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Abstract

This thesis explores the influence of spatial proximity and network effects on firm growth

for firms participating in Italian Network Contracts from 2016 to 2023.

The datasets include data such as company and network identifiers, geographical

details, network characteristics, and a range of firm level economic indicators. Key aspects

of this analysis are the computation of a Localized Density metric, assessing the spatial

concentration of firms within networks, and Closeness Centrality metrics, which evaluate

a firm’s centrality both in terms of geographic location and its position within the network

structure.

An essential phase of the research involved rigorous data cleaning processes to en-

sure the accuracy and integrity of the dataset. Special attention was given to removing

duplicates caused by discrepancies in naming conventions and data format inconsisten-

cies and refining the data for precision in analysis. This cleaning process was pivotal

in preparing the dataset for robust econometric modeling, which facilitates a deeper un-

derstanding of the roles and effectiveness of network contracts in enhancing firm-level

economic performance.

Through this study, insights into the operational dynamics of network contracts and

their strategic utility for business growth are explored, highlighting the relationships

between spatial proximity characteristics and economic outcomes.
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Chapter 1

Introduction and Data Overview

1.1 Network Contracts

Italy has a long tradition of inter-firm cooperation through industrial districts that thrived

in the 1970s and 1980s [2]. However, globalization and rapid economic changes showed the

flaws of these structures [3]. As a response, the Italian government introduced Network

Contracts with the Decree law n.33/2009 and subsequent modifications to strengthen

Italian firms’ competitiveness and innovation through enhanced collaboration and synergy

among firms.

Network contracts, known in Italy as "contratti di rete", represent a business frame-

work designed to enable firms to pursue common projects and objectives without the need

for merging their assets or identities with the main goal of increasing competitiveness on

the market. More specifically, a network contract can be stipulated between firms with no

limitations regarding dimensions, activity sector, geography, numbers of participants and

legal nature (corporations, sole proprietors, partnerships, cooperatives, consortia etc.).

The networks can be of two types: "Rete Contratto" or "Rete Soggetto". The first al-

lows companies to enhance their competitiveness and innovation capacity through collab-

orations without giving up their legal autonomy but bound contractually on a agreement

to cooperate based on shared objectives. The agreement can include sharing resources,

knowledge, and market strategies with the main focus as achieving mutual benefits. The

latter can be considered as an evolution of the "Rete Contratto" where participants es-

tablish a new legal subject with its own legal personality beyond the mere contractual

agreement. This subject can act independently under a unified management and is capa-
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ble of owning assets in the name of the network, entering contracts binding the network as

a whole rather than individual members, incur liabilities by taking debt or other financial

obligations, and legal representation in legal proceedings, protecting the individual legal

identities of its members.

In the regulatory framework, the parties involved in the stipulation of a network

contract have to first prepare a network program, which is a general action plan aimed

at increasing innovation capacity and competitiveness, and then concretely execute the

activities outlined in the program, which can be of 3 types:

1. Collaboration between parties in areas relevant to the operation of their businesses

2. Exchange of information or services of any kind (industrial, commercial, technical

and technological)

3. Joint operation among the parties of one or more activities that are part of the

object of their businesses.

The primary advantage of entering into a network contract is the between firm col-

laboration, enabling smaller firms to operate at a scale similar to larger organization by

pooling their resources and capabilities. Participants in a network can promptly face

both domestic and foreign markets performing activities that may be too costly or risky

for them to undertake alone like expanding their offerings, sharing costs, accessing to

funding and non-repayable grants, enjoying tax benefits and competing to win public

contracts.

In summary, the objective of networks contracts is to foster inter-firm collaboration,

driving innovation and enhancing competitiveness while offering a legally secure and flex-

ible framework that allows businesses of all sizes and sectors to pool resources achieving

greater market success.

1.2 Background Literature

In recent years, studies on Italian Network Contract landscape has emerged providing a

better understanding of the benefits and challenges associated with this framework.

Rubino and Vitolla (2018) examine the structural characteristics of network contracts

and their impact on the performance of small firms in Italy, explicating the positive
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impact of network size on financial performance although with low significance. Network

diversity and geographical openness present challenges particularly due to coordination

and integration between firms, highlighting the importance of strategic and managed

network formations.

Network contracts also facilitate the internationalization of Italian firms by provid-

ing a structured framework for cooperation (Rubino, Vitolla, Garzoni, 2018). In this

paper the importance of network characteristics are confirmed as influential factors on

internationalization, key outcome is the importance of effective coordination given by the

difficulties of managing large and geographically dispersed networks.

Leoncini, Vecchiato and Zamparini (2019) investigates on whether and how the Ital-

ian Network Contract Law has facilitated the fomation of networks among firms and

improved their performance, concluding that it is effective in promoting the formation

of cooperative networks leading to improved performance, particularly in innovation and

competitiveness. However, also here the role of effective management, strategic partner

selection are emphasized.

Cisi, Devicienti, Manello, Vannoni (2018) examine the benefits of network contracts

on Italian SMEs highlighting the influence of size, geographical dispersion, sector diversity

on firm performance. They found that participation in networks contracts leads to an

increase in firm’s gross margin ratios and export propensity but with no significant effect

on profits.

The benefits of forming networks/clusters are confirmed also in contexts outside of

the Italian Network Contract framework. Abdesslem and Chiappini (2019) provide a case

study on the French optic photonic industry examining the impact of competitiveness

clusters policies on firms performance. Using a difference-in-differences estimation they

found that cluster policies significantly improve the financial and innovation performance

of firms.

The empirical evidence on Italian network contracts converges on the benefit of for-

malizing networks on firm performance but shows varied impacts for network diversity

and geography, emphasizing the importance of better coordination, hinting that spatial

proximity of firms within a network can play an important role for better coordination

and management.

Oerlemans and Meeus (2005) analyzed how organizational and spatial proximity
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within networks affects firm performance in the Netherland’s context. The paper’s ques-

tions focused on understanding the extent to which proximity influences coordination ca-

pacity, managerial skill enhancement, and innovation through knowledge spillovers. Their

findings showed that spatial proximity positively impacts these dimensions, thereby im-

proving overall firm performance. Specifically, the study demonstrated that firms located

closer to each other benefit from more frequent and informal interactions, leading to bet-

ter coordination, enhanced managerial skills due to easier exchange of tacit knowledge,

and increased innovation through facilitated knowledge spillovers.

While prior studies have demonstrated the benefits of network contracts and the chal-

lenges associated with geographical dispersion, there is a gap in understanding specifically

how the spatial proximity of Italian firms participating in network contracts influence

their economic performance.

Building on this framework, this thesis aims to explore the findings of the above empiri-

cal studies, addressing the research question: How does spatial proximity within network

contracts affect firm growth in Italy?

By constructing a comprehensive panel dataset and analyzing the firm’s performance

using spatial and organizational proximity as proxies for network concentration and firm

positioning within a network, as well as reflecting levels of interaction and knowledge

exchange, while controlling for network characteristics and firm characteristics, the study

tries to assess the influence of these elements on economic outcomes. The analysis will

incorporate variables such as:

• Spatial proximity: Localized Density is used as a proxy reflecting the concentration

of firms within a network, indicating the geographical closeness of member firms and

its impact on performance through facilitated interactions and knowledge spillovers.

• Organizational proximity: Closeness Centrality as a proxy reflecting the positioning

of a firm within a network, which measures how centrally a firm is positioned within

the network structure, influencing its access to information and resources.

• Network characteristics: to mirror the structure of a network, variables such as

network age, network participants, network hub (reference company), network legal

status can be used as proxies reflecting the maturity, size, central connectivity, and

formal legal engagement of the networks.
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• Firm characteristics: firm-level proxies can be firm size, age, sector helping to

control for differences between firms that might influence performance.

Integrating spatial proximity and organizational characteristics into the analysis of

network effects on firm performance can provide deeper insights into how geographical

distance impacts coordination and growth in the Italian context. Moreover, by interacting

spatial and network characteristics it may be possible to gain more understanding of their

combined effects on firm performance.

To achieve this, a comprehensive panel dataset is constructed including network-firm

characteristics, firm financial and economic performance, geographic characteristics.

Three main datasets are utilized:

• Network Contract Dataset (DF): this dataset provides a detailed view of firms and

their participation in network contracts, serving as the primary source for analyzing

individual firm behavior within networks.

– A secondary network dataset (DN) is derived from DF, this dataset solely

focus on the characteristics and dynamics of each unique network.

• AIDA Dataset (AIDA): this dataset supplements the analysis with financial, regis-

tration, and commercial information about firms, enabling a comprehensive assess-

ment of economic performance.

• Spatial Measures: derived from the cleaning and processing of the DF dataset, this

collection includes geographical variables such as latitude and longitude, Localized

Density, Average Distance and Centrality Measures. These metrics facilitate a

deeper exploration of geographical and structural aspects of networks and their

impact on firm performance.

Successive sections will explore each dataset and their variables, providing what each

variable represent, how it is calculated and some descriptive statistics.

1.3 Network Contract Dataset

This section introduces the variables included in the Network Contract Datasets (DF and

DN). Understanding these variables is pivotal for subsequent analyses, as they provide
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insights into the legal, geographical, operational, and structural aspects of the networks

and their member firms. The descriptions highlight the significance of each variable in

exploring the dynamics of network contracts and their economic implications for firms in

Italy from 2016 to 2023.

DF variables and their missing counts and percentages are presented in the following

table:

Table 1.1: DF Table Variables and Their Missing Values

Variable Description NA NA%
firm_taxcode Unique tax code for each firm. 0 0%
network_name Name or identifier of the network to

which a firm belongs.
0 0%

year Year of data entry, indicating when the
information was recorded.

0 0%

municipality_firm Municipality where the firm is located. 0 0%
province_firm Province where the firm is located. 0 0%
region_firm Region in Italy where the firm is located. 0 0%
region_group Group of regions characterizing macro-

areas in Italy.
0 0%

reference_company Indicates if the firm is the main reference
within the network.

0 0%

ateco_2007 ATECO 2007 code indicating the pri-
mary economic activity of the firm.

506 0.2%

Sector Sector categorization of the firms main
activity.

520 0.21%

liquidation_firm Indicates whether the firm is in liquida-
tion or not.

0 0%

identification Unique identifier used for internal data
management.

0 0%

number_of_networks Number networks a firm is participating
in.

0 0%

years_in_network How many years a firm is in the network. 0 0%

The variable firm_taxcode uniquely identifies each firm , it also serves as identifier

how analysis purposes, together with network_name and year can uniquely identify the

composition of each network by year. In this dataset each firm can be present multiple

times in the same year if they are participating in multiple networks in the same year.
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The municipality variables is used for geographical purpose and it is also the key variable

used to calculate the spatial measures for each firm. The reference company indicator in-

dicates which firm in the network is the reference within network and that uploaded the

bureaucratic documents into the "registro d’imprese" platform. Sector indicates which

sector category each firm belongs to, using the ATECO code it is possible to retrieve the

Standard Industry Classification code from the ISTAT platform. A futher categoriza-

tion is employed unifying all the Sectors with less than 2% of the data. Identification

identifies wether a firm was retrieved from the "Elenco" dataset or "Soggetto Giuridico"

dataset, from this a differentiation between Legal Networks and non is performed. num-

ber_of_networks is calculated by counting the unique networks associated to each firm

for each year. years_in_network is then calculated using act_date - year if the first

appearance of the firm is before the year interval of our dataset (2016-2023), or first year

of appearance - year if it entered in a network in the period between 2016 and 2023.

DN variables are the following:

Table 1.2: DN Table Variables and Missing Values
Variable Description NA NA%
network_name Name of the network. 0 0%
act_date Official establishment date of the net-

work contract.
0 0%

year Year of the data entry. 0 0%
network_members The count of members within a network. 0 0%
network_age Representing the age of the network. 0 0%
liquidation_network Indicates whether the network is on liq-

uidation.
2809 6.66%

Legal_network Identifies whether a network has au-
tonomous legal subjectivity.

0 0%

To uniquely identify each network the variable network_name is used, it is the derived

using the actual name of the network the value is not missing in the original dataset, in

the case it is missing it is dervied using a combination of network taxcode and act num-

ber.

Network age is calculated as the difference between year and the act date, representing

the age of the network. While network_members counts the members participating in a
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network for each year.

Liquidation_network indicates if the network is on liquidation, it assumes value 1 when

the name of the network originally possessed the regex "INLIQUID[A-Z]*", the reason of

the 2809 missing values is for the missing values in the network name initially. Legal_net-

work variable is defined as network that is funded with autonomous legal subjectivity,

data retrieved by identifying any network that has at least one firm originating from

"Soggetto Giuridico" dataset.

Overview of Network Contract Data Trends

Following the introduction of the datasets, this section explores the descriptive statistics,

analyzing the data used in the research spanning from 2016 to 2023, highlighting the

changes in behavior and evolution of firms and networks.

The tables presented in this section summarise the key characteristics of Network Con-

tract environment from years 2016 to 2023, providing a quantitative overview of its key

characteristics.

Table 1.3: Summary Statistics for the Network Contract Dataset

Statistic 2016 2017 2018 2019 2020 2021 2022 2023

Cumulative Total Observations 13,754 31,659 56,543 89,887 127,233 168,636 214,166 266,437
Total Observations 13,754 17,905 24,884 33,344 37,346 41,403 45,530 52,271
Total Observations % change 30.18% 38.96% 34% 12% 10.66% 9.97% 14.61%
Unique Firms 13,002 16,875 23,319 31,363 34,841 38,276 42,076 47,243
Unique Firms % change 29.79% 38.19% 34.5% 11.09% 9.86% 9.93% 12.28%
Unique Networks 2,500 3,195 4,153 4,920 5,601 6,295 7,047 8,459
Unique Networks % change 27.8% 29.98% 18.47% 13.64% 12.39% 11.95% 20.04%

The Network Contract Dataset presents a total of 266,437 observations recorded from

2016 to 2023, it displays a clear upward trend over the years. Starting with 13,754

observations in 2016, the dataset expands annually reaching 17,905 in 2017, 24,884 in

2018, and 33,344 by 2019. The growth continues with 37,346 observations in 2020, further

rising to 41,403 in 2021 and 45,530 in 2022. By 2023, the number of observations peaks

at 52,271, marking a substantial increase from the initial count. The upward trend is an

obvious effect of the growth of unique firms and unique networks engaged in this network

contracts ecosystem. The count of unique firms participating in networks shows a steady

increase from 13,002 firms to 47,243 firms participating in 2023. Unique networks being
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created during this period also increases from 2,500 networks in 2016 to 8,459 networks

in 2023.

The percentage changes show that there is a robust initial surge until 2019, seeing a

moderation in the pace of growth from 2020 onwards, coinciding with the beginning of

the COVID-19 pandemic and its economic impacts. The slight rise in 2023 hints at a

gradual recovery of the activities after the slowdown caused by the pandemic.

Firms and Networks in Liquidation

Liquidations reflects a consistent increase (minimal) in both number and percentage of

firms and networks in liquidation from 2016 to 2023, with a rise after 2019. This trend

could be linked to the delayed economic impacts of the COVID-19 pandemic. Initial

government support may have temporarily cushioned firms, but as the assistance waned,

the true financial repercussions began to manifest, leading to increased liquidations. The

spike in liquidation rates in later years, particularly 2021 and 2023, suggests that the

cumulative effects of the pandemic, possibly compounded by Italy’s slow bureaucratic

processes, led to a more pronounced economic toll on firms and networks.

Table 1.4: Firms and Networks in Liquidation from 2016 to 2023

Statistic 2016 2017 2018 2019 2020 2021 2022 2023

Firms in Liquidation 207 334 460 620 815 1,083 1,374 1,820
% of Firms in Liquidation 1.59% 1.98% 1.97% 1.98% 2.34% 2.83% 3.27% 3.85%
Networks in Liquidation 1 3 6 7 6 8 13 26
% of Networks in Liquidation 0.04% 0.094% 0.144% 0.142% 0.107% 0.127% 0.184% 0.307%

Network Participation

The Average Networks per Company indicates the mean number of networks that com-

panies are part of each year. Starting from 2016 with 1.06, it shows a relatively stable

trend with slight increases over time, reaching 1.11 in 2023.

The standard deviation represents the variability in the number of networks per com-

pany. From an initial low of 0.26 in 2016, meaning lower levels of disparity in terms of

network participation, we see a peak in 2018 at 0.48 and the highest level reached in 2023

with 0.56. This indicates that during this period, some companies became more involved

in multiple networks than others.
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The median number of networks per company remains consistently at 1 throughout

the years. This supports the idea that despite the increase in the number of networks for

some companies, the most common scenario is that companies are involved in a single

network. The sharp rise in standard deviation from 2017 to 2018 might indicate that in

2018 there was a formation or expansion of multiple networks, which pushed the average

and variability higher. This is confirmed by the Max Networks per Company value, which

spikes in 2018 from 12 to 48 and stabilizes at 54 from 2019 onwards.

A notable rise in multi-network engagement is evident after 2020, exceeding 6% in

multi-network presence in 2020 and reaching levels as high as 8.34% in 2023. This be-

havior highlights a shift in how firms are leveraging networks for business operations, it

might represent be a response to the challenging business climate during the pandemic,

with firms seeking to strengthen their business through broader network connections.

Table 1.5: Network Participation per Firm from 2016 to 2023

Statistic 2016 2017 2018 2019 2020 2021 2022 2023

Avg. Networks per Company 1.06 1.06 1.07 1.06 1.07 1.08 1.08 1.11
SD Networks per Company 0.26 0.29 0.48 0.47 0.47 0.5 0.49 0.56
Median Networks per Company 1 1 1 1 1 1 1 1
Min Networks per Company 1 1 1 1 1 1 1 1
Max Networks per Company 5 12 48 54 54 54 54 54
Multi-Network Firms (%) 5.26% 5.36% 5.57% 5.19% 5.71% 6.42% 6.6% 8.34%

Network Size

In terms of networks size there is a positive trend over the years. On the average, net-

works have 5.5 members in 2016 reaching a peak level of 6.78 members in 2019. However,

a modest downturn is observed during and after the COVID-19 period with the average

falling at 6.18 firms per network in 2023.

The median network size, consistently holding at 4 members across the years, demon-

strates that the typical or central tendency of network composition has remained constant,

largely unaffected by the broader economic shifts.

The standard deviation, on the other hand, increase from 5.48 to a peak of 10.24 signals

growing variability, indicating that alongside many networks maintaining a size close to

the average, there are networks that are either significantly smaller or larger.

This interpretation is further reinforced by the maximum network size, which expands
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significantly from 87 members in 2016 to 271 in 2023. The growth in the maximum size

confirms that, alongside the overall trend of network size consolidation as indicated by

the average and median, there is also a concurrent trend of expansion within certain

networks.

Table 1.6: Network Members Statistics from 2016 to 2023
Statistic 2016 2017 2018 2019 2020 2021 2022 2023

Avg. Network Members 5.5 5.6 5.99 6.78 6.67 6.58 6.46 6.18
SD Network Members 5.48 6.27 7.82 10.24 10.12 10.04 10.15 9.85
Median Network Members 4 4 4 4 4 4 4 3
Min Network Members 1 1 1 1 1 1 1 1
Max Network Members 87 124 137 149 146 194 232 271

Network Age

In the data there is an evident progression in network ages, with the average age of

networks increasing from 2.57 in 2016 to 5.06 years in 2022, denoting a general trend

of network maturation. However, in 2023, a slight decrease in the average age to 5.01

years is observed. This marginal reduction could suggest a contained influx of newer

networks or a shift in the lifecycle dynamics of the networks post-pandemic. The median

age increase from 3 to 5 years over these years suggests a steady presence of more ma-

ture networks. An increase in the standard deviation suggests a diversifying age profile

within the network landscape, with a increasing blend of emerging and well-established

networks. The introduction of networks with an age of 0 in 2023 indicates the inclusion of

networks founded in the same year as the data collection, while the progressive increase

in the maximum network age, peaking at 13 years, highlights the sustained presence and

potential influence of long-standing networks. The shift in minimum network age from 1

to 0 in 2023 may indicate a methodological update in data collection, transitioning from

capturing networks with a minimum one-year establishment to including those formed

within the same reporting year.

Sector

As shown in Figure 1.1 and Table 1.8, the distribution of firms participating in network

contracts has seen a increasing trend over the years for all the sector. Especially for firms
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Table 1.7: Network Age Statistics from 2016 to 2023

Statistic 2016 2017 2018 2019 2020 2021 2022 2023

Avg. Network Age 2.57 2.94 3.19 3.63 4.14 4.64 5.06 5.01
SD Network Age 1.25 1.53 1.82 2.03 2.25 2.51 2.8 3.33
Median Network Age 3 3 3 3 4 4 5 5
Min Network Age 1 1 1 1 1 1 1 0
Max Network Age 6 7 8 9 10 11 12 13

in the sectors of "Services excluding finance" and "Agriculture, forestry, and fishery" we

can note a significant increase in the period between 2016 to 2019, with frequency raising

from 4243 to 18120 and 1178 to 8955 respectively, reaching together more than half of

the total firms participation in network (57,31%).

Figure 1.1: Yearly Distribution of firms per Sector

Firms in "Services excluding finance" is consistently the biggest sector in terms of

participation in networks occupying from 32,63% of the total firms in 2016 with the peak

at 39,42% in 2021 and 2022.

Firms in "Manufacturing" instead see a shrinking of the data portion from 26,26% of total

data in 2016 to 14,05% in 2023.

Overall, all sectors face a increasing trend in terms of absolute number of firms partici-

pating in networks but some sectors shrink in terms of data proportion.
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Table 1.8: Yearly Distribution of Firms Across Sectors Table

Sector 2016 2017 2018 2019 2020 2021 2022 2023

Agriculture, forestry, and fishery 1178
(9.06%)

2384
(14.13%)

4063
(17.42%)

5792
(18.47%)

6599
(18.94%)

7392
(19.31%)

7901
(18.78%)

8955
(18.96%)

Construction and Mining 1414
(10.88%)

1697
(10.06%)

2109
(9.04%)

2624
(8.37%)

3094
(8.88%)

3693
(9.65%)

4483
(10.65%)

5565
(11.78%)

Manufacturing 3414
(26.26%)

3888
(23.04%)

4391
(18.83%)

5049
(16.10%)

5407
(15.52%)

5725
(14.96%)

6171
(14.67%)

6639
(14.05%)

Other services 736
(5.66%)

917
(5.43%)

1388
(5.95%)

1932
(6.16%)

2098
(6.02%)

2223
(5.81%)

2406
(5.72%)

2692
(5.70%)

Professional and scientific services 1378
(10.60%)

1584
(9.39%)

1823
(7.82%)

2071
(6.60%)

2238
(6.42%)

2449
(6.40%)

2668
(6.34%)

3151
(6.67%)

Public, health, and education 639
(4.91%)

883
(5.23%)

1321
(5.66%)

1513
(4.82%)

1606
(4.61%)

1705
(4.45%)

1860
(4.42%)

2121
(4.49%)

Services excluding finance 4243
(32.63%)

5522
(32.72%)

8224
(35.27%)

12382
(39.48%)

13799
(39.61%)

15089
(39.42%)

16587
(39.42%)

18120
(38.35%)

Sectors such as "Professional and scientific services" or "Manufacturing," which tra-

ditionally have higher levels of patents and innovation activities, might not exhibit as

steep an increase in network participation. This could be due to these sectors already

benefiting from strong internal capabilities and competitive advantages driven by their

technological advancements and intellectual property. In contrast, sectors like "Services

excluding finance" and "Agriculture, forestry, and fishery," which might have fewer oppor-

tunities for internal innovation or less access to cutting-edge technologies, may seek out

network contracts as a strategic approach to access shared resources, new technologies,

and market opportunities. Network contracts in these sectors could serve as crucial mech-

anisms to boost competitive parity and foster collaborative innovations that individual

firms might not be able to achieve alone.

Geographical variables

The Table 1.9 shows the top five regions in Italy by the number of firms participating in

network contracts for each year from 2016 to 2023.

It is possible to observe that from 2018 onwards Lazio leads the table by a a wide

margin showing significant involvement of regional firms in networks. Lombardia and

Veneto consistently appear in the top three throughout most of the years covered, indi-
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cating strong and stable network contract environments in these regions. But the strong

growth in numbers of network participation in Lazio is not replicated by any other region

as they shower a slower and more linear growth.

It’s also worth noting that starting from 2019, the Campania region surpasses both

Emilia-Romagna and Toscana in terms of firms involved in network contracts, with 2,472

firms, despite not being in the top five before that year.

Table 1.9: Table by year of Top 5 Regions by firms in networks

Pos. 2016 2017 2018 2019 2020 2021 2022 2023

1 Lombardia
(2444)

Lombardia
(2835)

Lazio
(4008)

Lazio
(8303)

Lazio
(8900)

Lazio
(9566)

Lazio
(9960)

Lazio
(10393)

2 Emilia
(1315)

Toscana
(1675)

Lombardia
(3051)

Lombardia
(3308)

Lombardia
(3575)

Lombardia
(3915)

Lombardia
(4390)

Lombardia
(5069)

3 Toscana
(1279)

Lazio
(1618)

Veneto
(2026)

Veneto
(2404)

Veneto
(2751)

Veneto
(3031)

Veneto
(3327)

Veneto
(3958)

4 Veneto
(1104)

Emilia
(1589)

Toscana
(1823)

Campania
(2380)

Campania
(2636)

Campania
(2865)

Campania
(3155)

Campania
(3558)

5 Lazio
(1094)

Veneto
(1467)

Emilia
(1788)

Toscana
(2075)

Toscana
(2372)

Toscana
(2642)

Toscana
(2966)

Toscana
(3301)

Figure1.2 compares the distribution of firms involved in network contracts across Ital-

ian regions in 2016 and 2023 providing a visualization of the geographical shifts and trends

showcased in the 1.9, but also including all the rest of the regions. It is possible to ob-

serve immediately the concentration in Lazio as showed in the above table. In general all

regions showed a increase in network participation, but other than the Lazio, Lombardia

and Veneto most of the regions share similar frequency in terms of firm participation.

Table1.10 focus on the top 5 municipalities for number of firms participating in net-

works, it reveals that Rome, Milan, and Naples consistently appear among the top five

for network participation, serving as regional capitals for Lazio, Lombardia, and Cam-

pania, respectively. This aligns with the broader regional data. However, the remaining

prominent municipalities —mainly Turin (Piemonte region), Genoa (Liguria), and Bari

(Puglia)— are from regions that do not consistently rank in the regional top five. This

suggests that network participation in these areas might be heavily concentrated in these

cities, whereas in other regions, such participation might be better distributed across

multiple municipalities.
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Figure 1.2: Regional distribution of firms in networks

Table 1.10: Table by year of Top Municipalities by firms in networks

Pos. 2016 2017 2018 2019 2020 2021 2022 2023

1 Roma
(666)

Roma
(863)

Roma
(1243)

Roma
(2808)

Roma
(3128)

Roma
(3571)

Roma
(3929)

Roma
(4888)

2 Milano
(549)

Milano
(640)

Milano
(725)

Milano
(821)

Milano
(915)

Milano
(1040)

Milano
(1199)

Milano
(1481)

3 Torino
(166)

Torino
(189)

Torino
(228)

Torino
(287)

Torino
(340)

Torino
(426)

Torino
(461)

Torino
(553)

4 Napoli
(156)

Napoli
(207)

Napoli
(284)

Napoli
(342)

Napoli
(396)

Napoli
(439)

Napoli
(514)

Napoli
(630)

5 Genova
(132)

Genova
(186)

Genova
(209)

Genova
(240)

Genova
(281)

Genova
(293)

Genova
(349)

Genova
(418)

Registered Firms

One important distinction working with this data set is the distinction between registered

firms and non-registered firms, as the non-registered firms are not included in the AIDA

database and will be excluded from further empiric analysis.

Table 1.11 highlights the proportion of unique registered firms for each year in DF

dataset. Column "Total" is shows the total number of unique firms for each year, "Regis-

tered" represents the number of registered firms and "Proportion" is the percentage over

the total firms, and Non_Registered is the rest of the firms. The proportion of registered

firms participating in network contracts is more than half of the total number of firms,

especially in the 2016, 2017 when the proportion was as high as 72.8% and 68.6%. The

percentage shrinked in 2019 to 28.9% and recovered to 2018 levels in 2023 at 64.2%.
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Table 1.11: Proportion of Registered and Non-Registered Firms by Year
Year Total Registered Proportion (%) Non-Registered

2016 13,754 10,007 72.8% 3,747
2017 17,905 12,284 68.6% 5,621
2018 24,884 15,542 62.5% 9,342
2019 33,844 19,374 58.1% 13,970
2020 37,346 22,005 58.9% 15,341
2021 41,403 24,928 60.2% 16,475
2022 45,530 27,954 61.4% 17,576
2023 52,271 33,559 64.2% 18,712

1.4 AIDA dataset

The AIDA dataset, sourced from the Analisi Informatizzata delle Aziende (Computerized

Analysis of Companies) and managed by Bureau van Dijk, provides detailed information

on Italian companies. This support dataset includes financial and commercial data about

firms involved in the Network Contract Datasets. AIDA offers historical series of balance

sheets for up to 10 years, covering the period from 2013 to 2022, and provides detailed

demographic and financial information specifically on registered Italian firms, excluding

unregistered ones.

Table 1.12 shows the various metrics included in the AIDA dataset, complete with a

brief description and details on missing values, presented both as absolute numbers and

percentages.

The percentages of NA values are higher respect to the Network Contracts dataset,

this is due to the fact that the AIDA database provided balance sheets with non disclosed

values in certain years for a subset of firms.

The high percentage of missing values of certain variables like ’Patent_Rights’ and

’ROI’ (46.38% and 44.62% respectively) suggest it is prudent to exclude these variables

from the econometric modeling, as their inclusion might introduce bias. Instead, there

are other firm performance variables with more complete data such as Liquid_Assets,

Intangible_Assets, ROS, ROE, ROA.

The number of employees presents 11.43% of missing values, but the information loss

is somehow mitigated by creating the variable AverageFirmSize bringing the missing value

to 2.38% of the observations. AverageFirmSize is calculated with the average firm size of

firms using n_employee considering the whole time interval from 2013 to 2022 assigning
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Table 1.12: AIDA Variables and Missing Values
Variable Description NA NA%

firm_taxcode Unique tax identifier for each firm. 0 0%

year Year of data entry. 0 0%

n_employee Number of employees in the firm. 29652 11.43%

EBITDA EBITDA. 2130 0.82%

Sales_Revenue Total sales revenue. 428 0.16%

Net_Income Net income after all expenses. 460 0.18%

Liquid_Assets Total liquid assets. 1727 0.67%

Intangible_Assets Total value of non-physical assets. 1717 0.66%

Patent_Rights Value of patent rights held by the firm. 120299 46.38%

ROI A measure of investment profitability. 115748 44.62%

ROS A measure of operational performance. 26442 10.19%

ROE A measure of financial performance. 22567 8.7%

ROA A measure of asset profitability. 127 0.05%

innovative_startup Innovative Startup = 1, otherwise 0. 0 0%

innovative_sme Innovative SME = 1, otherwise 0. 0 0%

Year of foundation Year of establishment of the firm. 40 0.02%

FirmAge Age of the firm. 142 0.05%

FirmGrowth Firms’ growth rate from . 45470 17.53%

LabProd Labor productivity. 32010 12.34%

AverageFirmSize Average firm size of the firms. 6183 2.38%

"Micro" when the average size is smaller or equal to 10, "SMEs" when it is between 250

and 10, and "Large" when the average firm size is higher than 250. This way it is possible

to assess the size of a firm assuming that firms do not change size abruptly from one year

to another.

EBITDA, Sales_Revenue, Net_Income, Liquid_Assets, Patent_Rights and Intangi-

ble_Assets are all represented in thousand of Euros.

The founding year, which has only 0.02% missing values, is employed to calculate

a firm’s age, a variable critical for empirical analysis. This year represents the most

recent registration, often updated during restructuring or re-registration of a company.

Consequently, this can result in negative FirmAge values. To address this, firms with

negative ages are assigned a value of NA. The assignment results in 142 missing values
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for Firm Age, which is 0.05% of observations in the whole dataset.

Other variables that can be used as dummies in the empirical analysis (innova-

tive_startup, innovative_sme) show 0% missing values ensuring reliable identification

and categorization of innovative firms.

FirmGrowth: Defined as the difference in the logarithm of Sales Revenue between two

consecutive periods, which measures the growth rate of sales revenue from one period to

the next.

∆ log(SalesRevenue)t = log(SalesRevenuet)− log(SalesRevenuet−1)

FirmGrowth has higher percentage of missing values (17.53%) than Sales_Revenue (0.16%)

due to the fact that it is calculated on the difference between logarithm of Sales Revenue

at time t minus logarithm of Sales Revenue at time t-1, so we lose the first year for all

firms.

LabProd: Labor productivity, measured as revenue per number of employees. It

presents higher missing values respect to n_employee because some firms present 0 em-

ployees.

LabProd = Sales Revenue
n_employee

AverageFirmSize: average firm size of the firms, retrieved by calculating the average

firm size of firms in the time interval and assigning "Micro" when the average size is

smaller or equal to 10, "SMEs" when it is between 250 and 10, and "Large" when the

average firm size is higher than 250.

By merging the dataset to the Network Contract Dataset, high number of missing

values are composed by: Non-Registered firms from 2016 to 2023, all firms in 2023 (AIDA

dataset does not have data about 2023) and variable specific NAs.
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Table 1.13: Network AIDA Missing Values
Variable NA NA%

n_employee 159525 64.48%

EBITDA 149151 60.39%

Sales_Revenue 148246 60.02%

Net_Income 148266 60.03%

Liquid_Assets 148674 60.27%

Intangible_Assets 148674 60.27%

Patent_RightsR 191322 77.46%

ROI 191966 77.72%

ROS 157968 63.96%

ROE 157628 63.82%

ROA 148060 59.94%

innovative_startup 147967 59.91%

innovative_sme 147967 59.91%

year of foundation 147983 59.91%

FirmAge 148024 59.93%

FirmGrowth 153251 62.05%

LabProd 159525 64.48%

AverageFirmSize 149969 60.73%

Overview of AIDA dataset

Originally AIDA dataset is composed by 35.110 unique firms and 350.983 observations,

of which 91.588 have missing values in all economic measures due to non-disclosure in the

database or firms that closed that got brought up any way by the system, so the dataset

shrinks to a total of 259.395 observations and 33.664 unique firms.

In this dataset the number of observations coincides with the number of unique firms,

unlike the Network Contract dataset where firms could be part of multiple networks thus

creating cross-combinations of the two.

The Table 1.14 shows that the number of firms participating in networks being reg-

istered in AIDA is growing yearly until reaching the pandemic years, possibly reflecting

impact of the liquidations as saw in Table 1.4.

By combining the AIDA dataset with the DF dataset it is possible investigate the

summary statistics of firms participating in networks from 2016 to 2022 (and not the
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Table 1.14: Total Observations and Percentage Change by Year
Year Total Observations % change Cum. Obs.

2013 21,326 NA 21,326
2014 23,274 9.13% 44,600
2015 24,545 5.46% 69,145
2016 25,561 4.14% 94,706
2017 26,597 4.05% 121,303
2018 27,380 2.94% 148,683
2019 28,022 2.34% 176,705
2020 28,130 0.39% 204,835
2021 28,036 -0.33% 232,871
2022 26,524 -5.39% 259,395

average metrics for firms entering networks atleast once ever). Here, the measures of year

2023 will be gone as there is no data of the year from AIDA.

Some of the key metrics statistics are described as followed:

Firm Age

Table 1.15 shows the descriptive statistics for the age of firms (in years) from 2016 to

2022, calculated annually.

• avg_FirmAge: This is the average age of firms for each year. The average age has

gradually increased from 19.58 years in 2016 to 21.02 years in 2022. This increase

could suggest either a growth in the longevity of firms over time or a decline in the

number of new firms entering the market, making the average age of existing firms

higher.

• sd_FirmAge: This represents the standard deviation of firm ages each year, which

measures the variability or dispersion of firm ages from the average. The values

fluctuate slightly but remain around 15 years, indicating a consistent spread in the

ages of firms throughout the period.

• median_FirmAge: This is the median age of firms, showing the middle value of

firm age when all are listed in order. It has stayed relatively constant at 16 or 17

years, suggesting that despite some variability in average ages, the central tendency

of firm ages hasn’t shifted dramatically.

• min_FirmAge and max_FirmAge: These values show the minimum and maximum

ages of firms each year. The minimum age is consistently 0, indicating the presence
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of newly established firms each year. The maximum age increases from 143 years

in 2016 to 194 years in 2022, showing that some very old firms continue to operate,

increasing the overall age range.

Table 1.15: Firm Age Statistics Over the Years
Year Avg. Firm Age Std. Dev. Median Age Min. Age Max. Age

2016 19.58 14.65 16 0 143
2017 20.02 14.95 16 0 144
2018 20.14 15.31 17 0 190
2019 19.96 15.41 16 1 191
2020 20.27 15.42 17 0 192
2021 20.51 15.48 17 0 193
2022 21.02 15.68 17 0 194

Sales Revenue

The table presents revenue metrics for each year from 2016 to 2022, expressed in thou-

sands of euros. The metrics provided for each year include: The average revenue, showing

a fluctuating trend over the years with a notable increase in 2022 reaching 18.7 million

euro. Considering also the median revenue, which is the middle value of revenue data,

has followed a similar trend, showing the increase in 2022 is not only an outlier but a

more generalized effect. The standard deviation of revenue varies significantly across the

years, suggesting changes in revenue distribution among the sampled firms. The mini-

mum revenue recorded, which is consistently 0 across all years, suggesting that there are

firms or instances within each year that reported no revenue.

Table 1.16: Firm Age Statistics Over the Years (thousand euro)
Year Avg. Revenue SD Revenue Median

Revenue
Min Revenue Max Revenue

2016 12,368.68 296,582.7 1,275.50 0 26,18,274
2017 12,858.71 295,675.1 1,252.34 0 28,575,407
2018 12,064.71 256,143.2 1,187.15 0 27,198,084
2019 11,253.49 210,796.4 1,084.83 0 24,370,111
2020 10,210.55 168,375.1 937.41 0 19,957,465
2021 12,161.66 164,348.2 1,185.97 0 21,923,105
2022 18,699.99 313,643.1 1,496.47 0 24,034,555
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Table 1.17: Firm Growth by Year
Year Avg. Growth SD Growth Median Growth Min Growth Max Growth

2016 -0.01 0.66 0.03 -12.37 9.47
2017 0.01 0.60 0.04 -11.12 11.03
2018 0.02 0.61 0.04 -9.66 6.19
2019 0.00 0.61 0.02 -12.96 11.81
2020 -0.21 0.73 -0.10 -9.62 8.39
2021 0.20 0.68 0.18 -10.65 11.77
2022 0.16 0.62 0.13 -11.23 9.03

Firm Growth

The table1.17 provides an overview of various statistical measures of firm growth for each

year from 2016 to 2022 as percentage values.

• Avg. Growth: This represents the average growth rate each year. The data show

fluctuations, with a noticeable dip in 2020 (-0.21 %) indicating a likely downturn,

possibly due to external factors like economic recessions or pandemics. However,

there is a recovery in the following years, particularly in 2021 (0.20%), suggesting

a rebound.

• SD Growth: The standard deviation of growth shows the variability of growth rates

around the average. A higher standard deviation in 2020 (0.73%) correlates with

the significant negative average growth, highlighting a year with high volatility in

growth rates among the observed entities.

• Median Growth: The median growth values are relatively stable over the years,

slightly fluctuating around 0.03% to 0.04%, except in 2020 where it dips to -0.10%,

matching the negative trend seen in the average growth.

• Min Growth: The minimum growth figures show the worst growth rates each year.

The lowest point is -12.96% in 2019, while other years also show significant negative

minimum growth.

• Max Growth: Conversely, the maximum growth rates provide insight into the best-

performing firms. There’s a wide range of maximum growth, peaking at 11.81%

in 2019, which suggests that despite some challenging conditions, there were high-

performing outliers every year.
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Firm Size

Table 1.18: Employee Statistics by Year
Year Avg.

Employees
SD Employees Median

Employees
Min Employees Max Employees

2016 53.71 459.03 12 1 33494
2017 55.61 455.07 12 1 32988
2018 56.40 452.18 12 1 32737
2019 55.32 416.83 11 1 31984
2020 56.28 437.97 11 1 37036
2021 57.24 429.98 12 1 36433
2022 71.29 1001.95 13 1 106653

Looking at the statistics of number of employees (table 1.18), the average number of

employees has gradually increased from 53.71 in 2016 to 71.29 in 2022. The standard

deviation of the number of employees shows some fluctuations, indicating variability in

firm sizes. It peaked at 1001.95 in 2022, suggesting a significant increase in the disparity

of firm sizes that year. The median number of employees has remained relatively stable,

ranging between 11 and 13, indicating that most firms are small to medium-sized. The

minimum number of employees per firm has consistently been 1, showing the presence

of very small firms throughout the period. The maximum number of employees per firm

saw a notable rise from 33494 in 2016 to 106653 in 2022, indicating substantial growth

in the largest firms. In 2022, there was a significant variation in employee statistics,

likely caused by outliers. Specifically, the entry of the Italian firm Poste Italiane into

the dataset with its 106,653 employees dramatically impacted the statistics, skewing the

average and standard deviation upwards.

The table1.19 shows the distribution of registered firm sizes from 2016 to 2022. The

count for all firm sizes has roughly doubled, while their proportions have remained stable:

• Large Firms: The count increased from 228 in 2016 to 509 in 2022. The proportion

has remained around 2.6-2.8%.

• SMEs: The count rose from 4089 in 2016 to 8911 in 2022. Their proportion fluctu-

ated slightly, staying around 47-51%.

• Micro Firms: The count went from 3779 in 2016 to 9311 in 2022. Their proportion

varied between 46.6% and 50.1%.
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Table 1.19: Firm Size Distribution by Year
Year Firm Size Count Proportion

2016 Large 228 0.0286
SMEs 4089 0.5060
Micro 3779 0.4668

2017 Large 263 0.0268
SMEs 4912 0.5091
Micro 4630 0.4728

2018 Large 323 0.0268
SMEs 5881 0.4884
Micro 5837 0.4848

2019 Large 388 0.0256
SMEs 6862 0.4688
Micro 7387 0.5046

2020 Large 439 0.0270
SMEs 7606 0.4730
Micro 8034 0.4960

2021 Large 474 0.0269
SMEs 8308 0.4718
Micro 8228 0.5013

2022 Large 509 0.0272
SMEs 8911 0.4754
Micro 9311 0.4970

In summary, although the percentage increase is small, micro firms have grown from

46.68% of the dataset in 2016 to 49.7% in 2022. Large firms have decreased from 2.86%

in 2016 to 2.72% in 2022, with the lowest at 2.56% in 2019. SMEs have shrunk from

50.60% in 2016 to 47.54% in 2022.

1.5 Spatial Measures

The Spatial Measures dataset supplements the main dataset by providing distance and

geographic variables that are key for the calculation of closeness and localized density

metrics. The dataset provides information on distances between firms and their geograph-

ical coordinates, allowing us to assess how proximity affects the density of connections

and network centrality. Importantly, these measures are calculated at the network level,

focusing on firm-network combinations rather than individual firms.

This approach helps us analyze the collective behavior of firms within networks and

understand the impact of spatial factors on business performance. The table below details

the network and centrality variables in the dataset, along with any missing values. These
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variables will be used as independent variables in our research.

The following variables are calculated:

Table 1.20: Network and Centrality Variables with Missing Values
Variable Description NA NA%

firm_taxcode Unique tax code identifier for each firm. 0 0%

network_name The identifier of the network to which a
firm belongs.

0 0%

year The year the data was recorded. 0 0%

lat Latitude coordinate of the firms loca-
tion.

0 0%

lon Longitude coordinate of the firms loca-
tion.

0 0%

avg_distance Average distance between the firms
within the same network.

223 0.08%

LD Measures the density of a firm’s connec-
tions within its network based on geo-
graphic proximity.

0 0%

centrality_star Measures the centrality of a firm in the
network assuming a star network config-
uration.

73505 27.59%

centrality_complete Measures centrality assuming a com-
plete network configuration.

223 0.08%

Average Distance

The average distance between firms within each network is calculated to assess the ge-

ographical spread. The foundation of this calculation, as well as the calculations for

Localized Density (LD) and Closeness Centrality in complete networks, is the distance

matrix. The distances are calculated using the latitude and longitude metrics retrieved

by matching the municipality of the firm and the ISTAT provided coordinates. All dis-

tances are converted in kilometers and the average is calculated by the sum of distances

between each pair of firms divided by the number of pairs.

Localized Density

Localized Density (LD) is a measure used to evaluate the concentration of firms within

a network based on their geographical proximity. It helps to understand the spatial
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distribution of firms and how closely they are located to each other. The formula for

calculating the Localized Density for each firm is given by:

LDi =
n∑

j=1

1

1 +Dij

Where:

• LDi = Localized Density for firm i

• Dij = distance (in km) from node i to node j

• n = total number of nodes/firms in the network

A high LD value indicates that network i is surrounded by many other firms at close

distances within the network. Implying strong local connectivity or clustering. A low

value of indicates firm i is surrounded by fewer firms or at greater distances. Low localized

density, implies sparse network geographical presence.

Centrality Measures

Centrality measures are fundamental metrics in network analysis, used to identify the

most important nodes within a network. For the purpose of this research Closeness

Centrality will be used, assuming in two types of network settings: star network and

complete network. Closeness Centrality measures how close a node is to all other nodes

in the network. A node with high closeness centrality can quickly interact with all other

nodes, making it influential and central within the network structure.

• Closensess Centrality - Star Network

The star network is a specific type of network configuration where a central node,

known as the star node, is connected to all other nodes, referred to as non-star

nodes. This star node is identified using the reference firm variable from the Net-

work Contract dataset. In this structure, the star node acts as a hub, directly

connected to every other node, while the non-star nodes are only connected to each

other through the star node.

– Star nodes closeness centrality: For the star node, the closeness cen-

trality is calculated based on its direct connections to all other nodes. The
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formula for the star node’s closeness centrality is:

C(vs) =
1∑
i 6=s 1

– Non-Star nodes closeness centrality: For non-star nodes, the closeness

centrality reflects their indirect connections through the star node. The for-

mula for non-star nodes’ closeness centrality is:

C(vi) =
1

2n−m− 2

Where:

– i indicates if the node v is a non-star node.

– s indicates if the node v is a star node.

– n is the number of nodes in the network.

– m is the number of stars in the network.

• Closensess Centrality - Complete Network The second setting used in this

research is the complete network configuration, where every node is directly con-

nected to every other node. Unlike the star network, in a complete network, the

edges between nodes are weighted by the actual distance between them. Closeness

centrality in a complete network measures how easily a node can reach all other

nodes, considering the physical distances involved.

The formula is:

C(v) =
1∑

u∈V \{v}w(v, u)

Where:

– V is the set of nodes.

– v is the node we are considering.

– u is a node in the set of nodes.

– w(v, u) is the distance (in km) between node v and node u.

If two firms are located in the same municipality, a distance of 1 km is assigned

instead of 0 km to ensure calculations can be performed.
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The closeness star configuration presents a higher number of missing values (73505)

due to the fact that in the original dataset not all networks had a reference firm probably

due to imputation errors. While this problem does not concert the complete network

configuration as it only needs the distance matrix and the network setup.

Average Network Distance

The table1.21 displays the average network distance metrics for each year from 2016 to

2023.

It shows a decreasing mean average network distance from 2016 (73.73km) to 2019

(62.14km), and an increasing trend from the 2020 period to 2023 with a peak at 83.21km.

This may be explained by the adoption of digital communication tools during the covid

video that facilitated the collaborations with more distant firms. Same trends are re-

flected by the median distance.

The central measure’s trend are the same for the standard deviations, suggesting

that before covid firms were getting closer to each other physically and after covid the

variability increased, firm within the network are becoming more spread out.

The minimum distance is 0 for each year, a network has 0 average distance when the

firms participating in the network are from the same municipality.

The maximum average distance of networks confirms the increase in the geographical

spread of the network or inclusion of new, more distant members.

Table 1.21: Average Network Distance Metrics by Year
Year Mean Avg

Network Dist.
SD Distance Median

Distance
Min Distance Max Distance

2016 73.73 122.89 27.01 0 1032.59
2017 73.28 123.79 25.93 0 1047.48
2018 67.86 121.20 22.85 0 1086.57
2019 62.14 117.18 19.24 0 1081.04
2020 66.71 123.00 20.22 0 1081.79
2021 70.98 127.15 21.46 0 1081.79
2022 76.20 131.83 23.50 0 1081.04
2023 83.21 138.48 26.06 0 1277.57
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Localized Density

The average localized density has shown significant changes over the years. Starting at

3.45 in 2016, it peaked at 10.60 in 2019 before decreasing to 7.18 in 2023. This fluctuation

indicates periods of increased and decreased clustering of firms within the network. The

peak in 2019 suggests that during this year, firms were more densely clustered, enhancing

local interactions and connectivity. The median localized density also increased from 1.01

in 2016 to 2.00 in 2019, then decreased to 1.31 in 2023. This measure represents the

central point of localized density and follows the trend of the average LD, the changes in

the mean are not caused by entrance of outliers but is a general trend.

The minimum localized density remained consistently at 0 throughout the years. This

consistency implies that there were always some firms with no neighboring firms in close

proximity, indicating persistent isolation within the network. Most common case is the

network with only 2 firms from the same municipality.

The maximum localized density increased from 86.00 in 2016 to 131.75 in 2023. This

rise indicates that the most clustered firms became even more densely packed over time,

suggesting the development of very dense clusters in the network, in line with the in-

creasing network members statistics showed in table 1.6.

Table 1.22: Localized Density Metrics by Year
Year Avg. LD SD LD Median LD Min LD Max LD

2016 3.45 9.24 1.01 0 86.00
2017 3.65 8.86 1.03 0 85.00
2018 6.08 13.21 1.15 0 86.00
2019 10.60 18.85 2.00 0 95.11
2020 9.83 18.22 1.72 0 92.11
2021 8.95 17.05 1.58 0 92.31
2022 8.21 15.99 1.46 0 87.33
2023 7.18 15.17 1.31 0 131.75

Closeness Centrality - Star

The average closeness centrality shows a increasing trend but stayed quite consistent

at around 0.21-0.22, indicating a stable overall network structure where the star node

consistently maintains its central position. The standard deviation increased from 0.2464

in 2016 to 0.3030 in 2023, reflecting growing variability among nodes’ centrality. This
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suggests that while some nodes have maintained or increased their centrality, others have

become less central over time. This growing disparity can be attributed to the expanding

network size, where the central position of the star node remains fixed, but the distances

to non-star nodes may vary more widely. The median closeness centrality decreased

from 0.11 to 0.09, implying a slight decrease in the centrality of the typical node, can

be explained by the increasing network size, but only a few firms are a star node. The

minimum closeness centrality is very low with decreasing trend, from 0.0093 to as low

as 0.0019. This indicates presence of networks with elevated number of participating

firms but only 1 or few star nodes. The maximum closeness centrality was consistently

1, structural centrality value for star nodes.

Table 1.23: Closeness Centrality - Star Configuration by Year
Year Avg. Centrality SD Centrality Median Min Centrality Max Centrality

2016 0.2090 0.2464 0.1111 0.0093 1
2017 0.2162 0.2678 0.1111 0.0062 1
2018 0.2172 0.2837 0.1111 0.0047 1
2019 0.2180 0.2836 0.0909 0.0037 1
2020 0.2194 0.2910 0.0909 0.0035 1
2021 0.2180 0.2920 0.0909 0.0026 1
2022 0.2214 0.2960 0.0909 0.0022 1
2023 0.2236 0.3030 0.0909 0.0019 1

Closeness Centrality - Complete

The closeness centrality statistics for the complete network show varying trends in aver-

age, standard deviation, median, minimum, and maximum values from 2016 to 2023.

The average closeness centrality increases from 0.0634 in 2016 to 0.0745 in 2023,

indicating that, on average, nodes have become slightly more central over time. The

standard deviation also increases from 0.1811 in 2016 to 0.2066 in 2023. This rising

variability indicates that there is a growing disparity in how central different nodes are,

with some nodes becoming significantly more central while others lag behind.

The median closeness centrality, however, decreases from 0.0059 in 2016 to 0.0043 in

2023. This decrease suggests that while the average centrality has improved, the typical

(median) node is becoming less central relative to the overall network. This disparity

between the average and median values implies that the increase in centrality is not
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uniform across all nodes. Instead, a few nodes are becoming much more central, raising

the average, while many nodes remain less central, pulling the median down.

The minimum closeness centrality consistently remains near 0 (smallest closeness com-

plete is 0.00000368), indicating the networks with very high number of firms and distant

to the node.

The maximum closeness centrality starts at 1.0000 from 2016 to 2018 and then in-

creases to 1.0921 from 2019 onwards. This change suggests that the most central nodes

have become even more central, which might be due to changes in network distances or

the addition of highly central nodes, usually small networks with not distant firms have

higher closeness centrality.

Table 1.24: Closeness Centrality - Complete Configuration by Year
Year Avg. Centrality SD Centrality Median

Centrality
Min Centrality Max Centrality

2016 0.0634 0.1811 0.0059 0 1.0000
2017 0.0659 0.1880 0.0056 0 1.0000
2018 0.0700 0.1983 0.0060 0 1.0000
2019 0.0635 0.1912 0.0056 0 1.0921
2020 0.0665 0.1957 0.0054 0 1.0921
2021 0.0687 0.1996 0.0051 0 1.0921
2022 0.0708 0.2027 0.0048 0 1.0921
2023 0.0745 0.2086 0.0043 0 1.0921





Chapter 2

Modeling Economic Performance

The second chapter of the thesis is dedicated to modeling the economic permance of firms,

exploring various statistical techniques to investigate the impact of network contracts on

firm growth in Italy. The goal is to understand how various network attributes, specifically

Localized Density and Closeness Centrality, influence business performance.

The analysis begins by examining the key variables from the datasets discussed from

the previous chapter. The main goal is to retrieve different categories of control variables:

network controls, firm-specific controls, sector controls, and geographic controls. These

controls will help isolating the effect of network characteristics from other factors that

may influence firm performance.

Successive section of the chapter will go through a series of models with different

configurations, starting from Ordinary Least Squares (OLS) models to Least Absolute

Deviations (LAD) models. This progression provides an overview of the general effects

of network participation on firm performance across the dataset helping to test the rela-

tionships between the explanatory variables and dependent variables.

Subsequently, panel data techniques will be used to account for individual differences

among firms. This approach leverages the panel structure of the data, capturing entity

fixed effects to control for unobserved heterogeneity and and to control for potential

correlation between entity-specific effects on predictors.
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2.1 Distribution and Correlation

This section focus on the refinement of the dataset to accurately reflect each firm’s

network environment and on selection of variables accounting for problems like multi-

collinearity.

Network Contracts Dataset is used as the base to which firm performance metrics

and spatial measures are added creating a dataset with 266,437 observations and 38

columns. An initial part ensures that each firm is associated with unique network values

for each year. Particularly critical for firms that participate in multiple networks as their

performance metrics must reflect the combined influence of the networks it participates

in. To achieve this, the network level variables are transformed into firm level variables,

capturing eventual changes in network characteristics:

• Localized Density: For firms involved in multiple networks, the Localized Density

is calculated as the weighted average of the density values of each network the firm

participates in, with weights based on network age to account for the influence of

older, more established networks.

• Closeness Centrality: For firms in multiple networks, closeness centrality (in

both star and complete configuration) is computed as the weighted average of the

centrality values across all networks, with weights based on both the age of the

networks and the number of connections (firms connected) in each network.

• Hub: Hub is assigned to 1 for firms that are reference company of at least 1

network it participates in.

• Average Network Age: It is calculated by averaging the ages of each network

associated with a firm, weighted by the firm’s involvement in these networks.

• Networked Firms Count: It is determined by counting the unique firms across

all networks a firm is part of, reflecting the breadth of its network connections. This

captures the extent of a firm’s network and its potential access to diverse resources

and information.

• Legal Network: Legal Network is assigned to 1 for each firm that is member of

at least 1 legal network.

An additional Average Growth variable is created to mitigate the loss of information

when there are missing values for firms in certain years. The Average Growth value is
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calculated for each firm by the mean of available firm growth from 2016 to 2022 and

assigned for all years.

The subsequent step ensures that each firm appears only once per year in the dataset.

This step reduces the original dataset from 266,437 observations to 246,995 observations.

Additionally, AIDA database did not provide any financial metric for firms for the year

2023, so this year is also excluded from the dataset further reducing the dataset to 199,752.

At the end, firms that are categorized under the region group "Estero" (abroad) which

only account for 49 observations, are also filtered out.

After the adjustments, the final dataset contains 199,703 observations.

2.1.1 Variables Distribution

Firm Growth

Figure 2.1 provide distribution plots for firm performance variables, the plots are zoomed

in to range form -3 to 3 for clearer visual of the main distribution characteristics, as noted

in table 1.17 that the most extreme values goes to as low as -12% and as high as 11%.

Figure 2.1: Distribution of Firm Growth (zoomed x axis)

Both "AverageGrowth" and "FirmGrowth" have a pronounced peak at zero and lack

of lack of skewness. This indicates that the majority of firms in the dataset have growth
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rates close to zero, confirming the table 1.17 , implying minimal growth or decline. The

central concentration is very high, suggesting that stable growth is the most common

outcome for firms with most growths between -0.5 and 0.5.

Spatial Metrics

Figure 1.8 display the distributions of spatial metrics, in order: Localized Density, Close-

ness Centrality in Star network configuration and Closeness Centrality in Complete net-

work configuration.

Figure 2.2: Distribution of Spatial Metrics

The majority of firms have very low localized density values, with a large spike around

zero. This indicates that most firms are not surrounded by many other firms within close

geographical proximity. The high count at zero suggests that many firms are geographi-

cally isolated within their networks. The instances with much higher LD values indicate

the presence of densely packed clusters with close geographic distance. In Star network

configuration there is a clear distinction between non-star nodes with low centrality and

star nodes with higher centrality, creating two clusters of firms. The histogram reflects

this characteristic and shows two prominent peaks: one at very low values and another

at higher values near 1. In complete networks every firm is connected to each other in

the same network but the centrality is weighted by the distance between each node. The
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pattern in this case in very different from the star network and has some resemblance

with the LD patterns. The high number of firms with very low centrality measures means

that despite all firms being theoretically connected, geographic distance might reduce the

strength of interactions. Consequently, firms tend to have low effective centrality because

they are not truly close in a practical sense to all other firms.

Network Variable Distribution

All network variable histogram plots are right skewed, most of the data are clustered in

the initial part of the metric with few outliers with higher values.

For Average Network Age the majority of the data clustered towards the lower end of

the age range. Most of the networks are young and have below 5 years of age.

In Networked Firms Count, the each firm is connected with a small number of firms.

The fewer data points at the higher end indicate that it is less common to have networks

with a large number of participating firms. In line with table 1.6 showing the median at

around 4 members per network.

The Network Participation Count is extremely skewed, indicating most firms partic-

ipate in a few networks. This suggests that firms prefer to limit their collaborations,

potentially to maintain focus or due to resource constraints (as in table 1.5).

Figure 2.3: Network Variable Distribution plots
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Firm Variable Distribution

Similar to Network variables, Firm variables are also very right skewed. Sales Revenue,

Net Income, EBITDA, Labor Productivity, Liquid Assets, Intangible Assets, and Number

of Employees, are extremely right-skewed distributions. This means that the majority of

firms concentrate on the lower values for these metrics, with only a few outliers achieving

significantly higher values.

Firm Age shows a right-skewed distribution, showing that most firms have less than

50 years. The Return on Sales (ROS), Return on Investment (ROI), Return on Equity

(ROE), and Return on Assets (ROA) show varying distributions. ROS, ROI and ROE

have approximately normal distributions with right skewness, very noticeable for ROI, in-

dicating more firms with higher positive returns and fewer firms with negative returns but

with greater magnitude. ROA is extremely peaked around zero, with very low variance.

Figure 2.4: Firm Variable Distribution plots
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Categorical Variables

Categorical variables in this dataset are: Hub, AverageFirmSize, InnovativeSME, Inno-

vativeStartup, LegalNetwork, ProvinceCapital, RegionGroup, RegionCapital and Sector.

The proportion of these variables are in table 2.1 (the table only accounts for non-NA

categories for each variable, excluding the NAs):

Table 2.1: Categorical Variables
Variable Value Count %
Hub 0 172,883 86.6

1 26,820 13.4
AverageFirmSize SMEs (employees > 10 and 250) 49,615 49.54

Micro (employees 10) 47,575 47.50
Large (employees > 250) 2,960 2.96

InnovativeSME 0 118,844 98.86
1 1,373 1.14

InnovativeStartup 0 120,044 99.86
1 173 0.14

LegalNetwork 0 123,933 62.10
1 75,770 37.90

ProvinceCapital 0 132,320 66.26
1 67,383 33.74

RegionGroup Center 68,318 34.21
North-east 42,540 21.30
South 39,965 20.01
Nord-west 38,571 19.31
Isole 10,309 5.16

RegionalCapital 0 161,388 80.81
1 38,315 19.19

Sector Services excluding finance 75,843 37.98
Agriculture, forestry, and fishery 35,276 17.66
Manufacturing 34,045 17.05
Construction and Mining 19,104 9.57
Professional and scientific services 14,208 7.11
Other services 11,700 5.86
Public, health, and education 9,527 4.77

In the final dataset, considering all the years, the total number of observations with

Hub characteristic (reference firm) are 26,820, being 13.4% of the total records, while

86.6% are non-hub.



2.1. DISTRIBUTION AND CORRELATION 50

Almost half of the observations with available data are SMEs (49.54%), followed by Micro

firms (47.50%), and a small proportion of Large firms (2.96%).

For innovative SME and Startups there is a big unbalance with only 1.14% of the data

being innovative SMEs and 0.14% being innovative Startups.

62.10% of the observations are not part of a legal network, while 37.90% participate in

at least 1 legal network.

About geography, 33.74% of the observations are located in provincial capitals, 19.19%

are in regional capitals. In terms of region groups, most of the data come from the Center

with 34.21% followed by North-east and South with 21.3% and 20.01%.

The most populated sector of the dataset are the "Services excluding finance" with 37.98%

of the observations, followed by "Agriculture, forestry and fishery" and "Manufacturing"

with 17.66% and 17.05%.

2.1.2 Correlation

This section presents the correlation plots for the key variables in our dataset, provid-

ing a visual representation of the relationships between them and help in identifying

multicollinearity issues, guiding the selection of variables for the econometric models.

Numeric Variables

The correlation plot of numeric variables uses the Pearson correlation coefficient to mea-

sure the linear relationship between pairs of numeric variables. Each cell in the plot

shows the Pearson correlation coefficient, indicating the strength and direction of the

correlation, ranging from -1 to 1.

From the figure 2.5, the strongest positive correlation is between NumEmployees and

SalesRevenue (0.85), indicating that firms with more employees tend to generate higher

sales revenue. This is expected, as larger firms typically have greater production and

sales capacities. Although both the number of employees and sales revenue are positively

correlated with each other, they are negatively correlated with net income(-0.49 and -

0.43, respectively). This could suggest that firms with higher sales revenues have higher

expenses or lower margins, leading to reduced net income.

Additionally, the correlation between EBITDA and Liquid Assets (0.74) indicates that

firms with higher EBITDA generally mantain higher liquid assets, highlighting the strong
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Figure 2.5: Corrplot of Numeric Variables

cash generation ability of profitable firms.

Collectively, these economic performance metrics form a cluster of correlation where

IntangAssets, NumEmployees, SalesRevenue, LiqAssets and EBITDA are positively cor-

related to each other and negatively correlated with Net Income.

Profitability indicators such as ROE, ROI, ROA, ROS also form a cluster exhibiting

high positive correlations among each other, ranging from 0.46 to 0.85. This indicates

that these profitability metrics are closely related showing how efficiency in one aspect of

operations can positively impact overall financial health.

The 0.58 positive correlation between Closeness Centrality in Star and Complete con-

figuration suggests that firms which act as hubs (reference firm in a network) might also

be central in terms of geography within the network.

It is somehow expected since both centralities measure node importance within the same
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network, albeit with different structures, the star nodes in star configurations have the

same number of edges as in the complete network. The inclusion of distance weights for

the complete configuration makes it more sensitive to distance variations. Suggesting

that central nodes in a star network tend to be central also in complete network in terms

of distances.

The negative relationship (-0.22) between Localized Density and Centrality in Star con-

figuration might be due the fact that nodes with high closeness centrality (central nodes)

in a star network have many direct connections but their immediate neighborhoods lack

interconnections, leading to low localized density. Conversely, nodes with high localized

density are likely part of tight clusters where many neighbors are interconnected. These

nodes are not as central in terms of closeness centrality because they are part of a local

cluster rather than acting as a hub to the overall network.

The positive correlation between Localized Density and Networked Firm Count (0.43)

might be interpreted as increase in density when network members increase, this caused

by a higher probability of geographical proximity and interaction between the firms.

Years in Network and Average Network Age have nearly perfect correlation as they

both are calculated using network act date and year.

Categoric Variables

For categorical variables a Cramér’s V correlation plot is created to visually represent

the strength of association between pairs of categorical variables. Each cell in the figure

shows the Cramér’s V value, ranging from 0 (no association) to 1 (perfect association).

The association matrix of categorical variables highlits several key relationships among

the variables. The perfect association between Region Group and region_firm (region of

each firm) is expected as Region Group is a groups each region in the same area thus

each region is associated with a single region group.

LegalNetwork is moderately associated with RegionGroup (0.28), region_firm (0.36)

and Sector (0.22), suggesting some geographic area and sectors have more networks with

legal subjectivity.

Similarly, hub also shows low/moderate association with LegalNetwork (0.23), Region-

Group (0.1), region_firm (0.13) and Sector (0.1), indicating that hubs are more commonly

found in networks with legal subjectivity and in specific geographic areas.
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Figure 2.6: Corrplot of Categorical Variables

Sector is also moderately associated with regional capitals and province capitals, this

suggests that certain sectors are more likely to be located in capitals, possibly due to the

availability of better infrastructure and resources in these areas.

A high correlation between ProvinceCapital and RegionalCapital (0.68) indicating

that a significant number of firms located in provincial capitals are also in regional capi-

tals. This is expected as many provincial capitals serve as regional capitals.

InnovativeSME, InnovativeStartup and AverageFirmSize have near 0 association with

most of the variables indicating that innovation status and the firm size are not strongly

related to each other and to geographical location, sector.

2.2 Variable Selection

This section aims to synthesize the previously conducted analyses (correlation, distribu-

tion, and missing values) to finalize the variables that will be used for the modeling of

the economic impact of network contracts on firm performance.
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The main objective is to investigate the impact of localized density and closeness

centrality on firm growth. To ensure a robust analysis and isolate the effects of the

proximity measures, controlling for the impact of other characteristics is essential.

Based on the dataset available it is possible to include network characteristics and firm-

specific characteristics. To further isolate the effects of the main variables, geography,

sector and time effect are included ensuring that regional economic conditions, industry-

specific factors and temporal trends do not confound the results. Additionally, all the

numeric variables are lagged to time t-1 helping to mitigate endogeneity by ensuring that

explanatory and controls variables are determined prior to the current outcome (growth of

current year). Also by using t-1 we assume that past values influence current performance

aligning the logical direction of causality, strengthening the argument that changes in the

independent variable lead to changes in the dependent variable, and not the other way.

Dependent Variables

A dependent variable is the variable/outcome that is affected by changes in the indepen-

dent variable. In this context, the main objective is to analyze the economic performance

of firms, so the variables are:

• Firm Growth: primary dependent variable. By analyzing Firm Growth, it is possi-

ble to determine whether being in a densely populated network or holding a central

position within a network contributes positively to a firm’s economic performance.

• Average Growth: average growth rate over the specific period, it helps recover

missing values for firms in certain years and it is used to check the consistency of

the model’s behavior with the primary dependent variable.

Independent Variables

An independent variable is the variable that varies to explore its effects on the dependent

variable. To study the impact of spatial proximity and network effects on firm growth,

the following independent variables are utilized:

• Localized Density: measures the geographical density of firms within a network,

to see the effect of more or less dense networks on firm growth. A higher localized

density indicates a higher concentration of firms in a given area, which can lead to

increased collaboration, resource sharing, and competitive advantages. Conversely,
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a lower density may suggest isolation or less frequent interactions among firms.

• Closeness Centrality: measures the centrality of a firm within the network,

Firms that are more central in their networks might benefit from better access to

information, resources, and collaboration opportunities, which can enhance their

performance.

Network Control Variables

The set of network control variables chosen to account for network characteristics based

on the available data are:

• Hub: included as it controls for the status of a firm being a reference company for

the network.

• NetworkedFirmsCount: It is used as a proxy to network size as firms participating

in multiple firms don’t have one unique network size. The size of the network can

influence resource availability, knowledge sharing, and collaborative opportunities,

which are crucial for firm growth.

• AverageNetworkAge: It is the average age of the networks a firm participates in.

The maturity of the network can affect stability, trust among members, and accu-

mulated experience in collaboration, impacting firm growth positively or negatively.

It is chosen over "Years in Network" (0.98 correlation) as the latter is estimated not

knowing the years in network of firms before 2016.

• LegalNetwork: A binary indicator of whether a firm participates in a network that

has legal status. Participating in a network with legal personality can influence

the formalization of agreements, enforceability of contracts, and access to external

funding or benefits, thereby impacting firm growth.

Firm Control Variables

To accurately assess the impact of network characteristics on firm growth, the following

controls for firm-specific factors are chosen:

• FirmAge2: The quadratic age of the firm in years. It is used to capture the non-

linear relationships between firm age and performance. Younger firms might be

more innovative and adaptable as they establish themselves and gain market shares.
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As firms age, the growth rate might slow down, indicating a more mature phase

with stable performance. In some cases, very old firms might face challenges such

as outdated business models or competition, leading to a decline in performance.

• AverageFirmSize: The average number of employees in the firm. Firm size can

impact economies of scale, resource availability, and market power. This variable is

used as a proxy of number of employees as it retrieves missing values over the year

inherited from AIDA dataset.

• InnovativeSME: A binary indicator of whether the firm is an innovative SME.

Innovative SMEs might have different growth trajectories due to their focus on

innovation and technology. Controlling for this variable helps in isolating these

effects.

• InnovativeStartup: Similar to InnvoativeSME but refered to Startups.

For financial performance controls the following are chosen:

• ROS: Return on Sales, a measure of a firm’s profitability relative to its total sales

revenue. The choice of ROS over other profitability metrics in this study is based

on several considerations. Firstly, ROS, along with ROE, has lower number of

missing values (table 1.12) ensuring a more complete dataset. Secondly, the shape

of the distribution seems more normal respect to ROI and ROA. Lastly since the

dependent variable in our analysis is the growth in sales revenue, it might be more

relevant to focus on how well a firm converts sales into profits.

• ln_LabProd: The natural logarithm of labor productivity, Natural logarithm is

performed to achieve a more normal distribution. Labor productivity is a key

determinant of firm efficiency and competitiveness. Choosing LabProd it is possible

to exclude Sales Revenue and number of employees as they are incorporated in this

metric.

• ln_LiquidAssets: The natural logarithm of liquid assets, representing the firm’s

cash and cash equivalents. Natural logarithm is performed to achieve a more normal

distribution.

• ln_IntangibleAssets: The natural logarithm of intangible assets, including in-

tellectual property and goodwill. Intangible assets reflect the value of a firm’s



2.2. VARIABLE SELECTION 57

intellectual property and brand equity, which can significantly influence growth

potential. Natural logarithm is performed to achieve a more normal distribution.

Time, Sector and Geographic Fixed Effect Controls

It is important to control for time, sector and geographic fixed-effects as it provides more

robust results by accounting for unobserved heterogeneity that could introduce bias.

Time fixed-effects control for factors that impact all the firms in the same way over

time, including macroeconomic trends, policy changes, technological advancements, eco-

nomic cycles or shocks like the pandemic. Controlling for time ensures the observed

relationships are not confounded by time-related external factors. A dummy variable for

each year in the panel data is created to account for this effect.

For sectorial variables there is the variable Sector which is also the only variable that

describes the firm’s industry. It permits to control for industry specific effects that might

influence firm performance.

For geographic fixed-effect control, the variable RegionGroup is used. As it has fewer

categories than region_firm it reduces the dimensionality of the model, without creating

one dummy for each of the 20 regions of Italy that might lead to overfitting.

Regression Equation

To investigate the impact of the spatial proximity and network effects on the economic

performance of firms within the Italian network contracts, regression analysis can be

performed as it is able to handle multiple variables, quantify the relationships, model the

outcomes, address variability, conduct robustness checks making it suitable method for

the analysis of the impact of the chosen variables on firm performance.

The base form regression equation for a model using the above variables can be:

FirmGrowthit = β0 + β1LocalizedDensityi,t−1 + β2ClosenessCentralityi,t−1

+ δtYeart + γjSectorj + θkRegionGroupk + εit (2.1)

Where:

• FirmGrowthit: Dependent variable representing the growth of firm i at time t.

• β0: Intercept term.
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• β1: Coefficient for the effect of localized density on firm growth.

• LocalizedDensityi,t−1: Lagged independent variable representing the localized den-

sity for firm i at time t− 1.

• β2: Coefficient for the effect of closeness centrality on firm growth.

• ClosenessCentralityi,t−1: Lagged independent variable representing the closeness

centrality for firm i at time t− 1.

• δtYeart: Time fixed effects, where δt are the coefficients for each year dummy vari-

able Yeart.

• γjSectorj: Sector fixed effects, where γj are the coefficients for each sector dummy

variable Sectorj.

• θkRegionGroupk: Geographic fixed effects, where θk are the coefficients for each

region group dummy variable RegionGroupk.

• εit: Error term capturing unobserved factors affecting firm growth for firm i at time

t.

By adding the controlled characteristics, the regression equation becomes:

FirmGrowthit = β0 + β1LocalizedDensityi,t−1 + β2ClosenessCentralityi,t−1

+ β3NetworkCharit + β4FirmCharit + β5FirmPerfit

+ δtYeart + γjSectorij + θkGeographyik + εit

(2.2)

Where:

• FirmGrowthit: Dependent variable representing the growth of firm i at time t.

• β0: Intercept term.

• β1: Coefficient for the effect of localized density on firm growth.

• LocalizedDensityi,t−1: Independent variable representing the localized density for

firm i at time t− 1.

• β2: Coefficient for the effect of closeness centrality on firm growth.

• ClosenessCentralityi,t−1: Independent variable representing the closeness centrality

for firm i at time t− 1.

• β3: Coefficient for the effect of network characteristic controls on firm growth.
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• NetworkCharit: Vector of control variables related to the network characteristics:

hub, NetworkedFirmsCount, AverageNetworkAge, LegalNetwork.

• β4: Coefficient for the effect of firm characteristic controls on firm growth.

• FirmCharit: Vector of control variables related to firm-specific characteristics:

FirmAge2, AverageFirmSize, InnovativeSME, InnovativeStartup.

• β5: Coefficient for the effect of financial performance controls on firm growth.

• FirmPerfit: Vector of control variables related to firm-specific financial performance:

ROS, ln_LabProd, ln_LiquidAssets, ln_IntangibleAssets.

• δtYeart: Time fixed effects, where δt are the coefficients for each year dummy vari-

able Yeart.

• γjSectorj: Sector fixed effects, where γj are the coefficients for each sector dummy

variable Sectorj.

• θkRegionGroupk: Geographic fixed effects, where θk are the coefficients for each

region group dummy variable RegionGroupk.

• εit: Error term capturing unobserved factors affecting firm growth for firm i at time

t.

2.3 Regression Models

Regression analysis is fundamental in econometric modeling, it offers insights into the re-

lationships between variables. In this case it helps to investigate the relationship between

network spatial metrics and firm performance. In this section Ordinary Least Squares

(OLS) and Least Absolute Deviations (LAD) models are analyzed.

The OLS Pooled regression serves as baseline model for its simplicity and efficiency

in estimating the average effect of explanatory variables on the dependent variable. It

works as a benchmark for a baseline understanding of how network contracts and other

characteristics impact firm performance.

While the OLS model is simple to use, its estimates might be affected by outliers and

non-constant error variances. Thus, the model is complemented with LAD regression
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models, also known as median regression. This method minimizes the sum of absolute

residuals making it less sensitive to outliers and more robust in the presence of non-normal

error distributions or heteroscedasticity.

Two versions of each regression model are implemented: one using FirmGrowth as

the dependent variable and another using AverageGrowth. This approach ensures that

the results are consistent across different measures of performance.

Models in this section are pooled regressions, meaning that data from multiple time

periods are combined and analyzed together, treating them as one large cross-sectional

dataset. This approach allows us to examine the overall effect of the explanatory variables

on firm performance across different times without accounting for the specific time-period

effects.

To account for heteroscedasticity Robust Standard Errors are employed for OLS models

providing consistent estimates of the standard errors.

2.3.1 OLS Regression Models

The Table 2.2 is composed by 4 specifications of pooled regression model using Lo-

calizedDensity and ClosenessCentralityStar (star network configuration) as explanatory

varaibles and FirmGrowth as dependent variable. Starting from the baseline model (1)

which includes only the explanatory variables. Control variables are progressively added,

where the last specification (4) includes all control variables: network-characteristic con-

trols, firm-characteristic controls, firm-performance controls. For each specification ro-

bust standard errors are provided in the parentheses and time, sector, geographic fixed-

effects are accounted for.

In the baseline model, model specification (1), the impact of Localized Density on

firm growth is not significant while Centrality is positive and significant at 1% level. In-

dicating that firms with higher centrality within their networks experience higher growth.

In the second specification network characteristics such as Hub, Networked Firms Count,

Average Network Age and Legal Network are added. Localized Density’s coefficient re-

mains small and non significant. Centrality continues to show a significant positive effect

(p<0.01) with a coefficient of 0.026. The newly added variables are not statistically signif-

icant except for Average Network Age which has negative and significant impact on firm

growth (-0.007 with p<0.01), indicating that as the average age of the networks in which
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Table 2.2: OLS - FirmGrowth (star configuration)

Dependent variable:
FirmGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 0.0003 (0.0004) 0.0002 (0.0004) 0.001∗ (0.0004) 0.001∗∗ (0.0004)
ClosenessCentralityStart−1 0.025∗∗∗ (0.008) 0.026∗∗∗ (0.010) 0.027∗∗∗ (0.010) 0.025∗∗∗ (0.010)
Hub: 1 −0.006 (0.006) −0.013 (0.006) −0.007 (0.006)
NetworkedF irmsCountt−1 0.00002 (0.0002) −0.0001 (0.0002) 0.0001 (0.0002)
AverageNetworkAget−1 −0.007∗∗∗ (0.001) −0.006∗∗∗ (0.001) −0.005∗∗∗ (0.001)
LegalNetwork: 1 0.009 (0.007) 0.007 (0.007) 0.001 (0.007)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00000 (0.00000)
AverageFirmSize: Micro −0.067∗∗∗ (0.008) 0.018 (0.012)
AverageFirmSize: SME −0.024∗∗∗ (0.008) 0.030∗∗∗ (0.009)
InnovativeSME: 1 0.094∗∗∗ (0.015) 0.043∗∗ (0.017)
InnovativeStartup: 1 0.246∗∗∗ (0.082) 0.263∗∗∗ (0.091)
ROSt−1 0.004∗∗∗ (0.0005)
ln(LabProdt−1) −0.056∗∗∗ (0.004)
ln(LiquidAssetst−1) 0.010∗∗∗ (0.001)
ln(IntangibleAssetst−1) 0.006∗∗∗ (0.001)
Constant −0.006 (0.009) 0.015 (0.011) 0.054∗∗∗ (0.013) 0.202∗∗∗ (0.022)

Observations 55,270 55,270 52,806 48,443
N. unique firms 15,419 15,419 14,593 13,998
R2 0.043 0.043 0.047 0.071

Note: OLS estimates and robust standard errors are given in parentheses. All regressions also include year, sector and geographic
fixed-effects. Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

a firm participates increases, firm growth decreases, suggesting that younger networks

might be more dynamic or innovative and more capable of stimulating firm growth.

By adding firm characteristics (squared firm age, average firm size, innovative SME and

innovative Startup dummies), Localized Density acquires small significance (p<0.1) with

marginal coefficient of 0.001. Centrality remains positive and significant at 1% signifi-

cance. Squared firm age has a significant and negative impact on firm growth, possibly

confirming the non-linear relationship where younger firms grow more rapidly and the

growth decelerates over time. Being a Micro firm or SME have negative and significant

coefficient (-0.064 and -0.024 respectively), indicating that, the growth rate of these two

categories of firms on starts on average 0.067 and 0.024 units lower than large firms.

While being a innovative SME or Startup brings a strong positive impact on firm growth

(0.094 and 0.246 respectively at 1% level).

The final model adds performance controls such as ROS, labor productivity, tangible

and intangible assets. Localized density acquires higher significance (p<0.05) with same

coefficient. Centrality’s significance remains the same with similar coefficient (0.025) con-
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firming the importance of being central in a network. Network characteristics do not face

substantial changes with Networked Firms Count becoming positive but still not signif-

icant. FirmAge2t−1 loses significance and becomes even more marginal. Interestingly,

being SME brings positive and significant impact while being a Micro firm also turns

to a positive impact although non significant. By controlling factors directly related to

the firm’s performance, the size of the firm has a clearer positive relationship with firm

growth, suggesting that smaller firms have better growth prospects than large firms. In-

novative dummies remain both significant and positive. The financial performances at

time t-1 all impact the firm growth in time t in a positive and significant way except

for ln(LabProdt−1). This implies that firms with strong financial health translates into

higher growth. The labor productivity might imply that firms with high productivity

are potentially mature enough with optimized processes to an extent that further growth

possibilities are limited.

Figure 2.7: Residual plot of model(1) - FirmGrowth(star configuration)

The residual plots show evident clusters and outliers forming in figure 2.7 in the base

model specification, indicating potential issues with heteroskedasticity and non-linearity.

However, by adding the control variables (model 4), the distribution of residuals becomes

more uniform as seen in figure 2.8, indicating better model fit and more reliable estimates.

Figure 2.8: Residual plot of model(4) - FirmGrowth(star configuration)

Table 2.3 shows the regression models for the AverageGrowth model in star network
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configuration.

Table 2.3: OLS - AverageGrowth (star configuration)

Dependent variable:
AverageGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 0.001∗∗ (0.0004) 0.0001 (0.0005) 0.001∗ (0.0005) 0.0003 (0.0003)
ClosenessCentralityStart−1 0.055∗∗∗ (0.012) 0.063∗∗∗ (0.015) 0.044∗∗∗ (0.010) 0.027∗∗∗ (0.007)
Hub: 1 −0.018∗∗ (0.008) −0.022∗∗∗ (0.007) −0.015∗∗∗ (0.004)
NetworkedF irmsCountt−1 0.001∗∗ (0.0003) 0.001∗∗ (0.0003) 0.0004∗∗ (0.0002)
AverageNetworkAget−1 −0.018∗∗∗ (0.001) −0.017∗∗∗ (0.001) −0.009∗∗∗ (0.001)
LegalNetwork: 1 −0.006 (0.008) −0.005 (0.008) −0.003 (0.005)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro −0.086∗∗∗ (0.009) −0.051∗∗∗ (0.009)
AverageFirmSize: SME −0.026∗∗∗ (0.008) −0.019∗∗∗ (0.007)
InnovativeSME: 1 0.085∗∗∗ (0.013) 0.054∗∗∗ (0.011)
InnovativeStartup: 1 0.414∗∗∗ (0.075) 0.359∗∗∗ (0.071)
ROSt−1 0.004∗∗∗ (0.0002)
ln(LabProdt−1) 0.005∗∗ (0.002)
ln(LiquidAssetst−1) 0.001 (0.001)
ln(IntangibleAssetst−1) −0.001∗ (0.001)
Constant −0.024∗∗∗ (0.008) 0.032∗∗∗ (0.008) 0.086∗∗∗ (0.011) 0.015 (0.015)

Observations 60,262 60,262 57,409 49,387
N. unique firms 15,483 15,483 14,711 14,133
R2 0.010 0.020 0.032 0.054

Note: OLS estimates and robust standard errors are given in parentheses. All regressions also include year, sector and geographic fixed-
effects. Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Localized Density is moderately significant in specification (1) and (3), significant at

5% and 10% level, with low coefficient. Similar to previous models, Closeness Centrality

is always positive and significant, with higher coefficients in the first two models, and

decreases in the subsequent specifications, indicating stronger impact of Closeness Cen-

trality on average growth over the years.

In network characteristic controls being a Hub for networks becomes significant across all

specifications with -0.015 coefficient when accounting for all control variables, indicating

that firms acting as a hub within their networks tend to experience lower average growth

rates compared to firms that are not hubs. AverageNetworkAge shows consistent and sig-

nificant negative impact on average growth, NetworkedFirmsCount becomes significant

as main difference to the previous models with Firm Growth as dependent variable.

AverageFirmSize in this case does not become positive but remains negative and signifi-

cant. Remaining firm characteristic controls remain the same as previous model.

Firm financial performance controls remain mostly similar with decrease in significance.

In table 2.4, the centrality measures in a complete network configuration weighted by



2.3. REGRESSION MODELS 64

distance are used instead of the star network configuration.

Table 2.4: OLS - FirmGrowth (complete configuration)

Dependent variable:
FirmGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 −0.0003 (0.0002) −0.001∗∗∗ (0.0003) −0.0003 (0.0003) −0.0002 (0.0003)
ClosenessCentralityCompletet−1 0.007 (0.010) 0.008 (0.011) 0.013 (0.011) 0.001 (0.010)
Hub: 1 0.0002 (0.006) −0.007 (0.006) −0.001 (0.006)
NetworkedF irmsCountt−1 0.0003 (0.0002) 0.0003 (0.0002) 0.0003∗ (0.0002)
AverageNetworkAget−1 −0.006∗∗∗ (0.001) −0.006∗∗∗ (0.001) −0.004∗∗∗ (0.001)
LegalNetwork: 1 0.003 (0.005) 0.004 (0.005) −0.001 (0.005)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00000 (0.00000)
AverageFirmSize: Micro −0.066∗∗∗ (0.008) 0.021∗ (0.011)
AverageFirmSize: SME −0.022∗∗∗ (0.007) 0.034∗∗∗ (0.008)
InnovativeSME: 1 0.098∗∗∗ (0.014) 0.046∗∗∗ (0.016)
InnovativeStartup: 1 0.178∗∗ (0.090) 0.188∗∗ (0.088)
ROSt−1 0.004∗∗∗ (0.0004)
ln(LabProdt−1) −0.058∗∗∗ (0.004)
ln(LiquidAssetst−1) 0.009∗∗∗ (0.001)
ln(IntangibleAssetst−1) 0.006∗∗∗ (0.001)
Constant −0.004 (0.008) 0.012 (0.009) 0.051∗∗∗ (0.011) 0.213∗∗∗ (0.019)

Observations 69,909 69,909 66,404 60,859
N. unique firms 20,134 20,134 18,922 18,157
R2 0.047 0.048 0.052 0.079

Note: OLS estimates and robust standard errors are given in parentheses. All regressions also include year, sector, and geographic fixed-
effects. Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

It is possible note that Localized Density and centrality measures are never significant

except for Localized Density in the model (2), interestingly the coefficients of localized

density are now negative. All the control variables have consistent significance progres-

sion similar to previous models with the star configuration, showing that controlling for

financial performance can uncover the growth potential of smaller firms participating in

networks.

Using the AverageGrowth as dependent variable uncovers the significance of centrality

which is significant in all model specifications. Localized Density becomes consistently

significant and negative while it was positive and not significant in the star configuration.

Also in the case of complete configuration the control variables of the AverageGrowth

models are mostly similar to the control variables of the annual FirmGrowth models

with the exception of AverageFirmSize dummies and NetworkedFirmsCount acquiring

increasing significance.

The results in both star and complete configurations confirm the the crucial role of

centrality in firm growth. However, the Star configuration reflect the centrality of a firm
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Table 2.5: OLS - AverageGrowth (complete configuration)

Dependent variable:
AverageGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 −0.0003 (0.0002) −0.001∗∗∗ (0.0003) −0.001∗ (0.0003) −0.001∗∗∗ (0.0002)
ClosenessCentralityCompletet−1 0.040∗∗ (0.018) 0.038∗ (0.019) 0.027∗∗ (0.011) 0.016∗∗ (0.007)
Hub: 1 −0.008 (0.007) −0.016∗∗ (0.006) −0.010∗∗ (0.004)
NetworkedF irmsCountt−1 0.001∗∗ (0.0002) 0.001∗∗ (0.0002) 0.0004∗∗∗ (0.0002)
AverageNetworkAget−1 −0.017∗∗∗ (0.001) −0.015∗∗∗ (0.001) −0.009∗∗∗ (0.001)
LegalNetwork: 1 −0.006 (0.007) −0.003 (0.007) −0.008∗∗ (0.004)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro −0.082∗∗∗ (0.008) −0.053∗∗∗ (0.008)
AverageFirmSize: SME −0.022∗∗∗ (0.007) −0.019∗∗∗ (0.007)
InnovativeSME: 1 0.086∗∗∗ (0.012) 0.058∗∗∗ (0.011)
InnovativeStartup: 1 0.345∗∗∗ (0.068) 0.288∗∗∗ (0.064)
ROSt−1 0.004∗∗∗ (0.0002)
ln(LabProdt−1) 0.008∗∗∗ (0.002)
ln(LiquidAssetst−1) 0.001 (0.001)
ln(IntangibleAssetst−1) −0.001∗∗ (0.001)
Constant −0.012∗ (0.006) 0.041∗∗∗ (0.007) 0.087∗∗∗ (0.010) 0.010 (0.014)

Observations 76,120 76,120 72,108 62,140
N. unique firms 20,207 20,207 19,063 18,342
R2 0.009 0.017 0.027 0.053

Note: OLS estimates and robust standard errors are given in parentheses. All regressions also include year, sector, and geographic fixed-effects.
Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

in the network in terms of operational interactions, which is more relevant instead of a

geographic centrality where every firm is assumed to communicate with any other firm.

In terms of empirical robustness, star configuration has shown consistent and significant

results across various model specifications, suggesting it can better capture the network

structures respect to the complete configuration. Therefore, Closeness Centrality Star

will be used as the measure of network centrality due to its better fit and coherence with

the network structure.

2.3.2 LAD Regression models

The inconsistency in the significance of the Localized Density in previous model specifi-

cations shows that it can be significant but it may not be captured correctly by the OLS

regression due to its sensitivity to outliers and the skewed distribution of the data. Addi-

tionally OLS regression assumes that the errors are normally distributed, an assumption

that may not hold in this context (as seen in residual plot 2.8), leading to inefficiencies in

the estimation process. Therefore, using a LAD regression or Median regression, which

minimizes the sum of absolute deviations rather than the sum of squared deviations,
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making it more robust to outliers. Unlike OLS, LAD regression does not assume a nor-

mal distribution of errors, making it more capable of providing more accurate estimates

in presence of non-normal error distributions.

Table 2.6 shows the regression analysis with FirmGrowth as dependent variable. It

follows the structure of previous models with 4 specifications and progressive control

variables added for each model specification.

Table 2.6: LAD - FirmGrowth
Dependent variable:

FirmGrowth
(1) (2) (3) (4)

LocalizedDensityt−1 −0.0003∗∗ (0.0001) −0.0005∗∗∗ (0.0002) −0.0002 (0.0002) −0.0002 (0.0002)
ClosenessCentralityt−1 0.008∗∗ (0.004) 0.009∗∗ (0.004) 0.009∗∗ (0.004) 0.010∗∗ (0.004)
Hub: 1 0.0002 (0.003) −0.001 (0.002) 0.0003 (0.002)
NetworkedF irmsCountt−1 0.0001 (0.0001) 0.0001 (0.0001) 0.0001 (0.0001)
AverageNetworkAget−1 −0.003∗∗∗ (0.001) −0.003∗∗∗ (0.001) −0.003∗∗∗ (0.001)
LegalNetwork: 1 0.006∗∗ (0.003) 0.005∗ (0.003) 0.006∗∗ (0.003)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00000∗∗∗ (0.00000)
AverageFirmSize: Micro −0.018∗∗∗ (0.004) 0.014∗∗∗ (0.004)
AverageFirmSize: SME 0.0002 (0.003) 0.020∗∗∗ (0.003)
InnovativeSME: 1 0.035∗∗∗ (0.009) 0.025∗∗∗ (0.009)
InnovativeStartup: 1 0.236∗∗∗ (0.050) 0.229∗∗ (0.115)
ROSt−1 0.001∗∗∗ (0.0001)
ln(LabProdt−1) −0.014∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.0005)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004)
Constant 0.042∗∗∗ (0.003) 0.051∗∗∗ (0.004) 0.060∗∗∗ (0.005) 0.081∗∗∗ (0.007)

Observations 55,270 55,270 52,806 48,443
N. unique firms 15,419 15,419 14,593 13,998

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector, and geographic fixed-effects. Asterisks
denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Unlike Pooled OLS 2.2, using LAD regression, Localized Density is negative across all

models, significant in Models (1) and Model (2) (p-value < 0.05 and p-value < 0.01, re-

spectively), becoming non-significant in Models (3) and (4). This suggests that when out-

liers’ influence is minimized, the relationship between localized density and firm growth

is negative, but the significance is captured by other control variables when added.

Closeness Centrality is consistent with previous results as it is positive across all specifi-

cations and gains consistent high level of significance at 5% level.

In terms of network characteristics, being a Hub remains non-significant across all models.

Being part of a Legal Network is significant across all models with minimum significance

level of 10%, with a positive impact on firm growth. Average Network Age’s negative im-

pact on firm growth is confirmed with high level of significance (p<0.01), suggesting the
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initial phase of a network is the most dynamic one. Networked Firms Count is positive

but non-significant.

Firm-level characteristics are all significant. Quadratic firm age is negative suggesting

diminishing returns in firm growth. Micro firms are shown with a significant negative

impact in Model (3) (p-value < 0.01) but becomes positive in Model (4) (p-value < 0.01),

indicating a change in the effect of firm size with additional controls. While SMEs tend

to a positive and significant impact in Model (4) (p-value < 0.01). Innovative SMEs and

Startups have consistent positive and significant impact with Startups having a higher

impact than SMEs (0.229 against 0.026).

Financial performance controls are all significant. Return on Sales (ROS) is positive and

significant in Model (4) with a coefficient of 0.001 (p-value < 0.01). Logarithm of Labor

Productivity is negative and significant in Model (4) at -0.014 level (p-value < 0.01).

Logarithm of Liquid Assets is positive and significant in Model (4) (p-value < 0.01).

Logarithm of Intangible Assets is positive and significant in Model (4) (p-value < 0.01).

Table 2.7: LAD - AverageGrowth
Dependent variable:

AverageGrowth
(1) (2) (3) (4)

LocalizedDensityt−1 −0.0003∗∗∗ (0.0001) −0.0004∗∗∗ (0.0001) −0.0002∗∗∗ (0.0001) −0.0004∗∗∗ (0.0001)
ClosenessCentralityt−1 0.020∗∗∗ (0.002) 0.022∗∗∗ (0.002) 0.021∗∗∗ (0.002) 0.020∗∗∗ (0.002)
Hub1 −0.002∗ (0.001) −0.004∗∗∗ (0.001) −0.004∗∗∗ (0.001)
NetworkedF irmsCountt−1 0.0002∗∗∗ (0.00004) 0.0002∗∗∗ (0.00004) 0.0002∗∗∗ (0.00004)
AverageNetworkAget−1 −0.006∗∗∗ (0.0003) −0.005∗∗∗ (0.0003) −0.004∗∗∗ (0.0002)
LegalNetwork: 1 0.002 (0.001) 0.002∗∗ (0.001) 0.002 (0.001)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro −0.028∗∗∗ (0.002) −0.019∗∗∗ (0.003)
AverageFirmSize: SME −0.007∗∗∗ (0.002) −0.005∗∗∗ (0.002)
InnovativeSME: 1 0.039∗∗∗ (0.004) 0.032∗∗∗ (0.004)
InnovativeStartup: 1 0.326∗∗∗ (0.007) 0.287∗∗∗ (0.081)
ROSt−1 0.002∗∗∗ (0.0001)
ln(LabProdt−1) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.001∗∗∗ (0.0002)
ln(IntangibleAssetst−1) 0.00001 (0.0002)
Constant 0.041∗∗∗ (0.002) 0.056∗∗∗ (0.002) 0.075∗∗∗ (0.003) 0.009∗∗ (0.004)

Observations 60,262 60,262 57,409 49,387
N. unique firms 15,483 15,483 14,711 14,133

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector, and geographic fixed-effects. Asterisks
denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 2.7 illustrates the regression table using AverageGrowth as the dependent vari-

able.

Also in this case differently from the OLS Pooled models Localized Density is negative
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across all models and always significant at 1% level.

Closeness Centrality is consistent as previous models with higher level of significance.

Most notable difference of these specifications is the Networked Firms Count of previous

year that becomes highly significant (p-value < 0.01) and positive, suggesting the num-

ber of firms a firm is exposed to through networks has a positive impact on the average

growth, suggesting benefits from being part of larger and multiple networks.

Firm characteristic controls are consistent with table 2.3, with lower magnitude possibly

not influeced by outliers.

Firm financial performance control become positive and significant except for the Intan-

gible assets.

Overall, the LAD regression underscores the importance of accounting for outliers and

non-normal error distributions. The more robust results confirm the positive impact for

firm of being central in a network, and shows the negative impact of Localized Density

on firm performance when the impact of outliers are minimized, highlighting the need

for a deeper investigation into the effects of Localized Density due to its inconsistent

significance across models.

2.3.3 LAD Interactions

The LAD regression results for FirmGrowth models indicate a consistent negative impact

of Localized Density across all models, similar to the AverageGrowth results where the

negative impact is also significant across all specifications. This suggests that higher

localized density may constrain firm growth due to increased competition and resource

constraints when outliers are minimized.

The inconsistent significance levels suggest that its impact on firm growth is complex

and might be influenced by other network characteristics. To better understand these

relationships an analysis on the interaction between Localized Density and other key

network characteristics is performed.

Interaction terms are employed by combining the effect of two or more variables on the

dependent variable, highlighting effects that might not be evident when considering each

variable independently. Specifically, it is possible to uncover non-linear relationships and

joint effects of two variables.

Interactions analyzed in this section are:
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• Density-Centrality interaction: this term examines how the impact of local-

ized density on firm growth is influenced by the firm’s closeness centrality within

the network. It captures the combined effect of the spatial concentration of firms

in the same area (localized density) and their relative position or influence within

the network (closeness centrality) on their economic performance.

• Brokerage: this term measures the extent to which a firm acts as a bridge between

different parts of the network. The interaction LocalizedDensity*HUB explores

how the role of firms as intermediaries (hubs, identified by reference_company)

within networks affects their growth, highlighting the importance of brokerage in

leveraging network connections for economic performance.

• Stability: it refers to the consistency or persistence of firms within a network over

time. The interaction term LocalizedDensity*NetworkedFirmsCount examines how

the impact of localized density on firm growth changes with the number of firms a

company is networked with, reflecting how stable, long-term network participation

influences performance in densely connected environments.

• Network Embeddedness: degree to which a firm is integrated within its network..

The interaction term LocalizedDensity*AverageNetworkAge analyzes how the com-

bined effect of localized density and the average age of the network influences firm

growth, showing how the impact of localized density on firm growth changes with

the longevity of the network.

• WeakStrongTie: this term differentiates between the strength of connections firms

have within the network, where weak ties represent informal network connections,

and strong ties indicate formal networks. The interaction term LocalizedDen-

sity*LegalNetwork explores whether the impact of localized density on firm growth

varies with the presence of legal networks, indicating how formal, strong ties in

dense networks affect performance.

The tables are composed by four specifications, model (1) and model(2) showing models

with FirmGrowth as dependent variable, model(3) and model(4) with AverageGrowth

as dependent variable. For each pair of models the first shows only the explanatory

variables and the interaction term while the second model specification adds all the

controls variables.
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Density-Centrality interaction

Table 2.8: Density-Centrality interaction

Dependent variable:
FirmGrowth AverageGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 −0.0002 (0.0002) −0.00002 (0.0002) −0.0002∗∗ (0.0001) −0.0003∗∗∗ (0.0001)
ClosenessCentralityt−1 0.012∗∗∗ (0.004) 0.012∗∗ (0.005) 0.023∗∗∗ (0.002) 0.021∗∗∗ (0.002)
LDt−1∗CCt−1 −0.010∗∗∗ (0.004) −0.011∗∗∗ (0.004) −0.005∗∗ (0.002) −0.004∗∗∗ (0.001)
Hub: 1 0.002 (0.003) −0.004∗∗∗ (0.001)
NetworkedF irmsCountt−1 0.0001 (0.0001) 0.0002∗∗∗ (0.00004)
AverageNetworkAget−1 −0.003∗∗∗ (0.001) −0.004∗∗∗ (0.0002)
LegalNetwork: 1 0.006∗∗ (0.003) 0.001 (0.001)
FirmAge2t−1 −0.00000∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro 0.014∗∗∗ (0.005) −0.019∗∗∗ (0.003)
AverageFirmSize: SMEs 0.019∗∗∗ (0.003) −0.005∗∗ (0.002)
InnovativeSME: 1 0.024∗∗∗ (0.009) 0.032∗∗∗ (0.004)
InnovativeStartup: 1 0.231∗∗ (0.117) 0.286∗∗∗ (0.081)
ROSt−1 0.001∗∗∗ (0.0001) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.014∗∗∗ (0.001) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.001) 0.001∗∗∗ (0.0003)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004) 0.00001 (0.0002)
Constant 0.043∗∗∗ (0.003) 0.082∗∗∗ (0.007) 0.041∗∗∗ (0.002) 0.010∗∗ (0.004)

Observations 55,270 48,443 60,262 49,387
N. unique firms 15,419 13,998 15,483 14,133

Note: LAD estimates and robust standard errors are given in parentheses. All regressions also include year, sector and region area fixed-
effects. Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results indicate that localized density negatively impacts average growth, as seen

from the significant negative coefficients in models 3 and 4. However, its effect on firm

growth is still negative but is not significant.

Closeness centrality is confirmed to positively impact both firm growth and average

growth across all models.

The interaction term between localized density and closeness centrality (LD Œ CC) is

negative and significant across all models, -0.011 (p<0.01) in model 2. This implies that

the positive effect of centrality on growth diminishes for firms with high localized den-

sity. The results indicate that while centrality within a network generally promotes firm

growth, this effect are reduced when firms are in densely populated network areas. This

interaction suggests a trade-off between being central in a densely populated network

area and the associated benefits of growth.
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Brokerage

The table "Brokerage: LD-Hub Interaction" examines how the interaction between local-

ized density and being a hub firm affects firm growth and average growth.

Table 2.9: Brokerage: LD-Hub Interaction

Dependent variable:
FirmGrowth AverageGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 0.0002 (0.001) 0.0004 (0.0005) 0.0001 (0.0002) 0.0002 (0.0003)
ClosenessCentralityt−1 0.008∗∗ (0.004) 0.010∗∗ (0.004) 0.021∗∗∗ (0.002) 0.017∗∗∗ (0.002)
LDt−1 ∗Hub:1 −0.0005 (0.0005) −0.001∗ (0.0003) −0.0004∗∗ (0.0002) −0.001∗∗ (0.0002)
NetworkedF irmsCountt−1 0.0001 (0.0001) 0.0002∗∗∗ (0.00004)
AverageNetworkAget−1 −0.003∗∗∗ (0.001) −0.004∗∗∗ (0.0002)
LegalNetwork: 1 0.006∗∗ (0.003) 0.001 (0.001)
FirmAge2t−1 −0.00000∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro 0.014∗∗∗ (0.004) −0.019∗∗∗ (0.003)
AverageFirmSize: SME 0.020∗∗∗ (0.003) −0.005∗∗∗ (0.002)
InnovativeSME: 1 0.025∗∗∗ (0.009) 0.030∗∗∗ (0.005)
InnovativeStartup: 1 0.228∗∗ (0.113) 0.286∗∗∗ (0.081)
ROSt−1 0.001∗∗∗ (0.0001) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.014∗∗∗ (0.001) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.001) 0.001∗∗∗ (0.0003)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004) −0.00003 (0.0002)
Constant 0.042∗∗∗ (0.003) 0.081∗∗∗ (0.007) 0.041∗∗∗ (0.002) 0.010∗∗∗ (0.004)

Observations 55,270 48,443 60,262 49,387
N. unique firms 15,419 13,998 15,483 14,133

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects.
Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The interaction term LDt−1 ∗Hub:1 is negative in all models, being significant for firm

growth when all controls are added, although at a 10% level, but is significant in both

base and controlled specifications for average growth. This suggests that when localized

density is high, being a hub might slightly reduce the positive effect on firm growth.

Stability

The interaction term LDt−1 ∗NetworkedF irmsCountt−1 shows to not be significant for

FirmGrowth while it is positive and significant for AverageGrowth.

Compariing the results with tables 2.6 and 2.7 shows that the interaction term does not

significantly alter the coefficients and the significance of the model. Possibly due to the

fact that Localized Density is positively correlated with NetworkedFirmsCount (0.43).
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Table 2.10: Stability: LD-NetworkedFirmsCount Interaction
Dependent variable:

FirmGrowth AverageGrowth
(1) (2) (3) (4)

LocalizedDensityt−1 −0.001∗∗ (0.0004) −0.0005 (0.0004) −0.002∗∗∗ (0.0002) −0.002∗∗∗ (0.0002)
ClosenessCentralityt−1 0.008∗∗ (0.004) 0.008∗ (0.005) 0.019∗∗∗ (0.002) 0.016∗∗∗ (0.002)
LDt−1 ∗NetworkedF irmsCountt−1 0.00001 (0.00001) 0.00001 (0.00001) 0.00004∗∗∗ (0.00001) 0.00003∗∗∗ (0.00001)
Hub: 1 0.0002 (0.003) −0.004∗∗∗ (0.001)
AverageNetworkAget−1 −0.003∗∗∗ (0.001) −0.004∗∗∗ (0.0002)
LegalNetwork: 1 0.006∗∗ (0.003) 0.003∗∗∗ (0.001)
FirmAge2t−1 −0.00000∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro 0.013∗∗∗ (0.005) −0.019∗∗∗ (0.003)
AverageFirmSize: SME 0.019∗∗∗ (0.003) −0.005∗∗ (0.002)
InnovativeSME: 1 0.024∗∗∗ (0.009) 0.032∗∗∗ (0.005)
InnovativeStartup: 1 0.228∗∗ (0.115) 0.282∗∗∗ (0.083)
ROSt−1 0.001∗∗∗ (0.0001) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.014∗∗∗ (0.001) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.001) 0.001∗∗∗ (0.0002)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004) −0.00003 (0.0002)
Constant 0.042∗∗∗ (0.003) 0.083∗∗∗ (0.007) 0.042∗∗∗ (0.002) 0.013∗∗∗ (0.004)

Observations 55,270 48,443 60,262 49,387
N. unique firms 15,419 13,998 15,483 14,133

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects. Asterisks denote
significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Embeddedness

Table 2.11: Embeddedness: LD - NetworkAge
Dependent variable:

FirmGrowth AverageGrowth
(1) (2) (3) (4)

LocalizedDensityt−1 0.001∗∗ (0.0003) 0.001∗∗ (0.0004) 0.001∗∗∗ (0.0002) 0.001∗∗∗ (0.0002)
ClosenessCentralityt−1 0.009∗∗ (0.004) 0.012∗∗∗ (0.005) 0.020∗∗∗ (0.002) 0.024∗∗∗ (0.002)
LDt−1 ∗AverageNetworkAget−1 −0.0002∗∗∗ (0.00004) −0.0003∗∗∗ (0.0001) −0.0003∗∗∗ (0.00003) −0.0003∗∗∗ (0.00003)
Hub: 1 0.001 (0.003) −0.005∗∗∗ (0.001)
NetworkedF irmsCountt−1 0.0001 (0.0001) 0.0003∗∗∗ (0.00005)
LegalNetwork: 1 0.006∗∗ (0.003) 0.001 (0.001)
FirmAge2t−1 −0.00000∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro 0.013∗∗∗ (0.005) −0.020∗∗∗ (0.003)
AverageFirmSize: SME 0.019∗∗∗ (0.003) −0.007∗∗∗ (0.002)
InnovativeSME: 1 0.025∗∗∗ (0.009) 0.029∗∗∗ (0.005)
InnovativeStartup: 1 0.237∗∗ (0.120) 0.280∗∗∗ (0.055)
ROSt−1 0.001∗∗∗ (0.0001) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.013∗∗∗ (0.001) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.001) 0.001∗∗ (0.0003)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004) −0.0001 (0.0002)
Constant 0.041∗∗∗ (0.003) 0.072∗∗∗ (0.007) 0.040∗∗∗ (0.002) −0.003 (0.004)

Observations 55,270 48,443 60,262 49,387
N. unique firms 15,419 13,998 15,483 14,133

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects. Asterisks denote
significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When including the LDt−1 ∗AverageNetworkAget−1 interaction in the model the

Localized Density’s impact on firm growth becomes positive with a coefficient of 0.001

for all models.
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The coefficients of the interaction term on FirmGrowth is -0.0002 in model (1) and -

0.0003 in model (2), both significant at the 1% level. For AverageGrowth the coefficient

is -0.0003 for both model (3) and (4) at 1% level.

The positive effect of localized density indicates that firms in higher localized density area

tend to grow more, but the negative and significant interaction term indicates that the

positive effect of localized density on growth diminishes as the average age of networks to

which a firm participates in increases. Suggesting older networks might not be as effective

in leveraging the benefits of high localized density, possibly due to a stagnation of the

network where benefits provided by density can no longer be translated into significant

growth.

Weak Strong Tie

Table 2.12 explores how formal, strong ties in dense networks affect performance.

Table 2.12: WeakStrongTie: LD - LegalNetwork

Dependent variable:
FirmGrowth AverageGrowth

(1) (2) (3) (4)
LocalizedDensityt−1 −0.0002 (0.0005) −0.0001 (0.0004) −0.0002 (0.0002) −0.0004 (0.0003)
ClosenessCentralityt−1 0.008∗∗ (0.004) 0.009∗ (0.005) 0.020∗∗∗ (0.002) 0.019∗∗∗ (0.002)
LDt−1 ∗LegalNetwork:1 −0.0001 (0.0003) −0.00005 (0.0003) −0.00004 (0.0001) 0.00002 (0.0002)
Hub: 1 0.0004 (0.003) −0.004∗∗∗ (0.001)
NetworkedF irmsCountt−1 0.0001 (0.0001) 0.0002∗∗∗ (0.00004)
AverageNetworkAget−1 −0.003∗∗∗ (0.001) −0.004∗∗∗ (0.0002)
FirmAge2t−1 −0.00000∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro 0.013∗∗∗ (0.004) −0.019∗∗∗ (0.003)
AverageFirmSize: SME 0.019∗∗∗ (0.003) −0.005∗∗ (0.002)
InnovativeSME: 1 0.026∗∗∗ (0.009) 0.032∗∗∗ (0.005)
InnovativeStartup: 1 0.228∗∗ (0.111) 0.285∗∗∗ (0.079)
ROSt−1 0.001∗∗∗ (0.0001) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.014∗∗∗ (0.001) 0.008∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.003∗∗∗ (0.001) 0.001∗∗∗ (0.0003)
ln(IntangibleAssetst−1) 0.002∗∗∗ (0.0004) 0.00003 (0.0002)
Constant 0.042∗∗∗ (0.003) 0.081∗∗∗ (0.007) 0.041∗∗∗ (0.002) 0.009∗∗ (0.004)

Observations 55,270 48,443 60,262 49,387
N. unique firms 15,419 13,998 15,483 14,133

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects.
Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The interaction between localized density and legal network membership does not

produce a significant impact on firm or average growth (not significant for all models).

This suggests that while being part of a legal network and having high centrality within
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a network can be beneficial for firm performance, the density of the network does not

significantly enhance or detract from these benefits. The strong formal ties provided by

legal networks and the advantages of centrality appear to operate independently of the

network’s localized density.

In summary, the analysis of interaction terms produced some precious findings about

the dynamics of how network characteristics interact with localized density to impact

economic performance. Key insights are that while centrality promotes firm growth its

positive effects are mitigated in densely populated networks. The network embeddedness

has a negative impact of firm growth showing how the positive effects of localized density

diminishes as the average age of the network increases. The insignificant interaction be-

tween localized density and legal network membership suggests that advantages provided

by strong formal ties are possibly independent of the localized density of each firm.

2.3.4 Time Split Analysis

To further investigate the determinants of firm performance and enhance the robustness

of the analysis, a time split analysis of the various model specifications are employed.

To analyze the time split effects the dataset is separated in 2 time periods: 2016-2019 and

2020-2022, useful to understand to differences in the impact of the explanatory variables

on the economic performance.

The pre-pandemic period (2016-2019) represents a relatively stable economic environ-

ment, while the pandemic period (2020-2022) introduces unique challenges and uncer-

tainties. This temporal segmentation allows for a comparative analysis that highlights

how firms and networks adapt to changing conditions.

To achieve more precise and robust results on Average Growth in this splitting, the mea-

sure is recalculated within each period.

InnovativeStartup control variable is removed due to non sufficient amount of cases, not

allowing a correct computation and comparison of the models.

Table 2.13 presents four different model specificications, model (1) and model (2) are

the models specific to the time period 2016-2019, model (3) and model (4) are related

to the time period 2020-2022. For each time period the first column represents the

specifications with FirmGrowth as dependent variable and the second column represents

the specifications with AverageGrowth as dependent variable.
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Table 2.13: Time Split Analysis
Dependent variable:

FirmGrowth AverageGrowth FirmGrowth AverageGrowth
2016-2019 2020-2022

(1) (2) (3) (4)
LocalizedDensityt−1 0.00004 (0.0002) −0.0004∗∗∗ (0.0001) −0.0002 (0.0004) −0.0003∗∗∗ (0.0001)
ClosenessCentralityt−1 0.016∗∗∗ (0.006) 0.020∗∗∗ (0.004) 0.003 (0.007) 0.010∗∗∗ (0.003)
LDt−1∗CCt−1 −0.001 (0.004) 0.003∗∗∗ (0.001) −0.013∗∗∗ (0.004) −0.004∗∗∗ (0.001)
Hub: 1 0.0001 (0.003) −0.007∗∗∗ (0.002) 0.004 (0.004) −0.003 (0.002)
NetworkedF irmsCountt−1 0.0001 (0.0002) 0.0002∗ (0.0001) 0.0001 (0.0001) 0.0001 (0.0001)
AverageNetworkAget−1 −0.002∗∗∗ (0.001) −0.003∗∗∗ (0.0004) −0.003∗∗∗ (0.001) −0.005∗∗∗ (0.0004)
LegalNetwork: 1 0.004 (0.004) 0.006∗∗∗ (0.002) 0.004 (0.005) −0.001 (0.002)
FirmAge2t−1 −0.00001∗∗∗ (0.00000) −0.00001∗∗∗ (0.00000) −0.00000∗∗ (0.00000) −0.00001∗∗∗ (0.00000)
AverageFirmSize: Micro −0.018∗∗∗ (0.006) −0.031∗∗∗ (0.004) 0.050∗∗∗ (0.008) −0.007 (0.005)
AverageFirmSize: SME 0.005 (0.004) −0.007∗ (0.004) 0.036∗∗∗ (0.006) 0.0001 (0.004)
InnovativeSME: 1 0.030∗∗ (0.012) 0.037∗∗∗ (0.006) 0.011 (0.021) 0.033∗∗∗ (0.008)
ROSt−1 0.002∗∗∗ (0.0002) 0.003∗∗∗ (0.0001) −0.0004∗ (0.0002) 0.002∗∗∗ (0.0001)
ln(LabProdt−1) −0.011∗∗∗ (0.001) 0.004∗∗∗ (0.001) −0.017∗∗∗ (0.002) 0.011∗∗∗ (0.001)
ln(LiquidAssetst−1) 0.001∗∗ (0.001) 0.001∗∗ (0.0004) 0.005∗∗∗ (0.001) −0.00004 (0.0005)
ln(IntangibleAssetst−1) 0.001∗∗ (0.0005) −0.0003 (0.0003) 0.003∗∗∗ (0.001) 0.0004 (0.0003)
Constant 0.086∗∗∗ (0.009) 0.017∗∗∗ (0.006) −0.045∗∗∗ (0.012) 0.020∗∗∗ (0.006)

Observations 19,312 19,951 29,131 30,328
N. unique firms 8,921 9,227 12,373 12,682

Note: LAD estimates and standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects. Asterisks denote
significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The effect of LocalizedDensity on FirmGrowth, shows a non-significant positive asso-

ciation in 2016-2019 and a non-significant negative association in 2020-2022. However,

it is negatively and significantly (p<0.01) associated with AverageGrowth of firms in

both periods. This indicates that higher localized density consistently constrains average

growth, but its impact on firm growth is not statistically significant in either period.

ClosenessCentrality is positively and significantly associated with both FirmGrowth and

AverageGrowth during 2016-2019, suggesting that centrality within the network leads

to higher growth during stable economic conditions.In the 2020-2022 period, Closeness-

Centrality becomes non-significant for FirmGrowth but remains positively significant for

AverageGrowth at the 1% level, indicating that centrality continues to benefit average

growth even during the pandemic, though its effect on firm growth diminishes.

To study the dynamic effects of LocalizedDensity, the interaction with ClosenessCentral-

ity is included. LDt−1∗CCt−1 has insignificant negative impact (-0.001) on FirmGrowth

and is significant and positive (0.003) for AverageGrowth in 2016-2019, implying a syn-

ergistic effect in stable periods. However, this interaction becomes significantly negative

in 2020-2022 for both FirmGrowth (-0.013) and AverageGrowth (-0.004) at 1% level,

indicating that the benefits of centrality are reduced in high-density areas during the
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pandemic.

Micro-sized firms exhibit significant negative effects on both FirmGrowth and Average-

Growth during 2016-2019. However, from 2020 to 2022, Micro-firms show a significant

positive association with FirmGrowth, while their impact on AverageGrowth becomes

non-significant, suggesting that smaller firms participating in networks performed better

than larger firms in less stable periods.

SMEs show a marginal positive effect on FirmGrowth (not significant) and a significant

negative effect on AverageGrowth (p<0.1) in 2016-2019. During 2020-2022, SMEs show

a significant positive association with FirmGrowth but no significant impact on Average-

Growth, indicating that SMEs participating in networks also adapted well to the unstable

environment.

The remaining characteristic controls show consistent impacts aligning with previous

models.

The analysis reveals that while localized density consistently constrains average growth,

its impact on firm growth varies with economic conditions. Closeness centrality is ben-

eficial during stable times but less impactful during crises, and the interaction between

density and centrality highlights a complex dynamic where the advantages of centrality

diminish in densely populated networks during unstable periods.
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2.4 Panel Regression

The dataset used in this research is a panel dataset or longitudinal dataset, it is a multi-

dimensional dataset containing time series observations of multiple entities (in this case,

firms) across different dimensions (firm growth, firm age, region group, average size etc.).

The characteristics of a panel dataset allows the study of changes over time while con-

sidering differences among firms and other characteristics using panel regression.

A panel regression leverages the characteristics of the panel structure allowing the

study of cross-sectional variations (across entities) and time-series variations (across

time).

There are different types of panel regression models:

• Fixed Effects Model: it controls for time-invariant characteristics of the entities

using entity-specific intercept.

• Random Effects Model: it assumes random entity-specific effects that are

uncorrelated with all predictors included in the model.

In the context of this research, fixed effect models are used to control for potential

correlation between entity-specific effects on predictors, it is reasonable to assume such

correlations because of the firm-specific characteristics, firms are likely to have unob-

served characteristics that could influence their performance and be correlated also with

predictors. For example, management quality, firm culture, financial strategy and other

qualities that are different for each firm influence firm growth and can be correlated with

ROS, liquidity or intangible assets.

The regression equation for a fixed effect model would be:

FirmGrowthit = αi + β1LocalizedDensityi,t−1 + β2ClosenessCentralityi,t−1

+ δtYeart + γjSectorj + θkRegionGroupk + εit (2.3)

Where:

• FirmGrowthit: Dependent variable representing the growth of firm i at time t.

• αi: The firm-fixed effect, capturing time-invariatn characteristics of firm i.

• β0: Intercept term.
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• β1: Coefficient for the effect of localized density on firm growth.

• LocalizedDensityi,t−1: Lagged independent variable representing the localized den-

sity for firm i at time t− 1.

• β2: Coefficient for the effect of closeness centrality on firm growth.

• ClosenessCentralityi,t−1: Lagged independent variable representing the closeness

centrality for firm i at time t− 1.

• δtYeart: Time fixed effects, where δt are the coefficients for each year dummy vari-

able Yeart.

• γjSectorj: Sector fixed effects, where γj are the coefficients for each sector dummy

variable Sectorj.

• θkRegionGroupk: Geographic fixed effects, where θk are the coefficients for each

region group dummy variable RegionGroupk.

• εit: Error term capturing unobserved factors affecting firm growth for firm i at time

t.

By controlling for network and firm specific controls would be:

FirmGrowthit = αi + β1LocalizedDensityi,t−1 + β2ClosenessCentralityi,t−1

+ β3NetworkCharit + β4FirmCharit + β5FirmPerfit

+ δtYeart + γjSectorij + θkGeographyik + εit

(2.4)

Where:

• FirmGrowthit: Dependent variable representing the growth of firm i at time t.

• αi: The firm fixed effect, capturing time-invariant characteristics of firm i.

• β1: Coefficient for the effect of localized density on firm growth.

• LocalizedDensityi,t−1: Independent variable representing the localized density for

firm i at time t− 1.

• β2: Coefficient for the effect of closeness centrality on firm growth.

• ClosenessCentralityi,t−1: Independent variable representing the closeness centrality

for firm i at time t− 1.

• β3: Coefficient for the effect of network characteristic controls on firm growth.
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• NetworkCharit: Vector of control variables related to network characteristics.

• β4: Coefficient for the effect of firm characteristic controls on firm growth.

• FirmCharit: Vector of control variables related to firm-specific characteristics.

• β5: Coefficient for the effect of financial performance controls on firm growth.

• FirmCharit: Vector of control variables related to firm-specific financial perfor-

mance.

• δtYeart: Time fixed effects, where δt are the coefficients for each year dummy vari-

able Yeart.

• γjSectorj: Sector fixed effects, where γj are the coefficients for each sector dummy

variable Sectorj.

• θkRegionGroupk: Geographic fixed effects, where θk are the coefficients for each

region group dummy variable RegionGroupk.

• εit: Error term capturing unobserved factors affecting firm growth for firm i at time

t.

2.4.1 Panel Regression Models

In this section panel regression with fixed effect models are analyzed. Using the fixed effect

model we account for individual fixed effects, accounting for unobserved heterogeneity

across firms that may influence the dependent variable. The models include year, sector,

and region fixed effects to control for unobserved heterogeneity across time, industries,

and regions.

Table 2.14 presents the results from fixed effect regression models with depedent vari-

able FirmGrowth and AverageGrowth.

The models are employed progressively starting from a basic fixed effect model which only

accounts for the effect of the independent variables (localized density and centrality) on

firm growth and average growth (model 1 and 4 respectively).

In model (2) and (5) control for network characteristic controls are added. At last, in

Model (3) and (6) firm level controls are added.

Campared to previous OLS and LAD models firm specific controls such as AverageFirm-

Size, InnovativeStartup and InnovativeSMEs are excluded as they are accounted for by
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the firm-fixed effect.

Table 2.14: Fixed Effect Models
Dependent variable:

FirmGrowth AverageGrowth
(1) (2) (3) (4) (5) (6)

LocalizedDensityt−1 −0.005 (0.004) −0.005 (0.005) −0.003 (0.003) 0.0003 (0.004) 0.00005 (0.005) −0.0004 (0.003)
ClosenessCentralityt−1 0.051 (0.051) 0.044 (0.054) 0.026 (0.044) 0.007 (0.051) 0.008 (0.054) 0.012 (0.044)
Hub: 1 −0.005 (0.038) −0.013 (0.030) 0.004 (0.038) 0.011 (0.030)
NetworkedF irmsCountt−1 −0.0003 (0.001) −0.0002 (0.001) 0.0001 (0.001) 0.0002 (0.001)
AverageNetworkAget−1 0.005 (0.006) 0.001 (0.005) −0.003 (0.006) 0.0004 (0.005)
LegalNetwork: 1 0.013 (0.018) 0.010 (0.014) 0.003 (0.018) 0.003 (0.014)
FirmAge2t−1 0.0003∗∗∗ (0.0001) 0.00001 (0.0001)
ROSt−1 0.001∗∗ (0.001) 0.0001 (0.001)
ln(LabProdt−1) −0.485∗∗∗ (0.018) −0.008 (0.018)
ln(LiquidAssetst−1) 0.001 (0.003) −0.0002 (0.003)
ln(IntangibleAssetst−1) 0.013∗∗∗ (0.003) 0.0003 (0.003)

Observations 49,536 49,536 43,387 53,934 53,934 43,946
N. unique firms 11,414 11,384 10,445 11,188 11,162 10,317
R2 0.050 0.050 0.196 0.008 0.009 0.010

Note: Robust standard errors are given in parentheses. Standard errors are clustered at firm level. All regressions also include year, sector and region area
fixed-effects. Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

LocalizedDensity shows negative but insignificant effect on FirmGrowth, on Average-

Growth the effect is also non-significant and becomes negative when all control variables

are added.

ClosenessCentrality exhibit positive coefficients across all models but are not statistically

significant.

Differently from previous models, none of the network characteristics have a significant

impact on growth rates. Firm controls show higher level of significance on FirmGrowth,

while are insignificant for the smoothed AverageGrowth. This is possibly due to the na-

ture off AverageGrowth being an aggregate measure, which tends to have lower variability

making it less sensitive to firm operational controls.

The reason of the non significance of all network characteristics contrary to all previous

models could be found in the variability of these variables showed in table 2.15, each row

represents the network variables of interest with variance values represented as minimum,

first quantile, median, mean, third quantile and maximum variance.

The median variance for almost all variables is near 0, except for AverageNetworkAge,

which is expected to vary as networks grow older each year. The first and third quantile

variances for both Localized Density and Closeness Centrality are very low (0.3 and 0,

respectively), indicating that the median firm, once part of one or more networks, rarely

changes its position within the network.

Additionally, for the remaining network variables, once a firm joins a set of networks,
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Table 2.15: Variances of Network Characteristic Variables
Variable Min 1st Qu. Median Mean 3rd Qu. Max
LocalizedDensity_var 0.0000 0.0000 0.0002 8.5682 0.3333 2097.3779
ClosenessCentrality_var 0.000 0.000 0.000 0.003 0.000 0.395
Hub_var 0.000000 0.000000 0.000000 0.001177 0.000000 0.333333
NetworkedFirmsCount_var 0.000 0.000 0.000 48.925 4.267 15492.000
AverageNetworkAge_var 0.000 1.000 1.667 2.159 3.500 19.000
LegalNetwork_var 0.00000 0.00000 0.00000 0.02799 0.00000 0.50000

the composition tends to remain stable with only a few outliers showing significant vari-

ance, impacting the mean (NetworkedFirmsCount and Localized Density). This stability

suggests that firms typically do not experience much change in network composition over

time.

Given this context, it is reasonable to understand why the FE models show non-

significant results for these network characteristics. The lack of significant variability in

these variables over time means that participation in networks with certain characteristics

depend on firm-specific unobservable characteristics like managerial skills and decision

making capacity, which are accounted for in the FE model when controlling for time-

invariant characteristics. In contrast, the LAD regression effectively captures the influence

of these variables.





Chapter 3

Methodology

This chapter outlines the methodologies employed to investigate the impact of network

contracts and spatial proximity on economic performance on participating firms, it in-

cludes the data preparation and cleaning process, the construction of the panel dataset,

the computation of spatial measures and the statistical techniques employed.

In the initial stage of the research, the Network Contract Dataset was subjected

to cleaning and preparation processes to ensure consistency. This was accomplished

using the R programming language, specifically using libraries such as readxl for reading

Excel files, data.table for high-performance data processing, and stringi for string

operations, alongside base functions of R.

3.1 Data Collection and Preparation

The first step of the research is the cleaning and preparation of the data (Network Con-

tract Dataset) aiming to achieve a consistent panel dataset. This is performed using the

R programming language, utilizing libraries such as tidyverse for data manipulation,

data.table for high-performance data processing, and stringi for string operations,

alongside base functions of R.

The process addresses several critical issues, among which are:

• Naming convention and format inconsistencies: the naming of variables, columns,

or categories were non-consistent across different years and between the Elenco

and Soggetto Giuridico datasets.

• Missing values: the presence of missing values within variables across different years
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due to human error during data entry or database inconsistencies.

• Data duplications: duplicated records occur within the dataset due to overlapping

firms between the Elenco and Soggetto Giuridico datasets or inadvertent du-

plication of network entries caused by naming errors or entry duplication when

registering network information.

3.1.1 Data Integration and Standardization

The datasets are provided by Confindustria, and are structured in Excel files for each

year from 2016 to 2023. Each Excel file is composed by two sheets, Elenco and Soggetto

Giuridico. The latter representing a table of firms and networks which formed a legal

contract.

The data tables are loaded separately and column names are standardized to avoid

inconsistencies for merging purposes. A column ’identification’ is created and 0 is

assigned for each record present in the Elenco dataframe, 1 for records in Soggetto

Giuridico.

Following the column name standardization, 3 functions are created and used for the

cleaning process:

• clean_text: text cleaning function, which cleans any input element from punctu-

ation, blanks, quotation marks.

• clean_descriptions: a column cleaning function which cleans and standardizes

text within specified column of a data frame adding the cleaned column to the

original data frame.

• merge_and_process: a merge and process function which combines data frames

Elenco and Soggetto Giuridico for specified year and applies above functions

to the columns. After the process it creates a year column specifying which year

merged dataset is originated from.

Combining the merged datasets for each year creates the effective panel data structure

that will be used, containing the time series for each firm and network.

Further processing is performed on the combined panel by removing the rows with

missing firm taxcode values as these cannot be recovered anywhere, patterns such as
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’RETE’, ’RETI’, ’NETWORK’, ’NET’ specifying networks are removed from network

names. Old names are kept for consistency checks in successive steps.

The process above handles complex data merging, cleaning and processing tasks se-

quentially, preparing the data for the next step on duplication detection.

3.1.2 Duplicates detection

The main issue of the dataset is the problem of duplicated records within the dataset

caused by naming errors or entry duplication when registering network information. Ex-

ample of naming errors can be:

• Simple typing errors: where one letter is missing, or some letters have reversed or-

ders and other kind of typos. (i.e. ’ARIANNAILFILODELLARICOSTRUZIONE’,

’ARIANNILFILODELLARICOSTRUZIONE’)

• Insertion errors: where one word or multiple extra words are included with the

result that a network can be present twice in the same year with the two different

names. (i.e. ’RETEIMPRESEBALNEARIVIAREGGIO’, ’RETEIMPRESEBAL-

NEARIVIAREGGIORIVA’)

Initially the idea was to use network identifiers such as act_number, network_taxcode,

repertoire_number and network_repertoire_number. But the codes are not unique

identifiers due to input errors: a single identification is attributed to multiple different

network names. For example, table 3.1 shows the top 5 act numbers and unique network

names to which it is associated.

Table 3.1: Top 5 Act Numbers associated to different networks
act_number n_networks
3 11
1 7
149 6
166 6
1197 5

In total there are 1103 act number out of 6987 associated with multiple networks.

Similarly, 17 out of 1608 network taxcodes, 344 out of 7960 repertoire number and 30 out

of 1493 network repertoire number associated with more than 1 network.
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Considering non reliability of the identifiers, and the presence of insertion errors in the

name, to achieve robustness and non duplicated network-firm records, similarity matching

is performed on networks names.

Similarity Matching

To find matching name pairs, Jaro-Winkler similarity scores is calculated on pair of

network name strings.

Jaro-Winkler is a metric used for measuring the similarity between two strings. It

combines the Jaro Similarity measure where the similarity is measured based on the

number and order of the matching characters to the Winkler adjustment which provides

better ratings to strings with matching initial characters, useful for typographical errors.

The formula for Jaro similarity is:

J =
1

3

(
m

|s1|
+

m

|s2|
+

m− t

m

)
(3.1)

Where:

• |s1| and |s2| are the lengths of the two strings.

• m is the number of matching characters.

• t is the number of transpositions.

The Winkler adjustment is an enhancement to the Jaro similarity that gives more

favorable ratings to strings that match from the beginning. This is useful in cases where

typographical errors are more likely to occur at the end of the string.

The adjustment formula is:

W = J + (l · p · (1− J)) (3.2)

Where:

• J is the Jaro similarity score.

• l is the length of the common prefix at the start of the string, up to a maximum of

4 characters.

• p is a scaling factor, set to 0.1.
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The Jaro-Winkler score of the example cited before(’ARIANNAILFILODELLARI-

COSTRUZIONE’ and ’ARIANNILFILODELLARICOSTRUZIONE’) is 0.96, correctly

identifying the matching names. The total number of unique network names before

cleaning is 8711. To perform the similarity matching of these unique network names

more than 30.000.000 pairs need to be created, which requires to maximize performance

and efficiency through parallel processing to perform the computations leveraging multi-

ple cores to distribute the workload. Jaro-Winkler score is computed for each pairs using

the libraries RecordLinkage, doParallel, foreach.

combinations <− CJ(String1 = unique_net, String2 = unique_net)[String1 <= String2]

setDT(combinations)

no_cores <− detectCores() − 1

cl <− makeCluster(no_cores)

string1 <− combinations$String1

string2 <− combinations$String2

clusterEvalQ(cl, library(RecordLinkage))

clusterExport(cl, varlist = c("string1", "string2"))

JaroWinklerSimilarity <− parLapply(cl, seq_along(string1), function(i) {

jarowinkler(string1[i], string2[i])})

combinations[, JaroWinklerSimilarity := unlist(JaroWinklerSimilarity)]

combinations <− combinations %>% arrange(desc(JaroWinklerSimilarity))

stopCluster(cl)

registerDoSEQ()

high_similarity <− combinations[JaroWinklerSimilarity >= 0.90]

The above R code generates combinations of network names and ensures each pair is

unique and not repeated, then it setup the parallel computing environment by finding the

number of CPU cores available and initializes a cluster for parallel computing. Package

RecordLinkage and the string pairs are loaded into each cluster, after this Jaro-Winkler

similarity is calculated and stored in column JaroWinklerSimilarity in the data table with

the string pairs. In the end clusters are stopped and only similarity scores above 90% are

saved, creating a table with 5400 pairs of similar network names.

To identify the paired networks, an ID code identifying the pair is created, network

names associated to more than 1 pair need to be attributed the same ID, the process is
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coded as the following:

similarities <− df_similarities %>%

arrange(desc(JaroWinklerSimilarity)) %>%

mutate(new_index = row_number()) %>%

select(new_index, String1, String2)%>%

pivot_longer(cols = c(String1, String2), names_to = "StringType", values_to = "StringValue")

%>%

select(new_index, StringValue) %>%

rename(network_name = StringValue, ID = new_index) %>%

group_by(network_name) %>%

slice(1) %>%

ungroup()%>%

group_by(ID) %>%

mutate(count = n()) %>%

ungroup()

singles <− similarities %>% filter(count %% 2 == 1)

multiples <− similarities %>% anti_join(singles)

An ID column is created using the index number for each network pair, the table is

then converted to a long format so each network name is associated with the number

grouping similar network names with the same ID. The long format conversion is used

also the keep only one for each unique network without repetition, identifying 2687 unique

networks.

There are cases of IDs with only a single network associated, this happens in cases when

one network is paired with multiple networks, so the paired table is saved as dataframe

multiples (1690 records) and a table with IDs associated with single networks is saved

as singles (997 records).

singles <− singles %>%

rowwise() %>%

mutate(new_ID = {

scores <− sapply(multiples$network_name, function(multiple) {

jarowinkler(network_name, multiple)

})

if (length(scores) > 0 && max(scores) > 0.95) {

multiples$ID[which.max(scores)]

} else {

ID

}

}) %>%

select(−ID) %>%
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rename(ID=new_ID)

similarities <− bind_rows(singles, multiples) %>%

select(ID, network_name)

The above step improves the accuracy of matching. For network name entries in

’singles’, it tries to find a corresponding entry in multiples that is very similar (similarity

score above 0.95). This helps in identifying and consolidating near-duplicate entries.

In the end the two datasets are recombined into one achieving a more accurate grouping

of similar network names. The IDs are joined into the main dataset using network name

as key for the operation. A total number of 84,900 records over 277,739 have an ID

number.

A high similarity score alone is not insufficient to determine whether the networks are

the same, additional control checks are performed prior to network name uniforming.

A first check consists in controlling if networks with the same ID have the same firms

associated with them across multiple years. The function check_same_firms performs

this operation and returns two dataframes: df_trues containing networks with identical

firm member list across all years and df_false containing networks with non-matching

firm lists.

check_same_firms <− function(df) {

# Create a unique list of firm tax codes for each ID, network name, and year

df_unique_imp <− df %>%

filter(!is.na(ID)) %>%

group_by(ID, network_name, year) %>%

summarise(unique_cf_impresa = list(sort(unique(firm_taxcode))),

.groups = ’drop’)

# Filter IDs with more than one distinct network name

df_filtered <− df_unique_imp %>%

group_by(ID) %>%

filter(n_distinct(network_name) > 1) %>%

ungroup()

# Helper function to check if all lists of firm tax codes are identical

all_lists_equal <− function(lists) {

all(map2_lgl(lists[−1], lists[−length(lists)], ~identical(.x, .y)))

}

# Check if all lists of firm tax codes are identical for each ID and year
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df_filtered <− df_filtered %>%

group_by(ID, year) %>%

mutate(all_lists_equal = ifelse(n_distinct(network_name) > 1 & all_lists_equal(unique_cf_

impresa), TRUE, FALSE)) %>%

ungroup()

# Filter IDs where all lists are equal

df_trues <− df_filtered %>%

group_by(ID) %>%

filter(all(all_lists_equal == TRUE)) %>%

ungroup()

# Get unique network names where all lists are equal

unique_network_names <− unique(df_trues$network_name)

# Filter out the rows where network names are in the unique list

df_false <− df_filtered %>%

filter(!network_name %in% unique_network_names)

return(list(df_trues = df_trues, df_false = df_false))

}

Networks in df_trues are already identified as same network as they have high sim-

ilarity score and all years with the same network participants, a total of 38 observa-

tions (8 network names) meet these requirements. For the remaining networks (saved

in df_false, with 7696 observations, 1733 unique network names), the function

high_common evaluates and filters network names based on the proportion of common

firm participants, if all the participants in one network are the same as the bigger network

with same ID. It identifies the networks with high commonality or full containment as the

same network, while others with lower commonality are considered different. The ratio-

nale is that if most of the firms still match, it is reasonable to believe it is a duplication,

if very low percentage of participants match then it is a different network.

high_common <− function(df_trues, df_false) {

# Create a dataframe to preserve network_name information

denominazione_info <− df_false %>%

group_by(ID, year) %>%

summarise(network_name = list(unique(network_name)), .groups = ’keep’) %>%

ungroup()

# Combine the information to have similarity ID, year, common_elements, and name of the

networks
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intersections <− df_false %>%

group_by(ID, year) %>%

summarise(common_elements = list(Reduce(intersect, unique_cf_impresa)), .groups = ’keep’)

%>%

ungroup() %>%

left_join(denominazione_info, by = c("ID", "year"))

# Join with df_false and calculate the proportion of common elements in each network

df_proportions <− df_false %>%

left_join(intersections, by = c("ID", "year")) %>%

rename(network_name = network_name.x) %>%

filter(map_int(network_name.y, length) > 1) %>%

select(−all_lists_equal, −network_name.y) %>%

filter(map_lgl(common_elements, ~ length(.x) > 0)) %>%

group_by(network_name, year) %>%

mutate(common_percent = length(unlist(common_elements))/length(unlist(unique_cf_impresa)))

%>%

ungroup() %>%

# Calculate the mean common percentage and relevant flags

group_by(ID, year) %>%

mutate(mean_perc = sum(common_percent)/n(),

above_threshold = all(common_percent >= 0.6),

contained = any(common_percent == 1)) %>%

ungroup()

# Filter networks with high commonality

df_common <− df_proportions %>%

group_by(ID) %>%

filter(above_threshold == TRUE | contained == TRUE) %>%

ungroup()

# Determine networks considered the same

df_same <− bind_rows(df_common, df_trues) %>%

select(−all_lists_equal) %>%

distinct(ID)

# Determine networks considered not the same

not_same <− df_false %>%

filter(!ID %in% df_same$ID) %>%

distinct(ID)

return(list(df_same = df_same, not_same = not_same))

}

The function returns a list containing two dataframes: df_same, containing the ID

numbers from df_true and the ID numbers of networks that satisfy the commonality thre-

holds (61 distinct ID groups and 123 networks distinct network names), and dataframe
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not_same, containing all the firms excluded by the functions.

A unique network name is assigned to all networks with same ID within df_same. Net-

works classified as not_same retain their original network name.

Jaro-Winkler similarity score is very at matching strings with similar lengths, but

there are situations where one name is substring of another one and are clearly refering

to the same network.

For example: ’PSVANTINCENDIOCONILMARCHIOPSVANTINCENDIO’ and ’PSVANTIN-

CENDIO’, the two network names have a similarity score of 0.87 and gets excluded by

the initial filter of similarity score above 90%.

To find network names with this characteristic the function find_pairs is created,

looking for pairs of network names where one is substring of the second one.

find_pairs <− function(list_denom) {

# Create all combinations of indices

combos <− expand.grid(i = seq_along(list_denom), j = seq_along(list_denom), stringsAsFactors

= FALSE)

# Filter out same−element pairs and where i’s string is not shorter than j’s

filtered_combos <− subset(combos, i != j & nchar(list_denom[i]) < nchar(list_denom[j]))

# Check if i’s string is contained in j’s

contained <− str_detect(list_denom[filtered_combos$j], fixed(list_denom[filtered_combos$i]))

# Subset the combos where containment is true

valid_combos <− filtered_combos[contained, ]

# Create the final data frame of pairs

pairs <− data.frame(

container = list_denom[valid_combos$j],

contained = list_denom[valid_combos$i],

stringsAsFactors = FALSE

)

return(pairs)

}

The function returns a data frame of pairs where each shorter string (contained) is found

within a longer string (container). Before applying the function a preprocessing is per-

formed by grouping for firm tax code, finding effectively cases when firms are registered

with both network (contained string and container string). Groups with only 1 network

name are removed as they are irrelevant and to save computational resources.
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Similar to previous process an ID is assigned to pairs of network names, after joining the

IDs to the main dataset, 7409 records are affected, a total number of 105 distinct IDs and

206 network names associated to each other. The same process as before is performed

with functions check_same_firms and high_common.

Four pairs (4 IDs) of networks are found with same members across all years:

Table 3.2: Network Names by ID
ID network_name
16 NEST
16 NESTDIIMPRESE
67 DIIMPRESETEAMWORKTHEPARTNERSHIP
67 TEAMWORKTHEPARTNERSHIP
90 BARICENTROCONFIDINSIEME
90 CONFIDINSIEME
96 CINEMA
96 DIIMPRESECINEMA

After the high_common function, a total number of 40 IDs are identified as same

affecting 80 network names.

Over the 277,739 records, 10,246 have missing network name (after removing generic

network names like CONTRATTODIRETE, RETE, IMPRESEINRETE.

Over these 10,246 two main patterns are discovered in the data as all data has a pair

of act_number and repertoire_number or a pair of network_taxcode and network_reper-

toire_number. Network names are grouped in 3 groups (non-NA act_number and reper-

toire_number as group 0, non-NA network_taxcode and network_repertoire_number as

group 1, all other as group 0) to check the distribution of NA values: 10,237 over the

total missing networks names are part of group 1, and group t has 9 observations without

network name, this means by using a combination of identifying codes it is possible to

retrieve all the missing networks.

Before assigning the network names using network identifiers checking whether a

record may be part of networks but the network name was assigned as a generic one thus

becoming NA in the processing is needed. The remaining missing network names can be

addressed by combination of act numbers and other network identification codes.

filter0 <− panel %>%

filter(gruppo == 0) %>%

group_by(act_number, repertoire_number) %>%
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mutate(object = if(any(!is.na(object)) & n_distinct(na.omit(object)==1))

first(object[!is.na(object)]) else NA) %>%

ungroup() %>%

mutate(object = coalesce(object, paste0(act_number, repertoire_number))) %>%

group_by(firm_taxcode, act_number, repertoire_number) %>%

mutate(unique = n_distinct(na.omit(network_name))) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique == 1,

first(na.omit(network_name)), NA_character_)) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

mutate(new_name = ifelse(unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

ungroup() %>%

group_by(network_name) %>%

mutate(new_name = ifelse(!is.na(network_name) & any(is.na(new_name)) &

n_distinct(new_name) == 1, first(na.omit(new_name)), new_name)) %>%

mutate(network_name = ifelse(!is.na(new_name), new_name, network_name))

sum(is.na(filter0$network_name))

filter1 <− panel %>%

filter(gruppo == 1) %>%

group_by(network_taxcode, network_repertoire_number) %>%

mutate(object = if(any(!is.na(object)) & n_distinct(na.omit(object)==1))

first(object[!is.na(object)]) else NA) %>%

ungroup() %>%

mutate(object = coalesce(object, paste0(act_number, repertoire_number))) %>%

group_by(firm_taxcode, network_taxcode, network_repertoire_number) %>%

mutate(unique = n_distinct(na.omit(network_name))) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique == 1,

first(na.omit(network_name)), NA_character_)) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

mutate(new_name = ifelse(unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

ungroup() %>%

group_by(network_name) %>%

mutate(new_name = ifelse(!is.na(network_name) & any(is.na(new_name)) &

n_distinct(new_name) == 1, first(na.omit(new_name)), new_name)) %>%

mutate(network_name = ifelse(!is.na(new_name), new_name, network_name))

sum(is.na(filter1$network_name))

filter2 <− panel %>%

filter(gruppo == 2) %>%

mutate(comb = coalesce(network_taxcode, repertoire_number)) %>%

group_by(comb) %>%

mutate(object = if(any(!is.na(object)) & n_distinct(na.omit(object)==1))

first(object[!is.na(object)]) else NA) %>%
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ungroup() %>%

mutate(object = coalesce(object, paste0(act_number, repertoire_number))) %>%

group_by(firm_taxcode, comb) %>%

mutate(unique = n_distinct(na.omit(network_name))) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique == 1,

first(na.omit(network_name)), NA_character_)) %>%

mutate(new_name = ifelse(any(is.na(network_name)) & unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

mutate(new_name = ifelse(unique > 1,

names(sort(table(na.omit(network_name)), decreasing = TRUE))[1], new_name)) %>%

ungroup() %>%

group_by(network_name) %>%

mutate(new_name = ifelse(!is.na(network_name) & any(is.na(new_name)) &

n_distinct(new_name) == 1, first(na.omit(new_name)), new_name)) %>%

mutate(network_name = ifelse(!is.na(new_name), new_name, network_name)) %>%

select(−comb)

sum(is.na(filter2$network_name))

union <− bind_rows(filter0, filter1, filter2) %>%

group_by(old_network_name) %>%

mutate(

new_name = if(n_distinct(na.omit(new_name)) == 1 && any(is.na(new_name))) {

unique(na.omit(new_name))[1] # Assign the unique non−NA new_name if there’s exactly one

} else {

new_name # Otherwise, keep the original new_name values

},

network_name = ifelse(!is.na(new_name), new_name, network_name)

) %>%

ungroup()

panel <− union %>%

select(−new_name, −gruppo, −unique)

The above code tries to standardize and clean network_name column. Grouping by

the pair of act_number and repertoire_number or network_taxcode and network_reper-

toire_number. Grouping by firm and network identification code it is possible to find

whether the firm was participating in certain network and the data got lost during process-

ing, the script computes the number of distinct network_name values and conditionally

creates a new_name column: if a single unique network_name exists amidst NAs, it as-

signs this name to all. If multiple unique names exist, the most common one is assigned.

In the final part of each script the data is grouped again by network_name, any NAs in

new_name are replaced with the most common name if consistency is confirmed within
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the group. If new_name is valid (there is only 1 unique non-NA new name), it replaces

network_name.

The process is performed for each group created before, ensuring the standardization of

network names. Moreover, 143 observations were recovered in group 0.

After standardization and the attempt to recover NA values, remaining missing values

are filled by concatenating act_number and repertoire_number or network_taxcode and

network_repertoire_number, if those values are available.

panel <− panel %>%

mutate(network_name = ifelse(is.na(network_name),

ifelse(!is.na(act_number) & !is.na(repertoire_number),

paste(act_number, repertoire_number, sep = "−"),

ifelse(!is.na(network_taxcode) & !is.na(network_

repertoire_number),

paste(network_taxcode, network_repertoire_

number, sep = "−"),

network_name)),

network_name))

The process effectively results in 0 missing values.

Before eliminating duplicated values, act date is uniformed, first any network with

missing act date are filled with non-missing act date of that specific network, if network

remains missing the average time difference between act date and first year in network

is estimated which is 1.43, and attributed (only 1 single network has no act date in any

year).

panel <− panel %>%

group_by(firm_taxcode, network_name, year) %>%

filter(!duplicated(firm_taxcode) | row_number() == 1) %>%

ungroup()

Duplications occur when records share the same firm tax code, network name and

year. By grouping by these columns and keeping only 1 row consistently eliminates

duplicated firm-network records. Eliminating 11,302 observations achieving the final

cleaned dataframe with 266,437 observations.
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3.2 Spatial measures creation

This section focus on the creation of spatial measures that are used as independent vari-

ables. Measures include the Localized Density and Closeness Centrality measures, which

differentiate in structural centrality in the star network configuration and geographical

centrality in the complete network configuration.

Libraries used for the computation of spatial measures are tidyverse for data ma-

nipulation, geosphere for calculating geographical distances and igraph for network

analysis.

The dataset used is the cleaned version from the previous section, which has had

duplicates removed. Although the dataset includes the municipalities of each firm, it

lacks of latitude and longitude data, key metrics for the correct calculation of spatial

measures. Therefore a first steps involves cleaning and processing the geographical data.

panel <− panel %>%

arrange(firm_taxcode, year) %>%

group_by(firm_taxcode) %>%

fill(municipality_firm, .direction = "down") %>% # Fill NA downwards first

fill(municipality_firm, .direction = "up") %>%

ungroup() # Then fill NA upwards

na <− panel %>% filter(is.na(municipality_firm)) %>% distinct(firm_taxcode, firm_name,

municipality_firm)

#write.xlsx(na, "Comuni/na_comuni.xlsx")

na <− read_excel("Comuni/na_comuni.xlsx")

panel <− panel %>%

left_join(na %>% select(1,3), by = "firm_taxcode") %>%

rename(municipality_firm = municipality_firm.x) %>%

mutate(municipality_firm = coalesce(municipality_firm, municipality_firm.y)) %>%

select(−municipality_firm.y)

In this part of the script fills the missing municipalities mixed in years for each firm,

attributing the previous year’s municipalities, if no present it attributes the next year’s

municipality. Then if some firm still have missing municipalities it’s saved in a separate

excel file (14 firms) these firms’ municipality is manually added after looking for the

municipality on Italian’s firm registry.

# Loading coordinates
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comuni_coord <− read_excel("Comuni/coord_comuni.xlsx", skip = 1) %>% select(1, 4,8,9) %>%

rename(comune = denominazione_ita, sigla = sigla_provincia) %>%

mutate(comune_cleaned = iconv(comune, from = "UTF−8", to = "ASCII//TRANSLIT"),

comune_cleaned = trimws(tolower(comune_cleaned)),

comune_cleaned = gsub("−", " ", comune_cleaned),

comune_cleaned = gsub("[[:punct:]]", "", comune_cleaned)) %>%

rename(old_name = comune_cleaned,

province_firm = sigla)

# Add region code

cod_regioni <− read.csv("Comuni/comuni.csv") %>%

select(1,4,5,6) %>%

mutate(sigla = ifelse(is.na(sigla), "NA", sigla)) %>%

mutate(comune = iconv(comune, from = "UTF−8", to = "ASCII//TRANSLIT"),

comune = trimws(tolower(comune)),

comune = gsub("−", " ", comune),

comune = gsub("[[:punct:]]", "", comune),

backup = comune) %>%

rename(old_name = comune,

province_firm = sigla) #%>%

# left_join(soppress, by="old_name") %>%

# mutate(old_name = ifelse(!is.na(new_name), new_name, old_name))

comuni_coord <− comuni_coord %>%

left_join(cod_regioni %>% select(1:4), by = c("old_name", "province_firm")) %>%

distinct(province_firm, comune, lat, lon, old_name, cod_reg, den_reg)

soppress <− read_excel("Comuni/Elenco_comuni_soppressi.xls") %>% select(5,9) %>%

rename(old_name = "Denominazione Comune",

new_name = "Denominazione Comune associato alla variazione")

soppress <− soppress %>%

mutate(old_name = iconv(old_name, from = "UTF−8", to = "ASCII//TRANSLIT"),

new_name = iconv(new_name, from = "UTF−8", to = "ASCII//TRANSLIT")) %>%

mutate(old_name = trimws(tolower(old_name)),

new_name = trimws(tolower(new_name)),

old_name = gsub("−", " ", old_name),

new_name = gsub("−", " ", new_name),

old_name = gsub("[[:punct:]]", "", old_name),

new_name = gsub("[[:punct:]]", "", new_name))

soppress = soppress %>% filter(!old_name %in% comuni_coord$old_name)

A second part of the cleaning process loads the coordinates associated to each Italian

municipality, cleaning and uniforming characters and converting all characters to lower

case, then it addresses the suppressed firms and their new name treating the cases where

municipalities cannot be found in the dataset.
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comuni_panel <− panel %>% select(−firm_taxcode) %>%

distinct(municipality_firm, region_firm) %>%

filter(!is.na(municipality_firm)) %>%

mutate(cleaned = iconv(municipality_firm, from = "UTF−8", to = "ASCII//TRANSLIT"),

cleaned = trimws(tolower(cleaned)),

cleaned = gsub("−", " ", cleaned),

cleaned = gsub("[[:punct:]]", "", cleaned)) %>%

rename(old_name = cleaned,

cod_reg = region_firm) %>%

left_join(soppress, by="old_name") %>%

mutate(old_name = ifelse(!is.na(new_name), new_name, old_name)) %>%

distinct(municipality_firm, cod_reg, old_name) %>% arrange(municipality_firm)

no_match <− comuni_panel[!comuni_panel$old_name %in% comuni_coord$old_name, , drop = FALSE]

%>%

filter(!is.na(municipality_firm))

newmatch <− read_excel("Comuni/nomatch.xlsx")

no_match <− no_match %>%

left_join(newmatch, by="old_name") %>%

mutate(old_name = iconv(old_name, to = "ASCII//TRANSLIT"),

old_name = trimws(tolower(old_name)),

old_name = gsub("−", " ", old_name),

old_name = gsub("[[:punct:]]", "", old_name))

comuni_panel <− comuni_panel %>%

left_join(no_match[c(2,3,4)], by = c("old_name", "cod_reg")) %>%

mutate(old_name = ifelse(!is.na(new_name) & new_name != "ESTERO", new_name, old_name)) %>%

select(−new_name) %>%

distinct(municipality_firm, cod_reg, old_name) %>%

mutate(cod_reg = as.integer(cod_reg)) %>%

left_join(comuni_coord %>% select(old_name, cod_reg, den_reg, province_firm, lat, lon), by =

c("old_name", "cod_reg")) %>%

distinct(municipality_firm, cod_reg, den_reg, old_name, lat, lon) %>%

left_join(comuni_coord %>% select(old_name, cod_reg, province_firm, lat, lon), by = c("old_

name")) %>%

mutate(lat.x = ifelse(is.na(cod_reg.y), lat.y, lat.x),

lon.x = ifelse(is.na(cod_reg.y), lon.y, lon.x)) %>%

rename(lat = lat.x,

lon = lon.x,

cod_reg = cod_reg.x) %>%

select(municipality_firm, cod_reg, den_reg, province_firm, old_name, lat, lon) %>%

distinct(municipality_firm, province_firm, cod_reg, den_reg, old_name, lat, lon)

Municipalities in the panel dataset is then retrieved and cleaned using the same

methodologies as the coordinate dataset. Finally the municipalities are joined using

as key the municipality name and region code, accounting for municipalities with same
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name but in different regions.

Latitude and longitude of firms in foreign cities are retrieved using the OpenCage

library which performs API calls to retrieve the data when municipality name is fed into

the function:

no_match <− no_match %>% mutate(new_name = ifelse(is.na(new_name), "ESTERO", new_name))

estero <− no_match %>% filter(new_name == "ESTERO")

geocode_location <− function(old_name) {

geocoded <− oc_forward_df(old_name)

if (!is.null(geocoded) && nrow(geocoded) > 0) {

list(latitude = geocoded$oc_lat, longitude = geocoded$oc_lng)

} else {

list(latitude = NA, longitude = NA) # Return NA values if geocoding fails

}

}

geocoded_results <− map(estero$old_name, geocode_location)

geocoded_data <− do.call(rbind, geocoded_results)%>%

as.data.frame() %>%

mutate(latitude = as.numeric(latitude),

longitude = as.numeric(longitude))

estero <− bind_cols(estero, as.data.frame(geocoded_data))

The last part joins the dataset with foreign city coordinates to the panel dataset

achieving the final dataset with each firm having latitude and longitude values.

comuni_panel <− comuni_panel %>%

left_join(estero, by = "municipality_firm")%>%

rename(old_name = old_name.x,

cod_reg = cod_reg.x) %>%

mutate(

lat = coalesce(latitude, lat),

lon = coalesce(longitude, lon),

province_firm = case_when(

new_name == "ESTERO" ~ "estero",

TRUE ~ province_firm

),

cod_reg = case_when(

new_name == "ESTERO" ~ "estero",

TRUE ~ as.character(cod_reg)

)

) %>%

select(−latitude, −longitude, −cod_reg.y,−old_name.y, −new_name) %>%

distinct(municipality_firm, lat, lon, .keep_all = TRUE) %>%

filter(!is.na(lat) & !is.na(lon)) %>%

group_by(municipality_firm) %>%
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filter(!duplicated(municipality_firm) | row_number() == 1)

panel <− panel %>%

left_join(comuni_panel, by = "municipality_firm")%>%

select(−c("province_firm.x", "region_firm","municipality_firm")) %>%

rename(municipality_firm = old_name,

province_firm = province_firm.y,

region_firm = den_reg)

3.2.1 Localized Density computation

Localized Density metric is computed with the function calculate_LD_for_year, which

use as input the dataframe and reference year. The function processes columns repre-

senting year, longitude, latitude, network and firm identifiers.

calculate_LD_for_year <− function(df, target_year) {

# Define the distance matrix calculation function

calculate_distance_matrix <− function(df) {

coords <− df[, c("lon", "lat")]

dist_matrix <− as.matrix(distm(coords, fun = distVincentySphere) / 1000) # Convert to km

diag(dist_matrix) <− NA # Set the diagonal to NA

return(dist_matrix)}

# Define the LD calculation function

calculate_LD <− function(dist_matrix) {

LD_values <− apply(dist_matrix, 1, function(distance) {

sum(1/(1 + distance), na.rm = TRUE)

})

return(LD_values)}

# Group the dataframe, calculate distances, and compute LD

df %>%

filter(year %in% target_year) %>%

group_by(network_name, year) %>%

do({

dist_matrix <− calculate_distance_matrix(.)

LD_values <− calculate_LD(dist_matrix)

data.frame(., LD = LD_values)

}) %>%

ungroup() %>%

group_by(network_name, year) %>%

mutate(network_members = n()) %>%

ungroup()
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First step of the function is the creation of a distance matrix, defined with a func-

tion calculate_distance_matrix which calculates the pairwise distances between points

represented by geographic coordinates latitude and longitude. Distances are calculated

using the Vicenty formula and converted to kilometers.

Another internal function calculate_LD calculates the Localized Density values. For

each row in the distance matrix created by the previous function, it computes the sum

of 1/(1+distance) for all distances. ’1+distance’ ensures a minimal distance value is

present when two firms are resided in the same municipality, avoiding to have 0 in the

denominator position.

The main function filters the data frame for target year, and performs the previous

functions on each network, creating a dataframe with original data and the calculated

LD values. In the process number of network participants are also calculated.

The following code calls the function specifying the dataframe and target years and

also computes the total number of networks for each year and the network age by the

difference between target year and act date:

panel <− calculate_LD_for_year(panel, c(2016:2023))%>%

group_by(firm_taxcode, year) %>%

mutate(number_of_networks = n()) %>%

ungroup() %>%

mutate(network_age = year − act_date)

3.2.2 Centrality measures calculation

To calculate the centrality measures two different functions are created, calculate_centrality

and calculate_star_centrality. For both function library igraph is used.

Steps for the computation of closeness centrality in the complete network configuration

are the following:

1. Graph construction: it creates a fully connected graph (’graph.full’) with a number

of nodes equal to the number of rows in the input data frame (the function is called

for each network by year, so the input for the function are the firms for each network

by year).

2. Geodesic Distance Calculation: it computes the pairwise geodesic distance between
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nodes based on their geographic coordinates (longitude, latitude). The distances

are converted from meters to kilometers.

3. Distance adjustments: to handle cases where the distance is 0 (when two nodes/-

firms are form the same municipality) the function sets these values to 1, and the

the diagonal of the matrix is set to 0 as the diagonal represents the distance of a

node to itself.

4. Weight assignment: the distance matrix constructed by previous points are at-

tributed to the edges in the graph, representing the distances between nodes.

5. Closeness Centality calculation: centrality measure is calculated using the closeness

function from igraph with the constructed graphs and specifying the weights.

The function returns the dataframe with each firm taxcode and its corresponding closeness

centrality.

calculate_complete_centrality <− function(data) {

g <− graph.full(nrow(data))

num_edges <− ecount(g)

max_edges <− nrow(data) * (nrow(data) − 1) / 2

# Calculate the geodesic distance between all pairs of nodes (firms)

distances <− distm(data[, c("lon", "lat")], fun = distGeo)/1000

# Replace 0 distances (self loops) with a small positive number, here set to 1

distances[distances == 0] <− 1

diag(distances) <− 0

E(g)$weight <− distances[lower.tri(distances)]

# Calculate closeness centrality for all nodes

closeness_centrality <− closeness(g, weights = E(g)$weight, normalized = FALSE)

}

result <− data.frame(firm_taxcode = data$firm_taxcode,

closeness_centrality = closeness_centrality,

)

return(result)

}

Constructing the star configuration graph is a more complicated process, as it requires

specifying each star node and creating edges that connect all other nodes exclusively to
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these star nodes, the steps are the following:

1. Graph construction: an empty graph is first created with number of nodes equal to

the number of rows in the input (’graph.empty’).

2. Star nodes identification: each firm marked as reference company (reference_com-

pany == 1) in the dataset are treated as central nodes in a star configuraiton.

3. Handling networks with no reference company: if no reference companies are found

an empty dataframe is returned with firm identification and NA for closeness cen-

trality.

4. Create Edges: edges are created between each star node and all other nodes. ’setdiff’

is used to differentiate non-star nodes and constructs a matrix of edges where each

star node is connected to each non-star node. The edges are then added to the

graph using ’add_edges’ function.

5. Connect Star Nodes: in case more than one star node is present, they are connected

to each other.

6. Closeness Centrality computation: centrality is calculated using ’closeness’ func-

tion.

The output is a dataframe containing each firm identification, reference_company dummy

and the closeness centrality value.

calculate_star_centrality <− function(data) {

# Create an empty graph

g <− graph.empty(n = nrow(data), directed = FALSE)

# Identify the reference company nodes

star_nodes <− which(data$reference_company == 1)

# Check if there is at least one reference company identified

if(length(star_nodes) == 0) {

return(data.frame(firm_taxcode = data$firm_taxcode,

reference_company = data$reference_company,

closeness_centrality = NA))

}

# Create edge pairs between each reference company and all other nodes

other_nodes <− setdiff(1:nrow(data), star_nodes)
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edges <− c(rbind(rep(star_nodes, each=length(other_nodes)), other_nodes))

# Add edges to the graph

g <− add_edges(g, edges)

# If there is more than one star node, connect them as well

if(length(star_nodes) > 1) {

star_edges <− t(combn(star_nodes, 2)) # Create unique combinations of star nodes

g <− add_edges(g, t(star_edges)) # Add star edges to the graph

}

# Calculate closeness centrality for each node

closeness_centrality <− closeness(g, mode = "all", normalized = FALSE)

# Combine results into a data frame

result <− data.frame(firm_taxcode = data$firm_taxcode,

reference_company = data$reference_company,

closeness_centrality = closeness_centrality)

return(result)

}

Both above functions are called using similar pipeline:

panel <− panel %>%

group_by(network_name, year) %>%

do(calculate_centrality(.))

panel <− panel %>%

group_by(network_name, year) %>%

do(calculate_star_centrality(.))

Grouping by network_name and year allows for the computation of centrality metrics

for each network annually.

3.3 Additional Features

Additional features are obtained from AIDA dataset, which are computed after joining

the AIDA dataset and Network Contract panel dataset, and manipulating already present

columns.

The process includes the calculation of FirmGrowth, AverageGrowth, FirmAge, RegionGroup,
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Sector etc.

For the FirmGrowth and LabProd calculation a simple dyplr pipeline is created, first

by arranging the dataset by firm_taxcode and year, then grouping by each firm_taxcode

both metrics are calculated, assigning NA to all infinite and NaN values:

AIDA <− AIDA %>% arrange(firm_taxcode, year) %>%

group_by(firm_taxcode) %>%

mutate(FirmGrowth = log(Sales_Revenue_million_EUR) − log(lag(Sales_Revenue_million_EUR)),

LabProd = Sales_Revenue_million_EUR/n_employee) %>%

mutate(across(c(FirmGrowth, LabProd), ~replace(., . == Inf | . == −Inf | is.nan(.), NA)))

Variable AverageGrowth is calculated as the mean of non-missing FirmGrowth from

year of entrance in network to last year in network.

final <− final %>%

group_by(firm_taxcode, network_name) %>%

mutate(Avg_growth = mean(log_diff_Sales_Revenue, na.rm = TRUE)) %>%

mutate(Avg_growth = ifelse(is.nan(Avg_growth) | is.infinite(Avg_growth), NA, Avg_growth))

AverageFirmSize is created by calculating the average number of employees (mean_empl)

for each firm across all years considered, assuming the firm size do not have sudden

changes during the years, a firm is assigned as Micro when the mean_empl is less or equal

than 10, when it is between 10 and 250 (included) it is assigned as SMEs and Large when

it has more than 250 employees.

AIDA <− AIDA %>%

group_by(firm_taxcode) %>%

mutate(mean_empl = mean(n_employee, na.rm = TRUE)) %>% ungroup() %>%

mutate(AverageFirmSize = ifelse(mean_empl <= 10, "Micro",

ifelse(mean_empl > 10 & mean_empl <= 250, "SMEs", "Large"))) %>%

select(−mean_empl)

The variable FirmAge is calculated as the difference between the current year and the

founding year of the firm. However, due to instances where firms go through restructuring

or re-registration leading to negative FirmAge values. Since the AIDA portal lacks of a

historical record of firm founding dates, it is not possible to retrieve the original founding

year of these cases, consequently in such situations FirmAge is assigned to NA.
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AIDA <− AIDA %>%

mutate(FirmAge = year − year_founding)%>%

mutate(FirmAge = ifelse(FirmAge < 0, NA, FirmAge))

RegionGroup column is created by assigning "Piemonte", "Liguria", "Lombardia",

"Valle d’Aosta" to the North-West region group, "Veneto", "Trentino-Alto Adige", "Friuli-

Venezia Giulia", "Emilia-Romagna" to the North-East region group, "Toscana", "Umbria",

"Marche", "Lazio" to the Center, "Abruzzo", "Molise", "Campania", "Puglia", "Basilicata",

"Calabria" to the South, "Sicilia", "Sardegna" to Islands and any other case as "Abroad".

DF <− DF %>%

mutate(region_group = case_when(

region_firm %in% c("Piemonte", "Liguria", "Lombardia", "Valle d’Aosta") ~ "North−West",

region_firm %in% c("Veneto", "Trentino−Alto Adige", "Friuli−Venezia Giulia", "Emilia−

Romagna") ~ "North−East",

region_firm %in% c("Toscana", "Umbria", "Marche", "Lazio") ~ "Center",

region_firm %in% c("Abruzzo", "Molise", "Campania", "Puglia", "Basilicata", "Calabria") ~

"South",

region_firm %in% c("Sicilia", "Sardegna") ~ "Islands", TRUE ~ "Abroad"))

The Sector variable is retrieved by combining ATECO codes from ISTAT and the

equivalent ISIC category (International Standard Industrial Classification). The ISTAT

ATECO-Sector classification is structured as in the table 3.3, for each category a let-

ter represents the ISIC classification (A, B, C etc.), followed the ATECO code and its

specifications.

Table 3.3: ISTAT Classification of Economic Sectors
Code Description

A AGRICOLTURA, SILVICOLTURA E PESCA
01 COLTIVAZIONI AGRICOLE E PRODUZIONE DI PRODOTTI ANIMALI,

CACCIA E SERVIZI CONNESSI
011 COLTIVAZIONE DI COLTURE AGRICOLE NON PERMANENTI
0111 Coltivazione di cereali (escluso il riso), legumi da granella e semi oleosi
...

B ESTRAZIONE DI MINERALI DA CAVE E MINIERE
05 ESTRAZIONE DI CARBONE (ESCLUSA TORBA)
051 ESTRAZIONE DI ANTRACITE
...

The table is processed by grouping detailed classification entries under their respective
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ISIC categoization, ensuring each entry has a consistent sector identifier.

settore_ateco <− settore_ateco %>%

mutate(SectorCategory = ifelse(nchar(ateco_2007) == 1, ateco_2007, NA)) %>%

fill(SectorCategory, .direction = "down") %>%

# Create a new column to hold the settore corresponding to the letter

mutate(SettoreLetter = ifelse(!is.na(SectorCategory) & nchar(ateco_2007) == 1, settore, NA))

%>%

fill(SettoreLetter, .direction = "down") %>%

# Remove rows where ateco_2007 is a single letter as we only want the subsequent rows

filter(nchar(ateco_2007) > 1) %>%

rename(macro_settore = SettoreLetter)

Result of this data transformation is represented in figure 3.1.

Figure 3.1: Sector Classification post transformation

Each ISIC classification code is then assigned to firms based on its ATECO code,

additional aggregation is performed assigning all sectors below 2% to the category Other

services.

DF <− DF %>%

mutate(Group = case_when(

SectorCategory %in% c("A") ~ "Agriculture, forestry, and fishery",

SectorCategory %in% c("B", "F") ~ "Construction and Mining",

SectorCategory %in% c("C") ~ "Manufacturing",

SectorCategory %in% c("G", "H", "I", "J", "L", "N") ~ "Services excluding finance",

SectorCategory %in% c("M") ~ "Professional and scientific services",

SectorCategory %in% c("O", "P", "Q") ~ "Public, health, and education",

SectorCategory %in% c("D", "E","K","R","S") ~ "Other services",

TRUE ~ NA # Default case to keep the original Sector name if no match is found

))
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The models to be employed will analyze firm performance at the firm level. Since

the dataset retains a firm-network configuration, firms participating in multiple networks

appear multiple times. Consequently, network measures will be aggregated to the firm

level.

df_connections <− DF %>%

select(firm_taxcode, network_name, year) #%>% distinct()

setDT(df_connections)

# Create a new column ’firms_in_network’ that lists all firms in the same network for each

year

df_connections[, firms_in_network := list(list(firm_taxcode)), by = .(network_name, year)]

df_connections <− df_connections[, .(unique_firms_list = list(unique(unlist(firms_in_network))

)), by = .(firm_taxcode, year)]

df_connections[, connections_count := lapply(unique_firms_list, length), by = .(firm_taxcode,

year)]

panel <− panel %>% left_join(df_connections %>% select(1,2,4), by = c("firm_taxcode", "year"))

panel <− panel %>% group_by(firm_taxcode, year) %>% mutate(avg_network_age = mean(network_age)

)

rm(df_connections)

panel <− panel %>% mutate(connections_count = connections_count − 1) %>% rename(

NetworkedFirmsCount = connections_count)

panel <− panel %>%

group_by(firm_taxcode, year) %>%

mutate(across(c(LD, LD_perc), ~weighted.mean(.x, network_age, na.rm = TRUE)),

across(c(closeness_centrality_complete, closeness_centrality_star),

~weighted.mean(.x, network_age * network_members, na.rm = TRUE))) %>%

ungroup()

The code creates a list of all firms in the same network for each year and generates a

unique list of firms for each firm_taxcode and year.

It counts the number of unique firms each firm is connected to within its network for each

year creating firm level variable NetworkedFirmsCount it is later adjusted by subtracting

one excluding the firm itself, this metric will substitute the network size metric. It also

calculates the average age of networks a firm is part of, substituting the network age

metric.

Spatial measures are weighted by network age and network size measures.

After the above process, the dataset is transformed to a firm-level dataset, ensuring

each firm has only one record per year avoiding duplications within the models. Addition-

ally, firms located abroad are filtered out as they represent only 0.038% of the dataset.
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As a result, the number of observations is reduced from 266,437 to 199,703.

3.4 Model Setup

This section explicates the process of econometric models fitting using R, starting from

the data loading to variable lagging, Pooled OLS, LAD models creation, extended LAD

model analysis and Panel regression models setup.

The libraries utilized are data.table and tidyverse for data wrangling and manip-

ulation, plm for panel data econometric modeling, sandwich for robust standard error

estimation, lmtest for diagnostic testing, quantreg for quantile regression analysis and

stargazer for creating well-formatted tables of regression results.

First step of model creation is the loading of the data, here we load the cleaned data

with the variables chosen for modeling and convert the categorical variable to factor so

that dummies of these variables are automatically generated when performing regressions.

final <− fread("dati_modelli_finali.csv", colClasses = list(character = c("firm_taxcode")), na

.strings = c("NA",""))

final <− final %>%

mutate(

year = as.factor(year),

Sector = factor(Sector),

RegionGroup = as.factor(RegionGroup),

LegalNetwork = as.factor(LegalNetwork),

hub = as.factor(hub),

AverageFirmSize = as.factor(AverageFirmSize),

InnovativeSME = as.factor(InnovativeSME),

InnovativeStartup = as.factor(InnovativeStartup),

)%>%

mutate(Sector = relevel(Sector, ref = "Manufacturing"),

RegionGroup = relevel(RegionGroup, ref = "North−East"))

The dataset is loaded ensuring the taxcode numbers are read as characters and miss-

ing values are treated correctly. Categorical variables such as year, Sector, RegionGroup,

LegalNetwork, hub, AverageFirmSize, InnovativeSME and InnovativeStartup are con-

verted to factor to ensure they are treated correctly during analysis. Manufacturing

sector is used as reference level for Sector. North-East region area is used as reference

level for the region groups.
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To create the regression tables multiple models are fitted by adding progressively the

control variables:

OLS1 <− plm(FirmGrowth ~ LD + CCS + Sector+ factor(year)+ RegionGroup, data = final, model = "

pooling")

OLS2 <− plm(FirmGrowth ~ LD + CCS + hub + NetworkedFirmsCount+ AverageNetworkAge +

LegalNetwork+ Sector+ factor(year)+ RegionGroup, data = final, model = "pooling")

OLS3 <− plm(FirmGrowth ~ LD + CCS + hub + NetworkedFirmsCount + AverageNetworkAge +

LegalNetwork + I(FirmAge^2) + AverageFirmSize + InnovativeSME+ InnovativeStartup+ Sector+

factor(year)+ RegionGroup, data = final, model = "pooling")

OLS4 <− plm(FirmGrowth ~ LD + CCS + hub + NetworkedFirmsCount+ AverageNetworkAge+ LegalNetwork

+ I(FirmAge^2)+ AverageFirmSize+ InnovativeSME+ InnovativeStartup+ ROS+ ln_LabProd+ ln_

LiquidAssets+ ln_IntangibleAssets+ Sector+ factor(year)+ RegionGroup, data = final, model

= "pooling")

# Calculate robust standard errors

robust_se1 <− vcovHC(OLS1, type = "HC1")

robust_se2 <− vcovHC(OLS2, type = "HC1")

robust_se3 <− vcovHC(OLS3, type = "HC1")

robust_se4 <− vcovHC(OLS4, type = "HC1")

# Apply coeftest to each model

coeftest_OLS1 <− coeftest(OLS1, vcov = robust_se1)

coeftest_OLS2 <− coeftest(OLS2, vcov = robust_se2)

coeftest_OLS3 <− coeftest(OLS3, vcov = robust_se3)

coeftest_OLS4 <− coeftest(OLS4, vcov = robust_se4)

# Extract coefficients and robust standard errors for stargazer

se_OLS1 <− coeftest_OLS1[, 2]

se_OLS2 <− coeftest_OLS2[, 2]

se_OLS3 <− coeftest_OLS3[, 2]

se_OLS4 <− coeftest_OLS4[, 2]

After fitting the models, robust standard errors are calculated using vcovHC(), which

takes in the first position the model and the type input stands for the type of estima-

tion, ’HC1’ is the most commonly used apporach for linear models, applies a degrees of

freedom-based correction, (n1)/(nk) where n is the number of observations and k is the

number of predictor variables in the model.

All Pooled OLS models are created following the same process by changing the dependent

variable.

Tables used in this thesis are created using stargazer function, specifying the ’latex’

and by regulating the spacing using stargazer internal functions:
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stargazer(OLS1, OLS2, OLS3, OLS4, type = "latex",

coef = list(coef_OLS1, coef_OLS2, coef_OLS3, coef_OLS4),

se = list(se_OLS1, se_OLS2, se_OLS3, se_OLS4),

header = FALSE, column.sep.width = "−70pt", font.size = "normalsize",

align = TRUE, no.space = TRUE, single.row = TRUE, omit.stat = c("f", "adj.rsq", "ser

"))

LAD regression models are created using the quantreg package instead of plm. Quan-

tile regression for the median targets the 50th percentinle, effectively minimizing the same

absolute differences as LAD. Thus quantile regression function is used.

Similar to the OLS models these models are expanded step-by-step including additional

control variables.

The function quantreg requires the model formula as input, the data table used, and a

tau () parameter specifying the quantile of the dependent variable of interest for modeling,

which is 0.5 in this case

LAD1 <− rq(FirmGrowth ~ LD +CCS + Sector+ factor(year)+RegionGroup, data = final, tau = 0.5)

LAD2 <− rq(FirmGrowth ~ LD + CCS +hub + NetworkedFirmsCount+AverageNetworkAge+ LegalNetwork+

Sector+ factor(year)+RegionGroup, data = final, tau = 0.5)

LAD3 <− rq(FirmGrowth ~ LD + CCS + hub +NetworkedFirmsCount+ AverageNetworkAge+ LegalNetwork+

I(FirmAge^2)+ AverageFirmSize+InnovativeSME+InnovativeStartup+Sector+ factor(year)+

RegionGroup, data = final, tau = 0.5)

LAD4 <− rq(FirmGrowth ~LD + CCS + hub + NetworkedFirmsCount+ AverageNetworkAge+ LegalNetwork+

I(FirmAge^2)+ AverageFirmSize+ InnovativeSME+ InnovativeStartup+ ROS+ ln_LabProd+ ln_

LiquidAssets+ ln_IntangibleAssets+ Sector+ factor(year)+ RegionGroup, data = final, tau =

0.5)

stargazer(LAD1,LAD2,LAD3,LAD4, type="latex",

dep.var.labels = "FirmGrowth",header = FALSE, column.sep.width = "−70pt", font.size

= "normalsize",

align = TRUE, no.space = TRUE, single.row = TRUE, omit.stat = c("f", "adj.rsq", "ser

"))

Similarly, LAD models with interaction terms are created by adding the interaction

term in the regression formula of the Quantile Regression model specification, the follow-

ing example refers to model (1) in Table 2.8:

int1 <− rq(FirmGrowth ~ LD + CCS + I(LD*CCS) + Sector+ factor(year)+ RegionGroup, data =

final, tau=0.5, na.action = na.omit)
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All interaction regression are created in the same way by substituting or including

additional variables.

The Time Split analysis table 2.13 is created through splitting the dataset in two

parts: 2016-2019 and 2020-2022.

final_split1 <− final %>%

filter(year %in% c(2016:2019)) %>%

group_by(firm_taxcode) %>%

mutate(AverageGrowth = mean(FirmGrowth, na.rm = TRUE)) %>%

mutate(AverageGrowth = if_else(is.nan(AverageGrowth), NA_real_, AverageGrowth))

final_split2 <− final %>% filter(year %in% c(2020:2022)) %>% group_by(firm_taxcode) %>%

mutate(AverageGrowth = mean(FirmGrowth, na.rm = TRUE)) %>%

mutate(AverageGrowth = if_else(is.nan(AverageGrowth), NA_real_, AverageGrowth))

The code filters and saves the two time periods separately and recalculates the Average-

Growth metric on each period.

Following the splitting the regressions are performed just like previous models but refer-

encing the newly created dataframe.

The panel regression requires to handle the unbalanced to perform the analysis on

firms with similar exposure to network contracts. Therefore, the first step is to filter and

save only the firms with atleast 3 years in networks:

filtered_data <− final %>%

group_by(firm_taxcode) %>%

arrange(firm_taxcode, year) %>%

mutate(year = as.numeric(as.character(year))) %>%

mutate(entrance = min(year)) %>%

mutate(last = max(year)) %>%

ungroup() %>%

mutate(years_in_network = last−entrance) %>%

filter(years_in_network >= 3)

The code calculates the entrance year in networks for each firm (year of appearance in

the dataset). Subsequently the last year in the network is saved, if there are atleast 3

years of difference between the last year and the entrance year the firms is saved, every

other firm is filtered out.

To leverage the panel structure of the data and apply within effects using the ’plm’
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package there is the necessity of creating a panel data frame. Using pdata.frame()

function the filtered dataset effectively gets converted in panel structure.

pdata <− pdata.frame(filtered_data, index = c("firm_taxcode", "year"))

In thee case of panel regression instead of four specification for each model, only three

are created, as time-invariant firm-specific characteristics are absorbed and cancelled out

by the entity fixed effect.

FE1 <− plm(FirmGrowth ~ LD + CCS + Sector+ factor(year)+ RegionGroup, data = pdata, model = "

within")

FE2 <− plm(FirmGrowth ~ LD + CCS + hub + NetworkedFirmsCount+ AverageNetworkAge+ LegalNetwork

+ Sector+ factor(year)+ RegionGroup, data = pdata, model = "within")

FE3 <− plm(FirmGrowth ~ LD + CCS+ hub + NetworkedFirmsCount+ AverageNetworkAge+ LegalNetwork+

I(FirmAge^2)+ ROS+ ln_LabProd+ ln_LiquidAssets+ ln_IntangibleAssets+ Sector+ factor(year)

+ RegionGroup, data = pdata, model = "within")

# Compute robust standard errors

robust_se_FE1 <− vcovHC(FE1, type = "HC1", cluster = "group")

robust_se_FE2 <− vcovHC(FE2, type = "HC1", cluster = "group")

robust_se_FE3 <− vcovHC(FE3, type = "HC1", cluster = "group")

# Get coefficients and clustered standard errors

coef_se_FE1 <− coeftest(FE1, vcov = robust_se_FE1)

coef_se_FE2 <− coeftest(FE2, vcov = robust_se_FE2)

coef_se_FE3 <− coeftest(FE3, vcov = robust_se_FE3)

Just like Pooled OLS, robust standard error are calculated using vcovHC function,

with the exception that standard errors are clustered at firm level.

The tables are then created using stargazer() function.

3.5 Summary of Methodology

This chapter presented a detailed methodology for the analysis of the impact of spatial

proximity measures and network contract effect on economic performance of participating

firms.

The approach includes a initial data cleaning process adressing naming convention, miss-

ing values and duplication issues, ensuring consistency across the dataset.
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Spatial measures, including Localized Density and Closeness Centrality are then com-

puted using the cleaned dataset, key measures used in this study of the spatial proxim-

ity’s impact on firm perforamnce.

The construction of econometric models required some data wrangling by handling un-

balanced panel data, creation of interaction terms and application of robust standard

error techniques.

The results of the final models will be discussed in the next chapter. The methodology

outlined in this chapter provides a clear framework for future replication and further

application of this research.





Chapter 4

Conclusion

This thesis has undertaken a thorough exploration of the factors influencing firm growth,

employing a robust analytical framework across various econometric models. The anal-

ysis is centered around the usage of spatial proximity measure to proxy the benefits of

geographic vicinity, such as more frequent interactions, better coordination and exchange

of knowledge, while controlling for network, and firm characteristics as well as time, sec-

tor, region group fixed effects.

The analysis was conducted on network and firm economic data from 2016 to 2022. By

lagging the variables, the time interval was reduced from 2017 to 2022. Lagging the

variables helped address potential endogeneity issues and ensured that the independent

variables were not contemporaneously correlated with the error term, thus providing more

reliable estimates of the causal impact of network and spatial characteristics on firm per-

formance.

Initially, an Ordinary Least Squares (OLS) is performed as baseline. However, the results

from the Pooled OLS were not robust as they were sensitive to outliers and the method

did not account for the panel structure of the data. To address these limitations, a Least

Absolute Deviations (LAD) regression is computed to provide more robust results to

outliers. Successively, the complex dynamics of spatial proximity were explored using

LAD regression with interaction terms and by splitting time periods. Finally, a Fixed

Effect model was employed to leverage the panel structure and control for unobserved

heterogeneity.

Table 4.1 presents the results of the Pooled OLS, LAD, LAD with interaction effects,

and fixed effects (FE) models in columns (1), (2), (3), (4). The table provides the models
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including all control variables conducted in previous analysis.

Table 4.1: FirmGrowth - Regression Models

Dependent variable:
FirmGrowth

Pooled OLS LAD LAD interaction FE
(1) (2) (3) (4)

LocalizedDensityt−1 0.001∗∗ (0.0004) −0.0002 (0.0002) −0.00002 (0.0002) −0.003 (0.003)
ClosenessCentralityt−1 0.025∗∗∗ (0.010) 0.010∗∗ (0.005) 0.012∗∗ (0.005) 0.026 (0.044)
LDt−1 ∗CCt−1 −0.011∗∗∗ (0.004)
Hub: 1 −0.007 (0.006) 0.0003 (0.002) 0.002 (0.003) −0.013 (0.030)
NetworkedF irmsCountt−1 0.0001 (0.0002) 0.0001 (0.0001) 0.0001 (0.0001) −0.0002 (0.001)
AverageNetworkAget−1 −0.005∗∗∗ (0.001) −0.003∗∗∗ (0.001) −0.003∗∗∗ (0.001) 0.001 (0.005)
LegalNetwork: 1 0.001 (0.007) 0.006∗∗ (0.003) 0.006∗∗ (0.003) 0.010 (0.014)
FirmAge2t−1 −0.00000 (0.00000) −0.00000∗∗∗ (0.00000) −0.00000∗∗∗ (0.00000) 0.0003∗∗∗ (0.0001)
AverageFirmSize: Micro 0.017 (0.012) 0.014∗∗∗ (0.004) 0.014∗∗∗ (0.005)
AverageFirmSize: SME 0.030∗∗∗ (0.009) 0.020∗∗∗ (0.003) 0.019∗∗∗ (0.003)
InnovativeSME: 1 0.043∗∗ (0.017) 0.025∗∗∗ (0.009) 0.024∗∗∗ (0.009)
InnovativeStartup: 1 0.263∗∗∗ (0.091) 0.229∗∗ (0.115) 0.231∗∗ (0.117)
ROSt−1 0.004∗∗∗ (0.0005) 0.001∗∗∗ (0.0001) 0.001∗∗∗ (0.0001) 0.001∗∗ (0.001)
ln(LabProdt−1) −0.056∗∗∗ (0.004) −0.014∗∗∗ (0.001) −0.014∗∗∗ (0.001) −0.485∗∗∗ (0.018)
ln(LiquidAssetst−1) 0.010∗∗∗ (0.001) 0.003∗∗∗ (0.001) 0.003∗∗∗ (0.001) 0.001 (0.003)
ln(IntangibleAssetst−1) 0.006∗∗∗ (0.001) 0.002∗∗∗ (0.0004) 0.002∗∗∗ (0.0004) 0.013∗∗∗ (0.003)
Constant 0.202∗∗∗ (0.022) 0.081∗∗∗ (0.007) 0.082∗∗∗ (0.007)

Observations 48,443 48,443 48,443 43,387
N. unique firms 13,998 13,998 13,998 10,445
R2 0.071 0.196

Note: For OLS and FE models robust standard errors are given in parentheses. All regressions also include year, sector and region area fixed-effects.
Asterisks denote significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Key findings of this study are:

• Localized Density and Closeness Centrality: LocalizedDensityt−1 is posi-

tive and significant (p<0.05) in the Pooled OLS model but becomes negative and

insignificant when controlling for outlier in the LAD regression model and when

accounting for firm specific effects. The inconsistency suggests there might be more

complex interactions within the network framework. By considering the interac-

tion effect with centrality (LDt−1∗CCt−1) the coefficient of Localized Density reach

almost 0 and shows a significant (p<0.01) and negative effect (-0.011) of the inter-

action term on firm growth.

ClosenessCentralityt−1 shows consistent moderate significant effect (p<0.05) on

firm growth when minimizing the influence of outliers. The coefficient increases

when considering the interaction effect with localized density.

• Network-Level Control Variables: Being a hub does not significantly impact

firm growth across models. NetworkedF irmsCountt−1 consistently demonstrates a
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positive but marginal and non-significant influence, indicating that simply being in a

network with many firms does not guarantee growth benefits. AverageNetworkAget−1

shows a consistent negative and highly significant effect on firm growth, suggesting

that older networks might be less effective in fostering firm growth, possibly due to

rigidity or diminished innovative capacity over time. Being part of a legally formal-

ized network shows a positive and significant impact on firm growth in the LAD

model, highlighting the importance of formalized network structures for central

firms.

• Firm-Level Control Variables: The negative impact of squared firm age is sig-

nificant in the LAD regression, suggesting that younger firms benefit more from

network participation. Positive and significant coefficients for AverageFirmSize:

Micro and AverageFirmSize: SME in the LAD model highlight substantial growth

benefits for smaller firms within networks. Innovative SMEs and Startups show

significantly higher growth rates, emphasizing the importance of innovation capac-

ity and the potential enhancement of innovation through network participation.

Significant positive impacts of ROS and intangible assets, while labor productivity

has a negative impact across all models, possibly indicating over-employment or

inefficiencies in labor utilization.

In the Fixed Effects model, both Localized Density and Closeness Centrality, as well

as all network-related variables, become non-significant. This absorption of significance

is likely due to the model controlling for unobserved firm-specific characteristics, such

as interaction frequency, managerial capacity, and coordination capacity. It suggests

that the effects of these variables are differenced out by the fixed effects, indicating that

network composition and firm positioning do not vary significantly within firms over time

as shown in table 2.15.

The time splitting analysis 2.13, which examined the impact of variables over different

periods, reveals that the effects of network characteristic variables are not static over time.

During certain periods, the influence of localized density and centrality varies, indicating

that temporal factors play a role in determining the effectiveness of network participation

on firm growth. This temporal variability highlights the need for dynamic strategies that

adapt to changing economic conditions and network dynamics.

In conclusion, Localized Density exhibits negative but non-significant effect on firm
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growth in more robust models (LAD and FE). Conversely, firms with higher centrality

within their networks tend to experience better growth outcomes, as centrality facilitates

access to information and resources, enhancing the firm’s strategic positioning. The

significant negative interaction effect between localized density and closeness centrality

implies that the benefits of geographic proximity depend on both physical positioning and

organizational position within the network. Firms that are both geographically proximate

and central in their networks might experience diminishing returns due to overcrowding

and coordination difficulties.

Overall, this thesis contributes to the understanding of the role of spatial proximity

and network effects in influencing firm growth in the context of Italian Network Contracts.

The findings highlight the complexity of network dynamics and the importance of con-

sidering both spatial and organizational dimensions in designing policies and strategies

to optimize network benefits for firm growth.

Future research could explore the effects of network contracts and spatial proximity

by integrating network diversity, different sectors may have unique characteristics and

dynamics that influence how network participation affects firm growth. Extending the

time frame of the data would provide a better understanding of the long-term effects of

network and spatial proximity, capturing trends and evolving network interactions over

time. Addressing these aspects can offer a deeper understanding of the complex dynamics

of spatial proximity and network effects on firm growth.
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