HotpotQA, and
+255.7% on FEVER when using TAS-B.

Additionally, analysis of the tables reveals a more pronounced difference in accuracy for
ℓ = 0.1%×L compared to ℓ = 1%×L. Generally, our results indicate that a smaller value
of ℓ correlates with a larger gap in accuracy between the two methods, indicating that
partitions closer to query points are of much higher quality. This is intuitively expected,
as our learning objective is specifically tailored to identify and retrieve the top-1 cluster.

Another notable observation from the results is that, across clustering algorithms, the
accuracy difference between the Learnt and Baseline methods is most marked for Standard
KMeans, followed by Shallow KMeans, and is least marked for Spherical KMeans. These
findings are not unexpected for Standard and Spherical KMeans, considering their distance
metric used in the objective function. Standard KMeans utilizes the Euclidean distance
(Equation 2.5), whereas Spherical KMeans utilizes the cosine distance (Equation 2.7),
which is more suitable for a MIPS-based problem. On the other hand, interesting results
are obtained for Shallow KMeans which performs remarkably well, despite its intrinsic
simplicity (see Algorithm 3).

To further validate the effectiveness of our proposed method, Table 5.3 presents ad-
ditional results on top-1 accuracy using various embedding models, namely Contriever,
all-mpnet-base-v2, and all-distilroberta-v1, on MS MARCO, with ℓ set to 0.1
and 1 percent of the total number of clusters.

The results in Table 5.3 reaffirm our previous findings, including the key point that
the Learnt method consistently outperforms the Baseline across all experimental settings.

When comparing Tables 5.2 and 5.3, which employ 768-dimensional embeddings, the
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Table 5.3: Top-1 accuracy of Baseline and Learnt methods on the MS MARCO dataset using Contriever,
all-mpnet-base-v2, and all-distilroberta-v1 embedding models. Results are reported for Standard,
Spherical, and Shallow KMeans clustering algorithms, considering top-ℓ partitions with ℓ equal to 0.1%
and 1% of L.

Encoding Method
Standard Spherical Shallow

0.1% 1% 0.1% 1% 0.1% 1%

Contriever
Baseline 0.602 0.895 0.756 0.938 0.640 0.909

Learnt 0.790 0.952 0.780 0.946 0.690 0.927

all-mpnet-base-v2
Baseline 0.763 0.952 0.794 0.958 0.691 0.940

Learnt 0.818 0.967 0.819 0.966 0.733 0.951

all-distilroberta-v1
Baseline 0.752 0.955 0.779 0.960 0.664 0.935

Learnt 0.807 0.967 0.806 0.966 0.706 0.945

accuracy gap between Learnt and Baseline is less pronounced compared to Table 5.1,
where 384-dimensional embeddings are used. This suggests that as the dimensionality of
the embedding space increases, the Learnt method may face challenges in identifying sig-
nificantly better representative points. A more in-depth investigation of this phenomenon
is warranted in future research.

Finally, the McNemar’s test [63] was conducted on all results, revealing a highly statis-
tically significant difference between the Learnt and Baseline methods (p-value < 0.001),
strongly supporting the superior performance of the learnt representative points.

5.4.2 Top-k Retrieval

Until now, our analysis has focused on top-1 accuracy. We now turn our attention to
top-k accuracy, with k > 1. Figures 5.2 and 5.3 depict the obtained results for top-10 and
top-100 accuracy, respectively, as a function of ℓ.

The findings discussed in the previous subsection also hold for top-k accuracy with
k > 1: the Learnt method demonstrates superior performance compared to the Baseline,

(a) MS MARCO (b) HotpotQA (c) FEVER

Figure 5.2: Top-10 accuracy of Learnt and Baseline methods on MS MARCO, HotpotQA, and FEVER
datasets using the all-MiniLM-L6-v2 embedding model. The x-axis represents ℓ, expressed as a percentage
of L, while the y-axis represents the accuracy. Solid lines indicate the Learnt method, and dashed lines
indicate the Baseline method.
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(a) MS MARCO (b) HotpotQA (c) FEVER

Figure 5.3: Top-100 accuracy of Learnt and Baseline methods onMS MARCO,HotpotQA, and FEVER
datasets using the all-MiniLM-L6-v2 embedding model. The x-axis represents ℓ, expressed as a percentage
of L, while the y-axis represents the accuracy. Solid lines indicate the Learnt method, and dashed lines
indicate the Baseline method.

especially for smaller values of ℓ; and, the accuracy gap between the two methods is most
pronounced for Standard, followed by Shallow, and finally, Spherical KMeans.

These results are particularly interesting given that our proposed method is specifically
designed to optimize top-1 accuracy, where the goal is to identify the cluster associated
with the top-1 document for a given query. Despite this, as is evident from Figures 5.2
and 5.3, our model demonstrates remarkable performance for top-k accuracy as well.

These results, obtained for top-k accuracy, are highly promising and point to a potential
avenue for generalizing the loss function to the top-k scenario, as detailed in Section 5.2.1,
with the potential for further improved accuracy. A more in-depth exploration of this
generalization is planned for future work.

5.5 Further Analysis

Our objective was to learn a linear routing function, τ́ , to obtain representative points
that best capture the content of the clusters. This allowed us to ensure that when a new
query q, arrived, the inner product between the query and the learnt representative points
would more accurately reflect the similarity between q and the clusters. This, in turn,
led to improved accuracy in retrieving the top-1 document or, more generally, the top-k
documents.

Let us now consider a scenario where our goal is not to learn new representatives but
to focus solely on learning a routing function that, given a query, returns a score for each
cluster corresponding to the likelihood of finding the top-1 document within that cluster.
τ́ emerges as a linear solution to this problem. However, what happens if we relax the
assumption of linearity? By studying a nonlinear routing function, τ̃ , we will explore the
impact of nonlinearity on solving this problem.

5.5.1 Nonlinearity

We explore and analyze the use of nonlinearity to solve the routing problem by defining a
function, τ̃ , and comparing it to the linear routing function, τ́ .
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(a) τ́ vs. τ̃512 (b) τ́ vs. τ̃1024

(c) τ́ vs. τ̃2048 (d) τ́ vs. τ̃4096

Figure 5.4: Top-1 accuracy of the learnt linear routing function, τ́ , and the learnt nonlinear routing
function, τ̃ , on the MS MARCO dataset using the all-MiniLM-L6-v2 embedding model. The x-axis
represents ℓ as a percentage of L, while the y-axis represents the accuracy. Solid lines indicate τ́ , and
dotted lines indicate τ̃ variants with different hidden layer sizes: 512 (a), 1024 (b), 2048 (c), and 4096 (d).

τ̃ is defined as a neural network with a structure similar to τ́ , but with some modifi-
cations: it includes a hidden layer, employs the ReLU activation function [2] in this layer,
and incorporates biases in its neurons. For our analyses, we specifically consider four
variants of τ̃ : one with 512 units in the hidden layer (τ̃512), one with 1024 units (τ̃1024),
one with 2048 units (τ̃2048), and one with 4096 units (τ̃4096).

Figure 5.4 illustrates the top-1 accuracy for τ́ and τ̃ as a function of ℓ, where ℓ varies
between 0.1% × L and 1% × L, on MS MARCO dataset using all-MiniLM-L6-v2 as
embedding model.

Figure 5.4 shows that, for the nonlinear routing function, considering both Standard
and Spherical KMeans clustering algorithms, the best results are obtained with the τ̃2048
variant.

Focusing now on the comparison between τ̃2048 and τ́ in terms of Standard and Spher-
ical KMeans, it can be observed that despite the nonlinearity of τ̃2048, the two routing
functions exhibit nearly identical accuracy results. Specifically, for lower values of ℓ, τ́
outperforms τ̃2048 by almost 1%.

For the Shallow KMeans clustering algorithm, however, the best performing variant
of τ̃ is τ̃4096. τ̃4096 achieves higher accuracy values compared to τ́ , with improvements of
approximately 4.2% for ℓ = L/1000 and 1.2% for ℓ = L/100.

Analysis of the results indicates that nonlinearity does not provide significant im-
provements in terms of top-1 accuracy. Consequently, the learnt linear routing function,
τ́ , emerges as the optimal choice over the nonlinear functions examined. This conclusion is
supported by the higher accuracy values achieved by τ́ in Spherical and Standard KMeans
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(a) τ́ vs. τ̃512 (b) τ́ vs. τ̃1024

(c) τ́ vs. τ̃2048 (d) τ́ vs. τ̃4096

Figure 5.5: Top-10 accuracy of the learnt linear routing function, τ́ , and the learnt nonlinear routing
function, τ̃ , on the MS MARCO dataset using the all-MiniLM-L6-v2 embedding model. The x-axis
represents ℓ as a percentage of L, while the y-axis represents the accuracy. Solid lines indicate τ́ , and
dotted lines indicate τ̃ variants with different hidden layer sizes: 512 (a), 1024 (b), 2048 (c), and 4096 (d).

clustering algorithms, as well as by the fact that the additional complexity associated with
τ̃4096 in Shallow KMeans does not justify the relatively small improvement in accuracy.
Considering only the number of parameters, τ̃4096 has 13,867,960 parameters, significantly
more than the 1,155,000 parameters of τ́ .

Similar trends can be observed for the top-10 accuracy, as depicted in Figure 5.5.
The only exception pertains to Shallow KMeans: the best results are achieved with the
τ̃2048 variant rather than τ̃4096; moreover, the accuracy difference between τ̃2048 and τ́ is
narrower compared to the previous case. This further supports the argument in favor of
τ́ over τ̃ .

In conclusion, in light of the findings presented in this section, it can be concluded
that the learnt linear routing function, τ́ , is the most suitable choice compared to the
nonlinear functions examined. τ́ offers the best balance of efficiency and effectiveness that
is essential in the field of ANN search.
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Chapter 6

Conclusions and Future Work

In this work, we have presented a new state-of-the-art for clustering-based ANN search.
Our proposed approach involves learning a linear routing function via LTR to generate
learnt representative points. These points provide a more accurate and semantically rich
representation of each cluster, significantly improving ANN search accuracy.

To facilitate a comprehensive understanding of our method, we first have provided a
detailed overview of clustering-based ANN search, starting from the fundamental concepts
such as vector search, ANN search, and clustering. Subsequently, we have introduced LTR,
focusing on the essential ingredients for learning a ranking function.

Having established a solid foundation, encompassing all the necessary elements for a
thorough understanding of our method, we then have proceed to present our approach in
detail, first providing an intuitive explanation and then a formal definition.

Our proposed method is grounded in an intuitive observation: The routing function,
which determines the most promising clusters for a given query, solves a ranking problem.
In other words, the routing function ranks clusters based on their relevance to the query,
specifically by ranking them according to their probability of containing the query’s nearest
neighbor.

This insight has led us to an innovative solution: Learning the routing function via
LTR. In particular, we learn a simple linear function where the parameters of the function
represent the new representative points for each cluster, more informative and discrimi-
native than the standard representative points. It is noteworthy how straightforward it
has been to prepare the necessary ingredients for learning the routing function, from the
dataset to the loss function.

Through extensive experiments conducted on diverse datasets, embedding models,
and clustering algorithms, we have empirically demonstrated that our proposed method
consistently outperforms the baseline, significantly improving the accuracy of MIPS-based
clustering-based ANN search. The learnt representative points, compared to standard
representative points, enable the retrieval of top-ℓ partitions containing the top-1 or top-k
documents for a given query with significantly higher accuracy.

Furthermore, we have conducted additional investigations into learning the routing
function by relaxing the linearity assumption and learning a nonlinear routing function,
with the sole purpose of returning the top-ℓ partitions for a given query. Our findings have
revealed that the learnt linear routing function emerged as the optimal choice, offering the
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best balance between efficiency and effectiveness compared to the learnt nonlinear routing
functions analyzed.

In summary, the proposed method emerges as a conceptually simple and the state-of-
the-art approach for clustering-based ANN search. Moreover, by developing this method,
we have demonstrated the potential of integrating two important fields of IR, LTR and
ANN. Additionally, we have showcased the potential of learning representative points for
groups of elements, an idea that can be extended to various domains.

Equally exciting is the fact that this work has also raised numerous questions for
future research. These include generalizing the learning approach for the routing function
to the top-k problem, with k > 1, as discussed in Section 5.2.1; extending the method
to other distance functions such as Euclidean distance, cosine distance, or Manhattan
distance; investigating the influence of vector dimensionality of queries and documents on
the accuracy of our method; and finally, exploring the new area of query-aware clustering
for ANN search, where the document space is clustered using the query dataset.
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Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024.
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