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ABSTRACT 

 

Climate change represents one of the most significant challenges of our time, influencing 

global climate patterns and impacting ecosystems, sea levels, and weather events. This thesis 

explores the impact that the climate change has on the distribution of rainfall, with a 

particular focus on the increasing frequency and intensity of short-duration rainfall events 

compared to longer-duration ones. This phenomenon has substantial implications in terms of 

socio-economic costs. 

This study is conducted on the dataset furnished by the Autonomous Province of Trentino, 

which collects rainfall observations at five-minute intervals. This high-resolution data offers 

opportunity to analyze rainfall patterns in detail, enabling a comprehensive assessment of the 

hypothesis that short-duration rainfall events are increasing at a faster rate than longer-

duration events. 

Through detailed statistical analysis and comparison with literature about the topic, this 

dissertation aims to provide new insights into the dynamics of rainfall distribution under 

changing climate conditions. The findings are expected to enhance understanding of the 

implications of these changes and inform future climate adaptation and mitigation strategies, 

in order to tackle the increasing socio-economic costs associated with extreme precipitation 

events. 
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1. INTRODUCTION 

1.1 CLIMATE CHANGE PHENOMENA AND ITS COST 

 

Defined as a significant and lasting alteration in global and regional climate patterns, Climate 

Change is principally attributed to anthropogenic activities, particularly the emission of 

greenhouse gases such as carbon dioxide (CO₂) and methane (CH₄). This phenomenon not 

only alters global average temperatures but also impacts various aspects of the Earth's 

systems, including ecosystems, sea levels, and weather patterns. The attention to climate 

change has grown exponentially in recent decades and the topic is of cardinal importance 

nowadays, as evidenced by the widespread media coverage, political discourse, and scientific 

research dedicated to understanding and mitigating its effects (IPCC, 2021; World Bank, 

2024). 

Reports from the Intergovernmental Panel on Climate Change emphasize that global warming 

is incontrovertible and that human activities are the main cause of this it (IPCC, 2021). The 

IPCC's Sixth Assessment Report of 2021 underscores the urgent need for action, highlighting 

how continued emissions will lead to increasingly severe and irreversible impacts on the 

environment and human societies. 

International agreements, such as the Paris Agreement of 2015, plan to limit global 

temperature increases to well below 2°C above pre-industrial levels, reflecting a global 

consensus on the necessity of addressing this issue (European Commission, 2020).  Despite 

these efforts, global greenhouse gas emissions continue to rise, signaling the need for more 

aggressive and coordinated actions to combat climate change (Deloitte, 2022). 

The economic costs associated with climate change are massive and multifaceted, impacting 

various sectors and regions globally. A recent report by the Deloitte Economics Institute alerts 

that inaction on climate change could cost the global economy $178 trillion by 2070, matching 

to a 7.6% reduction in global GDP for that year alone (Deloitte, 2022; Deloitte United States, 

2023).  

The World Bank underscores that climate change could lead approximately 132 million people 

into extreme poverty by 2030.  The global cost of extreme weather events linked to climate 

change could exceed $520 billion annually (World Bank, 2024).  
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These figures illustrate the profound economic implications of climate change and the 

necessity for robust adaptation and mitigation measures. 

Moreover, the financial burden of climate change is not evenly distributed, often 

disproportionately affecting the most vulnerable populations. Developing countries, which 

contribute the least to global emissions, are frequently the hardest hit by the adverse effects of 

climate change (IPCC, 2021; World Bank, 2024).  

Economic costs include the destruction of infrastructure, loss of biodiversity, increased 

healthcare expenses due to climate-related illnesses, and strong impacts on food and water 

security. For example, agricultural sectors worldwide face decreased crop yields and increased 

volatility in food supply due to changing precipitation patterns and more frequent extreme 

weather events. This not only threatens food security but also leads to higher food prices and 

economic instability (Deloitte, 2022; World Bank, 2024). 

The health sector also bears significant economic damages. Climate change contributes to the 

spread of vector-borne diseases and worsen respiratory and cardiovascular aspects due to 

higher levels of air pollution. These health impacts result in increased healthcare costs, lost 

labor productivity, and reduced quality of life.  According to the World Health Organization, 

the direct damage costs to health (excluding costs in health-determining sectors such as 

agriculture and water and sanitation) are estimated to be between $2-4 billion per year by 

2030 (WHO, 2021). 

In summary, the economic implications of climate change are far-reaching and necessitate 

urgent and sustained global action to diminish its effects. Addressing climate change requires 

comprehensive strategies that include huge investments in renewable energy, sustainable 

infrastructure, and resilient agricultural practices.  Policymakers, businesses, and individuals 

must collaborate to reduce greenhouse gas emissions and build resilience against the 

unavoidable impacts of climate change, ensuring a sustainable future for all (European 

Commission, 2020; Deloitte, 2022). 

Moving from a global perspective to a regional focus, Europe itself faces significant economic 

burdens due to climate change.  According to the European Environment Agency, Europe has 

experienced substantial economic losses from weather and climate-related extremes. From 

1980 to 2020, these losses amounted to between €450 billion and €520 billion, primarily due 

to extreme weather events such as floods, storms, and heatwaves (European Environment 
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Agency, 2023). These events have become more frequent and intense, exacerbating economic 

vulnerabilities across the continent. 

 

 

 

Figure 1.1: Trend of the economic cost of Climate Change for European Countries. (Retrieved from European Environment 
Agency) 

 

In Southern Europe, countries like Italy are particularly vulnerable to the impacts of climate 

change due to their geographical and climatic characteristics. Italy is the third country in 

Europe terms for the economic loss suffered by the climate change in absolute terms, 

following Germany and France (Eurostat, 2022). 

It faces a variety of climate-related challenges, including increased temperatures, rising sea 

levels, and more frequent and severe weather events such as floods, droughts, and heatwaves. 

These phenomena have significant economic implications for various sectors, particularly 

agriculture, tourism, and infrastructure. According to the European Environment Agency, 

between 1980 and 2020, climate-related losses in Italy ranged between €90 billion and €150 

billion (European Environment Agency, 2023). 

These losses underscore the urgent need to implement robust climate adaptation and 

mitigation strategies. Investing in climate-resilient infrastructure, promoting sustainable 

agricultural practices, and enhancing disaster preparedness are critical measures to reduce 

future economic losses and build resilience against climate change impacts. The European 

Union supports member states, including Italy, in their climate adaptation efforts through 
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various funding mechanisms and initiatives.  The European Green Deal aims to make Europe 

the first climate-neutral continent by 2050, with significant investments directed towards 

sustainable infrastructure, renewable energy, and climate resilience projects (European 

Commission, 2020). 
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1.2 RELATIONSHIP BETWEEN CLIMATE CHANGE AND PRECIPITATION PATTERNS 

 

In the intricate and ever-changing realm of contemporary climate dynamics, the alteration of 

precipitation patterns stands out as a critical and pivotal aspect of climate change. Over the 

past few decades, the Earth's climate system has experienced profound and significant 

modifications, leading to notable shifts in the distribution, intensity, and frequency of rainfall 

events across various regions (IPCC, 2021; Fischer & Knutti, 2016). These changes manifest as 

prolonged droughts in some areas and intensified rainfall or flooding in others (Zhang & 

Villarini, 2020). 

Understanding the evolving relationship between climate change and precipitation patterns is 

essential for a multitude of reasons. It plays a crucial role in informing decision-making 

processes at both local and global levels, enabling policymakers to develop and implement 

effective adaptation strategies. Moreover, this understanding is vital for anticipating future 

climatic conditions and preparing for their potential impacts on ecosystems, agriculture, 

water resources, and human settlements (Marvel et al., 2019; Prein et al., 2017). 

Central to the understanding of precipitation changes under a warming climate is the 

Clausius-Clapeyron relationship, which elucidates the fundamental connection between 

temperature and atmospheric moisture content. This thermodynamic principle describes how 

the capacity of the atmosphere to hold water vapor increases with temperature. Specifically, 

according to the Clausius-Clapeyron equation, for every degree Celsius rise in temperature, 

the atmosphere can hold approximately 7% more water vapor (Fischer & Knutti, 2016). 

Recent research has shown that for hourly and sub-hourly precipitations, this scaling can 

increase to approximately 14% per degree Celsius rise, known as the Super-Clausius–

Clapeyron Scaling (Lenderink et al., 2017). 

As global temperatures continue to increase due to the continuous emissions of greenhouse 

gases, the potential for enhanced atmospheric moisture content also rises. This sets the stage 

for profound alterations in precipitation patterns. Enhanced atmospheric moisture can lead to 

more intense and frequent rainfall events, contributing to phenomena such as increased heavy 

rainfall and flooding (IPCC, 2021). Conversely, the redistribution of moisture and changes in 

circulation patterns can also exacerbate drought conditions in some regions, creating a more 

volatile and unpredictable hydrological cycle (Marvel et al., 2019; Prein et al., 2017). 
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Climate change, propelled by anthropogenic activities and attendant changes in radiative 

forcing, has catalyzed a spectrum of atmospheric adjustments, profoundly reshaping 

precipitation regimes across the globe (Zhang & Villarini, 2020). Moreover, increased 

atmospheric moisture content can influence atmospheric stability and convection processes. 

Enhanced water vapor can lead to more vigorous convective activity, which is a key driver of 

thunderstorms and heavy rainfall events. The enhanced latent heat release during 

condensation processes further energizes the atmosphere, potentially increasing the severity 

of weather events (Fischer & Knutti, 2016). 

To fully grasp the implications of the Clausius-Clapeyron relationship in the context of climate 

change, it is essential to integrate this understanding with observational data and climate 

models. These tools help quantify the impacts of increased atmospheric moisture on 

precipitation patterns and provide projections for future climate scenarios. They also assist in 

identifying regions particularly vulnerable to changes in precipitation, thereby informing 

adaptation and mitigation strategies (IPCC, 2021; Lenderink et al., 2017). 

Contemporary research endeavors, informed by an amalgamation of observational evidence, 

advanced climate modeling, and interdisciplinary synthesis, provide compelling insights into 

the evolving nature of precipitation under a changing climate. Recent studies confirm the 

escalating trends in precipitation extremes, characterized by intensified rainfall events, 

prolonged droughts, and amplified hydrological variability (Marvel et al., 2019). Notably, the 

disproportionate increase in short-duration rainfall events relative to longer-duration events 

has emerged as a salient feature of contemporary precipitation patterns, accentuating 

concerns over water-related hazards and ecosystem resilience (Fischer & Knutti, 2016; Zhang 

& Villarini, 2020). 

This phenomenon emphasizes the urgent need for proactive adaptation measures to mitigate 

the impacts of changing precipitation patterns on vulnerable communities and ecosystems. 
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1.3 SOCIO-ECONOMIC IMPACT OF RAINFALL EVENTS 

 

Short-duration, high-intensity rainfall events, exacerbated by climate change, pose significant 

socio-economic challenges globally, impacting agriculture, urban infrastructure, and flood 

management systems. The intensification of these weather patterns necessitates urgent 

adaptive measures to mitigate their adverse effects (Taguchi et al., 2019; Yin et al., 2018). 

Evidence from around the world confirms the tremendous cost of changing rainfall patterns. In 

sub-Saharan Africa, agriculture, a primary source of livelihood for many, faces severe 

disruptions due to erratic precipitations. Studies suggest that these sudden downpours can lead 

to soil erosion, loss of arable land, and decreased crop yields, exacerbating food insecurity and 

economic instability (Nkonya et al., 2016; World Bank, 2019). For instance, projections indicate 

that by 2050, maize yields in the region could decline by up to 20%, affecting millions of 

smallholder farmers (World Bank, 2019). 

Urban areas worldwide face increasing risks from heavy rainstorms, particularly in cities with 

aging infrastructure and inadequate drainage systems. Research in cities like Houston, Texas, 

and Miami, Florida, highlights the escalating threat of urban flooding due to climate change-

induced rainfall patterns. In Houston alone, the estimated annual cost of urban flooding exceeds 

$1.9 billion (Siddique et al., 2020). Furthermore, projections suggest that by 2100, the number 

of people at risk of coastal flooding in urban areas could increase by up to 300 million globally 

(Hinkel et al., 2014; Becker et al., 2018). 

Island nations and coastal regions in Oceania are highly susceptible to the impacts of these 

phenomena, compounded by rising sea levels and storm surges. Studies in countries like Fiji, 

Samoa, and the Cook Islands underscore the intertwined nature of extreme rainfall and coastal 

inundation, threatening critical infrastructure, livelihoods, and cultural heritage. For instance, 

in the Pacific Island region, it is estimated that the annual damage from coastal flooding could 

reach $1.4 billion by 2100 (Nurse et al., 2014). 

Alpine regions in Europe, characterized by rugged terrain and sensitive ecosystems, face 

escalating risks from intensified rainfall and associated hazards such as landslides and flash 

floods. Research in countries like Switzerland and Austria emphasizes the need for integrated 

risk management strategies that consider both upstream land use practices and downstream 
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vulnerabilities. In Switzerland, the annual cost of flood damage is estimated to be around 1.1 

billion Swiss Francs (Bogaard et al., 2020). 

Low- and middle-income countries across Latin America, Asia, and Africa are particularly 

vulnerable to the socio-economic impacts of brief, severe rain events, given their limited 

resources and inadequate infrastructure. Case studies from countries like Brazil, India, and 

Nigeria highlight the disproportionate burden borne by marginalized communities, who often 

lack access to basic services and are more susceptible to displacement and loss of livelihoods 

(World Bank, 2020; Liu et al., 2018). In Brazil, for example, the economic losses from extreme 

weather events, including intense rainfall, amount to approximately 0.5% of GDP annually 

(World Bank, 2020). 

Italy, like many other countries, experiences socio-economic impacts from short-duration, high-

intensity rainfall events. In regions prone to flooding, such as the Po Valley, extreme rainfall can 

lead to agricultural losses, damage to infrastructure, and disruptions in economic activities. For 

example, in Emilia-Romagna, a region in northern Italy, the annual economic cost of flood 

damage exceeds €300 million (United Nations Development Programme, 2020). Additionally, 

coastal areas like Venice face unique challenges, with increased rainfall contributing to the 

ongoing issue of high water, which threatens historic buildings, tourism, and local businesses. 

 

 

Figure 1.2: Relationship between extreme hydrological events and economic loss. 
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The Figure above is remarkable in illustrating the incapability to cope with these extreme 

events to mitigate the economic loss associated with them. For this reason, it is crucial to 

endeavor to predict and understand the patterns of rainfall. Enhanced investment in predictive 

technologies and climate models can provide valuable foresight into the timing and intensity of 

these events, allowing for better-preparedness and response strategies (Taguchi et al., 2019). 
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1.4 HYPOTHESIS AND GOAL OF THE PRESENT RESEARCH 

 

Building upon the established understanding of climate change impacts on precipitation 

patterns, this thesis posits that the primary alteration observed in recent precipitation trends 

is a change in the distribution of rainfall events rather than a significant change in the total 

quantity of rainfall.  Specifically, this research hypothesizes that short-duration rainfall events 

are increasing at a faster rate compared to longer-duration events. 

This hypothesis is supported by a growing body of contemporary research. This phenomenon 

is becoming increasingly important in modern climate studies due to its implications for 

urban planning, infrastructure, and flood management. Several studies highlight the 

disproportionate rise in short-term precipitation intensity due to climate warming.  

It has been observed (Ban et al.,2015) that short-term summer precipitation increases more 

rapidly than longer-term rainfall in their climate models, indicating a heightened sensitivity of 

brief, intense rain events to temperature increases.  

This aligns with findings that projected future intensification of hourly precipitation extremes 

(Prein et al.,2017), suggesting that short-duration events will become significantly more 

severe, posing greater risks for flash floods and urban drainage systems. 

Further supporting this, It was recently discussed the concept of "super Clausius-Clapeyron 

scaling," (Lenderink et al.,2017) as we mentioned earlier in this document, where observed 

increases in extreme hourly convective precipitation exceed the expected rate based on 

temperature increases alone.  

This phenomenon underscores the unique vulnerability of short-duration rainfall to climate 

change, with short-term precipitation responding more robustly to warming than longer-term 

events 

A comprehensive study by Villarini emphasizes the need for international coordination and 

high-resolution data to better understand and project these changes (Villarini et al.,2021).  

The INTENSE project, under the GEWEX Hydroclimatology Panel, has been pivotal in 

advancing scientific knowledge of short-duration rainfall extremes by promoting the use of 

convection-permitting climate models and detailed observational datasets.  
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This project has shown that localized heavy short-duration rainfall can scale at higher rates 

than longer-term precipitation, particularly in response to convective storm dynamics. 

These findings are not isolated.  Research has shown similar trends globally, including in 

Europe, North America, and Asia. For example, Berg et al. demonstrated a strong increase in 

convective precipitation with rising temperatures in Europe (Berg et al., 2013) , consistent 

with researches that revealed heavier summer downpours in the UK with climate change and 

(Kendon et al., 2014) .  

However, studying these trends in Italy poses specific challenges due to the scarcity of high-

resolution, short-duration rainfall data. The lack of such detailed observational data hinders 

the ability to analyze and predict changes in short-term precipitation patterns accurately. 

To rigorously test these hypotheses, this thesis will utilize an extensive and detailed dataset 

provided by the Autonomous Province of Trentino, that have the exceptional characteristic of 

proving observations at an extremely high temporal resolution, 5 minutes.  By capturing the 

minute-by-minute variations in precipitation, it allows for a thorough and precise analysis of 

short-duration rainfall events, which are often missed in datasets with longer observation 

intervals.  

By confirming and elucidating the trend towards increasing short-duration rainfall, this 

research aims contribute to the broader knowledge base required for developing robust climate 

adaptation and mitigation strategies. Additionally, the unique dataset from Trentino serves as a 

model for other regions, demonstrating the value of high-resolution precipitation monitoring 

in climate research. 
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2: DATA SOURCE AND LIMITATION 

2.1 DATA COLLECTION 

 

 

Figure 2.1: Map illustrating the position of the selected weather stations 

 

The data utilized in this study were sourced from the Province of Trentino, an area 

distinguished by its extensive and detailed meteorological datasets. The region published an 

exceptionally detailed and rich dataset, particularly with data available at five-minute 

intervals, characteristic that make it unique in Italy. This region hosts 207 weather stations, 

each contributing to a rich repository of meteorological information that is accessible for 

research and analysis. Not only the rainfall observations were extracted from the repository 

but also the mean values of temperature across the period taken in exam. For this last point 
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the reasoning behind the choice of taking just one series of temperature value is because of 

the inconsistency and unavailability of temperature observations  in the data source. 

Station T0147 is highlighted in the map for two distinct reasons: 

- It was selected in order to exploit graphical visualization, that takes place in the next chapter. 

- It was chosen to take the values of mean temperature, that were used as covariate in the 

models fitted for the dissertation. 

To facilitate this study, the data were downloaded in CSV file format, with various time 

resolutions available for selection. These files were then imported into a Python environment, 

which was employed to manipulate and analyze the data efficiently. 

Before delving into the analysis, a thorough preliminary examination of all available weather 

stations was performed. This meticulous pre-analysis phase involved evaluating multiple 

aspects such as the quality, consistency, and completeness of the data provided by each 

station. After a comprehensive review, 24 weather stations were selected for inclusion in the 

study. These stations were chosen based on the exceptional quality and reliability of their 

data, ensuring the integrity and accuracy of the research findings. Weather stations that did 

not meet the stringent criteria were excluded from further analysis to maintain high standards 

of data integrity. 
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 NAME  IDENTIFIER  ALTITUDE 

1 Ala (Ronchi) T0153 692m 

2 Aldeno (San Zeno) T0146 182m 

3 Bieno T015 843m 

4 Lavarone (Chiesa) T032 1155m 

5 Mezzana T071 905m 

6 Moena (Diga Pezze) T096 1205m 

7 Montagne (Larzana) T0182 955m 

8 Mori (Loppio) T0151 230m 

9 Passo Cereda T024 1322m 

10 Passo Mendola T082 1315m 

11 Passo Rolle T0103 2012m 

12 Passo Valles T0104 2032m 

13 Romeno T0236 958m 

14 Rovereto T0147 203m 

15 Sant’Orsola Terme T0139 925m 

16 Santa Massenza (Centrale) T0189 252m 

17 Spormaggiore T0212 555m 

18 Tione T0179 533m 

19 Torbole (Belvedere) T0193 90m 

20 Val di Breguzzo (Ponte Arno) T0177 1148m 

 

A critical factor in the selection process was the availability of data at a five-minute resolution, 

as well as the consistency of the data over a significant period.  

Specifically, the selected stations provided continuous data spanning from 1992 to 2023. 

Unfortunately, before 1992 it was complicate to find consistency across different stations.   

Additionally, another crucial consideration was to choose stations that were well spread 

across the territory of Trentino, ensuring representation from various geographical locations 

within the region. 



21 
 

2.2 DATA PROCESSING (ANNUAL MAXIMA) 

 

To ensure thorough analysis and interpretation, meticulous preprocessing was undertaken to 

organize raw data into structured datasets.  

From the original data frames annual maxima were derived. The rationale behind this choice 

is linked with the scope of the dissertation, that is to investigate about extreme rainfall. To do 

that, methodologies belonging to the Extreme Value Theory (EVT), a branch of statistics 

dealing with the stochastic behavior of the extreme values in a process, were employed. 

Of the two fundamental approaches pertaining to this branch, the block maxima (BM) method 

was chosen to run the analysis. This method consists of dividing the observation period into 

non overlapping periods of equal size and focus the attention on the maximum value of each 

period. These derived observations follow approximately an extreme value distribution, 𝐺(𝑋) 

(Ferreira et al, 2015).  

For the purpose of the research, for each station the block maxima and therefore the 

subsequent analysis were conducted on three different temporal resolution, aggregated from 

the same data: 

- five minutes interval 

- hourly summaries  

- daily aggregation. 

This multi-resolution approach not only facilitates a nuanced exploration of meteorological 

phenomena across different time scales but also enhances the detection of subtle patterns and 

trends that might otherwise evade notice. 
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2.3 LIMITATIONS OF THE DATA 

 

While the data made available by the Trentino Environment Agency is unique in its high 

resolution, its potential usefulness is hindered by some limitations which are here explored. 

One of the primary concerns is the sample size. As previously highlighted, the analysis spans a 

period from 1992 to 2023. Deriving annual maxima from the original dataset, means to have 

data frame that contains only 31 observation each. The limited sample size for annual or 

multi-annual extremes is a significant constraint and may lead to uncertain statistical results. 

In fact, despite the fact that the minimum satisfying sample size highly depends on the 

modeling that needs to be carried on it, A study that analyzes this particular topic identifies 

the minimum sample size needed to model an extreme value distribution with 25 

observations, so the available data frames are slightly over this threshold. However, the same 

study through a simulation shows that fitting the model on 40 observations lead to similar 

results compared to the model fitted on 200 observations, obviously on the same data (Cai & 

Hames, 2010).  

This issue is rooted in the data quality and availability before 1992, which was notably poor. 

Due to the lack of high-quality data from earlier periods, there is no practical way to extend 

the dataset further back in time. This limitation inevitably introduces uncertainty into the 

reliability of future scenario modeling based on these extremes. 

Within the full dataset, most observations have been validated, ensuring a high level of 

accuracy. However, there were a few data points with significant uncertainties. These were 

excluded to prevent any potential noise from skewing the results. The rationale behind this 

decision lies in the fact that these uncertain data points were relatively insignificant when 

compared to the already considerable amount of missing data. 

Missing data is another crucial issue to consider. Trentino stands out as the only region in Italy 

providing high-resolution temporal observations, which are essential for detailed 

meteorological analysis. Unfortunately, even within this region, the datasets suffer from a high 

percentage of missing data, as highlighted in the table below. This prevalence of missing data 

poses a substantial challenge, impacting the comprehensiveness and reliability of the analysis. 
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 NAME  IDENTIFIER  PCT. OF MISSING OBS. 

1 Ala (Ronchi) T0153 50.87% 

2 Aldeno (San Zeno) T0146 51.30% 

3 Bieno T015 48.78% 

4 Lavarone (Chiesa) T032 48.80% 

5 Mezzana T071 49.55% 

6 Moena (Diga Pezze) T096 48.95% 

7 Montagne (Larzana) T0182 53.98% 

8 Mori (Loppio) T0151 52.48% 

9 Passo Cereda T024 49.86% 

10 Passo Mendola T082 50.26% 

11 Passo Rolle T0103 49.03% 

12 Passo Valles T0104 52.01% 

13 Romeno T0236 46.62% 

14 Rovereto T0147 49.22% 

15 Sant’Orsola Terme T0139 49.03% 

16 Santa Massenza (Centrale) T0189 48.90% 

17 Spormaggiore T0212 53.30% 

18 Tione T0179 48.19% 

19 Torbole (Belvedere) T0193 49.70% 

20 Val di Breguzzo (Ponte Arno) T0177 52.28% 

 

 

 

Typically, with such a significant amount of missing information, making reliable statistical 

assumptions becomes challenging. However, considering also our previous discussion about 

the sample size, our primary interest lies not in the precise numerical values but in 

understanding the behavior and patterns of rainfall. We aim to explore trends, rates of change, 

and data distributions. 

With this perspective, and assuming that the missing data are randomly distributed and do 

not follow any specific pattern, the analyses conducted on the available data can still be 
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considered reliable. This approach allows us to extract meaningful insights into rainfall 

behavior despite the inherent limitations. 
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2.4 DESCRIPTIVE STATISTIC 

 

For the analysis in this dissertation, two programming languages were employed: 

• Python: This language served as the primary tool for all data manipulation, exploratory 

data analysis, and visualization tasks. 

• RStudio: It was utilized to fit models to the distribution, facilitating the importation of 

pre-processed data from Python. 

Before embarking on the methodology analysis, extensive exploratory analyses were 

conducted on the available stations, on the annual maxima data frames directly, given that the 

research emphasis on extremes and their distributional behavior, rather than the entire 

dataset. 

In order to comprehend the main characteristics of the available data, descriptive statistics 

were computed for all different time resolutions as outlined below. 
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Figure 2.2: Descriptive statistics for 5 minutes Stations 

 

Examining the central tendency and spread of the data, we observe that the mean values 

across the stations range from approximately 4.54 mm (Station T071) to 8.86 mm (Station 

T0147), with most stations having means between 6 and 8 mm. The median values are 

generally close to the mean values, indicating that the data distributions are relatively 

symmetric for many stations. This close alignment between mean and median suggests a 

balanced distribution without significant skew in many cases. 

In terms of variability, the standard deviation values highlight significant differences within 

the data. Station T0182 shows the highest variability with a standard deviation of 3.72 mm, 
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suggesting wide fluctuations in its measurements. Conversely, Station T071 exhibits relatively 

low variability with a standard deviation of 1.52 mm, indicating more consistent readings.  

The coefficient of variation (CV), which standardizes the standard deviation relative to the 

mean (CV =  
𝜎

𝜇
∗ 100), further elucidates these differences. Station T0182 has the highest 

relative variability (CV = 49.2%), indicating significant spread compared to its mean. In 

contrast, Station T0151 has the lowest CV (25.23%), suggesting more consistency in its 

measurements. 

75th percentile and 90th percentile provide insights into the distribution's upper range. For 

instance, Station T0103 has a 90th percentile value of 9.52 mm, indicating that 90% of the 

measurements are below this value. On the other hand, Station T0139 has a notably high 90th 

percentile value of 11.16 mm, suggesting occasional extreme measurements.  

Skewness values further reveal the asymmetry of the data distribution. Positive skewness, 

such as that seen in Station T0139 with a skewness of 2.54, indicates a longer right tail. This 

suggests occasional high values far from the mean, which can be critical for understanding 

potential extreme events. Conversely, negative skewness, such as that observed in Station 

T032 with a skewness of -0.16, suggests a longer left tail, indicating more frequent low values.  
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Figure 2.3: Descriptive statistics for 1 hour Stations 

 

The mean values across the stations range from around 14.41 mm (Station T071) to 28.8 mm 

(Station T032). Most stations have means between 20 and 28 mm. As for the 5 minutes time 

resolution the median values are generally close to the mean values. 

Regarding variability, the standard deviation values show significant differences within the 

data. Station T0177 has the highest variability with a standard deviation of 24.45 mm, and a 

coefficient of variation of 88.32% indicating wide fluctuations in its measurements. 

Conversely, Station T0151 shows relatively low variability with a standard deviation of 6.06 

mm (CV = 24.66%), suggesting more consistent readings.  
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Examining the percentiles, Station T0177 has a 90th percentile value of 44.44 mm, meaning 

that 90% of the measurements are below this value. On the other hand, Station T032 has a 

high 90th percentile value of 43.72 mm, suggesting occasional extreme measurements. These 

percentile values help understand the typical upper range of the data and identify stations 

with potential outliers. 

Skewness values further indicate the asymmetry of the data distribution. Positive skewness, 

such as that seen in Station T0177 with a skewness of 3.49, points to a longer right tail. This 

indicates occasional high values far from the mean. Conversely, negative skewness is not 

observed in this dataset, indicating that all stations show a tendency towards higher values 

rather than lower ones.  
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Figure 2.4: Descriptive statistics for 1 day Stations 

 

The mean values across the stations range from approximately 59.41 mm (Station T0189) to 

123.98 mm (Station T024), with most stations having means between 60 and 100 mm. The 

data distributions are relatively symmetric for many stations. 

Standard deviation values reveal considerable differences within the data. Station T024 shows 

the highest variability with a standard deviation of 70.12 mm (CV = 56.55%), indicating wide 

fluctuations in its measurements. Conversely, Station T0147 exhibits relatively low variability 

with a standard deviation of 15.22 mm. 
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3 METHODOLOGIES 

 

The chapter will initially focus on the rigorous methodology applicated to the whole data 

available.  

The second part of the chapter will focus on the graphical visualization of the research and the 

methods. Due to the vast array of datasets utilized in the research, for clarity purposes, a 

single station was selected as an exemplar. This station was chosen for its representativeness 

in the studied phenomena, with a particular focus on the 5-minute temporal resolution, which 

constitutes our primary interest. 

 

3.1 TREND AND SLOPE ANALYSIS 

 

The analysis were conducted following different researches and studies that share a common 

approach in evaluating rainfall extremes. This approach consists in using Mann-Kendall test, 

Theil-Sen Slope estimator and GEV distributions (Aditya et al., 2021; Gadedjisso-Tossou et al., 

2021; Sudarsan & A, 2023).  

The initial step involves assessing the presence of a monotonic trend in the annual maxima 

time series. To achieve this, the non-parametric Mann-Kendall test (Yue & Wang, 2004) has 

been employed across all stations. This statistical test serves to detect trends in time series 

data, particularly useful when the data does not conform to a normal distribution or exhibits 

serial correlation among data points. 

The Mann-Kendall test operates by comparing the ranks of data points over time, providing a 

straightforward means of trend detection without making assumptions about the distribution 

of the data. 

The test statistic 𝑆 of the Mann-Kendall test can be expressed as follows: 

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑖)

𝑛

𝑗=1+1

𝑛−1

𝑖=1

 

Where: 

- 𝑛 is the number of data points in the time series. 

- 𝑋𝑗 and 𝑋𝑗 are data points at positions 𝑖 and 𝑗 n the time series, respectively. 
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𝑠𝑖𝑔𝑛(𝑋𝑗 − 𝑋𝑖) is the sign function, which returns: 

- +1 if 𝑋𝑗 > 𝑋𝑖 , 

- -1 if 𝑋𝑗 < 𝑋𝑖 , 

- and 0 if 𝑋𝑗 = 𝑋𝑖 

 

The test statistic 𝑆 reflects the overall pattern of increasing or decreasing values in the time 

series. 

Kendall's tau 𝜏  is then derived from the test statistic 𝑆 and is defined as: 

𝜏 =  
𝑆

1
2 𝑛(𝑛 − 1)

 

Where 𝑛 is the number of the data points in the time series. Kendall's tau quantifies the degree 

of concordance (or discordance) between the ranks of data pairs in the time series.  

A positive tau indicates a tendency for data pairs to have the same order over time, suggesting 

an increasing trend, while a negative tau indicates the opposite. 

Following the Mann-Kendall test, which assesses the presence of a monotonic trend, the Theil-

Sen estimator is employed to investigate the magnitude of the trend. (Sen, 1968) 

While simple linear regression was considered as a method, the Theil-Sen estimator was 

chosen due to its non-parametric nature. This characteristic renders it devoid of assumptions 

about the distribution of the data, making it robust and resistant to outliers. 

In the Theil-Sen estimator, the slope is computed as the median of the slopes between all pairs 

of sample points, while the intercept is calculated as the median of the differences between 

the observed values and the slopes at each point. 

The slope 𝑏 is thus calculated as follows: 

  𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛 
𝑋𝑗−𝑋𝑖

𝑡𝑗−𝑡𝑖
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗, 𝑖 = 1,2, … , (𝑛 − 1), 𝑗 = 2,3, … , 𝑛  

Where, 𝑋𝑖  and 𝑋𝑗 are the annual maximum rainfalls for years 𝑡𝑖and 𝑡𝑗  respectively. 

The intercept 𝑏0 is calculated as: 

             𝑏0 =  𝑋𝑖 − 𝑏𝑡𝑖 
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3.2 GEV ANALYSIS 

 

After assessing the trends it's imperative to delve into the distribution of the data, aiming to 

model it as accurately as possible to comprehend its behavior. 

Given our focus on rare values, Extreme Value Theory emphasizes meticulous modeling of the 

tails of the distribution. To achieve this, the Generalized Extreme Value Distribution (GEV) 

emerges as a fundamental distribution capable of capturing the data's behavior (Kotz & 

Nadarajah, 2000).  

It roots his theoretical justification from the Three Types Theorem (Coles, 2001), stated by 

Fisher and Tippett and later derived rigorously by Gnedenko. 

This theorem affirms that if a nondegenerate H exists (distribution function which does not 

put all its mass at a single point) it must be one of the three types: 

                                                               𝐻(𝑥) = 𝑒𝑥𝑝(−𝑒−𝑥),        𝑎𝑙𝑙 𝑥 

𝐻(𝑥) = {
0, 𝑥 < 0

exp (−𝑥−𝛼, 𝑥 > 0
 

  𝐻(𝑥) = {
exp (−|𝑥|𝛼), 𝑥 < 0

1, 𝑥 > 0
 

Which are often referred, respectively as Gumbel type, Fre chet type and Weibull type. These 

three types can be combined into a single Generalized Extreme Value Distribution. 

The Probability Density Function of the GEV distribution can be written as: 

𝑓(𝑋, 𝜇, 𝜎, 𝜀) =
1

𝜎
[1 + 𝜀((

𝑋 − 𝜇

𝜎
)]

−1
𝜀 ⁄ −1

𝑒𝑥𝑝 {− [(1 + 𝜀 (
𝑋 − 𝜇

𝜎
)]

−1
𝜀⁄

} 

From the pdf, it can be derived the Cumulative Distribution Function (CDF): 

                    𝐺(𝑋) = 𝐹(𝑋; 𝜇, 𝜎, 𝜀) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑋−𝜇

𝜎
)]

−1
𝜀⁄

},       with {𝑋: 1 + 𝜀 (
𝑋−𝜇

𝜎
) > 0} 

 

𝑋 is the annual maximum rainfall and 𝜇, 𝜎, 𝜀 denote the location, shape and scale parameters. 
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The location parameter (𝜇), similarly to the mean of a Normal Distribution, delineates the 

central tendency or mode of the distribution. Thus, increasing the location parameter shifts 

the entire distribution to the right, while decreasing it shifts the distribution to the left. 

 

Fig 3.1: Location parameter in GEV Distributions 

 

The scale parameter (𝜎) regulates the spread and dispersion of the distribution, akin to the 

role of standard deviation in a Normal Distribution. It signifies the variability around the 

location parameter. 
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Figure 3.2: Shape parameter in GEV Distributions 

The shape parameter (𝜀) dictates the tail behavior of the distribution, specifically determining 

the rate at which the tail decays. It influences the extremeness of the distribution and 

characterizes its long-term behavior. 

 

Figure 3.3: Scale parameter GEV Distributions 



36 
 

 

The shape parameter as well which of the three types the GEV falls into: 

- 𝜀 = 0 we have a Gumbel Distribution (Type I) 

-  𝜀 > 0 determines a Fre chet Distribution (Type II) 

-  𝜀 < 0 corresponds to a Weibull Distribution (Type III) 

 

The above theoretical framework of the GEV distribution refers to a condition of stationarity, 

meaning that there are no trends in the data, and therefore the parameters of the distribution 

are kept fixed over time. 

But, under the climate change context, the intensity and/or the frequency of extreme rainfall 
events can change with time, so that the hypothesis of stationarity of the series of annual 
maxima is not satisfied (De Paola et al., 2018). 

For this reason, it arises the necessity to introduce covariates in the model in order to allow 

parameters to vary. 

In the present dissertation, the GEV models are fitted allowing the location parameter to vary, 

adding two distinct covariates. The most intuitive is the time (Coles, 2001) covariate. GEV 

models are modeled also considering the mean temperature (Siow et al., 2023) of the area as 

covariate. 

Five different GEV model have been fitted:  

(1) A Stationary GEV model, with all the parameters kept fixed. 

(2) A non-stationary model, with the location parameter expressed as a linear function   of 

Time:  

The location parameter becomes: 

𝜇(𝑡) =  𝜇0 + 𝛽𝜇𝑡 

Where:  

- 𝜇0 is the baseline location parameter at 𝑡 = 0 

- 𝛽𝜇 is the coefficient that describes the linear trend of the location parameter with 

respect to time 𝑡. 

Inserting the new location parameter in the cumulative distribution function it becomes: 
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𝐺(𝑋) = 𝐹(𝑋; 𝜇(𝑡), 𝜎, 𝜀) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑋−(𝜇0+𝛽𝜇𝑡)

𝜎
)]

−1
𝜀⁄

},        

with   1 + 𝜀 (
𝑋−(𝜇0+𝛽𝜇𝑡)

𝜎
) > 0 

(3) A GEV model with quadratic time relationship (Min & Halim, 2020) have been fitted as 

well. 

Adding a quadratic term allow to grasp more complex relationships between the two 

variables, especially if the relation is not purely linear; similar to the mode just discussed, the 

location parameter becomes: 

𝜇(𝑡) =  𝜇0 + 𝛽𝜇1𝑡 + 𝛽𝜇2𝑡2 

With 𝛽𝜇2𝑡2 describing the quadratic trend of the location parameter with respect to time 𝑡2. 

GEV becomes: 

𝐺(𝑋) = 𝐹(𝑋; 𝜇(𝑡), 𝜎, 𝜀) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑋−(𝜇0+ 𝛽𝜇1𝑡+𝛽𝜇2𝑡2)

𝜎
)]

−1
𝜀⁄

},        

with   1 + 𝜀 (
𝑋−(𝜇0+ 𝛽𝜇1𝑡+𝛽𝜇2𝑡2)

𝜎
) > 0 

(4) Similarly to the first two models, it has been considered the temperature as the covariate, 

the linear relationship is expressed as: 

 

𝜇(𝑇) =  𝜇0 + 𝛽𝜇𝑇 

And therefore the GEV becomes: 

𝐺(𝑋) = 𝐹(𝑋; 𝜇(𝑇), 𝜎, 𝜀) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑋−(𝜇0+𝛽𝜇𝑇)

𝜎
)]

−1
𝜀⁄

},        

with   1 + 𝜀 (
𝑋−(𝜇0+𝛽𝜇𝑇)

𝜎
) > 0 

(5) And the quadratic temperature relationship expressed as: 

𝜇(𝑇) =  𝜇0 + 𝛽𝜇1𝑇 + 𝛽𝜇2𝑇2 

The GEV becomes : 
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𝐺(𝑋) = 𝐹(𝑋; 𝜇(𝑇), 𝜎, 𝜀) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑋−(𝜇0+ 𝛽𝜇1𝑇+𝛽𝜇2𝑇2)

𝜎
)]

−1
𝜀⁄

},        

with   1 + 𝜀 (
𝑋−(𝜇0+ 𝛽𝜇1𝑇+𝛽𝜇2𝑇2)

𝜎
) > 0. 
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3.3 MODEL COMPARISON 

 

In order to select the best possible model, two different criteria have been used to assess the 

goodness of the fit. 

(1)  Akaike Information Criterion (AIC) computed as: 

𝐴𝐼𝐶 = −2 𝑙𝑛(𝐿) + 2𝑘 

Where: 

- 𝐿 is the likelihood of the model given the data. 

- 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙. 

(2)  Bayesian Information Criterion (BIC): 

𝐵𝐼𝐶 =  2 𝑙𝑛(𝐿) + 𝑘 𝑙𝑛(𝑛) 

Where: 

- 𝐿 is the likelihood of the model given the data. 

- 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙. 
- 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

 

For both criteria, a smaller value indicates a better fit, both have strengths and weaknesses, in 

general BIC imposes stronger penalty for more complex models. 
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3.4 GRAPHICAL ANALYSIS 

 

Let's now consider our selected sample station, T0147 in Rovereto, situated at an altitude of 

203 meters in the southern region of Trentino. Moving forward, graphical representations will 

exclusively focus on the 5-minute data frame. 

A popular hypothesis tested pertains to seasonal variations, positing that a significant portion 

of stations demonstrate elevated extreme observations during the summer (Peter et al., 2024) 

months. Empirical examination of the data overwhelmingly corroborates this hypothesis. 

 

Figure 3.4: Seasonal Annual Extremes 

 

As previously mentioned, our analysis operates within the framework of Extreme Value 

Theory, specifically concerning the evaluation of extreme events. Therefore, it's imperative to 

delve into the distribution of the data, aiming to model it as accurately as possible to 

comprehend its behavior. 
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Figure 3.5: Density Histogram with Fitted Distribution for Rovereto Station 

 

 

Figure 3.6: Diagnostic Plots, on the left the QQ-Plot associated with the fitted Normal, on the right the QQ-Plot for GEV 
Distribution 

 

Above there is the density histogram of the selected station for comprehension, with two 

different distributions fitted to the data: a Normal Distribution for comparison purposes and a 

stationary GEV distribution. It's evident upon inspection that the red line representing the 

GEV distribution better aligns with the tails of the histogram, a observation further 

corroborated by the diagnostic plot. 
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Having a distribution that accurately fits the data is paramount for making predictions about 

future scenarios. With the fitted GEV distribution, it becomes feasible to estimate the 

frequency with which extreme quantiles occur at certain return levels. 

The return value is defined as a value that is expected to be equaled or exceeded on average 

once every interval of time (T) (with a probability of 1/T). 

 

Figure 3.7: Return Levels for T0147 Station, calculated with three different methods 

 

We can see how the return levels change depending on the method used for the calculations, 

and therefore the importance to fit the best possible GEV model in order to get the more 

accurate predictions. 

The above GEV distribution, and the return plot are referred to a framework of stationarity. 

But as mentioned this is against theories and findings (Jayaweera et al., 2023) of 

climatologists all over the world. 
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Figure 3.8: Annual maxima with Theil-Sen trend (5 min) 

 

Figure 3.9: Annual maxima with Theil-Sen trend (1 hour) 

 

Figure 3.10: Annual maxima with Theil-Sen trend (1 day) 
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In the plot illustrating the time series for the Rovereto Station across three different time 

resolutions, it becomes immediately apparent that clear trends are present. 

Of note is the steeper trend observed in the time series for the five-minute duration, computed 

through the Theil-Sen estimator. However, the trend lines for the other durations also exhibit 

positive slopes, indicating a general increase in rainfall amount for this station. 

Typically, the GEV distribution has a stationarity condition, meaning that the parameters 

𝜇, 𝜎, 𝜀 should remain constant over time and 𝑋𝑡 (the annual maxima) is identically distributed 

(Coles, 2001) for all t (the extremes values does not change with time). 

 

Figure 3.11: Two Period Density Histogram with Fitted distributions 
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Figure 3.12: Fitted  GEV distributions 

 

Figure 3.13: Two Periods Descriptive Statistics and GEV parameters 

 

Above, the block maxima has been divided into two distinct periods, followed by fitting a GEV 

distribution to each period. Notably, there is an increase observed in both the mean and 

location parameters of the GEV distributions. 

These observations strongly suggest that the dataset is non-stationary, with the severity of 

extreme events showing an upward trend. Consequently, in light of the fact that the GEV 

distribution typically assumes no clear trend in the data, adjustments to the fitting models are 

imperative. Keeping the parameters fixed would impede a comprehensive understanding of 

rainfall behavior. 

The next logical step involves introducing changes, particularly by incorporating covariates 

into the parameters of the distribution, thereby allowing them to vary over time. Recalling the 

significance of the parameters discussed earlier in the dissertation, and drawing insights from 
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existing literature on this subject, it's pertinent to explore avenues for accommodating these 

changes. 

The shape parameter holds crucial significance in understanding rainfall behavior, as its sign 

and magnitude dictate the tails of the distribution, thereby modeling the most extreme and 

potentially destructive events. However, it's common practice to keep this parameter fixed due 

to the complexity of understanding the underlying phenomena driving its variation, as well as 

the challenge of finding external covariates that adequately describe this behavior. 

Conversely, allowing the scale parameter to vary can capture changes in the variability of the 

distribution. However, when discussing non-stationarity, the location parameter assumes 

paramount importance. 

As previously discussed, an increase in the location parameter signifies a shift of the 

distribution to the right, thereby corroborating the hypothesis regarding increasing rainfall 

extremes. Consequently, allowing the location parameter to vary makes intuitive sense, 

particularly considering the observed increasing trend in block maxima over time. 

In the present dissertation, GEV models are fitted with the flexibility for the location 

parameter to vary, facilitated by the inclusion of two distinct covariates. The most 

straightforward covariate is time itself, capturing the temporal evolution of rainfall extremes. 

Additionally, GEV models are also informed by incorporating the mean temperature of the 

area as a covariate, enriching the understanding of rainfall behavior. 
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4 RESULTS 

4.1 TREND IN ANNUAL MAXIMA  

 

 

Figure 4.1: Map of direction of Mann Kendall test for 5 minutes time resolution 

 

Figure 4.2: Map of direction of Mann Kendall test for 1 hour time resolution 
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Figure 4.3: Map of direction of Mann Kendall test for 1 day time resolution 

 

The maps presented depict regional trends in annual maximum rainfall across three distinct 

temporal resolutions: 5 minutes, 1 hour, and 1 day, analyzed using the non-parametric Mann-

Kendall test. These trends suggest an overarching pattern of increasing intensity in rainfall 

extremes, signaling a notable shift in precipitation dynamics across the region. 

Despite these observations, the statistical significance of these trends is largely limited, failing 

to meet the conventional 5% threshold. Notably, the analysis reveals that the 1-hour temporal 

resolution exhibits the most robust evidence of an upward trend in rainfall extremes. 

Conversely, as the temporal resolution increases to 1 day, there is an increase in the number of 

stations showing a negative trend, with four stations displaying a decline in extreme rainfall 

events. 

To assess the magnitude of these observed trends and their implications for climate change, 

Theil-Sen slope estimators were utilized. These estimators were standardized by normalizing 

slopes relative to the duration in minutes, ensuring a consistent basis for comparison across 

different temporal scales. This normalization approach acknowledges the sensitivity of trend 

detection to the range and frequency of observations, thus facilitating a comprehensive 

evaluation of rainfall trends over varying time intervals. 
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Figure 4.4: Normalized Sen Slopes across different Stations 

 

The analysis of normalized Theil-Sen slope values reveals a significant trend towards 

increasing rainfall intensities for shorter durations (5 minutes) compared to longer durations 

(1 hour and 1 day), thereby supporting the hypothesis of intensified short-duration extreme 

events. 

Specifically, a comprehensive examination of stations indicates that exactly 70% of them fully 

substantiate the original hypothesis. This finding implies that as rainfall duration decreases, 

there is a corresponding increase in the magnitude of intensity trends. This observation 

underscores a pronounced pattern where shorter rainfall durations exhibit more substantial 

changes in intensity. 

In contrast, rainfall events observed at longer durations (1 day) demonstrate remarkable 

stability, with trends generally consistent across different stations. However, as the duration 

decreases, there is a notable exponential increase in variability among stations. This 

variability underscores the unpredictability of very extreme events, which exhibit diverse 

behavior even within a confined geographical area. 
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Figure 4.5: Normalized Sen Slopes across different Durations 

 

The significant variability observed in shorter duration rainfall extremes provides compelling 

insights that challenge the initial hypothesis. This variability underscores the intricate nature 

of rainfall patterns, especially at finer time scales such as five minutes. While a majority of 

stations indicate intensified trends with decreasing duration, the wide range of observations 

at these shorter intervals suggests diverse and localized influences on precipitation dynamics. 

This variability calls for a nuanced interpretation of the data, recognizing that divergent 

observations can offer valuable insights into broader climate trends impacting the region. 

To quantify the differences in average magnitude across durations, the average magnitude of 

each duration was calculated. Subsequently, the percentage change of the 1-hour and 1-day 

durations relative to the 5-minute time resolution was computed. This analysis aims to 

quantify how much the average magnitude of rainfall is increasing relative to one another. 
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The calculations reveal that the trend magnitude for the 5-minute duration is 3436.39% more 

intense than the slope observed for the 1-day duration, and 188.38% more intense compared 

to the 1-hour duration. 
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4.2 GEV MODELS 

 

Among the several models explored, including stationary, linear time as a covariate, quadratic 

time as a covariate, linear temperature as a covariate, and quadratic temperature as a 

covariate, the decision to adopt the linear temperature model was informed by rigorous 

evaluation criteria such as the Akaike Information Criterion (AIC), the Bayesian Information 

Criterion (BIC), and log-likelihood values as well. These metrics collectively assessed the 

goodness of fit and model performance, revealing that the linear temperature model 

consistently demonstrated competitive performance across all evaluation criteria. 

The stationary model consistently underperformed relative to the other models, confirming 

the non-stationarity of annual extreme rainfall, and the advantage in letting the location 

parameter to change, introducing covariates. The comparative analysis highlighted a 

particularly close performance between the linear temperature and quadratic time models. 

Despite their statistical similarity, the preference for the linear temperature model stemmed 

from several critical considerations. Firstly, the model's simplicity and interpretability were 

paramount. The linear relationship between temperature and extreme values offers a 

straightforward interpretation, where changes in temperature directly correlate with changes 

in the distribution of extreme events. In contrast, the quadratic time model introduces 

additional complexity without substantial empirical support in existing literature specific to 

the dataset. 

 

Figure 4.6: Return levels plot for the Quadratic Time covariate model (T0147) 
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Figure 4.7: Return levels plot for the Linear Temperature covariate model (T0147) 

 

It is fast forward, examining the return level plots for the fitted models for the Sample Station, 

how the temperature covariate predict better the behavior of the data, despite of the 

information criteria being extremely similar. 

Moreover, opting for the linear temperature model aligns logically with climatological 

principles, where temperature plays a fundamental role in influencing weather extremes. This 

logical consistency not only enhances the model's interpretability but also underscores its 

practical utility in climate science and adaptation planning. Considering these factors, the 

dissertation emphasizes methodological rigor and theoretical coherence in selecting the linear 

temperature covariate within the GEV model.  
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5 CONCLUSION 

5.1 DISCUSSION ABOUT THE RESULTS  

The aim of this dissertation was to investigate changes in the distribution of extreme rainfall 

across the territory of Trentino, exploiting the detailed dataset provide. The study specifically 

focused on examining the intensification of short-duration and extremely short-duration (5 

minutes) rainfall events compared to longer durations (1 day).  

The results presented in Chapter 4 confirmed the hypotheses outlined in the introduction, 

revealing a significant increase in trends and their magnitude, particularly for short-duration 

rainfall events. However, it is noteworthy that only a few stations showed statistically 

significant trends at the 5% significance level. These findings are pivotal as they aligns with 

global climate change projections and emphasizes the sensitivity of extreme precipitation to 

temporal scales (Trenberth et al., 2015).  The extreme high variability of shorter extreme 

rainfall extremes found in the data indicates the magnitude of local factor and characteristics, 

with a change in the distribution of rainfall. Some regions may experience more frequent and 

intense rainfall, while others may become drier. This shift in rainfall patterns can have 

significant impacts on water availability, agriculture, and ecosystems (Allen et al., 2010).  

The non-stationarity of rainfall extremes has been investigated, with findings consistently 

confirming impact on extreme trend analysis. The performances of the models deployed in 

the thesis aligns with studies demonstrating that non-stationary Generalized Extreme Value 

models perform better stationary models in capturing precipitation patterns and trends 

(Huser et al., 2017; Heo and Kim, 2016). The findings underscore increasing temperatures as 

a phenomenon that highly contribute on the augmenting of extreme rainfall events, leading to 

increased evaporation and enhancing the atmosphere's moisture-holding capacity, 

relationship governed by the Clausius-Clapeyron equation (Allen & Ingram, 2002). 
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5.2 LIMITATION ON THE RESEARCH 

 

Despite the valuable insights gained, several limitations need to be consideration in this study. 

The extreme variability observed in shorter duration trends underscores the necessity for a 

deeper understanding of these rainfall patterns. Factors such as topography, land use changes, 

and urbanization can both amplify and mitigate precipitation extremes, necessitating localized 

studies to accurately capture the diversity of the impacts. 

Although the data utilized for the analysis provided valuable insights into evaluating 

precipitation behavior and patterns, the significant percentage of missing data over time has 

introduced bias about the reliability of the observations, making it challenging to perform 

accurate projections for the future. Furthermore, the study's constrained time span resulted in 

a relatively small sample size for conducting robust statistical analyses, narrowing the 

capability in capturing smaller, potentially meaningful effects and introducing uncertainty in 

estimation of the parameters and results.  
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5.3 SOCIO ECONOMIC AND FURTHER IMPLICATIONS  

Extreme rainfall events are increasingly recognized for their profound socio-economic 

impacts, exerting significant pressures on communities, infrastructure, and economies 

worldwide. These events can lead to devastating consequences ranging from infrastructure 

damage to disruptions in economic activities and livelihoods. The economic repercussions of 

extreme precipitation events extend beyond immediate damage and losses. Long-term 

recovery and reconstruction efforts can strain public budgets and resources, diverting funds 

from other essential services such as healthcare and education (Ciscar et al., 2018). 

Governments and insurers face escalating costs associated with disaster response, 

compensation for damages, and investments in resilience measures (Kreibich et al., 2017).  

This study underscores the critical role of continuous and updated high-quality data collection 

in improve the reliability of future projections, allowing precise risk assessment and to make 

informed climate adaptation policy decisions and resilience strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

5.4 CONCLUSION 

 

The present dissertation investigated on the urgent phenomenon of the alteration of rainfall 

distribution, and the increase of extreme precipitation events, that have catastrophic impact 

on economic and society. 

The findings aligned with several evidence from studies across the globe and underscored the 

urgency of proactive climate action, in order to develop adaptive strategies and resilient 

infrastructure.  An effort is required in order to enhance high quality data collection in order 

to have the capability to perform precise statistical projections and have accuracy in 

projections. 
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