
Socially-Aware Human Trajectory
Forecasting with Spatial Constraints

Ca’ Foscari University of Venice

Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis
Year 2023-2024

Graduand Giacomo Rosin (875724)

Supervisor Prof. Sebastiano Vascon

Assistant Supervisor Rahman Muhammad Rameez Ur

Abstract

Accurate human trajectory forecasting is crucial for various applications, includ-
ing autonomous vehicles, social robots, and augmented reality systems. However,
predicting pedestrian motion is a challenging task due to the complexities of hu-
man behavior, including social interactions, scene context, and the multimodal
nature of pedestrian trajectories. This thesis focuses on the problem of human
trajectory forecasting in crowded scenes using deep learning techniques. The goal
is to predict socially and physically plausible future paths for multiple interact-
ing agents in a scene, considering their past trajectories and the scene context.
Furthermore, we investigate the effectiveness of a contrastive learning approach
to enhance the model’s spatial reasoning capabilities to avoid collisions with en-
vironmental constraints. Our approach is evaluated through both qualitative and
quantitative analysis on established publicly available bird-eye view datasets (e.g.,
ETH/UCY), as well as an internal first-person view dataset, which is essential for
our ultimate goal of integrating the trajectory forecasting model on a robot. To
this end, we also describe how to apply models trained on bird’s-eye view data to
work in first-person view settings, which is essential for integrating the trajectory
forecasting model into robotic systems.

Keywords Human Trajectory Forecasting, Future Path Prediction, Pedestrian
Motion Prediction, Multi-Agent Trajectory Forecasting, First-Person View Tra-
jectory Forecasting, Contrastive Learning

i

Acknowledgments

I would like to thank my supervisor, Prof. Sebastiano Vascon, for his help, support,
and encouragement throughout my thesis. His knowledge and expertise have been
incredibly valuable, and I am grateful for the chance to work with him.
I also want to thank my assistant supervisor, Dr. Rahman Muhammad Rameez
Ur, for his support and guidance. His insights and feedback have been essential in
developing my work.
My gratitude extends to all the professors who have taught me throughout my
academic career. Your dedication to teaching and the knowledge you shared have
greatly enriched my academic journey and provided a strong foundation for this
research.
To my friends, thank you for your constant encouragement and support. Your
friendship has been a source of strength and motivation during this challenging
process.
To my family, thank you for your unconditional love, patience, and understanding.
Your support has been my anchor throughout this journey.
Finally, I would like to thank everyone else who has supported me, directly or
indirectly, during my academic journey. Your contributions have been invaluable.

Thank you.

ii

Contents

1 Introduction 7

1.1 Human Trajectory Forecasting . 7

1.2 Contributions . 8

1.3 Outline . 9

2 Background 10

2.1 Contrastive Learning . 10

2.2 Foundational Architectures . 11

2.2.1 Recurrent Neural Networks 11

2.2.2 Transformer Encoders . 14

2.2.3 Convolutional Neural Networks (CNNs) 16

2.2.4 Autoencoders . 17

2.3 First-Person View . 18

2.3.1 Rationale for Bird’s-Eye View in First-Person View Appli-
cations . 18

2.3.2 Forecasting Pipeline . 18

2.4 Related Work . 25

2.4.1 Multimodal Trajectory Prediction 26

2.4.2 Social context . 27

2.4.3 Scene context . 28

2.4.4 First Person View . 28

3 Methodology 30

3.1 Problem Formulation . 30

3.2 Model Architecture . 31

3.2.1 Trajectory Encoder . 32

3.2.2 Social Interaction Module 32

3.2.3 Map Patch Encoder . 34

3.2.4 Trajectory Decoder . 35

3.2.5 Social-NCE Module . 36

3.2.6 Map-NCE Module . 37

3.3 Loss . 39

3.3.1 MSE Loss . 39

3.3.2 Environment Collision Loss 40

3.3.3 Social-NCE and Map-NCE Losses 40

3.4 Synthetic Dataset . 41

3.5 Training . 42

iii

4 Experiments 46
4.1 Datasets . 46

4.1.1 ETH/UCY . 46
4.1.2 Internal Dataset . 47

4.2 Evaluation Metrics . 48
4.2.1 Average Displacement Error (ADE) 48
4.2.2 Final Displacement Error (FDE) 49
4.2.3 Pedestrian Collisions (COL-PRED, COL-GT) 49
4.2.4 Environment Collisions (ENV-COL) 50

4.3 Experiments . 51
4.3.1 Social Interaction Module Ablation 52
4.3.2 Social-NCE Module Ablation 53
4.3.3 Map-NCE Module Ablation 54
4.3.4 Environment Collision Loss Ablation 56
4.3.5 Map Patch Offset Ablation 57
4.3.6 Synthetic Dataset . 58
4.3.7 Inference Speed . 61

5 Results 63
5.1 Quantitative Results . 63
5.2 Qualitative Results . 66

5.2.1 ETH/UCY Datasets . 66
5.2.2 Synthetic Dataset . 66
5.2.3 Internal First-Person View Dataset 67
5.2.4 Latent Space Exploration 67

6 Conclusions 69
6.1 Summary . 69
6.2 Limitations and Future Work . 69

A Hyperparameters 80

iv

List of Figures

1.1 Example of human trajectory forecasting with social interactions
and spatial constraints. There are three pedestrians in the scene,
each represented by a different color. The past trajectories of the
pedestrians are shown as thin dotted lines, and the future trajecto-
ries are shown in a solid line, with an arrow indicating the direction
of movement. When walking the pedestrians take into account each
other’s presence, here represented as the thicker orange dotted lines.
Moreover, the pedestrians avoid the obstacles in the scene, here rep-
resented as the gray areas. 7

2.1 LSTM scheme [1]. 12

2.2 GRU scheme [1]. 13

2.3 Transformer architecture [2]. 14

2.4 Example of Convolutional Neural Network [3]. 17

2.5 Example of Convolutional Autoencoder [4]. 17

2.6 YOLOv8 detection and tracking latency (s). The plot shows the in-
ference latency of the YOLOv8 model (using BoT-SORT for track-
ing) at different model sizes and input image resolutions. Larger
models and higher resolutions result in longer inference times. Tested
on an Intel Core i5-8400 CPU and a NVIDIA GeForce GTX 1050
Ti GPU. Best viewed in color. 19

2.7 Example of YOLOv8 human detection. 20

2.8 Example of human tracking. 21

2.9 Example projection to world coordinates (BEV). The image in the
right is the bird’s-eye view of the scene, computed by warping the
first-person view image using the homography matrix. Superim-
posed on the BEV image there are the detected human tracks. . . . 22

2.10 Example of multiple trajectory forecasting. The lines in front of
each person represent the predicted future trajectories. By zooming
in the image, a thin line over the past trajectory of each person is
visible, representing the smoothing applied to the trajectories. . . . 24

2.11 Example of multiple occupancy heatmap. The heatmap shows the
most likely locations of people in the scene in the next 4.8 seconds. 25

1

3.1 Architecture of the proposed model. The model consists of a Trajec-
tory Encoder LSTM to capture motion history, a Social Interaction
Transformer to model interactions between pedestrians, a Patch En-
coder to process the environment map, and a Trajectory Decoder
LSTM to predict future trajectories. Additionally, the Social-NCE
and Map-NCE modules are used to compute auxiliary contrastive
losses during training. The output of the Social Interaction Module,
the Map Patch Encoder, and the noise vector are concatenated and
used as initial hidden state for the Trajectory Decoder. The two
figures on the left represent the input information for the model:
the one on the top emphasizes the environment map and the rela-
tive patch extraction process around each pedestrian, and the one
on the bottom shows just the trajectories of the pedestrians. Both
figures show the positive (green) and negative (red for Map-NCE,
orange for Social-NCE) samples used in the contrastive learning,
that are then processed by the respective NCE modules, as can be
seen by the colored arrows. The NCE modules also take as input
a query vector; both queries are obtained from the output of the
Social Interaction Module, allowing the modules to ”see” the mo-
tion history, but the Map-NCE query is also concatenated with the
output of the Map Patch Encoder, to allow the module to ”see”
the environment map. The figure also emphasizes the components
of the Patch Encoder, which consists of a CNN pretrained through
an autoencoder and frozen during the actual training, and a MLP
that is instead trained only during the main model training. The
Patch Encoder processes all the map patches independently. The
colors of the arrows are used to disambiguate the different paths of
the information flow in the model. Best viewed in color. 31

3.2 Social Interaction Module. Example of input and output of the
Social Interaction Module for a scene with 4 pedestrians. The input
to the module is a set of latent representations E of the trajectories
of the individuals in the scene. The module performs 4 independent
(parallel) forward passes of the transformer, one for each pedestrian,
and outputs a set of social encodings S that capture the interactions
between the individuals. The vertical lines with dots at the extremes
represent the relative positions of each pedestrian with respect to
the main pedestrian. The main pedestrian for each forward pass is
highlighted with its own color. Best viewed in color. 33

3.3 Example of scenes from the synthetic dataset. Each scene has a size
of 25m x 15m, and contains obstacles (black) and pedestrians (red). 42

3.4 Example of learning rate schedule of some training runs. 43

3.5 Example of what the validation losses of some training runs with
different performance look like during training. The model reaches
a good performance already after a few epochs. Then it slowly
improves until it definitively plateaus. In this example, the different
performances are due to different model sizes. 45

4.1 Example frames from the ETH/UCY dataset. 46

2

4.2 Histogram of pedestrian speeds in ”eth” (red) vs the rest of the
datasets (blue). The ”eth” dataset has a higher speed than the
other datasets, about 2 times faster. Velocity is expressed as meters
every 0.4 seconds. 47

4.3 Example frames from the internal dataset. 48
4.4 Boxplot showing the inference time of the two models. Model1, as

expected, clearly outperforms model2 in terms of inference speed,
in fact apart from a few outliers, the inference time of model1 is
better than all the measured inference times of model2. Moreover,
the first and third quartiles (which contain 50% of the data) of both
models are quite close, indicating that the inference latency of the
two models is quite stable. The same interpretation can be made
for the whiskers of the boxplot. 61

4.5 Plot showing the relation between the number of pedestrians in the
scene and the inference time of the two models. The latency of
model1 (blue) is quite stable across the different scene sizes, while
the latency of model2 (orange) grows linearly with the number of
pedestrians in the scene. Note that the outliers detected in the
previous boxplot 4.4 are filtered out for better visualization. The
bands around the lines represent the 95% confidence intervals. Best
viewed in color. 62

5.1 Example of generated trajectories on the ETH/UCY zara2 dataset.
On the left, the trajectories predicted by model1, on the right, the
trajectories predicted by model2. The past trajectories are shown in
red, while the future trajectories are shown in green. The segmented
environment map is shown in the background, with the obstacles in
black. Model1 predicts many trajectories that collide with the ob-
stacles, while model2 predicts trajectories that avoid the obstacles,
for example by slowing down. 66

5.2 Example of generated trajectories on the synthetic dataset. On the
left, the trajectories predicted by model1, on the right, the trajec-
tories predicted by model2. The past trajectories are shown in red,
while the future trajectories are shown in green. The segmented
environment map is shown in the background, with the obstacles in
black. Model1 predicts many trajectories that collide with the ob-
stacles, while model2 predicts trajectories that avoid the obstacles,
for example by slowing down. 67

5.3 Example of generated trajectories on the internal first-person view
dataset. On the left, the first-person view image, on the right, the
bird’s-eye view of the scene. Five predicted trajectories are shown
for each person. 67

5.4 Example of predictable scene found by exploring the latent space
of the model. The past trajectories are shown in blue, while the
future trajectories are shown in red. We can see that this scene
may represent the meeting of two people, where one person changes
direction to continue walking with the other person. 68

3

List of Tables

2.1 Model characteristics table. Social: uses social information. Scene:
uses scene context information. Multi: predicts multimodal trajec-
tories. FPV: uses first-person view data. 29

4.1 Social Interaction module ablation study. COL-PRED/COL-GT.
Lower is better. Comparison between different variants of the Social
Interaction module on model1. No: no social interaction module.
Attn: attention-based social interaction module. T1, T2, T3: dif-
ferent variants of the transformer-based social interaction module,
with 1, 2, 3 layers. 53

4.2 Social-NCE module [5] ablation study. Cell format: upper row Best-
of-20 ADE/FDE in meters, lower row COL-PRED/COL-GT. Lower
is better. Comparison between model1 without and with the Social-
NCE module. 54

4.3 Map-NCE module (3.2.6) ablation study. Cell format: upper row
Best-of-20 ADE/FDE in meters, middle row COL-PRED/COL-GT,
lower row ENV-COL. Lower is better. Comparison between ”No”:
no scene context, ”Map”: with scene context, and ”M-NCE”: with
scene context and Map-NCE module. 55

4.4 Environment Collision Loss ablation study. Cell format: upper row
Best-of-20 ADE/FDE in meters, middle row COL-PRED/COL-GT,
lower row ENV-COL. Lower is better. Comparison between ”No”:
without Environment Collision Loss, and ”Yes”: with Environment
Collision Loss. 57

4.5 Map patch offset ablation. Cell format: upper row Best-of-20 ADE/FDE
in meters, middle row COL-PRED/COL-GT, lower row ENV-COL.
Lower is better. Comparison between ”No”: without offset in the
scene map patch extraction, and ”Yes”: with offset in the scene
map patch extraction. 58

4.6 Synthetic dataset experiment, with evaluation on ”ETH/UCY 2”
(sped up) dataset. Cell format: upper row Best-of-20 ADE/FDE
in meters, middle row COL-PRED/COL-GT, lower row ENV-COL.
Lower is better. Comparison between ”No”: model2 trained only
on the ETH/UCY datasets, and ”Yes”: model2 pretrained on the
synthetic dataset and fine-tuned on the ETH/UCY datasets. . . . 60

4.7 Synthetic dataset experiment, with evaluation on ”ETH/UCY” (orig-
inal) dataset. Cell format: upper row Best-of-20 ADE/FDE in
meters, middle row COL-PRED/COL-GT, lower row ENV-COL.
Lower is better. Comparison between ”No”: model2 trained only
on the ETH/UCY datasets, and ”Yes”: model2 pretrained on the
synthetic dataset and fine-tuned on the ETH/UCY datasets. . . . 60

4

4.8 Stronger regularization experiment. Cell format: upper row Best-of-
20 ADE/FDE in meters, middle row COL-PRED/COL-GT, lower
row ENV-COL. Lower is better. Comparison between ”M2”: model2
pretrained on synthetic dataset and fine-tuned on the ETH/UCY
datasets, and ”M2-reg”: model2 with stronger regularization (still
pretrained on synthetic dataset and fine-tuned on the ETH/UCY
datasets). 61

5.1 Model comparison table. The first part of the table shows the Best-
of-20 ADE/FDE (meters) results of the previous works, compris-
ing also the state-of-the-art methods. Since the previous works do
not report on which version of the dataset they evaluated, compar-
isons should be taken with caution. The second part of the table
shows the results of our models on both versions of the ETH/UCY
datasets: ”ETH/UCY 2” (the sped up version) and ”ETH/UCY”
(the original version). Our models report not only the Best-of-20
ADE/FDE (first row), but also the COL-PRED/COL-GT (second
row) and the ENV-COL (third row) metrics. The results are re-
ported for 12 future timesteps, given the previous 8. Bold: over-
all best results. Underlined: our best results on ”ETH/UCY 2”.
Overlined: our best results on ”ETH/UCY”. 65

A.1 Hyperparameters used for the different models. 80

5

6

Chapter 1

Introduction

1.1 Human Trajectory Forecasting

Figure 1.1: Example of human trajectory forecasting with social interactions and spatial constraints. There are
three pedestrians in the scene, each represented by a different color. The past trajectories of the pedestrians are
shown as thin dotted lines, and the future trajectories are shown in a solid line, with an arrow indicating the
direction of movement. When walking the pedestrians take into account each other’s presence, here represented
as the thicker orange dotted lines. Moreover, the pedestrians avoid the obstacles in the scene, here represented
as the gray areas.

Human trajectory forecasting is about predicting where people will walk in the
future based on their past movements and interactions. This is important for
applications like self-driving cars, social robots, and augmented reality systems.
Predicting where people will go helps these systems interact better with humans.
For example, self-driving cars need to know where people will walk to avoid hitting
them and keep passengers safe [6]. Social robots need to understand human paths
to move around people in a way that feels natural [7], and augmented reality sys-
tems can enhance the user experience by anticipating human actions and adjusting
what they display accordingly [8].
However, forecasting pedestrian paths is difficult because human behavior is com-
plex. Many factors influence how people move, including social interactions, the
environment, and individual intent. Additionally, pedestrian trajectories are mul-
timodal, meaning that there can be multiple plausible future paths that a person
might take. Social interactions affect how people move, for example in public
places, people avoid bumping into each other, walk in groups, and change their
speed based on who is around them. The environment also plays a crucial role in
how people move. Factors such as obstacles, the width of pathways, and road signs

7

heavily influence pedestrian paths. Personal goals, like where someone is going and
how fast he needs to get there, are important too. For example, someone in a rush
will take a direct route even if it means walking through a crowded area, while
someone that is not in a hurry might take a longer path. Predicting paths means
understanding these goals, which adds complexity. Finally, pedestrian paths are
multimodal. For example, to avoid a collision, a person might step left, step right,
slow down, or even speed up. A good prediction model needs to consider all these
possible paths and generate diverse predictions.

In this thesis, we address the problem of human trajectory forecasting in crowded
scenes using deep learning techniques. Our primary objective is to predict socially
and physically plausible future paths for multiple interacting agents, taking into
consideration their past trajectories and the scene context. To achieve this, we de-
velop an encoder-decoder architecture that captures both social interactions and
environmental constraints to generate plausible trajectories. We test our approach
using both qualitative and quantitative methods on the ETH/UCY [9, 10] bench-
mark dataset, which provides bird’s-eye view data of pedestrian interactions. We
also test our model on an internal first-person view dataset to show how it works in
real-world situations, aiming to integrate the model into a robotic system. Moving
from bird’s-eye view to first-person view is important for real-world applications,
especially for robotic navigation in crowds.

1.2 Contributions

Map-NCE A significant contribution of this work is the implementation and
evaluation of a contrastive learning approach, which enhances the model’s spatial
reasoning capabilities to better avoid collisions with environmental constraints,
inspired by the Social-NCE method proposed by Liu et al. [5]. This approach
introduces an auxiliary contrastive loss that encourages the model to learn where
the pedestrian should not go (obstacles), in addition to where they should go (that
is already modeled by the standard loss function).

Synthetic dataset with obstacles We analyze the effectiveness of pretraining
our model on a synthetic dataset that includes obstacles to improve the model’s
ability to avoid collisions with environmental constraints.

Environment collision loss In order to facilitate the obstacle avoidance learn-
ing, we introduce a variation of the variety loss [11] to penalize the model for
generating trajectories that collide with obstacles. This loss encourages the model
to generate collision-free paths.

Environment collision metric To validate our approach, we introduce a met-
ric that measures the effectiveness of the model in avoiding collisions with ob-
stacles. This metric provides a quantitative evaluation of the model’s obstacle
avoidance capabilities, and allows us to compare different models based on their
collision avoidance performance.

8

1.3 Outline

The chapters of this thesis are organized as follows: chapter 2 provides back-
ground information for understanding human trajectory forecasting, foundational
deep learning architectures used in this work, and a description of the pipeline
for integrating this model in a first-person view setting. It also reviews related
work, highlighting key techniques with their strengths and limitations. Chapter 3
formalizes the problem of human trajectory forecasting and details the proposed
deep learning architecture and contrastive learning approach. Chapter 4 discusses
the experimental setup, including the datasets used, the evaluation metrics, and
the experimental results. Chapter 5 presents the results of our models, comparing
them with the state-of-the-art methods. Finally, chapter 6 concludes the thesis
and outlines potential limitations and future works.

9

Chapter 2

Background

This chapter provides some background information required to understand the
rest of the thesis. We start by introducing the concept of contrastive learning,
then we present some foundational architectures that are used in the rest of the
thesis as building blocks for the proposed model. We also discuss the first-person
view setting and the related forecasting pipeline. Finally, we present some related
works in the field of human trajectory forecasting.

2.1 Contrastive Learning

Contrastive learning, introduced by Hadsell et al. [12], is a machine learning tech-
nique that aims to learn a representation space of the data by contrasting similar
and dissimilar pairs of examples. The goal is to bring similar examples closer in the
representation space, while pushing dissimilar examples apart. This is achieved
by minimizing a contrastive loss, that is a function of the similarity between the
pairs.

Contrastive learning is often used in the pretraining stage, using a self-supervised
approach, that is, without the need of manually labeled data. The pretraining
step allows the model to learn a good representation of the data, that can be used
in downstream tasks, sometimes with good results even without fine-tuning, in a
zero-shot setting. When the model is fine-tuned for a specific task, the weights
of the model start from a better initialization point, which often leads to better
results. However, contrastive learning can also be used as an auxiliary loss in the
training of a model, to improve the quality of the learned representation. For
example, we may know, from domain knowledge, that some properties of the data
are important for the task, and we can use a contrastive loss to enforce the model
to learn these properties. In general, this can be done by the classical supervised
learning approach, too, by adding a loss term that takes into account the desired
properties. However, contrastive learning has the ability of learning also from the
negative examples.

For contrastive learning to work well, first of all the contrastive task must be
related to the downstream task, otherwise it might bring no benefit, or even harm
the performance of the model. The contrastive task is related to the downstream
task if the learned representation is useful for the downstream task. This is where
domain knowledge matters. A bit more information on this can be found at the
end of this section. Moreover, the contrastive task must be challenging enough,
that is, distinguishing positive from negative examples must be hard. This requires

10

the model to learn to recognize the fine-grained differences between the examples,
and not just rely on simple, easily recognizable features that might not generalize
to unseen data. The sampling of good negative examples is called hard negative
mining, and its goal is to sample informative negative examples that are close to
the positive examples. Several works have shown that the quality of the negative
examples is crucial for the success of contrastive learning [13, 14, 15, 16].
In the context of this thesis, a positive pair of examples is composed of a query and
a positive key, and a negative pair is composed of a query and a negative key. The
query is the example that we want to encode in the representation space, and that
will play as an anchor for contrasting the positive and negative keys. The positive
key is an example that is positively related to the query, while the negative key is
an example that is negatively related to the query.
The most popular contrastive loss is the InfoNCE loss, introduced by Oord et al.
[17], that is defined as:

LNCE = − log
exp(sim(q, k+)/τ)

∑N

n=0 exp(sim(q, kn)/τ)
, (2.1)

where q is the embedding of the query, k0 = k+ is the embedding of the positive key,
kn where n ∈ [1, N] are the embeddings of the negative keys, sim(q, k) is a similarity
function between the query and the key, and τ is a temperature parameter that
controls the smoothness of the distribution. The similarity function is usually the
cosine similarity, defined as:

sim(q, k) =
q · k

∥q∥∥k∥ . (2.2)

The InfoNCE loss is basically a binary cross entropy loss for the classification
problem of distinguishing the positive key from the negative keys, given the query.
Contrastive learning has provable theoretical guarantees, as shown by Oord et al.
[17] and Arora et al. [18], where they give an information-theoretic interpretation
of the InfoNCE loss, and show that it provides guarantees on the downstream task
performance.

Ldown ≤ Lcont + BOUND (2.3)

Essentially, the downstream task loss Ldown is upper bounded by the contrastive
loss Lcont plus a term BOUND. This term is complex to characterize, but it
depends on the relationship between the contrastive task and the downstream
task.
It has been successfully used in several domains, such as computer vision [19, 20,
21], natural language processing [22, 23], and vision-language tasks [24].

2.2 Foundational Architectures

In this section we introduce some foundational architectures that are used in the
rest of the thesis as building blocks for the proposed model.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks de-
signed for processing sequences of data of arbitrary length. They differ from tra-
ditional feedforward neural networks in that they have feedback connections, that

11

is, connections that loop back on themselves. RNNs maintain a hidden state that
depends on the sequence processed so far, that acts as a form of memory. The
weights of the network are shared across time steps, allowing the network to be
applied to sequences of different lengths.
The hidden state ht is updated according to the following equation:

ht = f(Whh ∗ ht−1 +Whi ∗ xt + bh) (2.4)

where Whh and Whi are weight matrices, bh is the bias term, and f is a nonlinear
activation function, often the tanh function. The output yt is produced by applying
a linear transformation to the hidden state:

yt = Who ∗ ht + bo (2.5)

where Who is a weight matrix, and bo is the bias term.
The network is trained using backpropagation through time, which is a variant of
the backpropagation algorithm that takes into account the temporal dependencies
in the data. The gradients are computed by unrolling the network over time and
applying the chain rule to compute the derivatives of the loss with respect to the
weights.
One of the main challenges in training RNNs is the problem of vanishing and
exploding gradients. This occurs when the gradients become very small or very
large as they are propagated back through time, making it difficult to update
the weights, in particular for the early time steps in the sequence. This problem
can be mitigated by careful initialization of the weights, using gradient clipping,
which limits the norm of the gradients, or using more advanced architectures such
as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) networks,
which are designed to better capture long-term dependencies in the data.

2.2.1.1 Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory (LSTM) networks from Hochreiter and Schmidhuber
[25] are a type of RNN designed to deal with the vanishing gradient problem,
thanks to the introduction of an additional memory vector, called the cell state,
that functions as an information highway that runs through the entire sequence,
providing a way for the gradients to flow without vanishing. LSTMs have a more
complex architecture than standard RNNs, with three gates that control the flow
of information: the input gate, the forget gate, and the output gate.

Figure 2.1: LSTM scheme [1].

12

LSTMs are mathematically defined as follows.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot ⊙ tanh(ct)

(2.6)

where it, ft, ot are the input, forget, and output gates, ct is the cell state, ht is
the hidden state, xt is the input at time step t, W are the weight matrices, b
are the bias terms, σ is the sigmoid activation function, ⊙ is the element-wise
multiplication, and tanh is the hyperbolic tangent activation function.
The input gate it controls the flow of information into the cell state, the forget
gate ft controls the flow of information out of the cell state, and the output gate
ot controls the flow of information from the cell state to the hidden state. The cell
state ct is updated by adding the input gate times the candidate value, that is the
new information that we want to add to the cell state, and by adding the forget
gate times the old cell state, that is the information that we want to keep in the
cell state.

2.2.1.2 Gated Recurrent Unit Networks (GRUs)

Gated Recurrent Unit (GRU) networks from Cho et al. [26] are a simplification of
LSTMs. They merge the input and forget gates into a single update gate, and they
merge the cell state and hidden state into a single state. There is also a reset gate
that controls how much of the previous hidden state to forget when computing
the new hidden state. This makes GRUs use less parameters than LSTMs, and
depending on the task complexity, they can perform better or worse than LSTMs.

Figure 2.2: GRU scheme [1].

GRUs are mathematically defined as follows.

zt = σ(Wxzxt +Whzht−1 + bz)

rt = σ(Wxrxt +Whrht−1 + br)

h̃t = tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(2.7)

where zt is the update gate, rt is the reset gate, h̃t is the candidate hidden state,
ht is the hidden state, xt is the input at time step t, W are the weight matrices,

13

b are the bias terms, σ is the sigmoid activation function, ⊙ is the element-wise
multiplication, and tanh is the hyperbolic tangent activation function.

2.2.2 Transformer Encoders

Transformers are a type of neural network architecture introduced by Vaswani
et al. [2] that have been shown to be very effective in various natural language
processing tasks, such as language modeling [27], machine translation [2], and also
computer vision tasks, such as image classification [28] and image generation [29].
Transformers are composed of two main components: the encoder and the decoder.
Since our proposed architecture is based on the transformer encoder, we will focus
just on it. The transformer encoder is composed of a stack of N identical layers.
Each layer is composed of two sublayers: a multi-head self-attention mechanism
and a feedforward neural network. The output of each sublayer is passed through
a residual connection and a layer normalization operation, before being passed to
the next layer. It is important to note that the transformer encoder outputs as
many vectors as the input sequence length, and the order of the vectors is not
important, as the self-attention mechanism works on sets of vectors.

Figure 2.3: Transformer architecture [2].

Self-Attention Mechanism The self-attention mechanism is the core of the
transformer architecture. It allows the model to weigh the importance of each
element in the input sequence when computing the output representation. For each
element in the sequence, the self-attention mechanism computes three vectors: the
query vector, the key vector, and the value vector. The query and key vectors
are used to compute a compatibility score between each pair of elements in the
sequence, and the value vectors are used to compute the output representation.

14

The compatibility score is computed by taking the scaled dot product between
the query and key vectors, and then applying a softmax function to obtain the
attention weights. The output representation is then computed as a weighted sum
of the value vectors, where the weights are the attention weights.
Mathematically, the self-attention mechanism is defined as follows. Given an input
sequence X = {x1, x2, . . . , xn}, the query, key, and value vectors are computed as
follows:

Q = XWQ

K = XWK

V = XWV

(2.8)

whereWQ, WK , andWV are learnable weight matrices. The output representation
is then computed as:

Attention(Q,K, V) = softmax

(

QKT

√
dk

)

V (2.9)

where dk is the dimension of the key vectors.
The self-attention mechanism can be extended to multi-head attention, where
the query, key, and value vectors are projected into multiple subspaces, and the
attention mechanism is applied independently to each subspace. The outputs of
the different heads are then concatenated and projected into the original space.

Feedforward Neural Network The feedforward neural network is a simple
two-layer neural network that applies two linear transformations with a ReLU
activation function in between. The feedforward neural network is applied inde-
pendently to each element in the sequence. The motivation for using a feedforward
neural network is to allow the model to perform additional nonlinear computations
on the output of the self-attention mechanism.
Mathematically, the feedforward neural network is defined as follows. Given an
input sequence X = {x1, x2, . . . , xn}, the output of the feedforward neural network
is computed as:

FFN(X) = ReLU(XW1 + b1)W2 + b2 (2.10)

where W1, W2 are learnable weight matrices, and b1, b2 are bias terms.

Layer Normalization Layer normalization, introduced by Ba et al. [30], is
a normalization technique that is applied to the output of each sublayer in the
transformer encoder. It normalizes the output of the sublayer across the feature
dimension, so that the mean and variance of each feature are close to zero and
one, respectively. Layer normalization helps to stabilize the training of the model,
by reducing the internal covariate shift, that is the change in the distribution of
the input to a layer during training.
Mathematically, layer normalization is defined as follows.

µ(l) =
1

m

m
∑

i=1

x
(l)
i (2.11)

σ(l) =

√

√

√

√

1

m

m
∑

i=1

(x
(l)
i − µ(l))2 (2.12)

15

LayerNorm(x(l)) = γ(l)
x(l) − µ(l)

σ(l) + ϵ
+ β(l) (2.13)

where x(l) is the output of the sublayer, µ(l) and σ(l) are the mean and variance of
the output, γ(l) and β(l) are learnable scale and shift parameters, and ϵ is a small
constant to avoid division by zero. The shift and scale parameters are learned
during training, and allow the model to undo the normalization if needed.

Residual Connections Residual connections, introduced by He et al. [31], are
connections that bypass one or more layers in a neural network. They allow the
model to learn the residual, or the difference between the input and the output of
the layer, instead of learning the output directly. Residual connections are partic-
ularly useful in deep neural networks, where they help to mitigate the vanishing
gradient problem, by providing a shortcut for the gradients to flow through the
network. The intuition is that a model with more layers should be at least as good
as a model with fewer layers, and the residual connections help by providing a way
for the layers to learn the identity function, if needed.

Positional Encoding One of the characteristics of the transformer architecture
is that it is permutation equivariant, that is, it does not take into account the
order of the elements in the sequence. To allow the model to make use of the order
of the elements, it is necessary to inject some information about the position of
the elements in the sequence. This is done by adding positional encodings to the
input embeddings. The positional encodings can be learned during training, or
can be fixed. The most common positional encoding is the sinusoidal positional
encoding, introduced by Vaswani et al. [2].

2.2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of neural network architecture,
introduced by LeCun et al. [32], and popularized by the success in image clas-
sification tasks, such as the ImageNet challenge [3, 33, 31]. CNNs are designed
to process input data where the spatial relationships between the elements are
important, such as images and audio signals. They are composed of a series of
convolutional layers, and optionally pooling layers and fully connected layers. The
convolutional layers apply a set of filters to the input data that slide over the in-
put and compute the dot product between the filter and the input at each position
(convolution operation). The output of a convolutional layer is a feature map that
captures the presence of certain patterns in the input, which are learned during
training. Each convolutional layer is composed of a set of filters. Going deeper in
the network, the filters capture more abstract patterns, and generally the number
of filters increases, while the spatial dimensions of the feature maps decrease. This
is achieved by using a stride greater than one in the convolution operation, or by
using pooling layers that downsample the feature maps by taking the maximum
or the average of a set of values. Finally, depending on the task, the output of
the convolutional layers can be passed to a sequence of fully connected layers that
perform the final computations.

16

Figure 2.4: Example of Convolutional Neural Network [3].

The power of CNNs comes from the fact that they are able to exploit the local
structure of the input data, by sharing weights across the input. This allows the
model to learn the same pattern at different positions in the input (translation
invariance). Moreover, they learn hierarchical representations of the input data,
by composing simple patterns into more abstract patterns.

2.2.4 Autoencoders

Autoencoders are a type of neural network architecture, introduced by Ranzato
et al. [34], that are designed to learn a compressed representation of the input data
in a self-supervised way. The architecture is composed of an encoder and a decoder.
The encoder maps the input data to a lower-dimensional latent space, and the
decoder maps the latent representation back to the original input space. The goal
of the autoencoder is to learn a representation of the input data that captures the
most important features, while discarding the noise. The autoencoder is trained
by minimizing the reconstruction error between the input and the output. The
key component of the autoencoder is the bottleneck layer, that is the layer in the
middle of the network that has a lower dimensionality than the input and output
layers. The bottleneck layer forces the model to learn a compressed representation
of the input data, that can be used for downstream tasks, such as classification or
generation.

Figure 2.5: Example of Convolutional Autoencoder [4].

Other variants of autoencoders are the variational autoencoders (VAEs) [35], that
force the latent representation to follow a prior distribution, usually a Gaussian

17

distribution, and the conditional variational autoencoders (CVAEs) [36], that con-
dition the latent representation on some additional information, that is forwarded
to both the encoder and the decoder.

2.3 First-Person View

2.3.1 Rationale for Bird’s-Eye View in First-Person View
Applications

While designing our model, we chose to predict trajectories using bird’s-eye view
(BEV) coordinates, rather than image-plane coordinates, despite the problem be-
ing set in a first-person view (FPV) context. This decision was driven by several
critical factors.

Availability of datasets There is a significantly larger number of datasets avail-
able for training models for human trajectory prediction in bird’s-eye view settings
compared to first-person view settings.

Benchmarks and comparison Using bird’s-eye view coordinates allows us to
use existing benchmarks, facilitating direct comparisons with other models. More-
over, having the error in meters gives a better idea of the real world performance
of the model, making the results more interpretable. Finally, there are many more
models that have been developed and evaluated on BEV data. In contrast, there
are fewer models that have been proposed for FPV data.

Scene context utilization Incorporating scene context is crucial for accurate
predictions. However, extracting accurate scene information from a single FPV
image is challenging. And then, exploiting this information to predict future tra-
jectories in the image plane is even more challenging. On the other hand, if we
assume the scene information is available in BEV coordinates, predicting future
trajectories becomes more straightforward due to the clearer alignment between
the scene information and the trajectories. Of course, this assumption is not en-
tirely realistic, but we should be able to extract the scene map from several FPV
frames, using simultaneous localization and mapping (SLAM) techniques, a well-
established method that has extensive research support and has been shown to
work well in practice. A survey of SLAM techniques can be found in [37, 38].

World coordinates requirement Ultimately, our goal is to deploy the tra-
jectory forecasting module in autonomous agents that operate in the real world.
In this setting, the agents need to predict trajectories in world coordinates, with
themselves positioned at the origin. So, predicting trajectories directly in world
coordinates is more natural and requires fewer transformations.

2.3.2 Forecasting Pipeline

This section describes the pipeline for forecasting human trajectories starting from
a first-person view (FPV) video feed, and ending with the prediction of future
trajectories in bird’s-eye view (BEV) world coordinates.

18

2.3.2.1 Human Detection and Localization

The first step in the pipeline is to detect and localize humans in the FPV video
feed. This is done using a human detection model, which takes as input the
video frames and outputs the bounding boxes of the humans in the scene. For
this task, we use the YOLOv8 model [39] which is a state-of-the-art real-time
object detection model. It can also detect the keypoints of the human body, which
will be useful for the next steps in the pipeline. The YOLOv8 model comes in
different versions, starting from the smallest version, YOLOv8-n (nano) to the
largest version, YOLOv8-x (extra), passing through YOLOv8-s (small), YOLOv8-
m (medium), and YOLOv8-l (large). The size of the model, together with the
input resolution, affects the inference time and the accuracy of the detection.
In our experiments, we use the YOLOv8-m model, at a resolution of 1280x720,
which provides a good trade-off between accuracy and inference time. The main
effect that we observed by reducing the resolution is that the detection of far-away
pedestrians is less accurate, while the closer ones are detected with comparable
accuracy. However, that must be decided at deployment time, depending on the
requirements, and the hardware available. Figure 2.6 shows the inference time
of the YOLOv8 model (including also the tracking time as explained in section
2.3.2.2) at different sizes and resolutions, tested on an Intel Core i5-8400 CPU [40]
and a NVIDIA GeForce GTX 1050 Ti GPU [41].

Figure 2.6: YOLOv8 detection and tracking latency (s). The plot shows the inference latency of the YOLOv8
model (using BoT-SORT for tracking) at different model sizes and input image resolutions. Larger models and
higher resolutions result in longer inference times. Tested on an Intel Core i5-8400 CPU and a NVIDIA GeForce
GTX 1050 Ti GPU. Best viewed in color.

The information about the inference time is important for us, because it tells
us how much time we have for the forecasting module to make predictions. A
reasonable time for real-time applications could be around 0.4 seconds, which is
the standard interval in the literature, and is also the time that we use in our
experiments.

YOLOv8 processes each FPV frame to detect humans and provides tight bound-
ing boxes around detected individuals. Each bounding box is associated with a

19

confidence score indicating the likelihood that the detection is a human. Along
with bounding boxes, YOLOv8 also detects keypoints on the human body. These
keypoints, such as joints and feet, will be useful for the next steps in the pipeline.

Figure 2.7: Example of YOLOv8 human detection.

Once the bounding boxes are extracted, we need to localize the humans in the
image, by extracting their position, that is, the point below their feet. This is done
by identifying the point in the middle of the bottom side of the bounding box. This
point is assumed to be the point that touches the ground, which is a reasonable
assumption since humans are generally standing or walking, not jumping. We also
employ some heuristics to filter out bad detections. First, we discard detections
with low confidence scores. Then, we discard detections where the bounding box is
not touching the ground, which can happen when the feet are occluded. Finally, we
discard detections where the feet keypoints are not consistent with the bounding
box position. For example, if the feet keypoints are outside the bounding box, or
if they are too high with respect to the bounding box. This can happen due to
errors in the YOLOv8 detection, or when a person is in a strange pose.

2.3.2.2 Human Tracking

Once people are detected in the video frames, the next step is to track them over
time. Tracking means maintaining a unique ID for each detected person as the
video advances. This is important because it allows us to follow the movement of
each individual throughout the video and keep a history of their positions, which
is needed for forecasting their future trajectories.

20

Figure 2.8: Example of human tracking.

For tracking, we use the BoT-SORT algorithm, introduced by Aharon et al. [42],
which is a state-of-the-art tracking algorithm. BoT-SORT stands for ”Better On-
the-fly Tracking using Simple Online and Realtime Tracking”. It is designed to
work well with real-time applications, making it a good fit for our pipeline. BoT-
SORT goal is to associate the new detections provided by YOLOv8 with the ex-
isting tracks, maintaining the IDs of the tracked humans. The algorithm uses a
motion model to predict the future position of each detected person based on their
past positions. This prediction is combined with appearance features extracted
from the detected bounding boxes to distinguish between different individuals,
even if they are close to each other. BoT-SORT uses the Kalman filter [43] for
motion prediction and the Hungarian algorithm [44] for data association. The
Kalman filter predicts the next position of each tracked human based on their
previous positions and velocities. The Hungarian algorithm matches the predicted
positions with the new detections, ensuring that each detection is correctly as-
signed to an existing track or marked as a new track if it does not match any
existing ones. If a person is no longer detected (e.g., because they moved out
of the frame), BoT-SORT will eventually remove their ID after a few frames of
non-detection.

2.3.2.3 Projection to World Coordinates

After tracking the humans in the video frames, we need to project their positions
to world coordinates, also known as bird’s-eye view (BEV). To achieve this, we use
the homography matrix, which maps points from a plane to another plane. In our
case, we map points from the projection of the ground plane in the camera image
to the actual ground plane in the world coordinates. The homography matrix
is a 3x3 matrix with 8 degrees of freedom, which means it is determined up to
scale (i.e., we can multiply all elements by a constant factor and still get the same
transformation).

21

Figure 2.9: Example projection to world coordinates (BEV). The image in the right is the bird’s-eye view of the
scene, computed by warping the first-person view image using the homography matrix. Superimposed on the
BEV image there are the detected human tracks.

The estimation of this matrix requires knowing the correspondence between points
in the image and their real-world coordinates. At least four points are needed
to compute the homography matrix. A simple way to obtain these points is to
position the camera in a fixed location and take a picture of a scene where there
are four points with known coordinates on the ground. Some examples could be
the corners of a paper sheet or the corners of a football field. To compute the
homography matrix, we use the OpenCV library [45], which provides a function to
estimate the matrix given the point correspondences. It works by solving a least-
squares problem, which minimizes the back-projection error between the real-world
points and the image points.
Using the homography matrix H, we can transform any point (xi, yi) in the image
to world coordinates (xw, yw), provided that the point in the image belongs to
the ground plane. This transformation is done by first converting the point to
homogeneous coordinates (by concatenating a 1 to the vector) and then multiplying
it by the homography matrix:

x̃w

ỹw

z

= H

xi

yi

1

(2.14)

After projecting the points to world coordinates with the homography matrix, the
resulting point (x̃w, ỹw, z) is in homogeneous coordinates, so we need to divide the
first two components by the third component to obtain the cartesian coordinates
(xw, yw).

xw

yw

=

x̃w/z

ỹw/z

(2.15)

So, given the position of a human in the image, we can use the homography matrix
to project it to world coordinates.
In our setup, the camera orientation with respect to the ground is assumed to
be fixed. This means that the camera’s tilt, pan, and roll angles and its height
remain constant, even if the camera itself moves (around the scene). Additionally,
we assume the ground is flat. These assumptions allow us to use a precomputed
homography matrix for all frames in the video, without the need to recompute it
for each frame.

22

An important point to note is that, before estimating the homography matrix,
and also before projecting the humans to world coordinates, we need to calibrate
the camera, which involves finding the distortion coefficients, and use them to
undistort the image before processing it. This is important to ensure that the
homography matrix estimation and the projection is accurate. The distortion is
caused by the lens of the camera, which can introduce some warping in the image.
The calibration process is done by taking pictures of a calibration pattern (e.g.,
a chessboard) from different angles and distances, and then using these images
to estimate the distortion coefficients. The OpenCV library provides functions to
perform camera calibration and undistortion.

2.3.2.4 Data Preprocessing

Before feeding the data to the forecasting model, we need to perform some pre-
processing steps to clean the data and make it more suitable for the model. This
involves filling missing detections and smoothing the trajectories of the tracked
humans to remove noise.

Filling missing detections With a first-person viewpoint, the visibility of the
individuals in the scene is limited. People can be occluded by obstacles or other
people, or the detection model can fail, for example, due to poor lighting condi-
tions. When a person is not detected in a few frames, the tracking algorithm is
generally able to maintain the track, but the position of the person in those frames
is missing. To fill these missing detections, we use linear interpolation between the
last known position and the next known position. This is a simple method that
works well considering that often the gaps are small and that people generally
move smoothly. Linear interpolation works by creating a straight line between the
two known positions and filling the missing positions along this line.

Smoothing trajectories The trajectories of the tracked humans are often noisy,
in particular for far away people. This noise is generated by the detection model,
either because the bounding boxes are imprecise or because the person while walk-
ing raises their feet, which can cause the bounding box to move up and down. This
produces a jittery trajectory that is not representative of the actual movement of
the person. Small changes in the position of the bounding box can cause large
changes in the position of the projected point in the world coordinates, particu-
larly for far away people. This is due to the perspective projection, which amplifies
this error. To mitigate this effect, we smooth the trajectories using a Savitzky-
Golay filter [46]. This filter smooths the trajectory by fitting a polynomial to a
sliding window of data points. The result is a smoother trajectory that still follows
the overall path of the person but without the zigzagging introduced by the noise.
The Savitzky-Golay filter works by taking a window of data points and fitting a
polynomial of a certain degree to these points. It then replaces the central point
in the window with the value of the polynomial at that point. This process is
repeated for all points in the trajectory. The degree of the polynomial and the
size of the window are parameters that can be adjusted to get the desired level of
smoothing. An example of the Savitzky-Golay filter applied to noisy trajectories
can be seen in Figure 2.10.
To deal with imprecise detections, we also train the forecasting model with a bit of
noise in the data (see data augmentation paragraph in section 3.5), for example, by

23

perturbing the positions of the detected humans by a small amount. This makes
the model more robust to noise in the real data, which should help improve the
accuracy of the forecasts.

2.3.2.5 Forecasting

The next step in the pipeline is the actual trajectory forecasting. Given the history
of the trajectory of the people in the scene, we want to predict their future posi-
tions. To do this, we use our proposed model (see chapter 3). The model takes
as input the past trajectories of all the people in the scene, sampled at regular
intervals of 0.4 seconds. It accepts up to 8 history points for each person, but we
trained it to start predicting with just 2 points, to reduce the latency from the
first detection to the forecast. This allows it to start predicting the future trajec-
tory of a person after only 0.4 seconds from the first detection. The model has
a prediction horizon of 12 points in the future, which corresponds to 4.8 seconds.
We predict 20 samples for each person, which allows us to capture the uncertainty
in the forecast. An example of the predictions made by the model can be seen in
Figure 2.10, where only 5 out of 20 samples are shown for each person.

The model is suitable for real-time applications, as it can make predictions in
about 5-15 milliseconds on a NVIDIA GeForce GTX 1050 Ti GPU [41] (with an
Intel Core i5-8400 CPU [40]) for scenes of about 10-30 people. Considering that
the detection and tracking steps take about 0.2 seconds, we can easily keep up
with the target of 0.4 seconds prediction interval on this hardware. More details
about the inference latency of the model can be found in section 4.3.7.

Figure 2.10: Example of multiple trajectory forecasting. The lines in front of each person represent the predicted
future trajectories. By zooming in the image, a thin line over the past trajectory of each person is visible,
representing the smoothing applied to the trajectories.

2.3.2.6 Occupancy Heatmap

The final step in the pipeline is to generate an occupancy heatmap of the future
scene. This map helps in understanding how the space will be used in the near
future. This heatmap combines all the predictions of all the people in the scene.
Each predicted position contributes to the heatmap, showing where people are
likely to be in the next 4.8 seconds (12 × 0.4s = 4.8s). This represents a non-
parametric distribution of the occupancy of the scene, giving us a visual and
programmatic representation of where humans are expected to be.

24

Figure 2.11: Example of multiple occupancy heatmap. The heatmap shows the most likely locations of people in
the scene in the next 4.8 seconds.

The occupancy heatmap serves as a layer in between the raw trajectory predictions
and final tasks, such as path planning and collision avoidance. For example, a robot
can use this map to plan a path that avoids areas where many people are predicted
to be, reducing the risk of collisions. We compute the occupancy heatmap by using
a Gaussian smoothing kernel. This kernel smooths the predicted positions, making
the heatmap more continuous and realistic. Additionally, we account for previous
predictions by summing them using a decay factor. This factor reduces the weight
of past predictions as we move further into the future, ensuring that more recent
predictions have a greater influence on the occupancy map.

2.4 Related Work

Early frameworks for trajectory prediction were based on hand-crafted rules, such
as attraction to goals, repulsion from obstacles and other agents. One of the most
popular of these is the social force model from Helbing and Molnar [47]. Several
works have proposed improvements to this model [48, 49, 50, 51, 52, 53, 54, 55, 56].
Another parallel line of work for simulating pedestrian motion is the reciprocal
velocity obstacles (RVO) model from Van den Berg et al. [57], which provides safe
motion planning with no oscillation, provided that the agents use the same collision
avoidance strategy. Based on the same idea, Van Den Berg et al. [58] proposed
an improved and more efficient version, named ORCA. As shown by Kuderer
et al. [59], these hand-crafted models perform reasonably on interaction modeling,
but their ability to predict the future is poor, due to the limited generalization
capabilities of rules hand-crafted by domain experts.
Deep learning is now the standard for trajectory prediction, and several different
architectures have been proposed to tackle the problem. Since trajectories are se-

25

quences, recurrent neural networks (RNNs) are a natural choice, and most works
use LSTMs or GRUs as encoders and decoders, predicting the future in an au-
toregressive way [60, 11, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Notably,
Alahi et al. [60] pioneered the use of LSTMs for trajectory prediction, and pro-
posed Social-LSTM, which models the interactions between agents using a social
pooling layer that aggregates the hidden states of neighboring agents. Similarly,
with the success of Transformers in modeling sequential data, particularly in nat-
ural language processing, several works have proposed to use them for trajectory
prediction [73, 74]. Franco et al. [73] analyze in detail the use of transformers for
trajectory prediction, and propose some models that account only for the past of
each pedestrian independently, without considering neither social nor scene con-
text. Liu et al. [74] propose a stack of transformer’s cross attention layers that
process the history, scene context and social interactions in a sequential way. Yuan
et al. [75] propose a model that simultaneously integrates temporal and social in-
formation using a novel agent-aware attention. With the recent success of diffusion
models [76, 77] in image generation, Gu et al. [78] have proposed to use them for
trajectory prediction. These models predict the whole future trajectory at once,
instead of autoregressively, and have shown to be pretty accurate. However, they
are computationally expensive, due to the sequential denoising process. For this
reason Mao et al. [79] have proposed a more efficient version that performs a smart
initialization of the noise, allowing it to skip most of the denoising steps. It also
improves the diversity of the generated samples, and performs really good, reach-
ing state-of-the-art levels of accuracy. A powerful approach to model trajectory
prediction is to use physics-informed models. Salzmann et al. [65] studied inte-
grating dynamics into the prediction model. Similarly Yue et al. [80] proposed
NSP-SFM, that introduces a strong inductive bias by combining model-based and
model-free methods into a novel Neural Differential Equation framework, that
reaches state-of-the-art performance.

2.4.1 Multimodal Trajectory Prediction

Following [66, 11], most works started focusing on the multimodal nature of the
problem, that is, there are multiple valid future trajectories for each agent. It is
particularly important to predict a distribution of future trajectories, instead of
a single one, because it allows downstream tasks, such as deploying autonomous
robots, to account for the uncertainty in the prediction. Lee et al. [66] propose
DESIRE a framework to predict multiple future paths for each agent, and rank
them afterwards. Social GAN, from Gupta et al. [11] uses a GAN [81] to generate
multiple realistic future paths, and propose a novel variety loss to encourage di-
versity in the generated trajectories. Several other works [61, 62, 82, 83, 72] have
proposed to use GANs, given their ability to generate realistic samples, by exploit-
ing the adversarial training to push the model to generate samples belonging to
the manifold of real trajectories. Kosaraju et al. [62] push this further by utilizing
a bicycle GAN [84], that uses a latent encoder to encourage the model to learn
a bijection between the latent space and the generated trajectories. Particularly
interesting is the work from Dendorfer et al. [83], that proposes to directly predict
a probability distribution of goals in an end-to-end trainable way. A subsequent
work from the same authors [72] proposes to use a mixture of generators to predict
multimodal trajectories, avoiding out-of-distribution samples, and improving the
quality of the generated trajectories. Another line of work is to use conditional

26

variational autoencoders (CVAEs) [36, 35, 34] to predict multimodal trajecto-
ries [66, 85, 86, 65, 80]. Trajectron++, by Salzmann et al. [65], uses the CVAE
framework by introducing a discrete categorical latent variable that represents the
abstract mode of a trajectory. Another approach to multimodal trajectory pre-
diction is to predict a heatmap representing the probability of occupancy of each
cell in the scene through a non-parametric distribution. This approach has been
chosen by Gilles et al. in [87, 88], where they propose to use a CNN to output
the heatmap. Similarly Y-net, from Mangalam et al. [89], predicts a heatmap by
using a CNN based U-net architecture [90], conditioned on the past trajectory of
the agent and on a sampled goal. Diffusion based models [78, 79] are stochastic
by design and can predict a set of future trajectories, by sampling from the noise
distribution at each step of the denoising process. However, [79] have shown that
the diversity of the generated trajectories can be improved by sampling the noise
in a correlated way, instead of sampling it independently. A different framework to
achieve multimodality, introduced by [73], is to quantize the future velocity space,
and predict the probability of each quantized velocity. In our work, we condition
the decoder on a latent Gaussian noise, and train it to predict a diverse set of
future trajectories by exploiting the variety loss introduced in [11].

2.4.2 Social context

Processing each pedestrian independently is not enough to predict trajectories that
are socially acceptable. In order to account for social interactions, a model must
have some way of encoding the social context, that is, sharing information between
agents. The strategies that have been proposed to handle social interactions can
be divided depending on whether they consider only the neighboring or all agents
in the scene, and whether they consider the interactions in a static or dynamic
way. The simplest way to account for social interactions is to consider only the
neighboring agents. This is the approach taken by most previous works [60, 66, 63,
68, 61, 82, 64, 91]. The most prominent approaches in this category are to either
aggregate information from the neighbors in a fixed radius, as in [60, 66, 68, 63,
82, 64], or to consider only the k nearest neighbors, as in [61, 91] and adopting a
padding strategy to handle the case when the number of neighbors is less than k.
Another way to account for social interactions is to consider all agents in the scene.
This is the approach taken by [11, 67, 70, 62, 92]. To handle a variable number of
agents, these works use permutation invariant functions that work on sets, such as
the social pooling layer from Gupta et al. [11] that aggregates the hidden states
of all agents using max pooling, or the social attention mechanism from Kosaraju
et al. [62]. The use of attention mechanisms allows it to model the interactions in
a dynamic way, by learning the importance of each agent in the scene, depending
on the context, like the past motion pattern of the agent. While other approaches,
such as the max pooling, model the interactions in a uniform way, by giving the
same importance to all agents. Some works [60, 91] prefer to model the social
interactions at each time step, allowing to capture in an easier way the evolution
of the interactions. However, this approach is computationally expensive, because
it requires to compute the interactions at each time step, and it is not always
necessary, because the interactions are often stable over time. For this reason,
some works [11, 62] prefer to model them only once, at the last observed time step.
A great analysis of the possible ways to model social interactions is presented by
Kothari et al. [91]. An innovative way to improve the social interactions modeling

27

and reduce the number of collisions, without adding any inference time overhead,
is Social-NCE, a model agnostic framework, proposed by Liu et al. [5], that uses
an auxiliary contrastive loss to encourage the model to encode in its hidden state
information useful to avoid future collisions with other agents. In our model we
choose to use a two layer transformer encoder inserted between the history encoder
and the future decoder, that processes the hidden states of all agents in the scene,
and learns the importance of each agent in a dynamic way. Moreover, we integrate
the Social-NCE framework in our model, as in our experiments we have observed
that it reduces the number of collisions.

2.4.3 Scene context

In order to condition the trajectory prediction on the scene context, most previous
works [66, 63, 93, 61, 62, 94, 72] have used a pretrained or custom CNN to encode
the scene image into a vector. Notably, [61, 62, 94] use the attention mechanism to
focus on the relevant parts of the scene. However, compressing the scene image into
a one-dimensional space does not yield satisfactory results, as it loses the spatial
information and the alignment between the encoded trajectories and the image.
This problem is pointed out in [95], which achieved better results without using
the images. A solution to this problem is proposed in Y-net by Mangalam et al.
[89], which represents the trajectory directly on the same two-dimensional space as
the scene image, providing a solution to the alignment issue, and achieving state-
of-the-art results. In this work, we propose a different approach that exploits
an auxiliary contrastive loss, inspired by Social-NCE [5], combined with other
architectural and training changes.
When it comes to providing the network with scene context, most prior works feed
the whole scene image [62, 63, 61, 68, 65], while some feed only a cropped region
around the agent [66, 82, 96, 72]. Lee et al. [66] proposes to extract a patch from
the CNN feature map, in the corresponding position, instead of forwarding just
the cropped region. Often the image is also rotated to align the scene with the
agent’s trajectory, as in [65]. Exploiting our domain knowledge, we prefer to feed
the network with a patch of the scene image that is oriented, but also offset, to
include the agent’s most likely future path. Moreover we train from scratch the
CNN that encodes the scene image, using an autoencoder.

2.4.4 First Person View

Some works have focused on forecasting in first person view settings. Yagi et al.
[97] use a CNN based model to predict the future trajectory of the people directly
in the image plane, taking into account also the ego-motion of the camera. Bi
et al. [98] predict the future trajectory in world coordinates, by encoding the past
trajectory with a LSTM, and the first-person view images with a CNN. Then
combines the two representations and predicts the future trajectory with another
LSTM. However, it assumes that each agent has a camera, and the camera stream
is available to all agents in real time. Stoler et al. [99] propose a method to build a
first person view dataset from third person view data through 3D rendering, and
an input correction model, to impute the missing information. Particularly useful,
considering that missing information appears frequently in the first person view
setting. Qiu et al. [100] predict the future trajectory of the camera wearer, using
a graph based approach.

28

Model Social Scene Multi FPV

Social Force [47] ✓ X X X

Social-LSTM [60] ✓ X X X

DESIRE [66] ✓ ✓ ✓ X

Social-GAN [11] ✓ X ✓ X

SoPhie [61] ✓ ✓ ✓ X

Social-BiGAT [62] ✓ ✓ ✓ X

MID [78] ✓ X ✓ X

Leapfrog [79] ✓ X ✓ X

Transformer Networks [73] X X ✓ X

Trajectron++ [65] ✓ ✓ ✓ X

SS-LSTM [63] ✓ ✓ X X

Tensor Fusion [82] ✓ ✓ ✓ X

Agentformer [75] ✓ ✓ ✓ X

Stacked Transformers [92] ✓ X ✓ X

STAR [92] ✓ X ✓ X

MG-GAN [72] ✓ ✓ ✓ X

Y-net [89] X ✓ ✓ X

SMEMO [71] ✓ X ✓ X

NSP-SFM [80] ✓ ✓ ✓ X

FPL-FPV [97] X X X ✓

FvTraj [98] ✓ ✓ ✓ ✓

Table 2.1: Model characteristics table. Social: uses social information. Scene: uses scene context information.
Multi: predicts multimodal trajectories. FPV: uses first-person view data.

29

Chapter 3

Methodology

3.1 Problem Formulation

The objective of human trajectory forecasting is to predict the future positions of
all the pedestrians in a scene. The input to the model is composed of the sequence
of all the past positions (2D coordinates) of all the pedestrians in the scene, that
we denote as:

X = {X1, X2, . . . , XN} (3.1)

where N is the total number of pedestrians in the scene, and Xi is the sequence
of 2D coordinates of pedestrian i.

Xi = [xi,t ∈ R
2 | t = 1, 2, . . . , Tobs] (3.2)

where Tobs is the size of the observation window.
Optionally, the model can also take additional information, such as the sequence
of bird’s eye view images of the scene at each timestep:

I = [It | t = 1, 2, . . . , Tobs] (3.3)

where It is the bird’s eye view image of the scene at timestep t. In our case,
we assume to have access to a segmentation mask of the scene that encodes the
walkable area and the obstacles in the scene. Moreover, we use only the last image
of the sequence, ITobs

.
The task of the model is to forecast the corresponding sequence of future positions
of all the pedestrians in the scene:

Y = {Y1, Y2, . . . , YN} (3.4)

where Yi is the future sequence of 2D coordinates of pedestrian i.

Yi = [yi,t ∈ R
2 | t = Tobs + 1, Tobs + 2, . . . , Tobs + Tpred] (3.5)

where Tpred is the size of the prediction window.
We denote the model output as:

Ŷ = {Ŷ1, Ŷ2, . . . , ŶN} (3.6)

Ŷi = [ŷi,t ∈ R
2 | t = Tobs + 1, Tobs + 2, . . . , Tobs + Tpred] (3.7)

30

The model output can be extended to predict K future trajectories for each pedes-
trian, in which case the model output is a set of K sets of N future trajectories:

Ŷ = {Ŷ 1, Ŷ 2, . . . , Ŷ K} (3.8)

Ŷ k = {Ŷ k
1 , Ŷ

k
2 , . . . , Ŷ

k
N} (3.9)

Ŷ k
i = [ŷki,t ∈ R

2 | t = Tobs + 1, Tobs + 2, . . . , Tobs + Tpred] (3.10)

3.2 Model Architecture

Figure 3.1: Architecture of the proposed model. The model consists of a Trajectory Encoder LSTM to capture
motion history, a Social Interaction Transformer to model interactions between pedestrians, a Patch Encoder to
process the environment map, and a Trajectory Decoder LSTM to predict future trajectories. Additionally, the
Social-NCE and Map-NCE modules are used to compute auxiliary contrastive losses during training. The output
of the Social Interaction Module, the Map Patch Encoder, and the noise vector are concatenated and used as
initial hidden state for the Trajectory Decoder. The two figures on the left represent the input information for
the model: the one on the top emphasizes the environment map and the relative patch extraction process around
each pedestrian, and the one on the bottom shows just the trajectories of the pedestrians. Both figures show the
positive (green) and negative (red for Map-NCE, orange for Social-NCE) samples used in the contrastive learning,
that are then processed by the respective NCE modules, as can be seen by the colored arrows. The NCE modules
also take as input a query vector; both queries are obtained from the output of the Social Interaction Module,
allowing the modules to ”see” the motion history, but the Map-NCE query is also concatenated with the output
of the Map Patch Encoder, to allow the module to ”see” the environment map. The figure also emphasizes the
components of the Patch Encoder, which consists of a CNN pretrained through an autoencoder and frozen during
the actual training, and a MLP that is instead trained only during the main model training. The Patch Encoder
processes all the map patches independently. The colors of the arrows are used to disambiguate the different
paths of the information flow in the model. Best viewed in color.

We propose two models for human trajectory forecasting. The first model, referred
to as Model1, is designed to predict the future trajectories of all the individuals

31

in a scene based on their past movements, considering the interactions between
them. The model takes as input the observed trajectories of the individuals up to
the current time step and generates predictions for their future paths. The output
of the model is a set of predicted trajectories for each individual, indicating the
likely paths they will take in the upcoming time steps. The second model, referred
to as Model2, builds upon the architecture of Model1 by incorporating additional
contextual information about the scene, in the form of an environment map. This
map provides information about the spatial layout of the scene, including obstacles
and boundaries, as a binary mask indicating walkable areas. By integrating this
map data into the model, Model2 can consider the environmental constraints that
may influence human movement. Both models are trained using relative displace-
ments, both as input and output, meaning that the model never sees the absolute
positions of the individuals in the scene, but only the relative displacements be-
tween consecutive time steps. This allows the model to be agnostic to the absolute
position of the individuals in the scene, and focus on capturing the underlying dy-
namics of their movements (more details in section 3.5). The models are built
on top of several modules, some of which are used only at training time to help
the model learn the underlying patterns in the data. In the following sections,
we describe the modules one by one, and later we will explain how the training
process works, including the loss functions used.

3.2.1 Trajectory Encoder

The Trajectory Encoder module processes the observed trajectories of the indi-
viduals in the scene, encoding them into a latent representation that captures
the relevant information for predicting future movements. The module consists of
a LSTM recurrent neural network that processes the trajectory data over time,
capturing the temporal dependencies. Each pedestrian’s trajectory is encoded in-
dependently by a separate instance of the same LSTM model, sharing the same
weights. The output of the Trajectory Encoder is a latent representation for each
individual (the final hidden state of the LSTM), which is then used as input to the
next module. Formally, the Trajectory Encoder module produces the encoding ei
for each individual i in the scene, by processing its observed trajectory Xi with
the LSTM model:

ei = LSTMenc(Xi;Wenc) (3.11)

where Wenc are the parameters of the LSTM model. So, the output of the Tra-
jectory Encoder module is a set of latent representations of the trajectories of the
individuals in the scene:

E = {e1, e2, . . . , eN} (3.12)

3.2.2 Social Interaction Module

The Social Interaction Module takes as input the latent representations ei of the
individuals’ trajectories produced by the Trajectory Encoder, and processes them
to capture the interactions between the individuals in the scene. The module con-
sists of a two-layer transformer encoder that processes the latent representations

32

of the individuals, attending to the information from other pedestrians to model
the social interactions.
The input trajectory embeddings E alone do not contain information about the
spatial arrangement of pedestrians in the scene, since the trajectory encoder only
sees relative displacements with respect to the previous time step (of a single pedes-
trian). To incorporate this spatial context, we add to the latent representation of
the trajectories E, an embedding of the relative positions of the pedestrians with
respect to each other, at the last observed time step Tobs. This is, in some way,
similar to the positional encoding used in the transformer architecture (when used
to encode sequences), but specific to the relative positions of the pedestrians in the
scene. This allows the transformer input to contain information about the spatial
positions of the individuals.

Figure 3.2: Social Interaction Module. Example of input and output of the Social Interaction Module for a
scene with 4 pedestrians. The input to the module is a set of latent representations E of the trajectories of the
individuals in the scene. The module performs 4 independent (parallel) forward passes of the transformer, one for
each pedestrian, and outputs a set of social encodings S that capture the interactions between the individuals.
The vertical lines with dots at the extremes represent the relative positions of each pedestrian with respect to
the main pedestrian. The main pedestrian for each forward pass is highlighted with its own color. Best viewed
in color.

Each pedestrian has its own relative position with respect to all the others, that
is, we need to perform a forward pass of the transformer for each pedestrian in
the scene, and each time add to the latent representation of the trajectories the
embedding of the relative positions of that pedestrian with respect to the others
(that changes for each pedestrian). For each forward pass, we take the output of
the transformer corresponding to the main pedestrian, and use it as input to the
next module. An illustration of the input and output of the Social Interaction
Module for a scene with 4 pedestrians is shown in figure 3.2.
Formally, to compute the social encoding si for the individual i, we first compute
the relative positions Ri of the individual with respect to all the N people in the
scene, at the last observed time step Tobs:

Ri = {ri,0, ri,1, . . . , ri,N} (3.13)

ri,j = xi,Tobs
− xj,Tobs

(3.14)

where xi,Tobs
∈ R

2 is the position of pedestrian i at the last observed time step
Tobs, and j ∈ {1, 2, . . . , N} is an index that ranges over all the pedestrians in the

scene. Note that, when i = j, the relative position is
−→
0 .

Then, we compute the relative position embeddings R′
i for the individual i:

R′
i = {r′i,0, r′i,1, . . . , r′i,N} (3.15)

r′i = MLPrel pos(ri;Wrel pos) (3.16)

33

Then, we mix the trajectory embeddings E and the relative position embeddings
R′

i to obtain the input E ′
i to the transformer encoder for the individual i:

E ′
i = {e′i,0, e′i,1, . . . , e′i,N} (3.17)

e′i,j = ej + r′i,j (3.18)

Finally, we compute the social encoding si for the individual i by processing the
input E ′

i with the transformer encoder, and taking the output corresponding to
the current pedestrian i:

Si = Transformersoc(E
′
i;Wsoc) (3.19)

si = Si[i] (3.20)

where Wsoc are the parameters of the transformer encoder. The output of the
Social Interaction Module is a set of social encodings si for each individual in the
scene:

S = {s1, s2, . . . , sN} (3.21)

The key advantages of using a transformer architecture in the Social Interaction
Module are that it allows for an arbitrary number of neighboring pedestrians to be
considered in the interactions, and also the attention mechanism allows the model
to dynamically adjust the importance of each pedestrian’s information based on
the context, making the model more flexible and capable of capturing complex
social dynamics. The downsides of this approach are the quadratic complexity in
the number of pedestrians and the potential overfitting to spurious correlations
between distant pedestrians.

3.2.3 Map Patch Encoder

The Map Patch Encoder module gets as input a patch of the environment map
centered around each pedestrian, and encodes it into a latent representation that
captures the spatial structure of the scene around the individual. The extracted
patches have a fixed size of 100x100 pixels, that corresponds to a physical area of
10x10 meters in the real world, so each pixel corresponds to a 10x10 cm area. More
precisely, each patch is oriented according to the pedestrian’s heading direction,
and is not centered around the pedestrian, but is offset in order to provide a larger
forward view of the scene (9 meters) and a smaller backward view (1 meter),
with equal side views (5 meters). This way, the model can take into account the
pedestrian’s field of view and the spatial context in which the individual is moving.
If the pedestrian is near the edge of the visible scene, the extracted patch will
extend beyond the boundaries of the map, where the ground truth is unknown. In
such cases, the unknown portion of the patch is assumed to be walkable area, which
is the most reasonable assumption. The Map Patch Encoder module is composed
of two submodules: a convolutional neural network (CNN) that processes the map
patch and extracts the spatial features, and a two layer multi-layer perceptron
(MLP) with ReLU activations that processes the output of the CNN and produces
a latent representation useful for predicting the future trajectories. The CNN is
trained in a self-supervised manner, using an autoencoder on a randomly generated

34

set of map patches, in a separate training phase from the main model training.
The autoencoder is trained to embed the map patch into a fixed-size vector, and
then reconstruct the original map patch from the compressed representation. This
allows the CNN to learn to compress the spatial information of the map patch into
a latent representation that preserves the spatial structure of the scene. The CNN
encoder maps the input patch of size 100x100 pixels to a latent representation
of size 64, and the decoder maps it back to the original size through a series of
convolutional layers with pixel shuffle [101] upsampling layers in between. When
training the main model, the decoder part of the autoencoder is discarded, and
the encoder is frozen. So at training time, only the MLP part of the Map Patch
Encoder is trained, while the CNN is fixed.

Formally, the Map Patch Encoder module produces the encoding mi for the map
patch pi of each individual i in the scene:

mi = MLP(CNN(pi;Wcnn);Wmlp) (3.22)

where Wcnn are the parameters of the CNN model, and Wmlp are the parameters
of the MLP model. So, the output of the Map Patch Encoder module is a set of
latent representations of the map patches of the individuals in the scene:

M = {m1,m2, . . . ,mN} (3.23)

The Map Patch Encoder module is used only in Model2, as Model1 does not
consider the environment map in the prediction process.

3.2.4 Trajectory Decoder

The Trajectory Decoder module consists of a LSTM recurrent neural network that
generates autoregressive predictions of the future trajectory of the individual, con-
ditioned by initializing the hidden state with the output of the Social Interaction
Module. The module generates the future trajectory of each individual indepen-
dently, using a separate instance of the same LSTM model for each pedestrian.
To account for the multimodal nature of human behavior, the model is trained
to predict multiple possible future trajectories for each individual, capturing the
uncertainty in the predictions. This is achieved by conditioning the module on a
random noise vector sampled from a Gaussian distribution, and training the model
using the variety loss proposed by Gupta et al. [11] to encourage diversity in the
predicted trajectories.

Formally, the Trajectory Decoder module produces the predicted trajectory Ŷ k
i for

each individual i in the scene and each sample k, by autoregressively generating
the future trajectory based on the social encoding si, the map patch encoding mi,
and the random noise vector ϵk ∼ N (0, I) (that is sampled once for each sample
k).

Ŷ k
i = LSTMdec([si,mi, ϵk];Wdec) (3.24)

where [si,mi, ϵk] is the initial hidden state of the LSTM model, and Wdec are the
parameters of the LSTM model. So, the final output of the Trajectory Decoder
module are K sets of N predicted trajectories, denoted by Ŷ as previously defined
in equations 3.8, 3.9, and 3.10, repeated here for convenience:

35

Ŷ = {Ŷ 1, Ŷ 2, . . . , Ŷ K} (3.8)

Ŷ k = {Ŷ k
1 , Ŷ

k
2 , . . . , Ŷ

k
N} (3.9)

Ŷ k
i = [ŷki,t ∈ R

2 | t = Tobs + 1, Tobs + 2, . . . , Tobs + Tpred] (3.10)

The Trajectory Decoder module is used in both Model1 and Model2, but the map
patch encoding mi is used only in Model2.

3.2.5 Social-NCE Module

The Social-NCE module, introduced by Liu et al. [5], is a contrastive learning based
module, that aims to ensure that the learned social representations encapsulate
the necessary information for identifying scenarios that could lead to collisions
with other pedestrians. The need for this module arises from the fact that the
training dataset contains only positive examples of trajectories, that is, examples
of trajectories that did not lead to collisions. To learn a robust representation
capable of generalizing to unseen scenarios, the model must be capable of distin-
guishing between a pedestrian’s true future trajectory and potential discomfort
zones around other pedestrians’ future paths. The Social-NCE module consists
of two submodules: a query encoder and a key encoder. The query encoder em-
beds the output of the Social Interaction Module (section 3.2.2) through a linear
projection head, producing a query vector for each pedestrian. The key encoder
embeds the positive and negative samples through a MLP, producing a set of key
vectors for each pedestrian. Queries and keys are embedded in a shared space, so
that the similarity between them can be computed using the dot product. The
goal is to maximize the similarity between the query and the key corresponding to
the true future trajectory, while minimizing the similarity between the query and
the keys corresponding to the negative samples.
The procedure to obtain the positive and negative samples for pedestrian i is as
follows. Given a future timestep t, the positive sample is the true future position of
the pedestrian i at timestep t, with a small Gaussian noise to prevent overfitting,
denoted by:

pos samplei = yti + ϵ (3.25)

where ϵ ∼ N (0, cϵI), and cϵ is a small constant, set to 0.05 meters in our experi-
ments. The negative samples are obtained starting from the true future positions
of all the other pedestrians in the scene:

{ytj | j ∈ {1, 2, . . . , N} ∧ j ̸= i} (3.26)

For each other pedestrian j, we generate a set denoted neg samplesi,j of 8 negative
samples around him, by adding a small displacement ∆p to the true future position
ytj, to simulate a discomfort zones around the pedestrian:

neg samplesi,j = ytj +∆p + ϵ (3.27)

36

∆p = (ρ cos θp, ρ sin θp) (3.28)

θp =
π

4
p ∀p ∈ {0, 1, . . . , 7} (3.29)

where ρ is a small constant, set to 0.5 meters in our experiments, and p is an index
that ranges from 0 to 7, corresponding to the 8 displacement directions around
the pedestrian. Again, a small Gaussian noise ϵ is added to the negative samples
to prevent overfitting.
Finally the set of negative samples for pedestrian i is the union of the negative
samples around all the other pedestrians in the scene:

neg samplesi =
⋃

j ̸=i

neg samplesi,j (3.30)

In order to perform the contrastive learning, the Social-NCE module defines a
query encoder that embeds the social encoding si of each individual i in the scene
into a query vector qi:

qi = MLPquery(si;Wquery) (3.31)

And a key encoder that embeds the positive and negative samples into a set of key
vectors Ki for each individual i in the scene:

Ki = {ki,0, ki,1, . . . , ki,(N−1)×8} (3.32)

ki,0 = MLPkey(pos samplei;Wkey) (3.33)

ki,j = MLPkey(neg samplesi[j];Wkey) ∀j ∈ {1, 2, . . . , (N − 1)× 8} (3.34)

where Wquery and Wkey are the parameters of the MLP models.
The goal of the Social-NCE module is to maximize the similarity between the
query vector qi and the key vector ki,0 corresponding to the positive sample, while
minimizing the similarity between the query vector qi and the key vectors ki,j
corresponding to the negative samples. This is achieved by optimizing the Social-
NCE contrastive loss detailed in section 3.3.3. A more in depth explanation of
Social-NCE can be found in the original paper by Liu et al. [5].

3.2.6 Map-NCE Module

The Map-NCE module is an adaptation of the Social-NCE [5], module, based on
contrastive learning, that uses the environment map to generate negative samples
for training the model. The module is used only in Model2, as Model1 does not
consider the environment map in the prediction process. The usefulness of this
module comes from the fact that the training dataset contains only positive ex-
amples of trajectories, that is, examples of well-behaved trajectories that did not
lead to collisions with the environment obstacles. To learn a robust representation
that can generalize to new environments, the model must be able to distinguish
between a pedestrian’s actual future trajectory and potential discomfort zones

37

around the obstacles in the scene. This module forces the learned map and tra-
jectory representations to contain useful information about the scene in order to
avoid collisions with the obstacles. The Map-NCE module is composed of two
submodules: a query encoder and a key encoder. The query encoder embeds the
output of the Social Interaction Module (section 3.2.2) through a linear projection
head, producing a query vector for each pedestrian. The key encoder embeds the
positive and negative samples through a MLP, producing a set of key vectors for
each pedestrian. Queries and keys are embedded in a shared space, so that the
similarity between them can be computed using the dot product. The goal is to
maximize the similarity between the query and the key corresponding to the true
future trajectory, while minimizing the similarity between the query and the keys
corresponding to the negative samples.
The procedure to obtain the positive and negative samples for pedestrian i is as
follows. Given a future timestep t, the positive sample is the true future position of
the pedestrian i at timestep t, with a small Gaussian noise to prevent overfitting,
denoted by:

pos samplei = yti + ϵ (3.35)

where ϵ ∼ N (0, cϵI), and cϵ is a small constant, set to 0.05 meters in our ex-
periments. The negative samples are obtained starting from the contours of the
obstacles in the environment map patch. The map is processed to extract the con-
tours of the obstacles. The contours are a set of points that form the boundaries
of the obstacles in the map. The set of contour points for pedestrian i is denoted
by:

contoursi = {ci,1, ci,2, . . . , ci,Mi
} (3.36)

where Mi is the number of contour points for pedestrian i. For each pedestrian i,
we sample a subset of Z = 10 contour points, denoted by neg sample seedsi:

neg sample seedsi = {ci,1, ci,2, . . . , ci,Z} (3.37)

The neg sample seedsi are used to generate 8 negative samples for each contour
point ci,z ∈ neg sample seedsi by adding a small displacement ∆p:

neg samplesi,z = ci,z +∆p + ϵ (3.38)

∆p = (ρ cos θp, ρ sin θp) (3.39)

θp =
π

4
p ∀p ∈ {0, 1, . . . , 7} (3.40)

where ρ is a small constant, set to 0.5 meters in our experiments, and p is an index
that ranges from 0 to 7, corresponding to the 8 displacement directions around the
contour point. Again, a small Gaussian noise ϵ is added to the negative samples
to prevent overfitting.
Finally the set of negative samples for pedestrian i is the union of the negative
samples around all the Z selected contour points in the scene:

neg samplesi =
⋃

z∈{1,2,...,Z}

neg samplesi,z (3.41)

38

In order to perform the contrastive learning, the Map-NCE module defines a query
encoder that embeds the social encoding si of each individual i in the scene into a
query vector qi:

qi = MLPquery(si;Wquery) (3.42)

And a key encoder that embeds the positive and negative samples into a set of key
vectors Ki for each individual i in the scene:

Ki = {ki,0, ki,1, . . . , ki,Z×8} (3.43)

ki,0 = MLPkey(pos samplei;Wkey) (3.44)

ki,z = MLPkey(neg samplesi[z];Wkey) ∀z ∈ {1, 2, . . . , Z × 8} (3.45)

where Wquery and Wkey are the parameters of the MLP models.
The goal of the Map-NCE module is to maximize the similarity between the query
vector qi and the key vector ki,0 corresponding to the positive sample, while min-
imizing the similarity between the query vector qi and the key vectors ki,z corre-
sponding to the negative samples. This is achieved by optimizing the Map-NCE
contrastive loss detailed in section 3.3.3.

3.3 Loss

The loss function used to train the model is a combination of several losses.

L = LMSE + λEnv-ColLEnv-Col + λSocial-NCELSocial-NCE + λMap-NCELMap-NCE (3.46)

where λEnv-Col, λSocial-NCE, and λMap-NCE are hyperparameters that control the im-
portance of each loss term.

3.3.1 MSE Loss

The main loss is the Mean Squared Error (MSE) between the predicted trajectories
Ŷ and the ground truth trajectories Y . For a scene with N pedestrians the MSE
loss is defined as:

LMSE =
1

N

N
∑

i=1

∥

∥

∥
Ŷi − Yi

∥

∥

∥

2

2
(3.47)

One thing to note is that, in the training procedure, the loss is computed once
for each batch of scenes. But scenes can have different numbers of pedestrians,
so the loss is computed for each pedestrian in the scene, and then averaged over
all the pedestrians in the batch. As opposed to computing the loss for each scene
and then averaging over all the scenes in the batch. This is done to prevent giving
more importance to pedestrians in less crowded scenes. In this way all pedestrians
have the same weight in the loss computation.

39

Variety Loss To train the model to generate more samples from the multimodal
distribution of human trajectories, we use the variety loss proposed by Gupta et al.
[11], instead of the pure MSE loss. This loss encourages the model to generate
diverse trajectories, by backpropagating the gradient only for the best sample, and
not for all the samples generated, preventing the model from collapsing to a single
mode. The variety loss, for a single pedestrian i, is defined as:

Li
variety = min

k∈{1,2,...,K}

∥

∥

∥
Ŷ k
i − Yi

∥

∥

∥

2

2
(3.48)

where K is the number of samples generated by the model.
For a scene with N pedestrians, the total variety loss is defined as:

Lvariety =
1

N

N
∑

i=1

Li
variety (3.49)

3.3.2 Environment Collision Loss

To make the model learn to avoid obstacles, we introduce an environment colli-
sion loss, that penalizes the model when the sampled trajectories collide with the
obstacles in the scene. The environment collision loss is a variation of the variety
loss (explained in the previous section 3.3.1), where the mean squared error is
computed not only for the best sample, but for all the samples that collide with
the obstacles in the scene. In this way, the gradients are backpropagated also
for the samples that collide with the obstacles, making the model learn to avoid
them. Without this loss, the model has a tendency to ignore the obstacles, since
the variety loss only backpropagates the gradients for the best sample, and the
best sample never collides with the obstacles. Instead we want all the wrong sam-
ples to be penalized, so that the model can learn to generate all the samples in a
consistent way with the environment.
For a pedestrian i, we denote the set of samples that collide with the obstacles in
the scene as:

Ci = {k ∈ {1, 2, . . . , K} | collides(Ŷ k
i , Ii)} (3.50)

where collides(Ŷ k
i , Ii) is a function that returns true if the trajectory Ŷ k

i collides
with the obstacles in the map patch Ii of the pedestrian i, and false otherwise.
Then, the environment collision loss for a single pedestrian i is defined as:

Li
Env-Col =

1

|Ci|
∑

k∈Ci

∥

∥

∥
Ŷ k
i − Yi

∥

∥

∥

2

2
(3.51)

Finally, for a scene with N pedestrians, the total environment collision loss is
defined as the average of the individual environment collision losses:

LEnv-Col =
1

N

N
∑

i=1

Li
Env-Col (3.52)

3.3.3 Social-NCE and Map-NCE Losses

Finally, we use two auxiliary contrastive losses to help the model learn where
not to go. The first loss is the Social-NCE loss, introduced by Liu et al. [5],

40

that encourages the model’s hidden representations to encode information about
avoiding collisions with other agents. Inspired by this loss, we introduce a new loss,
the Map-NCE loss, that encourages the model to encode information about the
surrounding environment in the hidden representations. These contrastive losses
are motivated by the fact that the datasets contain only positive examples, that
is, examples of agents that are well behaving, but not negative examples, that
is, examples of agents that collide with themselves or with obstacles. And so the
model never learns what is wrong, but only what is right.
The general loss function for Social-NCE and Map-NCE, for a single pedestrian i,
is defined as:

Li
NCE = − log

exp(ψ(qi) · ϕ(ki,0)/τ)
J
∑

j=0

exp(ψ(qi) · ϕ(ki,j)/τ)
(3.53)

where ψ is the query encoder, ϕ is the key encoder, τ is the temperature parameter,
and J is the number of negative samples. Recall also that ki,0 is the positive
sample, and ki,j>0 are the negative samples. To compute the actual Social-NCE
and Map-NCE losses, it is sufficient to pass to the equation the correct query,
positive sample, and negative samples.
Both Social-NCE and Map-NCE losses are computed for each pedestrian in the
scene, and then averaged over all the pedestrians in the scene. The total Social-
NCE and Map-NCE losses are defined as:

LNCE =
1

N

N
∑

i=1

Li
NCE (3.54)

where N is the number of pedestrians in the scene.

3.4 Synthetic Dataset

The ETH/UCY datasets [9, 10] that we use to train and evaluate the model have
some limitations, such as the small number of scene environments, and number
of pedestrians that interact with the obstacles. To overcome these limitations, we
generate a synthetic dataset of pedestrian trajectories in environments with obsta-
cles, that we use to pretrain the model before fine-tuning on the real-world datasets
(more information about the training procedure can be found in section 3.5). In
a later section we will show how the synthetic dataset affects the performance of
the model on the real-world datasets (see 4.3.6).
The synthetic dataset is generated using a simple physics-based model of pedes-
trian movement, that takes into account the social interactions between pedestri-
ans, and the interactions with the obstacles in the scene. The model is based on the
RVO2 library [102, 103], which simulates the movement of pedestrians using the
”Optimal Reciprocal Collision Avoidance” (ORCA) algorithm, by Van Den Berg
et al. [58]. The different scene maps are generated by sampling a set of obstacles
from a predefined set of shapes such as triangles, rectangles and circles, and placing
them randomly in the scene, with random sizes and orientations. The pedestrians
are generated by sampling a random initial position and a random goal position,
both outside the obstacles, and then simulating their movement using the RVO2
library, that takes into account the social interactions between pedestrians, and

41

Figure 3.3: Example of scenes from the synthetic dataset. Each scene has a size of 25m x 15m, and contains
obstacles (black) and pedestrians (red).

the interactions with the obstacles, using a simple physics-based model of pedes-
trian movement. The pedestrian trajectories are not always realistic, but at least,
many of them interact with the obstacles in the scene, in a plausible way, giving
the model the opportunity to learn to avoid them.
A similar synthetic dataset, containing only map patches, was used also to train
the Map Patch Encoder 3.2.3 CNN, through an autoencoder architecture.

3.5 Training

A good training process is often crucial to the success of a deep learning model. In
this section we describe the training procedure used to train the proposed models.

Dataset, data augmentation, and synthetic datasets The dataset used for
training the model (ETH/UCY [9, 10]) (a more in depth description is provided in
section 4.1) contains human trajectories described as a sequence of 2D coordinates
sampled at a 0.4 second interval. Since the 2D coordinates are a characteristic of
each particular scene, in the sense that they depend on how the authors of the
dataset have defined the coordinate system, the model is trained to predict the
relative displacement between consecutive frames instead of the absolute position
of the human. In this way, the model can be applied to any scene, regardless of
the coordinate system used, provided that the sampling interval is the same.
In order to prevent overfitting to dataset specific characteristics, such as more
common directions of movement, the dataset is augmented by rotating and flipping
the input data. Additionally, a small amount of noise is added to the input data
to make the model more robust to small perturbations (e.g., the one caused by
first-person view settings, as described in section 2.3.2.4).
For our purposes, the dataset has a few problems: most of the trajectories are
linear, there are very few different scenes, and most of the agents rarely interact
with the environment. These problems are quite important for the model to learn
to predict realistic human trajectories in presence of obstacles. In fact, having
very few different scenes can lead the model to overfit to the specific maps of the
dataset, not being able to generalize to new unseen maps. And also if the agents
rarely interact with the environment, the model will not learn to avoid obstacles.
To solve these problems, we created a synthetic dataset with more complex scenes
and more interactions with the environment (for more details see section 3.4). This
dataset is used to pretrain the model before fine-tuning it on the real dataset. In
a later section we will show how the synthetic dataset affects the performance
of the model on the real-world datasets (see 4.3.6). A similar synthetic dataset,

42

containing only map patches, was used also to train the Map Patch Encoder 3.2.3
CNN, through an autoencoder architecture.
Since our model assumes that the binary scene maps, that segment the walkable
areas from the obstacles, are available, we created them manually from the original
scene images. In principle, these binary maps could be generated automatically
using an image segmentation model, or the model could be modified to take as
input the original scene images, but we chose to keep the model simple and use
the binary maps as input.

Optimization algorithm and learning rate scheduler The model is trained
using the Adam optimizer [104] with a learning rate of 3e-4, β1 = 0.9, and β2 =
0.999. The Adam optimizer is chosen because, in our testing, it has proven to
be less sensitive to changes in the learning rate and other hyperparameters, and
overall faster to converge, compared to SGD. We use a learning rate scheduler that
halves the learning rate when the validation loss plateaus for 5 epochs (see figure
3.4). This learning rate schedule has been effective in our experiments, pushing
the validation loss to lower values than just using a fixed learning rate. Often
the scheduler reduces the learning rate to values close to 1e-5 before converging.
The model is trained for a variable amount of epochs, usually between 50 and 80,
stopping when the validation loss plateaus for 10 epochs. The best checkpoint is
saved and used for evaluation.

Figure 3.4: Example of learning rate schedule of some training runs.

Regularization To prevent overfitting, besides data augmentation, we use two
techniques. First, we apply dropout [105] in the transformer that composes the
social interaction module 3.2.2. Dropout randomly turns off some neurons during
training, making the model less sensitive to specific neurons, and promoting the
learning of more robust features. Second, we use weight decay, a regularization
technique that shrinks the model’s weights towards zero. This makes the weights
fight to survive, and only if they provide a meaningful signal they will be kept. In
this way, the model will be simpler and less prone to overfitting, by reducing the
variability of the model.

Weights initialization The model’s weights are initially set using the Py-
Torch’s default initialization method, which samples from a uniform distribution

43

U(−
√
k,
√
k), where k = 1

fan in
. For the recurrent networks, we experimented with a

more advanced initialization approach. Here, input-hidden weights were initialized
using the Xavier initialization [106], while hidden-hidden weights were initialized
orthogonally [107]. Bias terms were initialized to zero, except for the forget gate
bias, set to 1 to encourage initial memorization. Despite these efforts, we observed
no significant performance or convergence speed improvements compared to using
the default initialization. Given the well-behaved gradients in both scenarios, we
opted to stick with the default PyTorch initialization method.

Training process The training process has three main steps, however, the pre-
training of the model with the synthetic pedestrian trajectories is optional. In the
experiments section, we will explicitly specify when the model is pretrained on the
synthetic dataset, and when it is not. The training process is as follows:

1. Pretraining the Map Patch Encoder : The Map Patch Encoder (section 3.2.3)
CNN is trained in a separate step, before training the full model. It is trained
using an autoencoder architecture on a synthetic dataset of map patches.
The dataset is an infinite stream of map patches automatically generated on
the fly, by randomly choosing a geometric shape, and its size, position, and
orientation, and then rendering it on a blank canvas. The model is trained to
compress the map patch into a latent representation, and then reconstruct
them. This should make the model learn to encode the spatial information
of the map in a low-dimensional representation. Since the dataset is infinite,
the model can be trained for a large number of steps, without the need to
worry about overfitting.

In the successive training steps, the Map Patch Encoder CNN is frozen, and
only the MLP on top of it is trained. This is done to prevent the model from
forgetting the spatial information learned in the previous step.

2. Pretraining the Model : The model is pretrained on a synthetic dataset of
human trajectories with obstacles (see section 3.4). The synthetic dataset
is generated using a simple physics-based model of pedestrian movement,
that takes into account the social interactions between pedestrians, and the
interactions with the obstacles in the scene (see section 3.4). The pretraining
optimization procedure is similar as the one explained above, where the
model is trained until the validation loss plateaus.

This step is optional, and in the experiments and results sections we will
specify when the model is pretrained on the synthetic dataset. However,
as we will show in the experiments section (section 4.3.6), pretraining the
model can be beneficial to improve the obstacle avoidance capabilities of the
model.

3. Fine-tuning the Model : Finally, the model is fine-tuned (or trained if not
pretrained) on the real-world dataset of human trajectories. This helps the
model to learn more realistic human behaviors, but starting from a better
knowledge of how the environment shapes the trajectories.

Software and tools The model is implemented using PyTorch [108] and Py-
Torch Lightning [109], a high-level interface for PyTorch that simplifies the training
process. We use TensorBoard [110] to monitor the training process and visualize

44

the results, as can be seen in figure 3.5. OpenCV [45] is used to perform some
manipulations on the map images.

Figure 3.5: Example of what the validation losses of some training runs with different performance look like
during training. The model reaches a good performance already after a few epochs. Then it slowly improves until
it definitively plateaus. In this example, the different performances are due to different model sizes.

45

Chapter 4

Experiments

4.1 Datasets

4.1.1 ETH/UCY

The ETH/UCY dataset [9, 10] is a widely used publicly available benchmark for
evaluating human trajectory prediction models. It consists of two datasets, ETH
(also known as BIWI ETH), introduced by Pellegrini et al. [9], and UCY, intro-
duced by Lerner et al. [10], which contain a total of five scenes captured from a
bird’s-eye view perspective. The ETH dataset includes two scenes: ETH main
building (”eth”) and ETH hotel (”hotel”), which are recorded respectively at a
resolution of 640x480 pixels and 720x576 pixels. Both were recorded at 25 fps.
Notably, the ETH dataset provides homography matrices, which are useful for
converting between image coordinates and world coordinates, and vice versa. The
UCY dataset includes three scenes: ”univ”, ”zara1”, and ”zara2”. All three scenes
were recorded at a video resolution of 720x576 pixels and 25 fps. However, unlike
ETH, the UCY dataset does not provide homography matrices, requiring to com-
pute them separately. Both the datasets provide the annotations at 2.5 fps, that is
0.4s per time step. The positions are expressed in meters. The ETH/UCY dataset
features more than 1500 pedestrians and provides manually annotated pedestrian
trajectories, including a variety of challenging scenarios where pedestrians inter-
act with each other and the environment, such as avoiding collisions and forming
groups. On average, the datasets include between 3 to 10 people in the same
frame, but the ”univ” dataset includes more individuals, averaging over 30 people
per frame. To ensure fair comparisons, researchers often use a leave-one-out ap-
proach, where the models are trained on four scenes and tested on the remaining
one, with the results averaged over the five datasets. We use the same approach
in our experiments.

(a) ETH (b) HOTEL (c) UNIV (d) ZARA1 (e) ZARA2

Figure 4.1: Example frames from the ETH/UCY dataset.

46

Two ETH dataset versions There exists another version of the ETH datasets
where the ETH ”main building” (”eth”) is sped up by about 2 times1. This
version became popular because one of the early works on trajectory forecasting
with deep learning mistakenly created and used it, and then shared it on the
model code repository. Many researchers have used this version since it provides
the data already split into training, validation, and test sets, making it easier to
use. Unfortunately, authors often do not mention which version of the dataset
they used (likely because they are unaware of the issue), leading to confusion and
incorrect comparisons. In this work, we report results on both versions of the
dataset. We refer to the original version as ”ETH/UCY” and the sped-up version
as ”ETH/UCY 2”. Of course, the results on the sped-up version are worse than
on the original version, not only when the sped-up version is used as test set, but
also when it is used as training set. This is because in the first case the model
is evaluated on trajectories that are out of the learned distribution, and in the
second case the model is trained on trajectories that are not realistic, which makes
it harder to learn the real distribution. In Figure 4.2, we show the histogram of
pedestrian speeds in the ”eth” dataset compared to the rest of the datasets.

Figure 4.2: Histogram of pedestrian speeds in ”eth” (red) vs the rest of the datasets (blue). The ”eth” dataset has
a higher speed than the other datasets, about 2 times faster. Velocity is expressed as meters every 0.4 seconds.

4.1.2 Internal Dataset

We also collected a small dataset of first-person videos of pedestrians walking,
for example in a university campus, which we refer to as the ”internal” dataset.
The dataset consists of 3 videos, with a total of about 5 minutes of footage. The
number of pedestrians in each video varies between 1 and 4. The videos were
recorded at 1080p@30fps or 720p@25fps, depending on the camera used. The
videos were recorded using a tripod, in a fixed position, meaning that there is no
ego-motion. The dataset does not provide any annotations, it is only raw video
footage, since the main goal is to qualitatively evaluate the model on real-world

1https://github.com/StanfordASL/Trajectron-plus-plus/issues/67

47

https://github.com/StanfordASL/Trajectron-plus-plus/issues/67

Figure 4.3: Example frames from the internal dataset.

noisy data. In the future, we plan to collect more videos to create a larger and
more diverse dataset, moreover annotating the videos with pedestrian trajectories
could be useful if one wants to train or quantitatively evaluate a model on this
dataset. This dataset can be used by following the procedure described in section
2.3. The essential idea is to use a detection and tracking model to extract the
pedestrian trajectories from the videos, then convert them to world coordinates
using a homography matrix, and finally use them as input to the model.
The main reason for collecting this dataset was to have a first-person view dataset
that is more closely related to the real-world scenarios that our model will be used
in. In fact, the idea is to deploy the model on a robot that navigates in crowded
environments. The model should be able to predict the trajectories of pedestrians
in the robot’s neighborhood, even in the presence of noise and occlusions, caused
by the first-person viewpoint of the robot.

4.2 Evaluation Metrics

We evaluate the models on the ETH/UCY dataset using the classical metrics
Average Displacement Error (ADE) and Final Displacement Error (FDE), which
give a measure of the distance between the predicted and ground truth trajectories.
We also evaluate the model with pedestrian collision metrics (COL-PRED, COL-
GT), that measure the ability of the model to avoid collisions. Finally we introduce
a novel metric, the Environment Collision metric (ENV-COL), that evaluates the
ability of the model to avoid collisions with the obstacles in the scene.

4.2.1 Average Displacement Error (ADE)

The Average Displacement Error (ADE) measures the average Euclidean (L2)
distance between the predicted trajectory and the ground truth trajectory at each
future time step (lower is better). The ADE for the predicted trajectory of a single
pedestrian i is defined as:

ADEi =
1

Tpred

Tpred
∑

t=Tobs+1

∥ŷi,t − yi,t∥2 (4.1)

where Tobs is the number of observed time steps, Tpred is the number of predicted
time steps, ŷi,t and yi,t are the predicted and ground truth positions of pedestrian
i at time step t, respectively. The ADE for the entire dataset is then computed as
the average of the ADEs of all pedestrians:

48

ADE =
1

N

N
∑

i=1

ADEi (4.2)

where N is the number of pedestrians in the dataset.
When evaluating a model that predicts multiple trajectories for each pedestrian,
the ADE is computed for each predicted trajectory, and then the minimum ADE
is selected (Best-of-K approach). It is defined as:

ADEmin =
1

N

N
∑

i=1

min
k

ADEk
i (4.3)

where ADEk
i is the ADE of the k-th predicted trajectory of pedestrian i.

4.2.2 Final Displacement Error (FDE)

The Final Displacement Error (FDE) measures the Euclidean (L2) distance be-
tween the predicted final position and the ground truth final position of each
pedestrian (lower is better). The FDE for the predicted trajectory of a single
pedestrian i is defined as:

FDEi =
∥

∥ŷi,Tpred
− yi,Tpred

∥

∥

2
(4.4)

where ŷi,Tpred
and yi,Tpred

are the predicted and ground truth final positions of
pedestrian i, respectively. The FDE for the entire dataset is then computed as the
average of the FDEs of all pedestrians:

FDE =
1

N

N
∑

i=1

FDEi (4.5)

Similarly to the ADE, when evaluating a model that predicts multiple trajectories
for each pedestrian, the FDE is computed for each predicted trajectory, and then
the minimum FDE is selected (Best-of-K approach). It is defined as:

FDEmin =
1

N

N
∑

i=1

min
k

FDEk
i (4.6)

where FDEk
i is the FDE of the k-th predicted trajectory of pedestrian i.

4.2.3 Pedestrian Collisions (COL-PRED, COL-GT)

In crowded spaces, it is important for models to avoid collisions. To measure how
well models can predict collision-free trajectories, we use two metrics: Prediction

Collision (COL-PRED, COL-I) and Ground Truth Collision (COL-GT, COL-II),
introduced by Kothari et al. [91]. The need for two metrics arises from the fact
that the ADE and FDE metrics can be misleading, as they do not directly measure
the ability of the model to avoid collisions. For example, a model may predict
trajectories with low ADE and FDE values, but these trajectories may result in
collisions, or vice versa, a model may predict trajectories with higher than average
ADE and FDE scores, but these trajectories may be collision-free.

49

4.2.3.1 Prediction Collision (COL-PRED, COL-I)

The Prediction Collision metric (in short COL-PRED or COL-I) computes the
percentage of predicted trajectories that result in collisions with the predicted

trajectories of the other pedestrians in the scene. A lower COL-PRED value
indicates that the model is better at producing collision-free future scenes.

4.2.3.2 Ground Truth Collision (COL-GT, COL-II)

The Ground Truth Collision metric (COL-GT) measures the percentage of pre-
dicted trajectories that collide with the actual positions of other pedestrians in
the ground truth future scene. This metric (lower is better) helps to determine
whether the model is able to understand the intentions of other pedestrians.

4.2.3.3 Implementation Details

To compute the collision metrics, we first augment the resolution of the trajec-
tories by linearly interpolating consecutive positions. This is done to avoid, or
at least reduce, false negatives (i.e., when the model predicts a collision, but the
metric computation does not detect it). This can happen, for example, when two
predicted trajectories are orthogonal to each other, and at least one of them is
particularly fast. In this case, the predicted points may be farther apart than the
threshold distance of pedestrian collision detection.
Formally, a trajectory i collides with a trajectory j if there exists a time step t such
that the Euclidean distance between the two trajectories is less than a threshold
τ :

COL(i, j) = min
t∈T

∥yi,t − yj,t∥2 < τ (4.7)

where

T = {Tobs + 1, Tobs + 1.5, Tobs + 2, . . . , Tpred} (4.8)

The fractional time steps represent the interpolated positions. The threshold τ is
set to 0.2 meters, which is the same value used by Kothari et al. [91].

4.2.4 Environment Collisions (ENV-COL)

The obstacles in the scene constrain the possible trajectories that a pedestrian
can take. Therefore, it is important for models to predict trajectories that avoid
collisions with the obstacles. To measure how well models can predict collision-free
trajectories with the environment, we introduce the Environment Collision metric
(ENV-COL), which computes the percentage of predicted trajectories that collide
with the obstacles in the scene. A lower ENV-COL value indicates that the model
is better at producing environment compliant future trajectories.

4.2.4.1 Implementation Details

To compute the environment collision metric, we superimpose the predicted tra-
jectories on the binary map of the scene, and count the number of predicted trajec-
tories with at least one point over an obstacle. Then, we compute the percentage
of trajectories that collide with the obstacles in the scene, by dividing the number

50

of colliding trajectories by the total number of predicted trajectories (comprising
all sampled paths for all pedestrians).
Formally, we denote the set of samples that collide with the obstacles in the scene
for a pedestrian i as:

Ci = {k ∈ {1, 2, . . . , K} | collides(Ŷ k
i , I)} (4.9)

where collides(Ŷ k
i , Ii) is a function that returns true if the k-th sampled trajectory

Ŷ k
i collides with the obstacles in the scene map I.

Given a binary image I of the scene, where the pixel value is 0 if the pixel is an
obstacle, and 1 otherwise, and a future trajectory Ŷ k

i of a pedestrian i, we define
the function collides(Ŷ k

i , I) as:

collides(Ŷ k
i , I) =

{

True if ∃t ∈ T such that I(g(ŷki,t)) = 0

False otherwise
(4.10)

where g(ŷki,t) is the function that maps the trajectory point ŷki,t to the corresponding
pixel coordinates, and I(g(ŷki,t)) is the value of the pixel in the image I at the
trajectory position ŷki,t. T is the set of future time steps defined as:

T = {Tobs + 1, . . . , Tpred} (4.11)

Then, the environment collision metric for the whole dataset is computed as:

ENV-COL =
1

N

N
∑

i=1

|Ci| (4.12)

where N is the number of predicted trajectories in the dataset (comprising all
sampled paths).

4.3 Experiments

In this section, we present the experiments conducted to evaluate and validate
the proposed models. We start by studying the performance of the proposed
Social Interaction module (see 3.2.2) in section 4.3.1. Then, in section 4.3.2, we
verify the effectiveness of the Social-NCE module [5] (see 3.2.5) in improving the
collision avoidance capabilities of the model. Next, in section 4.3.3, we investigate
the effectiveness of our proposed Map-NCE module (see 3.2.6) in improving the
model’s ability to predict environment-compliant trajectories. On a similar line,
in section 4.3.4, we assess the efficacy of the Environment Collision loss (see 3.3.2),
and then, in section 4.3.5, we measure the impact of using an offset in the scene
map patch extraction (see section 3.2.3 and figure 3.1). Then, in section 4.3.6,
we investigate the usage of a synthetic dataset (see 3.4) to pre-train the model,
and together we analyze how a more regularized model performs. Finally, in
section 4.3.7, we examine the inference speed of the models, to understand if they
are suitable for real-time applications. The experiments are conducted on the
ETH/UCY dataset, however, as illustrated in section 4.1.1, there are two versions
of the dataset, the original one and a sped up version. Most of the experiments are
conducted on the sped up ”ETH/UCY 2” version, which is likely the most common
in the literature. When necessary for a deeper understanding, the experiments are
also conducted on the original version.

51

4.3.1 Social Interaction Module Ablation

In this experiment, we evaluate the performance of the proposed Social Interaction
module (see 3.2.2) by comparing different variants of the module on the model1
architecture. In particular, the version that predicts only one trajectory for each
pedestrian is used, that is no noise is passed to the model. This is standard practice
in the literature, when evaluating the collision avoidance capabilities of the model,
since there is no straightforward way to synchronize the walking mode encoded by
the latent noise.
We compare the following variants:

• No: no social interaction module. This is the baseline model, it does not con-
sider the interactions between pedestrians, so, each pedestrian is completely
unaware of the others.

• Attn: attention-based social interaction module. This module uses a simple
multi-head self-attention mechanism to aggregate the information from the
other pedestrians. The query, key, and value vectors are computed from the
pedestrian’s history embeddings, and relative positions of the other pedes-
trians at the last time step (as explained in section 3.2.2).

• T1: transformer-based social interaction module with 1 layer. This variant
uses the same transformer encoder based architecture proposed (see section
3.2.2), but with only one layer. Essentially the difference with the ”Attn”
(multi-head self-attention only) module is that the transformer encoder based
module contains a feed-forward sub-layer that provides additional nonlinear-
ity.

• T2: transformer-based social interaction module with 2 layers. This variant
is exactly the proposed one (see 3.2.2). It is composed of two subsequent
transformer layers. The idea is that the two layers can perform additional
computation, and learn to deal better with the complex interactions between
pedestrians.

• T3: transformer-based social interaction module with 3 layers. Same as the
previous variant, but with 3 transformer encoder layers.

The results are shown in table 4.1. The table reports the Prediction Collision
(COL-PRED, COL-I) and the Ground Truth Collision (COL-GT, COL-II) met-
rics for each scene, and the average over all scenes. The results show that, as
the complexity of the social interaction module increases, the model’s ability to
avoid collisions improves. The baseline model (No) has the worst performance, as
expected, since it does not consider the interactions between pedestrians, and has
no way to optimize the trajectories to avoid collisions. The attention-based so-
cial interaction module (Attn) performs better than the baseline model, but worse
than the transformer-based modules. The transformer-based modules (T1, T2,
T3) achieve the best results. The model with just one layer (T1) performs slightly
worse than the model with two layers (T2). The models with two and three layers
(T2, T3) achieve similar results, in fact there is no significant difference between
them, with the two layers model being slightly better. This suggests that the
two layers are enough to capture the interactions between pedestrians, and adding
more layers does not provide additional benefits.

52

Social ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 2.76/1.23 1.13/1.44 2.58/2.01 1.58/1.67 1.72/1.59 1.95/1.59

Attn 2.57/0.89 0.77/0.94 0.85/0.68 1.03/1.08 1.55/1.05 1.35/0.92

T1 2.55/0.88 0.75/0.92 0.84/0.65 1.01/1.07 1.52/1.04 1.33/0.91

T2 2.47/0.80 0.68/0.89 0.79/0.63 0.96/1.02 1.45/0.97 1.27/0.86

T3 2.41/0.80 0.70/0.87 0.79/0.64 0.99/1.10 1.48/0.99 1.27/0.88

Table 4.1: Social Interaction module ablation study. COL-PRED/COL-GT. Lower is better. Comparison between
different variants of the Social Interaction module on model1. No: no social interaction module. Attn: attention-
based social interaction module. T1, T2, T3: different variants of the transformer-based social interaction module,
with 1, 2, 3 layers.

4.3.2 Social-NCE Module Ablation

This experiment verifies the effectiveness of the Social-NCE module, introduced
by Liu et al. [5], and described in section 3.2.5, in improving the ”social” collision
avoidance capabilities of the model. We compare the model1 architecture with
and without the Social-NCE module. As in the previous experiment, we use
the version that predicts only one trajectory for each pedestrian. Verifying the
effectiveness of the Social-NCE module is important for us, since its architecture
is the inspiration for our proposed Map-NCE module. If the Social-NCE module
is effective, as reported in the original paper [5], then the Map-NCE module could
also be effective.

The variants compared are:

• Without Social-NCE: the model1 without the Social-NCE module. This
is the proposed model, referred to as T2 in the previous experiment, but
without the Social-NCE module.

• With Social-NCE: the model1 with the Social-NCE module. This is ex-
actly the proposed model1 architecture, including the Social-NCE module.

The results are shown in table 4.2. The table reports the Best-of-20 Average
Displacement Error (ADE) and Final Displacement Error (FDE) metrics for each
scene, expressed in meters (first row in each cell), and the COL-PRED/COL-GT
metrics (second row in each cell). The results show that, from the point of view
of the collision avoidance capabilities, the Social-NCE module is quite effective.
The model with the Social-NCE module improves the Prediction Collision (COL-
PRED) and Ground Truth Collision (COL-GT) metrics in all scenes, by about 0.2
percentage points on average. At the same time, it does not degrade the ADE and
FDE metrics, in fact, there are no significant differences between the two models
in terms of ADE and FDE.

53

Social-
NCE

ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.54/0.68 0.28/0.58 0.33/0.51 0.22/0.33 0.22/0.32 0.32/0.48

2.64/1.00 0.87/1.14 1.08/0.87 1.10/1.12 1.61/1.11 1.46/1.05

Yes 0.56/0.68 0.29/0.60 0.33/0.53 0.22/0.34 0.22/0.32 0.32/0.49

2.47/0.80 0.68/0.89 0.79/0.63 0.96/1.02 1.45/0.97 1.27/0.86

Table 4.2: Social-NCE module [5] ablation study. Cell format: upper row Best-of-20 ADE/FDE in meters, lower
row COL-PRED/COL-GT. Lower is better. Comparison between model1 without and with the Social-NCE
module.

Additional experiments were conducted to tune the hyperparameters of the Social-
NCE module, such as the temperature τ , the size of the representation space in
which the similarity is computed, and the weight of the NCE loss in the total
loss. As long as the hyperparameters were within a reasonable range, the model’s
performance was not significantly affected. In short, reasonable values for the
hyperparameters should ensure that the representation space is smaller than the
hidden representation input to the module (the one that is passed to the decoder).
Moreover, since both the representation space dimension and the temperature
affects the magnitude of the loss, the weight of the NCE loss should be tuned in
such a way that it is in the order of the main task loss, so it does not take all the
”gradient bandwidth”, but it still has a significant impact on the model training.
The hyperparameters that worked best for us are reported in the hyperparameters
appendix A.

4.3.3 Map-NCE Module Ablation

In this experiment, we investigate the effectiveness of the proposed Map-NCE mod-
ule (see 3.2.6) in improving the model’s ability to predict environment-compliant
trajectories, that is, trajectories that avoid collisions with the obstacles in the
scene. For this experiment, we use the multimodal version of the model, that is
the version that predicts multiple trajectories for each pedestrian, in this case 20,
as it is standard practice in the literature. To better understand the effect of the
Map-NCE module, we include in the comparison also the model1, that does not
use any scene context information.

So, the variants compared are:

• No: the proposed model1 architecture (see 3.2). This model does not con-
sider the scene context information, that is, each pedestrian is completely
unaware of the obstacles in the scene. Therefore, it is useful as a baseline
model to understand the starting point.

• Map: the model2 architecture (see 3.2), without the Map-NCE module.
This is useful to understand the effect of including the scene context infor-
mation in the model, but without using additional tricks.

• M-NCE: the proposed model2 architecture, (see 3.2) with the Map-NCE
module (3.2.6).

54

Table 4.3 shows the results of the ablation study. As before, the table reports
the Best-of-20 Average Displacement Error (ADE) and Final Displacement Error
(FDE) metrics for each scene, expressed in meters (first row in each cell), and the
COL-PRED/COL-GT metrics (second row in each cell). But it now also reports
the Environment Collision (ENV-COL) metric (see 4.2.4) (third row in each cell).
Several observations can be made from the results:

• By just adding the scene context information to the model (Map), the
model’s ability to predict environment-compliant trajectories improves sig-
nificantly. It achieves better results in terms of the Environment Collision
(ENV-COL) metric, in all scenes, compared to the model that does not use
the scene context information (No). On average, it improves the ENV-COL
metric by about 33%, decreasing from 6.98 to 4.65.

• The model that uses the Map-NCE module (M-NCE) achieves the best in
terms of ENV-COL metric, in all scenes, compared to both the other two
models. On average, it improves the ENV-COL metric by about 50% with
respect to the model that does not use the scene context information, and by
about 25% with respect to the Map model, bringing the ENV-COL metric
down to 3.49.

• Despite the improvements in the ENV-COL metric, the models that use the
scene context information (Map, M-NCE) worsen the ADE and FDE metrics
compared to the model that does not use it (No). However, the degradation
is on the order of 5 centimeters, which, depending on the application, could
be acceptable, given the improvements in the ENV-COL metric.

• For what concerns the pedestrian collision avoidance capabilities, including
the scene context information in the model, as in the Map and M-NCE
models, does not significantly affect the Prediction Collision (COL-PRED)
and Ground Truth Collision (COL-GT) metrics.

Scene
context

ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.56/0.68 0.29/0.60 0.33/0.53 0.22/0.34 0.22/0.32 0.32/0.49

2.47/0.80 0.68/0.89 0.79/0.63 0.96/1.02 1.45/0.97 1.27/0.86

8.70 11.17 4.95 4.98 5.08 6.98

Map 0.62/0.75 0.31/0.62 0.37/0.69 0.26/0.42 0.22/0.34 0.36/0.56

1.31/0.70 1.98/0.82 0.78/0.62 1.20/0.79 1.31/0.95 1.32/0.78

5.71 8.42 3.93 2.56 2.62 4.65

M-NCE 0.61/0.73 0.30/0.61 0.35/0.66 0.26/0.41 0.22/0.35 0.35/0.55

1.01/0.50 2.06/0.83 0.79/0.63 1.26/0.82 1.29/0.94 1.28/0.74

4.38 7.18 3.56 1.25 1.09 3.49

Table 4.3: Map-NCE module (3.2.6) ablation study. Cell format: upper row Best-of-20 ADE/FDE in meters,
middle row COL-PRED/COL-GT, lower row ENV-COL. Lower is better. Comparison between ”No”: no scene
context, ”Map”: with scene context, and ”M-NCE”: with scene context and Map-NCE module.

55

Overall, the results suggest that the Map-NCE module is effective in improving
the model’s ability to predict trajectories that comply with the environmental
constraints, without significantly affecting the quality of the predicted trajectories
in terms of ADE, FDE, and pedestrian collision avoidance.

4.3.4 Environment Collision Loss Ablation

In this experiment, we analyze the effect of using the Environment Collision Loss
(see 3.3.2) in the model training. The Environment Collision Loss is a simple
loss that penalizes the model when it predicts trajectories that collide with the
obstacles in the scene, in particular, it is a variation of the variety loss [11], where
instead of backpropagating the gradients only for the best predicted trajectory, we
backpropagate the gradients for all the predicted trajectories that collide with the
obstacles in the scene. The idea is to provide additional supervision to the model,
to help it learn to predict environment-compliant trajectories. To understand the
effect of the Environment Collision Loss, we compare the model2 architecture with
and without the loss.

The variants compared are:

• No: the model2 architecture without the Environment Collision Loss.

• Yes: the model2 architecture with the Environment Collision Loss. This is
exactly the proposed model2 architecture.

Table 4.4 shows the results of the ablation study. The table reports the Best-of-20
ADE and FDE metrics for each scene, expressed in meters (first row in each cell),
the COL-PRED/COL-GT metrics (second row in each cell), and the ENV-COL
metric (third row in each cell). The following observations can be made:

• The model that uses the Environment Collision Loss (Yes) achieves better
results in terms of the Environment Collision (ENV-COL) metric, in all
scenes, compared to the model that does not use it (No). On average, it
improves the ENV-COL metric by about 28%, decreasing from 4.84 to 3.49.

• The model that uses the Environment Collision Loss (Yes) achieves similar,
or slightly worse, results in terms of ADE and FDE metrics, compared to the
model that does not use it (No). The differences are not really significant,
on the order of 1-2 centimeters. This is however expected, since the Environ-
ment Collision Loss reduces a bit the diversity of the predicted trajectories,
by pulling them a little towards the mean trajectory. This small reduction
in diversity is likely the cause of the slight degradation in the ADE and FDE
metrics.

• Regarding the pedestrian collision avoidance capabilities, the model that uses
the Environment Collision Loss (Yes) obtains similar results to the model
that does not use it (No), suggesting that the Environment Collision Loss
does not significantly improve or degrade the model’s ability to avoid pedes-
trian collisions.

56

ENV-
COL loss

ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.58/0.71 0.30/0.61 0.35/0.63 0.24/0.38 0.22/0.33 0.34/0.53

1.54/0.78 2.00/0.84 0.79/0.62 1.23/0.83 1.32/0.95 1.38/0.80

5.97 8.71 4.10 2.69 2.74 4.84

Yes 0.61/0.73 0.30/0.61 0.35/0.66 0.26/0.41 0.22/0.35 0.35/0.55

1.01/0.50 2.06/0.83 0.79/0.63 1.26/0.82 1.29/0.94 1.28/0.74

4.38 7.18 3.56 1.25 1.09 3.49

Table 4.4: Environment Collision Loss ablation study. Cell format: upper row Best-of-20 ADE/FDE in meters,
middle row COL-PRED/COL-GT, lower row ENV-COL. Lower is better. Comparison between ”No”: without
Environment Collision Loss, and ”Yes”: with Environment Collision Loss.

In summary, the results indicate that the Environment Collision Loss effectively
enhances the model’s ability to predict trajectories that adhere to environmen-
tal constraints, without compromising the quality of the predicted trajectories in
terms of ADE, FDE, and pedestrian collision avoidance.

4.3.5 Map Patch Offset Ablation

One of the components that we argue helps the model to better predict trajectories
that avoid collisions with the obstacles in the scene is the usage of an offset in the
scene map patch extraction (see section 3.2.3 and figure 3.1). In practice, when we
extract a patch around the pedestrian from the scene map, we shift the patch in
such a way that it captures the environment in front of the pedestrian. This comes
from our world knowledge, that pedestrians tend to walk in the same direction, and
when deciding the path to follow, they look at the environment in front of them.
Therefore, we argue that by shifting the patch in the direction of the pedestrian’s
heading, we provide the model with a more informative context that helps it to
better predict trajectories. As a reminder, the patch captures a 10x10 meters
area, and has a resolution of 100x100 pixels, so, each pixel corresponds to a 10x10
centimeters area.
To verify the effectiveness of this approach, we compare the model2 architecture
with and without the offset in the scene map patch extraction. The variants
compared are:

• No: the model2 architecture without the offset in the scene map patch
extraction. The patch is extracted centered around the pedestrian’s position,
so it captures 5 meters around each direction (front, back, left, right). The
patch is still rotated according to the pedestrian’s heading.

• Yes: the model2 architecture with the offset in the scene map patch ex-
traction. This is exactly the proposed model2 architecture. The patch is
extracted in such a way that it captures 9 meters in front, 1 meter behind,
and 5 meters on each side of the pedestrian.

Table 4.5 shows the results of the ablation analysis. The table reports the Best-
of-20 ADE and FDE metrics for each scene, expressed in meters (first row in each

57

cell), the COL-PRED/COL-GT metrics (second row in each cell), and the ENV-
COL metric (third row in each cell). The following observations can be made from
the results:

• The model that uses the offset in the scene map patch extraction (Yes)
improves the Environment Collision (ENV-COL) metric in all scenes, com-
pared to the model that does not use it (No). On average, it improves the
ENV-COL metric by about 4%, decreasing from 3.65 to 3.49.

• The employment of the offset in the scene map patch extraction (Yes) pro-
vides small but consistent improvements in the ADE and FDE metrics, com-
pared to the model that does not use it (No). The improvements seem to be
slightly more significant in the FDE metric. That could be expected, since
the offset allows the model to see further ahead, allowing it to better predict
the pedestrian’s final position.

• The pedestrian collision avoidance abilities of the model that uses the offset
(Yes) are a bit better on average than the model that does not use it (No).
However, the improvements are less consistent across the scenes, and the
differences are likely not significant.

This shows that the signal provided by the offset in the scene map patch extraction
is useful for the model to predict better paths, in particular for the avoidance of
collisions with the obstacles in the scene.

Map
patch
offset

ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.64/0.76 0.31/0.63 0.37/0.68 0.27/0.43 0.23/0.38 0.36/0.58

1.08/0.55 1.99/0.82 0.79/0.62 1.28/0.85 1.30/0.94 1.29/0.76

4.52 7.30 3.78 1.36 1.31 3.65

Yes 0.61/0.73 0.30/0.61 0.35/0.66 0.26/0.41 0.22/0.35 0.35/0.55

1.01/0.50 2.06/0.83 0.79/0.63 1.26/0.82 1.29/0.94 1.28/0.74

4.38 7.18 3.56 1.25 1.09 3.49

Table 4.5: Map patch offset ablation. Cell format: upper row Best-of-20 ADE/FDE in meters, middle row COL-
PRED/COL-GT, lower row ENV-COL. Lower is better. Comparison between ”No”: without offset in the scene
map patch extraction, and ”Yes”: with offset in the scene map patch extraction.

4.3.6 Synthetic Dataset

The ETH/UCY datasets [9, 10] that we use to train and evaluate the model have
only a few different scene environments, and a small number of pedestrians that
interact with the obstacles. This can be quite limiting, as the model may not be
able to learn the obstacle collision dynamics well, and may not generalize well to
new environments. To address this issue, we experiment with a synthetic dataset
that is generated using the ORCA model by Van Den Berg et al. [58] (a more
detailed explanation is provided in section 3.4). So, we compare the following
variants:

58

• No: the model2 architecture trained only on the ETH/UCY datasets.

• Yes: the model2 architecture pretrained on the synthetic dataset and then
fine-tuned on the ETH/UCY datasets.

For this experiment, we evaluate the models on both versions of the ETH/UCY
datasets, the sped up version (ETH/UCY 2) and the original version (ETH/UCY).
The results are shown in table 4.6 for the evaluation on the ”ETH/UCY 2” (sped
up) dataset, and in table 4.7 for the evaluation on the ”ETH/UCY” (original)
dataset. Both tables report the Best-of-20 ADE and FDE metrics for each scene,
expressed in meters (first row in each cell), the COL-PRED/COL-GT metrics
(second row in each cell), and the ENV-COL metric (third row in each cell). Some
observations can be made from the results:

• The models pretrained on the synthetic dataset (Yes) achieve better results
in terms of the Environment Collision (ENV-COL) metric, compared to the
models that are not (No). On average, for the ”ETH/UCY 2” dataset,
the improvement on the ENV-COL metric is about 18%, decreasing from
3.49 to 2.85. For the ”ETH/UCY” dataset, the improvement is about 27%,
decreasing from 3.30 to 2.40.

• The improvements of the models pretrained on the synthetic dataset in the
ENV-COL metric are less evident, or even negative, in the ”zara1”, ”zara2”,
and ”eth” scenes. This could be due to the fact that the ”zara1” and ”zara2”
scenes are quite similar, and make it easier for the model to use the knowledge
learned from one of them to predict the other. In such a way that, having
a better model from the point of view of the obstacle avoidance, does not
really help. For the ”eth” scene, the most likely reason for the degradation
when evaluating on the ”ETH/UCY 2” dataset is that the scene is sped up,
and the model struggles to transfer the knowledge learned from the synthetic
dataset to a intrinsically different scenario. In fact, when evaluating on the
”ETH/UCY” dataset, the pretrained model obtains much better results in
terms of ENV-COL metric.

• The model pretrained on the synthetic dataset (Yes) when evaluated on the
”ETH/UCY 2” dataset, achieves worse results in terms of the ADE and
FDE metrics, compared to the model that is not (No). The differences are
more evident in the FDE metric, where the degradation is on the order of
10 centimeters. However, the degradation is mostly influenced by the ”eth”
dataset, while the other datasets show similar results. And as before, the
degradation is likely due to the fact that the ”eth” scene is sped up, since
when evaluating on the ”ETH/UCY” dataset, the pretrained model obtains
similar results to the model that is not, with only a slight degradation in the
FDE metric.

• The pedestrian collision metrics (COL-PRED and COL-GT) are similar be-
tween the two models, in both the datasets, suggesting that the synthetic
dataset does not significantly affect the model’s ability to avoid pedestrian
collisions.

The above results suggest that the synthetic dataset can be useful to improve
the model’s ability to predict environment-compliant trajectories. While the ADE

59

and FDE metrics are negatively affected on average, the degradation is mostly
influenced by the ”eth” dataset, that is sped up, and so not really representative
of the real-world scenarios. In fact, when evaluating on the original ”ETH/UCY”
dataset, the pretrained ADE and FDE metrics are similar to the model that is not
pretrained. Additionally, the synthetic dataset is intrinsically different from the
real-world, so the model might struggle to generalize well to real-world scenarios.
With further efforts in building a more realistic synthetic dataset, the model could
potentially improve even more.

Synthetic ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.61/0.73 0.30/0.61 0.35/0.66 0.26/0.41 0.22/0.35 0.35/0.55

1.01/0.50 2.06/0.83 0.79/0.63 1.26/0.82 1.29/0.94 1.28/0.74

4.38 7.18 3.56 1.25 1.09 3.49

Yes 0.76/1.08 0.31/0.60 0.32/0.66 0.26/0.47 0.23/0.41 0.38/0.64

2.38/1.08 1.35/0.53 0.69/0.57 1.11/1.02 1.22/0.88 1.35/0.82

4.56 4.97 1.97 1.68 1.08 2.85

Table 4.6: Synthetic dataset experiment, with evaluation on ”ETH/UCY 2” (sped up) dataset. Cell format: upper
row Best-of-20 ADE/FDE in meters, middle row COL-PRED/COL-GT, lower row ENV-COL. Lower is better.
Comparison between ”No”: model2 trained only on the ETH/UCY datasets, and ”Yes”: model2 pretrained on
the synthetic dataset and fine-tuned on the ETH/UCY datasets.

Synthetic ETH HOTEL UNIV ZARA1 ZARA2 AVG

No 0.30/0.39 0.28/0.63 0.34/0.67 0.25/0.39 0.22/0.35 0.28/0.49

0.64/0.50 1.69/0.62 0.75/0.60 0.89/0.74 1.32/0.87 1.06/0.67

4.22 6.73 3.60 1.28 0.67 3.30

Yes 0.27/0.40 0.31/0.79 0.33/0.65 0.25/0.42 0.22/0.38 0.28/0.53

0.75/0.68 1.59/0.68 0.70/0.58 1.17/0.88 1.35/0.91 1.11/0.75

1.81 5.59 2.31 1.33 0.95 2.40

Table 4.7: Synthetic dataset experiment, with evaluation on ”ETH/UCY” (original) dataset. Cell format: upper
row Best-of-20 ADE/FDE in meters, middle row COL-PRED/COL-GT, lower row ENV-COL. Lower is better.
Comparison between ”No”: model2 trained only on the ETH/UCY datasets, and ”Yes”: model2 pretrained on
the synthetic dataset and fine-tuned on the ETH/UCY datasets.

For the purpose of further improving the model’s abilities to predict environment-
compliant trajectories, we also tried to train our best model, with respect to the
ENV-COL metric (model2 pretrained on synthetic dataset), with a stronger regu-
larization, to understand if the model could generalize better to new environments.
In particular, we tried to increase the dropout rate, and the weight decay. More-
over, we slightly increased the weight of the Environment Collision Loss and of the
Map-NCE Loss in the total loss.
Table 4.8 shows that the more regularized model (M2-reg) achieves much better
results in terms of the Environment Collision (ENV-COL) metric, compared to
the other model (M2). On average, it improves the ENV-COL metric by about

60

47%, decreasing from 2.85 to 1.52. However, the regularization worsens the ADE
and FDE metrics, by about 5-10 centimeters. The pedestrian collision metrics
(COL-PRED and COL-GT) remain on the same level.

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

M2 0.76/1.08 0.31/0.60 0.32/0.66 0.26/0.47 0.23/0.41 0.38/0.64

2.38/1.08 1.35/0.53 0.69/0.57 1.11/1.02 1.22/0.88 1.35/0.82

4.56 4.97 1.97 1.68 1.08 2.85

M2-reg 0.81/1.20 0.35/0.84 0.41/0.81 0.33/0.53 0.25/0.44 0.43/0.76

1.00/0.78 0.88/0.39 0.68/0.65 0.98/1.63 1.13/0.90 0.93/0.87

2.90 1.13 2.25 2.25 0.79 1.52

Table 4.8: Stronger regularization experiment. Cell format: upper row Best-of-20 ADE/FDE in meters, middle
row COL-PRED/COL-GT, lower row ENV-COL. Lower is better. Comparison between ”M2”: model2 pretrained
on synthetic dataset and fine-tuned on the ETH/UCY datasets, and ”M2-reg”: model2 with stronger regulariza-
tion (still pretrained on synthetic dataset and fine-tuned on the ETH/UCY datasets).

4.3.7 Inference Speed

The inference speed (or latency) of the model is an important factor to consider,
especially when deploying the model in real-world applications. To evaluate the
latency of the model, we measure the time it takes to predict the trajectories of
all the pedestrians in a scene, for different scene sizes (number of pedestrians).
We compare the inference speed of both our models, model1 and model2, using
the synthetic dataset, since it contains a more significant number of scenes with a
variety of scene sizes. In particular, the scene sizes range from 1 to 17 pedestrians.

Figure 4.4: Boxplot showing the inference time of the two models. Model1, as expected, clearly outperforms
model2 in terms of inference speed, in fact apart from a few outliers, the inference time of model1 is better than
all the measured inference times of model2. Moreover, the first and third quartiles (which contain 50% of the
data) of both models are quite close, indicating that the inference latency of the two models is quite stable. The
same interpretation can be made for the whiskers of the boxplot.

61

Figure 4.5: Plot showing the relation between the number of pedestrians in the scene and the inference time of
the two models. The latency of model1 (blue) is quite stable across the different scene sizes, while the latency of
model2 (orange) grows linearly with the number of pedestrians in the scene. Note that the outliers detected in
the previous boxplot 4.4 are filtered out for better visualization. The bands around the lines represent the 95%
confidence intervals. Best viewed in color.

The results are shown in figure 4.4 and figure 4.5, and are computed on a NVIDIA
GeForce GTX 1050 Ti GPU [41] (with an Intel Core i5-8400 CPU [40]). The
figures show that the model1 inference time is most of the times around 5.5-
6.5 milliseconds, while the model2 inference time is around 6.5-9.0 milliseconds.
Moreover, the model2 inference time clearly grows linearly with the number of
pedestrians in the scene, while the model1 inference time seems not to be affected.
This at least for scenes with up to 17 pedestrians. This is expected since model2
is more complex, and requires to extract and process the scene map patch for each
pedestrian in the scene. The use of a transformer as social interaction module,
should in principle, make the model latency grow as the number of pedestrians in
the scene increase, since the transformer uses a self-attention mechanism that has
a quadratic complexity with respect to the number of pedestrians. However, with
the relatively small number of pedestrians in the scenes, this effect is not really
evident. In conclusion, both models have more than acceptable inference times
that allow them to be used in real-time applications.

62

Chapter 5

Results

In this chapter, we first present the results of the proposed method for human tra-
jectory forecasting. We report the quantitative results on the ETH/UCY datasets
[9, 10], comparing with the state-of-the-art methods. We then show some qualita-
tive results on the ETH/UCY datasets and on an internal dataset.

5.1 Quantitative Results

We compare our models with several methods for human trajectory forecasting,
including state-of-the-art methods. The results are reported in table 5.1. The first
part of the table shows the Best-of-20 ADE/FDE results of the previous works,
while the second part shows the results of our models on both versions of the
ETH/UCY datasets. As explained in section 4.1.1, there exists two versions of the
ETH/UCY datasets, that we refer to as ”ETH/UCY” and ”ETH/UCY 2”. The
”ETH/UCY” dataset is the original dataset, while the ”ETH/UCY 2” dataset is
a version where the ”eth” scene is sped up by about 2 times. It was created by
error and unfortunately got traction in the literature. Most works don’t specify
which version of the dataset they used for evaluation, so we report the results for
both versions of the datasets. With this in mind, comparisons should be done
with caution, since the results on the two versions can be quite different, making
it difficult to compare the results of different works. Additionally, we report the
COL-PRED/COL-GT (middle row in the table) and ENV-COL (bottom row in the
table) metrics for our models. As it is standard in the literature, the evaluation is
done using a lag period of 8 timesteps, and for a prediction horizon of 12 timesteps,
with a 0.4s interval between timesteps, corresponding to 3.2s of past trajectories
and 4.8s of future trajectories. More information about the datasets and evaluation
metrics can be found in section 4.1 and 4.2.

We report the results for four models: model1 (M1), model2 (M2), model2-synth

(M2-synth), and model2-synth-reg (M2-synth-reg). Model1 (M1) is our model
that uses only the past trajectories as input, considering the social interactions
between the agents. Model2 (M2), instead, uses also the environment map as
input, in addition to the past trajectories. Model2-synth (M2-synth) and model2-
synth-reg (M2-synth-reg) are the same as model2, but trained in a different way.
They are both pretrained with synthetic data, and in addition, model2-synth-
reg (M2-synth-reg) is trained with stronger regularization (as explained in section
4.3.6).

We can observe that our models don’t achieve the best results in terms of ADE

63

and FDE. In particular, model1 (M1) is our best model in terms of ADE/FDE,
having an average ADE that is 10-15 cm worse, and an average FDE that is 20-
25 cm worse compared to the state-of-the-art, depending on the dataset version
(ETH/UCY or ETH/UCY 2). Model2, and its variants (M2, M2-synth, M2-
synth-reg), despite using the environment map as input, don’t improve the ADE
and FDE scores. This might be due to the fact that most of the trajectories in
the datasets are not influenced by the environment, and so the environment map
doesn’t provide much useful information, feeding the model with a sort of noise
that hurts the performance. This supposition is also supported by the performance
of ”Leapfrog” [79], which is particularly close to the state-of-the-art without using
the environment map. Of course, an ideal model should be able to leverage the
environment map when it is useful, and ignore it when it is not.
Despite the worse ADE/FDE scores, model2 and its variants (M2, M2-synth, M2-
synth-reg) are much better than model1 (M1) in terms of obstacle collision avoid-
ance, based on our novel ENV-COL metric. This is an important result, as it
shows that our proposed Map-NCE module is effective in enhancing the collision
avoidance capabilities of the models, as shown in the ablation analysis in sec-
tion 4.3.3. However, M2-synth-reg, which is trained with stronger regularization,
doesn’t achieve satisfactory results in terms of ADE/FDE, and so it is not worth
using it in practice, unless the avoidance of obstacles is really important.

64

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-GAN [11] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

SoPhie [61] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

Social-BiGAT [62] 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

MG-GAN [72] 0.47/0.91 0.14/0.24 0.54/1.07 0.36/0.73 0.29/0.60 0.36/0.71

Trajectron++ [65] 0.67/1.18 0.18/0.28 0.30/0.54 0.25/0.41 0.18/0.32 0.32/0.55

TF Nets [73] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55

STAR [92] 0.36/0.65 0.17/0.36 0.26/0.55 0.22/0.46 0.31/0.62 0.26/0.53

Agentformer [75] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

SMEMO [71] 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35

MID [78] 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38

Leapfrog [79] 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33

Y-net [89] 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27

NSP-SFM [80] 0.25/0.24 0.09/0.13 0.21/0.38 0.16/0.27 0.12/0.20 0.17/0.24

ETH/UCY 2

M1 (ours) 0.56/0.68 0.29/0.60 0.33/0.53 0.22/0.34 0.22/0.32 0.32/0.49

2.47/0.80 0.68/0.89 0.79/0.63 0.96/1.02 1.45/0.97 1.27/0.86

8.70 11.17 4.95 4.98 5.08 6.98

M2 (ours) 0.61/0.73 0.30/0.61 0.35/0.66 0.26/0.41 0.22/0.35 0.35/0.55

1.01/0.50 2.06/0.83 0.79/0.63 1.26/0.82 1.29/0.94 1.28/0.74

4.38 7.18 3.56 1.25 1.09 3.49

M2-synth (ours) 0.76/1.08 0.31/0.60 0.32/0.66 0.26/0.47 0.23/0.41 0.38/0.64

2.38/1.08 1.35/0.53 0.69/0.57 1.11/1.02 1.22/0.88 1.35/0.82

4.56 4.97 1.97 1.68 1.08 2.85

M2-synth-reg (ours) 0.81/1.20 0.35/0.84 0.41/0.81 0.33/0.53 0.25/0.44 0.43/0.76

1.00/0.78 0.88/0.39 0.68/0.65 0.98/1.63 1.13/0.90 0.93/0.87

2.90 1.13 2.25 2.25 0.79 1.52

ETH/UCY

M1 (ours) 0.27/0.40 0.32/0.54 0.34/0.57 0.21/0.33 0.23/0.32 0.27/0.43

0.62/0.51 1.99/1.29 0.79/0.61 0.54/0.53 1.41/1.08 1.07/0.80

5.68 14.98 4.95 5.59 4.87 7.21

M2 (ours) 0.30/0.39 0.28/0.63 0.34/0.67 0.25/0.39 0.22/0.35 0.28/0.49

0.64/0.50 1.69/0.62 0.75/0.60 0.89/0.74 1.32/0.87 1.06/0.67

4.22 6.73 3.60 1.28 0.67 3.30

M2-synth (ours) 0.27/0.40 0.31/0.79 0.33/0.65 0.25/0.42 0.22/0.38 0.28/0.53

0.75/0.68 1.59/0.68 0.70/0.58 1.17/0.88 1.35/0.91 1.11/0.75

1.81 5.59 2.31 1.33 0.95 2.40

M2-synth-reg (ours) 0.40/0.81 0.38/0.90 0.40/0.79 0.31/0.51 0.26/0.47 0.35/0.70

0.81/1.17 0.92/0.46 0.64/0.66 0.94/1.45 1.03/1.13 0.87/0.97

0.63 0.76 2.03 1.56 0.72 1.14

Table 5.1: Model comparison table. The first part of the table shows the Best-of-20 ADE/FDE (meters) results
of the previous works, comprising also the state-of-the-art methods. Since the previous works do not report on
which version of the dataset they evaluated, comparisons should be taken with caution. The second part of the
table shows the results of our models on both versions of the ETH/UCY datasets: ”ETH/UCY 2” (the sped up
version) and ”ETH/UCY” (the original version). Our models report not only the Best-of-20 ADE/FDE (first
row), but also the COL-PRED/COL-GT (second row) and the ENV-COL (third row) metrics. The results are
reported for 12 future timesteps, given the previous 8. Bold: overall best results. Underlined: our best results
on ”ETH/UCY 2”. Overlined: our best results on ”ETH/UCY”.

65

5.2 Qualitative Results

In order to better understand the behavior of our models, we show some qualitative
results on the ETH/UCY datasets, on the synthetic dataset and on the first-person
view internal dataset. Moreover we try to explore the latent space of the model,
to find examples of scenes that the model might predict.

5.2.1 ETH/UCY Datasets

Figure 5.1 shows an example of generated trajectories on the ETH/UCY eth
dataset, in particular on the ”zara2” scene. On the left, the trajectories predicted
by model1, on the right, the trajectories predicted by model2. We can see that
model1 predicts many trajectories that collide with the obstacles, since it doesn’t
use the scene context to predict the trajectories, while model2 predicts trajectories
that adapt to the environment, for example by slowing down to avoid the obsta-
cles, or predicting less dispersed trajectories when the pedestrian is walking near
an obstacle.

Figure 5.1: Example of generated trajectories on the ETH/UCY zara2 dataset. On the left, the trajectories
predicted by model1, on the right, the trajectories predicted by model2. The past trajectories are shown in red,
while the future trajectories are shown in green. The segmented environment map is shown in the background,
with the obstacles in black. Model1 predicts many trajectories that collide with the obstacles, while model2
predicts trajectories that avoid the obstacles, for example by slowing down.

5.2.2 Synthetic Dataset

Similarly, figure 5.2 shows an example of generated trajectories on a scene of the
synthetic dataset. As before, on the left, the trajectories predicted by model1, and
on the right, the trajectories predicted by model2. We can see a similar behavior
as in the previous example, where model1 predicts trajectories that collide with
the obstacles, while model2 predicts trajectories that avoid the obstacles, while
still maintaining a sufficient diversity of the predicted samples when far from the
obstacles.

66

Figure 5.2: Example of generated trajectories on the synthetic dataset. On the left, the trajectories predicted
by model1, on the right, the trajectories predicted by model2. The past trajectories are shown in red, while
the future trajectories are shown in green. The segmented environment map is shown in the background, with
the obstacles in black. Model1 predicts many trajectories that collide with the obstacles, while model2 predicts
trajectories that avoid the obstacles, for example by slowing down.

5.2.3 Internal First-Person View Dataset

Figure 5.3 displays an example of generated trajectories on the internal first-person
view dataset. On the left, the first-person view image, on the right, the bird’s-eye
view of the scene. For visualization purposes, we show five predicted trajectories
for each person. This image makes it evident that the past trajectories are quite
noisy, representing an out-of-distribution scenario, with respect to the training
data. However, the smoothing of the trajectories, that can be observed by zooming
in the image, helps to counter this noise, and the model is able to predict plausible
trajectories, even in this challenging scenario.

Figure 5.3: Example of generated trajectories on the internal first-person view dataset. On the left, the first-
person view image, on the right, the bird’s-eye view of the scene. Five predicted trajectories are shown for each
person.

5.2.4 Latent Space Exploration

Finally, figure 5.4 shows an example of a predicted scene, obtained by manually
exploring the latent space of the model. The past trajectories are shown in blue,
while the future trajectories are shown in red. We can see that this scene may rep-
resent the meeting of two people, where one person changes direction to continue
walking with the other person. This example shows the potential to sample differ-
ent possible futures, with different levels of likelihood, by varying the likelihood of
the latent noise, allowing to cover many possible scenarios, even the less common

67

ones. This example is generated with a relatively rare latent noise, as expected,
since it represents a not so common event.

Figure 5.4: Example of predictable scene found by exploring the latent space of the model. The past trajectories
are shown in blue, while the future trajectories are shown in red. We can see that this scene may represent the
meeting of two people, where one person changes direction to continue walking with the other person.

68

Chapter 6

Conclusions

6.1 Summary

In this thesis, we have analyzed and addressed the problem of human trajectory
forecasting, considering mostly the bird’s-eye view setting, that is more common
in the literature, but we also discussed the first-person view setting, which is po-
tentially more useful in real-world applications. In particular, we discussed our
prediction pipeline, and built our small first-person view dataset that we used to
visualize the predictions of our models. Then, we proposed some new models, that
exploit not only the past trajectories of the agents, but also the map of the envi-
ronment, and we introduced the Map-NCE module, a contrastive learning based
module, inspired by the Social-NCE module [5], that helps the model to predict
environment-aware trajectories. For the same reason, we introduced the Environ-
ment Collision loss, a variation of the variety loss [11] that penalizes the model
when it predicts trajectories that collide with obstacles, and developed a metric
to evaluate the model’s ability to predict environment-compliant trajectories, that
we use to compare our models. We experimented with a synthetic dataset that we
generated to provide our models with more data of pedestrians interacting with the
environment. We trained and evaluated our models on the ETH/UCY datasets,
highlighting the not so well known fact that there exists two versions of these
datasets, the original one and a version that has the ”eth” scene sped up. So, we
reported results on both versions of the datasets. We performed extensive abla-
tion studies and experiments, comparing the different variants of our models. The
results of our models are not state-of-the-art, but the newly introduced Map-NCE
module gives encouraging results, and the Environment Collision (ENV-COL) met-
ric is a useful tool to evaluate the model’s ability to predict environment-compliant
trajectories.

6.2 Limitations and Future Work

Environment map The models that we proposed assume that the binary map
of the environment is given. For forecasting of scenes with a fixed camera, framing a
static environment this is a reasonable assumption, but in more complex scenarios,
where the environment is dynamic, and the camera is moving, like in the first-
person view setting when the camera is mounted on a robot, this assumption is
not valid. In this case, the model should be able to perceive the environment, and
build a map of it. Segmentation models could be used to build a semantic map of

69

the environment, even more detailed than a simple binary map, for example, a map
with different classes of obstacles. Potential imprecisions in the map segmentation
could hinder the model performance, but the greater amount of information could
boost the model’s ability to predict environment-compliant trajectories. So, in the
future, we plan to investigate how to make the model perceive the environment,
and build a map of it, and how to use this map to improve the model’s predictions.

Environment collision avoidance The prediction of environment-compliant
trajectories is not completely solved, since the models still predict trajectories
that collide with obstacles. Future work could focus on further improving the
usage of the environment. Similarly, given that our proposed Map-NCE module is
model-agnostic, it could be interesting to use it in combination with other models
that predict environment-compliant trajectories, to see if it can improve their
performance.

Latent space interpretability The latent space learned by the models to pre-
dict multimodal future trajectories is not easily interpretable. Future work could
focus on making it more interpretable. This could allow to sample more meaningful
trajectories, for example, if we know that a certain dimension of the latent space
corresponds to the speed of the agent, we could sample trajectories with different
speeds, or if we know that a certain dimension corresponds to the direction of the
agent, we could sample trajectories with different directions.

Mode collapse The models that we proposed, that accounts for the scene con-
text, are more prone to mode collapse for pedestrians close to obstacles, that is, the
samples generated by the models are less diverse, converging to a mean behavior.
Studying this problem, and finding a solution to it, would improve the quality of
the predictions.

Ego motion In the first-person view setting, the ego motion of the camera
should be considered, since the camera is mounted on a robot, and the robot
moves. Our models do not consider the ego motion, and assume that the camera
is static. In the future, we plan to include the ego motion in the model, to make
it more suitable for the first-person view setting.

Goal conditioning The models that we proposed do not allow to condition the
predictions on some goals. The explicit modeling of goals is part of many state-
of-the-art approaches, such as [80, 89]. This could be useful in many real-world
applications, for example, in first-person view, a robot may identify some goals
in the scene, such as a door, or an arbitrary point of interest, and condition its
predictions on these goals. In the future, we plan to investigate how to include
goal conditioning in our models.

Synthetic dataset The synthetic dataset that we generated is not perfect. A
more realistic dataset could help the models to generalize better to real-world
scenarios.

70

First-person view dataset The dataset that we built is really small, and has
no ground truth annotations of pedestrian trajectories, as our goal was to visualize
qualitatively the predictions of our models. In the future, we plan to collect more
videos to create a larger and more diverse dataset. Moreover, annotating the videos
with pedestrian trajectories could be useful if one wants to train or quantitatively
evaluate a model on this dataset. Hopefully, when the dataset will be mature
enough, we will release it to the public.

71

Bibliography

[1] Christopher Olah. Understanding lstm networks, Aug 2015. URL https://colah.

github.io/posts/2015-08-Understanding-LSTMs/. 1, 12, 13

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 14, 16

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25,
2012. 1, 16, 17

[4] MathWorks, 2024. URL https://www.mathworks.com/discovery/

autoencoder.html. 1, 17

[5] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social nce: Contrastive learning of socially-
aware motion representations. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15118–15129, 2021. 4, 8, 28, 36, 37, 40, 51, 53, 54, 69

[6] Mahir Gulzar, Yar Muhammad, and Naveed Muhammad. A survey on motion prediction
of pedestrians and vehicles for autonomous driving. IEEE Access, 9:137957–137969, 2021.
7

[7] Giada Galati, Stefano Primatesta, Sergio Grammatico, Simone Macr̀ı, and Alessandro
Rizzo. Game theoretical trajectory planning enhances social acceptability of robots by
humans. Scientific Reports, 12(1):21976, 2022. 7

[8] Holger Regenbrecht, Sander Zwanenburg, and Tobias Langlotz. Pervasive augmented re-
ality—technology and ethics. IEEE Pervasive Computing, 21(3):84–91, 2022. 7

[9] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk
alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international
conference on computer vision, pages 261–268. IEEE, 2009. 8, 41, 42, 46, 58, 63

[10] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. Computer
Graphics Forum, 26, 2007. URL https://api.semanticscholar.org/CorpusID:

17374844. 8, 41, 42, 46, 58, 63

[11] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan:
Socially acceptable trajectories with generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2255–2264, 2018. 8,
26, 27, 29, 35, 40, 56, 65, 69

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE computer society conference on computer vision and
pattern recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006. 10

[13] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie
Jegelka. Debiased contrastive learning. Advances in neural information processing sys-
tems, 33:8765–8775, 2020. 11

72

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.mathworks.com/discovery/autoencoder.html
https://www.mathworks.com/discovery/autoencoder.html
https://api.semanticscholar.org/CorpusID:17374844
https://api.semanticscholar.org/CorpusID:17374844

[14] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane
Larlus. Hard negative mixing for contrastive learning. Advances in neural information
processing systems, 33:21798–21809, 2020. 11

[15] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learn-
ing: Invariances, augmentations and dataset biases. Advances in Neural Information Pro-
cessing Systems, 33:3407–3418, 2020. 11

[16] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learn-
ing with hard negative samples. arXiv preprint arXiv:2010.04592, 2020. 11

[17] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018. 11

[18] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj
Saunshi. A theoretical analysis of contrastive unsupervised representation learning. arXiv
preprint arXiv:1902.09229, 2019. 11

[19] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020. 11

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729–9738, 2020. 11

[21] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with mo-
mentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020. 11

[22] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence
representations. arXiv preprint arXiv:1803.02893, 2018. 11

[23] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence
embeddings using compositional n-gram features. arXiv preprint arXiv:1703.02507, 2017.
11

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, pages 8748–8763. PMLR, 2021. 11

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 12

[26] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 13

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 14

[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020. 14

[29] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205,
2023. 14

[30] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016. 15

73

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 16

[32] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne
Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation
network. Advances in neural information processing systems, 2, 1989. 16

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. 16

[34] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object recognition. In 2007
IEEE conference on computer vision and pattern recognition, pages 1–8. IEEE, 2007. 17,
27

[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 17, 27

[36] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representa-
tion using deep conditional generative models. Advances in neural information processing
systems, 28, 2015. 18, 27

[37] Julio A Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim Indelman, Luca
Carlone, and José A Castellanos. A survey on active simultaneous localization and map-
ping: State of the art and new frontiers. IEEE Transactions on Robotics, 2023. 18

[38] Iman Abaspur Kazerouni, Luke Fitzgerald, Gerard Dooly, and Daniel Toal. A survey of
state-of-the-art on visual slam. Expert Systems with Applications, 205:117734, 2022. 18

[39] Ultralytics. Yolov8, Jan 2023. URL https://docs.ultralytics.com/models/

yolov8/. 19

[40] Intel. Intel core i5-8400 processor (9m cache, up to 4.00 ghz) - product specifications,
Oct 2017. URL https://www.intel.com/content/www/us/en/products/

sku/126687/intel-core-i58400-processor-9m-cache-up-to-4-00-ghz/

specifications.html. 19, 24, 62

[41] NVIDIA. Geforce gtx 1050 ti specifications, Oct 2016. URL https://www.

nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/

specifications/. 19, 24, 62

[42] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. Bot-sort: Robust associations multi-
pedestrian tracking. arXiv preprint arXiv:2206.14651, 2022. 21

[43] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960. 21

[44] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. 21

[45] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. 22, 45

[46] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by sim-
plified least squares procedures. Analytical chemistry, 36(8):1627–1639, 1964. 23

[47] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5):4282, 1995. 25, 29

[48] Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and Tamara L Berg. Who are you with
and where are you going? In CVPR 2011, pages 1345–1352. IEEE, 2011. 25

74

https://docs.ultralytics.com/models/yolov8/
https://docs.ultralytics.com/models/yolov8/
https://www.intel.com/content/www/us/en/products/sku/126687/intel-core-i58400-processor-9m-cache-up-to-4-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/126687/intel-core-i58400-processor-9m-cache-up-to-4-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/126687/intel-core-i58400-processor-9m-cache-up-to-4-00-ghz/specifications.html
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/

[49] Matthias Luber, Johannes A Stork, Gian Diego Tipaldi, and Kai O Arras. People tracking
with human motion predictions from social forces. In 2010 IEEE international conference
on robotics and automation, pages 464–469. IEEE, 2010. 25

[50] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior detection
using social force model. In 2009 IEEE conference on computer vision and pattern recog-
nition, pages 935–942. IEEE, 2009. 25

[51] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data association by joint
modeling of pedestrian trajectories and groupings. In Computer Vision–ECCV 2010:
11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11,
2010, Proceedings, Part I 11, pages 452–465. Springer, 2010. 25

[52] Alexandre Alahi, Vignesh Ramanathan, and Li Fei-Fei. Socially-aware large-scale crowd
forecasting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2203–2210, 2014. 25

[53] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning
social etiquette: Human trajectory understanding in crowded scenes. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VIII 14, pages 549–565. Springer, 2016. 25

[54] Jos Elfring, René Van De Molengraft, and Maarten Steinbuch. Learning intentions for
improved human motion prediction. Robotics and Autonomous Systems, 62(4):591–602,
2014. 25

[55] Andrey Rudenko, Luigi Palmieri, Achim J Lilienthal, and Kai O Arras. Human motion
prediction under social grouping constraints. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3358–3364. IEEE, 2018. 25

[56] Andrey Rudenko, Luigi Palmieri, and Kai O Arras. Joint long-term prediction of hu-
man motion using a planning-based social force approach. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 4571–4577. IEEE, 2018. 25

[57] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In 2008 IEEE international conference on robotics and
automation, pages 1928–1935. Ieee, 2008. 25

[58] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body
collision avoidance. In Robotics Research: The 14th International Symposium ISRR, pages
3–19. Springer, 2011. 25, 41, 58

[59] Markus Kuderer, Henrik Kretzschmar, Christoph Sprunk, and Wolfram Burgard. Feature-
based prediction of trajectories for socially compliant navigation. In Robotics: science and
systems, volume 8, pages 193–200, 2012. 25

[60] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei,
and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
961–971, 2016. 26, 27, 29

[61] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and
Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1349–1358, 2019. 26, 27, 28, 29, 65

[62] Vineet Kosaraju, Amir Sadeghian, Roberto Mart́ın-Mart́ın, Ian Reid, Hamid Rezatofighi,
and Silvio Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and
graph attention networks. Advances in neural information processing systems, 32, 2019.
26, 27, 28, 29, 65

75

[63] Hao Xue, Du Q Huynh, and Mark Reynolds. Ss-lstm: A hierarchical lstm model for
pedestrian trajectory prediction. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1186–1194. IEEE, 2018. 26, 27, 28, 29

[64] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and Nanning Zheng. Sr-lstm:
State refinement for lstm towards pedestrian trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12085–12094,
2019. 26, 27

[65] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVIII 16, pages 683–700. Springer, 2020. 26, 27, 28, 29, 65

[66] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and
Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes with in-
teracting agents. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 336–345, 2017. 26, 27, 28, 29

[67] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes. Soft+ hard-
wired attention: An lstm framework for human trajectory prediction and abnormal event
detection. Neural networks, 108:466–478, 2018. 26, 27

[68] Federico Bartoli, Giuseppe Lisanti, Lamberto Ballan, and Alberto Del Bimbo. Context-
aware trajectory prediction. In 2018 24th international conference on pattern recognition
(ICPR), pages 1941–1946. IEEE, 2018. 26, 27, 28

[69] Ronny Hug, Stefan Becker, Wolfgang Hübner, and Michael Arens. Particle-based pedes-
trian path prediction using lstm-mdl models. In 2018 21st international conference on
intelligent transportation systems (ITSC), pages 2684–2691. IEEE, 2018. 26

[70] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social attention: Modeling attention
in human crowds. In 2018 IEEE international Conference on Robotics and Automation
(ICRA), pages 4601–4607. IEEE, 2018. 26, 27

[71] Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo.
Smemo: social memory for trajectory forecasting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024. 26, 29, 65

[72] Patrick Dendorfer, Sven Elflein, and Laura Leal-Taixé. Mg-gan: A multi-generator model
preventing out-of-distribution samples in pedestrian trajectory prediction. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 13158–13167, 2021.
26, 28, 29, 65

[73] Luca Franco, Leonardo Placidi, Francesco Giuliari, Irtiza Hasan, Marco Cristani, and
Fabio Galasso. Under the hood of transformer networks for trajectory forecasting. Pattern
Recognition, 138:109372, 2023. 26, 27, 29, 65

[74] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal
motion prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7577–7586, 2021. 26

[75] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani. Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9813–9823, 2021. 26, 29, 65

[76] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020. 26

[77] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.
26

76

[78] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen
Lu. Stochastic trajectory prediction via motion indeterminacy diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17113–
17122, 2022. 26, 27, 29, 65

[79] Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion
model for stochastic trajectory prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5517–5526, 2023. 26, 27, 29, 64, 65

[80] Jiangbei Yue, Dinesh Manocha, and He Wang. Human trajectory prediction via neural
social physics. In European conference on computer vision, pages 376–394. Springer, 2022.
26, 27, 29, 65, 70

[81] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 26

[82] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao Zhao,
Yizhou Wang, and Ying Nian Wu. Multi-agent tensor fusion for contextual trajectory
prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12126–12134, 2019. 26, 27, 28, 29

[83] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-gan: Multimodal trajectory
prediction based on goal position estimation. In Proceedings of the Asian Conference on
Computer Vision, 2020. 26

[84] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver
Wang, and Eli Shechtman. Toward multimodal image-to-image translation. Advances in
neural information processing systems, 30, 2017. 26

[85] Boris Ivanovic, Edward Schmerling, Karen Leung, and Marco Pavone. Generative modeling
of multimodal multi-human behavior. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3088–3095. IEEE, 2018. 27

[86] Boris Ivanovic and Marco Pavone. The trajectron: Probabilistic multi-agent trajectory
modeling with dynamic spatiotemporal graphs. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 2375–2384, 2019. 27

[87] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien
Moutarde. Home: Heatmap output for future motion estimation. In 2021 IEEE Interna-
tional Intelligent Transportation Systems Conference (ITSC), pages 500–507. IEEE, 2021.
27

[88] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien
Moutarde. Gohome: Graph-oriented heatmap output for future motion estimation. In
2022 international conference on robotics and automation (ICRA), pages 9107–9114. IEEE,
2022. 27

[89] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, way-
points & paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15233–15242, 2021. 27, 28, 29, 65,
70

[90] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015. 27

[91] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds:
A deep learning perspective. IEEE Transactions on Intelligent Transportation Systems, 23
(7):7386–7400, 2021. 27, 49, 50

77

[92] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph
transformer networks for pedestrian trajectory prediction. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XII 16, pages 507–523. Springer, 2020. 27, 29, 65

[93] Amir Sadeghian, Ferdinand Legros, Maxime Voisin, Ricky Vesel, Alexandre Alahi, and
Silvio Savarese. Car-net: Clairvoyant attentive recurrent network. In Proceedings of the
European conference on computer vision (ECCV), pages 151–167, 2018. 28

[94] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Conditional generative neural system
for probabilistic trajectory prediction. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6150–6156. IEEE, 2019. 28

[95] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli,
Jitendra Malik, and Adrien Gaidon. It is not the journey but the destination: End-
point conditioned trajectory prediction. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 759–776.
Springer, 2020. 28

[96] Matteo Lisotto, Pasquale Coscia, and Lamberto Ballan. Social and scene-aware trajectory
prediction in crowded spaces. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019. 28

[97] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. Future person local-
ization in first-person videos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7593–7602, 2018. 28, 29

[98] Huikun Bi, Ruisi Zhang, Tianlu Mao, Zhigang Deng, and Zhaoqi Wang. How can i see
my future? fvtraj: Using first-person view for pedestrian trajectory prediction. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VII 16, pages 576–593. Springer, 2020. 28, 29

[99] Benjamin Stoler, Meghdeep Jana, Soonmin Hwang, and Jean Oh. T2fpv: Dataset and
method for correcting first-person view errors in pedestrian trajectory prediction. In 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4037–4044. IEEE, 2023. 28

[100] Jianing Qiu, Lipeng Chen, Xiao Gu, Frank P-W Lo, Ya-Yen Tsai, Jiankai Sun, Jiaqi
Liu, and Benny Lo. Egocentric human trajectory forecasting with a wearable camera and
multi-modal fusion. IEEE Robotics and Automation Letters, 7(4):8799–8806, 2022. 28

[101] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop,
Daniel Rueckert, and Zehan Wang. Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1874–1883, 2016. 35

[102] Jamie Snape and lithander. snape/rvo2: v2.0.2, sep 2022. URL https://doi.org/10.

5281/zenodo.7039667. 41

[103] Sybren Stüvel. Sybrenstuvel/python-rvo2: Optimal reciprocal collision avoidance, python
bindings, Aug 2020. URL https://github.com/sybrenstuvel/Python-RVO2. 41

[104] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 43

[105] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012. 43

[106] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010. 44

78

https://doi.org/10.5281/zenodo.7039667
https://doi.org/10.5281/zenodo.7039667
https://github.com/sybrenstuvel/Python-RVO2

[107] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.
44

[108] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural informa-
tion processing systems, 32, 2019. 44

[109] William Falcon and The PyTorch Lightning team. PyTorch Lightning, mar 2019. URL
https://github.com/Lightning-AI/lightning. 44

[110] Google. tensorflow/tensorboard, 2016. URL https://github.com/tensorflow/

tensorboard. 44

79

https://github.com/Lightning-AI/lightning
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard

Appendix A

Hyperparameters

Hyperparameter M1 M2 M2-synth M2-synth-reg

TRAJ ENCODER

hidden size 32 32 32 32

SOCIAL MODULE

hidden size 32 32 32 32

num layers 2 2 2 2

nhead 4 4 4 4

dim feedforward 64 64 64 64

dropout 0.2 0.3 0.3 0.5

norm first false false false false

activation relu relu relu relu

TRAJ DECODER

hidden size 32 48 48 48

noise dim 8 8 8 8

noise distrib gaussian gaussian gaussian gaussian

SOCIAL-NCE

loss weight 3 3 3 3

temperature 0.5 0.5 0.5 0.5

projection size 16 16 16 16

MAP-NCE

num points — 10 10 10

loss weight — 3 3 3.5

temperature — 0.5 0.5 0.5

projection size — 16 16 16

MAP ENCODER

bottleneck size — 64 64 64

output size — 8 8 8

ENV-COL

loss weight — 0.5 0.5 0.5

DATA

batch size 32 32 32 32

rotate prob 1 1 1 1

flip prob 1 1 1 1

noise prob 0.1 0.1 0.1 0.1

noise scale 0.05 0.05 0.05 0.05

OPTIMIZER

name Adam Adam Adam Adam

lr 3e-4 3e-4 3e-4 3e-4

betas 0.9/0.999 0.9/0.999 0.9/0.999 0.9/0.999

weight decay 1e-5 1e-5 1e-5 2e-4

early stop patience 10 10 10 10

LR SCHEDULER

name ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau

factor 0.5 0.5 0.5 0.5

patience 5 5 5 5

Table A.1: Hyperparameters used for the different models.

80

	Introduction
	Human Trajectory Forecasting
	Contributions
	Outline

	Background
	Contrastive Learning
	Foundational Architectures
	Recurrent Neural Networks
	Transformer Encoders
	Convolutional Neural Networks (CNNs)
	Autoencoders

	First-Person View
	Rationale for Bird's-Eye View in First-Person View Applications
	Forecasting Pipeline

	Related Work
	Multimodal Trajectory Prediction
	Social context
	Scene context
	First Person View

	Methodology
	Problem Formulation
	Model Architecture
	Trajectory Encoder
	Social Interaction Module
	Map Patch Encoder
	Trajectory Decoder
	Social-NCE Module
	Map-NCE Module

	Loss
	MSE Loss
	Environment Collision Loss
	Social-NCE and Map-NCE Losses

	Synthetic Dataset
	Training

	Experiments
	Datasets
	ETH/UCY
	Internal Dataset

	Evaluation Metrics
	Average Displacement Error (ADE)
	Final Displacement Error (FDE)
	Pedestrian Collisions (COL-PRED, COL-GT)
	Environment Collisions (ENV-COL)

	Experiments
	Social Interaction Module Ablation
	Social-NCE Module Ablation
	Map-NCE Module Ablation
	Environment Collision Loss Ablation
	Map Patch Offset Ablation
	Synthetic Dataset
	Inference Speed

	Results
	Quantitative Results
	Qualitative Results
	ETH/UCY Datasets
	Synthetic Dataset
	Internal First-Person View Dataset
	Latent Space Exploration

	Conclusions
	Summary
	Limitations and Future Work

	Hyperparameters

