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1 Introduction

The increasing complexity of software systems necessitates robust methods for
ensuring their reliability and security. Anomaly detection consists in the anal-
ysis of program behaviors in order to determine whether aberrant executions
states can occur.

In this thesis, we propose a static and formal contribution to anomaly
detection, based on abstract interpretation theory. The main novelty is the
formal definition and complete implementation of the Stability domain for
anomaly detection, noticing that no other domain in the literature already
captures this property, as far as we know.

Our solution is built on the concept of covariance and contra-variance of
variables as relevant properties in the identification of anomalous states.

When operating a vehicle, for example, we expect that if the left turn
signal is activated, then the turning wheel will rotate to the left. The two
conditions are independent from one another, as it is possible to signal a right
turn and then turn left, but from our understanding this is clearly an anomaly.

In a program, we may have that variables syntactically independent from
one-another are expected to behave as correlated variables, either increasing
and decreasing together, or maintaining opposite trends. If it is possible to
identify such variables, then any state in which the property is not satisfied
may correspond to an anomalous state of execution. On the other hand, a
static analyser providing a proof that covariance or contra-variance is verified
throughout the program or in critical code blocks, is providing a proof of
correct behavior.

The key idea for expressing covariance and contra-variance is the notion
of stability as the detection of monotonicity of a variable in the sequence of
states of any tree of execution for a program. From stability information of a
set of variables it is possible to determine their correlation.

The Stability domain is fully implemented in the LiSA generic static anal-
yser developed by the SSV research group at Ca’ Foscari University and has
been tested on a generic imperative language, though we note it can already
be applied to any other programming language supported by LiSA (namely
Python and Go, at the time of writing).

The effectiveness of the proposal is discussed by considering in detail a
representative use case.
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Background The background section lays the foundational concepts nec-
essary for understanding the thesis, introducing static analysis, abstract in-
terpretation and anomaly detection in the context of program verification. It
also discusses order theory to provide the mathematical framework underlying
the abstraction of program properties.

The chapter concludes with an introduction to the LiSA static analysis
framework and an overview of components, interfaces and classes necessary
for implementing and running an analysis.

The Stability Domain Chapter 3 introduces the Stability abstract domain.
It first defines concepts of increasing, decreasing and stable variables and
discusses how these properties can be inferred from semantics and auxiliary
information. Then, the chapter provides the formal definition of the domain
with its concretization and abstraction functions, mapping variables to their
trend in correspondence of a statement.

The last section shows the LiSA implementation of Stability through the
Trend and Stability classes, as well as the results obtained from running
the analysis on a method.

Covariance and Contra-variance This chapter explores the concepts of
covariance and contra-variance, showing how they can be determined from
the results of the stability analysis and providing their formal definitions.

Then it discusses the implementation of these concepts in LiSA as a
SemanticCheck.

Study: the Scale Problem Chapter 5 illustrates a practical application
of the correlation analysis, demonstrating the results that can be reached on
a program computing the scale transformation of rectangles. This example
provides a clear understanding of how covariance and contra-variance can
influence software analysis and the benefits they offer when integrated into
the LiSA framework.

Related Work This chapter provides an overview of existing research and
developments in the fields of abstract interpretation and anomaly detection,
contextualising this thesis within the broader landscape and highlighting sig-
nificant contributions from previous studies.

Appendices The appendices include additional technical details and sup-
port the implementation discussions from the main chapters. Appendix A
presents the logic of operations discussed in Section 3.2.1. Appendix B cov-
ers the Trend class, Appendix C the Stability class, and Appendix D the
CoContravarianceCheck class. Finally, Appendix E presents two examples
of methods running the stability and correlation analyses.
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2 Background

This chapter provides the foundation for understanding the concepts discussed
in this thesis.

It introduces static analysis as a method for automated analysis of pro-
gram source code independently from execution, outlining its main features
and limitations. It delves into abstract interpretation theory, explaining key
concepts like concrete and abstract semantics, properties, and domains. Or-
der theory is introduced to provide the mathematical foundations necessary
to model these concepts, namely partially ordered sets, lattices, Galois con-
nections, and fixpoint abstraction.

Anomaly detection is discussed as a key application scenario, highlighting
the relevance of a formal and static approach.

Finally, the chapter introduces LiSA, a Java framework for the develop-
ment of abstract interpretation static analyzers, presenting its main compo-
nents and providing practical guidance on its use.

2.1 Static Analysis
Static analysis is an automatic technique to verify that a program satisfies
some semantic property, semantic meaning it pertains to the run-time behav-
ior of a program [1]. It belongs to the class of formal methods, mathematical
techniques used in program analysis for the verification of software systems.
They provide a formal framework to reason about the correctness, behavior,
and properties of programs. By symbolically examining the entire state space,
formal methods can establish correctness or safety properties that apply to
all possible inputs of the analyzed program.

Static analysis is automated through specialised tools, called static ana-
lyzers. These are programs that take another program as input and produce
information about its behavior independently from execution, as the word
static suggests.

A static approach, while being typically harder to design and implement
than a dynamic one, has the key advantage of allowing for the detection and
removal of issues before the program runtime. Moreover, dynamic analyses
often introduce performance overhead and, as pointed out by [1], certain
properties, such as termination, cannot be verified dynamically.
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Figure 2.1: Venn representation of sound and complete analysis results.

2.1.1 Sound and Complete analyses

The two following properties are critical in order to understand the results of
an analysis.

Definition 2.1. (Soundness) The analysis is sound with respect to property
P whenever, for any program p, analysis(p) = true implies that p satisfies
property P .

Soundness means that it is possible to have a program which does satisfy
P and for which the analysis returns false, but there will never be a program
for which the result is true and P does not hold. A sound analysis will only
accept programs for which it can guarantee that they satisfy the property,
ensuring that all programs that do not satisfy P are rejected.

Definition 2.2. (Completeness) The analysis is complete with respect to
property P whenever, for every program p such that p satisfies P , analysis(p) =
true.

Therefore, completeness means it is possible to encounter a program which
does not satisfy P and for which the analysis returns true, but no program for
which P holds and the analysis returns false. Complete analyses will accept
every program that satisfies P and ensure that all programs which are rejected
do not satisfy P .

A sound analysis may be interpreted as over-approximating the behav-
ior of the program, while a complete analysis as underapproximating it, as
exemplified by Figure 2.1.

In practice, any alarm raised by a complete analysis (by returning false)
corresponds to an actual violation of the property. On the other hand, an
alarm reported by a sound analysis may be a false alarm and the property
might actually hold. However, if a sound program analysis reports no errors,
then the program is guaranteed to satisfy the property being verified.

Static analysis is sound but not complete, the reason for which is discussed
in more detail in the following section.
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2.1.2 Limitations of Static Analysis

As proved by H.G. Rice, all non-trivial properties of program behaviour in
a Turing-complete programming language are undecidable [2]. Non-trivial
properties, i.e., ”there are programs that satisfy [them] and programs that do
not” [1], are exactly what is necessary to verify.

A consequence of Rice’s Theorem is that there can be no verification
method that is automated, sound and complete. Therefore, any possible
analysis presents some kind of limitation, either by giving up automation, by
targeting only a restricted class of programs, or by not always being able to
provide an exact answer (i.e., giving up soundness or completeness) [1].

Testing, for example, is complete but not sound: as it only observes a
finite set of executions, it cannot guarantee that all programs that do not
satisfy the property will be identified.

Static analysis, on the other hand, is automated and the soundness of
the results can be ensured by the use of abstract interpretation theory, as
discussed in Section 2.2. The price to be payed is the possible loss of accuracy.
In fact, as static analysis employs algorithms that enforce termination of the
analysis even when the program may have infinite executions, the results are
not complete, as we may have ’false alarms’ [1].

2.2 Abstract Interpretation
Abstract interpretation [3] is a semantics approximation theory which provides
formal tools for the sound abstraction of a program’s source code into a set a
properties.

The central idea is to construct two different meanings of a programming
language: one, the concrete semantics, gives the usual meaning of programs
in the language, and the other, the abstract semantics, can be used to verify
properties of programs in the language (i.e., answer certain questions about
runtime behavior). The abstract semantics produced through abstract in-
terpretation denote a sound over-approximation of the concrete semantics,
ensuring that any property proven true for the program on an abstract do-
main does indeed hold for the original concrete domain (soundness). The
mathematical foundation for this is provided by order theory and is presented
in Section 2.3. The abstraction also provides scalability, by abstracting away
irrelevant details and making it feasible to analyze complex programs.

Then, given an abstraction of the program, the analysis applies an iter-
ative fixed-point algorithm to determine a superset of states which verify a
property. The intuition is that properties of the program ”flow” through the
statements, with each statement adding new information and ”killing” infor-
mation that is no longer true. An algorithm analysing the program requires
transfer functions, describing how information changes as it flows through
a basic block (i.e., what information is added and eliminated), and merge
functions, describing how information from multiple pats is combined. As
discussed in section 2.3.2, in this case the domain itself describes both trans-
fer and meet functions.
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2.2.1 Abstract domains

An abstract domain is a set of abstract properties, which represent partial
information about program states or about execution [1].

This domain encodes weaker properties and operations than the concrete
domain it abstracts [4]. As a result, analysis on the abstract domain over-
approximates program behavior, generating a superset of reachable states. By
manipulating these abstract logical properties, the analysis can infer sound
conclusions about all possible program executions.

Example 2.1. The Sign abstract domain is a set of properties representing
the sign of program variables at a program state. We can consider the abstract
properties: ”is positive” (’+’), ”is negative” (’−’), ”is zero” (’0’), ”is non
negative” (’+0’), ”is non positive” (’−0’), ”is different from zero” (’̸= 0’)
(i.e., either positive or negative); as well as: ”unknown sign” (’⊤’) (i.e., either
positive, negative, or zero) and ”no sign” (’⊥’), the meaning for which is
discussed later on.

Suppose, for some state of a program, {x 7→ 2} in the concrete domain.
The abstract value of variable x in the Sign domain is ”is positive”, meaning
that for that same state {x 7→ ’> 0’} in the Sign domain. Note that abstract
property P ′=”x is positive” is indeed weaker than property P = ”x = 2”,
since P implies P ′.

The relation between the concrete and abstract domains is formalized
by a concretization function, defined along with the abstract domain, which
maps abstract properties to the set of concrete elements that satisfy them.
An abstraction function operates the mapping of concrete properties into the
ones abstracting them in the abstract domain. The relation between these
two functions, when respecting criteria discussed in Section 2.3.3, can equate
to a proof of the soundness of the results of the analysis.

Abstract interpretation provides the mathematical tools for constructing
an abstract domain for which these properties hold. Section 2.3 goes into
detail of the mathematical structures representing domains and their relation.

2.3 Order Theory
Order theory provides the formal mathematical framework for representing
programs and properties, necessary for abstract interpretation. It is a branch
of mathematics that deals with the study of partially ordered sets (posets for
short), which are sets equipped with a partial order, i.e., a binary relation that
is reflexive, antisymmetric, and transitive [4]. A particular case of poset is
the lattice structure, which in abstract interpretation can be used to represent
abstract domains, with its elements being abstract properties. Order theory
also provides the mathematical foundation for understanding fixpoint compu-
tations, proving their correctness, and ensuring their convergence properties.

This section presents the formal definitions of order theory structures rel-
evant to abstract interpretation theory.

2.3.1 Posets

Definition 2.3. (Poset) A poset ⟨P, ⊑⟩ is a set P equipped with a partial
order ⊑ that is:
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• Reflexive: ∀x ∈ P, x ⊑ x;

• Antisymmetric: ∀x, y ∈ P, ((x ⊑ y) ∧ (y ⊑ x)) ⇒ (x = y);

• Transitive: ∀x, y, z ∈ P, ((x ⊑ y) ∧ (y ⊑ z)) ⇒ (x ⊑ z).

Two elements x and y are said to be comparable when either x ⊑ y or
y ⊑ x, and incomparable when neither x ⊑ y nor y ⊑ x. A partially ordered
set can contain both comparable and incomparable elements, providing a way
to compare elements within the set without necessarily requiring every pair
of elements to be comparable.

Posets ⟨P, ⊑⟩ can be represented by Hasse diagrams, as shown in Figures
2.2 and 2.3. In a Hasse diagram, a node x is below node y if x ⊏ y, and
a segment connects x and y if x ⊏ y and there exists no other node z s.t.
x ⊏ z∧z ⊏ y (i.e., we exclude transitive edges, as well as reflexive edges). The
edges have no direction, but the position of the two connected nodes allows
to infer the orientation.

An abstract domain can be represented by a poset ⟨A, ⊑⟩, where elements
of A are abstract properties and P ⊑ P ′ indicates that property P ′ is weaker
than property P , i.e., P implies P ′. For example, for the Sign poset from
Figure 2.2, property ”is positive” (’+’) implies property ”is non negative”
(’+0’), meaning ’+0’ is the weaker, more general property and ’+’ ⊑ ’+0’. For
the Interval domain from Figure 2.3, property ”is between 0 and 1” (’[0,1]’)
implies property ”is between -1 and 1” (’[-1,1]’), so ’[0,1]’ ⊑ ’[-1,1]’.

2.3.2 Lattices

Lattice structures are often used in abstract interpretation to represent ab-
stract domains. A lattice is a poset for which any pair of elements has a least
upper bound and a greatest lower bound.
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Definition 2.4. (Upper (lower) bound) Given S subset of ⟨P, ⊑⟩, an upper
(lower) bound, if it exists, is an element b ∈ P such that for all x ∈ S, x ⊑ b
(b ⊑ x).

Definition 2.5. (Least upper bound) The least upper bound (lub or join)
for S, indicated with ⊔S, is the smallest among the upper bounds of S.

Definition 2.6. (Greatest lower bound) The greatest lower bound (glb or
meet) for S, indicated with ⊓S, is the greatest among lower bounds of S.

Note that lub and glb are not guaranteed to exist in every poset; however,
when they do exist, they are unique.

Example 2.2. Consider again the Sign poset of properties from Figure 2.2.
Subset S = {’+’, ’0’} has upper bounds {’+0’, ’⊤’}, since ’+’ ⊏ ’+0’ and ’0’
⊏ ’+0’, and ’+’ ⊏ ’⊤’ and ’0’ ⊏ ’⊤’. The lub (or join) of S is ’+0’, because
’+0’ ⊏’⊤’. Consider the Interval lattice of properties from Figure 2.3. Subset
{’[-1,1]’, ’[0,9]’} has infinite upper bounds {’[-1,9]’, ’[-2,9]’, ’[-1,10]’...}. The
lub is ’[-1,9]’, because it is the least in this infinite set.

Definition 2.7. (Lattice): Lattices are posets in the form ⟨L, ⊑, ⊔, ⊓⟩, with
set L equipped with partial order ⊑ and lub and glb operators ⊔ and ⊓, with
the following property:

∀x, y ∈ L, x ⊔ y and x ⊓ y exist in L.

A lattice is complete if any subset S of L has a lub and a glb (not only
the finite ones). A complete lattice has a top element ⊤ = ⊔L (join of all
elements of L) and an bottom element ⊥ = ⊓L (meet of all elements of L),
and is denoted by ⟨L, ⊑, ⊔, ⊓, ⊤, ⊥⟩. The Sign domain from Figure 2.2 and
the Interval domain from Figure 2.3 are complete lattices.

In the context of abstract interpretation, the lub operator corresponds to
the merge function for converging branches, introduced in Section 2.2. This
means that during the analysis, when encountering a statement with more
than one predecessor, its entry state will be the lub of the exit states of its
predecessors. If the abstract domain is a complete lattice, we are ensured this
lub exists.

2.3.3 Galois connections

The relation required between concrete and abstract domains is the con-
cretization function (γ), expressing the meaning of abstract properties in
terms of concrete properties. An abstract property P ′ is a sound over-
approximation of a concrete property P whenever P ⊑ γ(P ′).

The abstraction function (α), instead, assigns the corresponding abstrac-
tions to concrete properties (e.g., α(P ) = P ′).

Definition 2.8. (Galois connection) Given posets ⟨C, ≤⟩ (the concrete do-
main) and ⟨A, ⊑⟩ (the abstract domain), the pair ⟨α, γ⟩ of abstraction function
α ∈ C → A and concretization function γ ∈ A → C is a Galois connection iff:

∀P ∈ C , ∀P ′ ∈ A , α(P ) ⊑ P ′ ⇐⇒ P ≤ γ(P ′)

A Galois connection establishes a correspondence between concrete and
abstract domains, enabling the transfer of properties and operations between
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them and formalizing the correspondence between concrete and abstract prop-
erties.

Under the assumption that ⟨C, ≤⟩ and ⟨A, ⊑⟩ form a Galois connection
(with abstraction function α and concretization function γ) the following
properties are true:

• α and γ are monotone functions, meaning they map logically comparable
inputs into logically comparable outputs (e.g., if P1 ≤ P2 then α(P1) ⊑
α(P2) and if P ′

1 ⊑ P ′
2 then γ(P ′

1) ≤ γ(P ′
2));

• applying the abstraction function to a concrete property and then ap-
plying the concretization function to the result yields back a less precise
property than the original one (i.e., ∀P ∈ C, P ≤ γ(α(P )));

• applying the concretization function to an abstract property and then
abstracting the result refines the information available in the initial ab-
stract element, resulting in a more precise property (i.e., ∀P ′ ∈ A, P ′ ⊑
α(γ(P ′))).

These properties of Galois connections are the base for ensuring soundness,
guaranteeing that analyses over abstract domains yield correct results relative
to the concrete semantics of programs. For the purposes of the present work,
it is sufficient to note that if a concrete domain and the corresponding abstract
domain form a Galois connection, then the results of the analysis are sound.

2.3.4 Fixpoint Abstraction

Fixpoint abstraction is essential for defining the semantics of programs, in
particular for enforcing termination of the analysis algorithms. Programs
often contain loops or recursive functions, where the behavior depends on the
accumulation of effects over multiple iterations. The analysis in such cases
requires to determine the eventual outcome of these iterations, which can be
seen as reaching a fixpoint where further iterations do not change the state.
Fixpoint abstraction consists in computing these fixpoints in the abstract
domain, ensuring that the fixpoint computation is always terminating.

To ensure termination, the algorithm applies a widening operator, which
accelerates the convergence to a fixpoint by over-approximating the abstract
values, preventing infinite loops in the analysis.

In this section we provide definitions for the main concepts of fixpoint
computation for abstract interpretation.

Definition 2.9. (Fixpoint) Consider monotone function f : S → S on a
partial order P. An element x of S is a fixpoint of f if f(x) = x.

In the context of abstract interpretation, such fixpoints represent stable
states in the program’s execution where certain properties no longer change.

If S is a complete lattice, then the set of its fixpoints fp(f) ⊆ S is also a
complete lattice, with:

• a least fixpoint: lfp(f) = glb(fp(f));

• a greatest fixpoint: gfp(f) = lub(fp(f));

with lfp(f) ∈ fp(f) and gfp(f) ∈ fp(f).
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Definition 2.10. (Widening) A binary operator ∇ : A × A → A is a
widening operator in abstract domain ⟨A, ⊑⟩ if it:

1. Abstracts the lub operator: for abstract elements a0, a1, γ(a0)∪γ(a1) ⊆
γ(a0∇a1).

2. Enforces convergence: for ascending chain (ai)i∈N in A, the correspond-

ing sequence (a∗
i )i∈N computed as:

{
a∗

0 = a0

a∗
n+1 = a∗

n∇an+1
is ultimately

stationary.

The analysis is able to enforce termination by detecting lattice values that
may be part of infinitely ascending chain and then artificially raising the value
of the analysis to an approximation of the lub of the chain (i.e., a∗

n∇an+1),
abstracting the reaching of a fixpoint.

2.4 Anomaly Detection
Anomaly detection consists in the analysis of program behaviors in order to
determine whether aberrant executions states caused by attacks, misconfig-
urations, program bugs, and unusual usage patterns can occur. Anomalous
execution states can be caused by program bugs, inappropriate program logic,
or insecure system designs and can lead to malfunctions, as well as leave soft-
ware open to subversion or exploitation by malicious users [5].

Practical applications often consist in dynamically monitoring the pro-
gram execution and comparing it with some model of the normal system-call
behavior in order to detect anomalous system calls. This can be more or
less effective depending on the application, on the user and on the attacker.
Nevertheless, since the underlining issue is not addressed, the defences can be
circumvented and the program exploited [5]. Added to this, is the significant
tracing overhead, as well as the issue of safely modeling normal behavior [6].

A static and formal approach to anomaly detection, instead, would have
the benefits of addressing the core issue, identifying potentially problematic
patterns, structures, or behaviors before the deployment of software, as well
as removing the necessity to model normal behavior and the overhead due to
the real-time tracking of program execution.

The focus of this thesis is the development of an abstract domain for
tracking the trends of variables trough a program. This information is applied
for anomaly detection based on the idea that, for some programs, certain
variables are covariant (or contra-variant) for any correct trace of execution.
Then, it is possible to run a static analysis on a program’s source code in
order to determine trends of variables, and, based on this information, infer
their covariance or contra-variance. Then it is possible to verify whether a
property in the form ”x and y are covariant (or contra-variant)” holds.

Note that, for the results of this analysis to be relevant, we need a formal
guarantee of the covariance or contra-variance of these variables. Put simply,
the automatic analyser may determine if we can be sure that some variables
have always the same (or opposite) trend within the code, but it is up to the
user running the analysis to determine (formally) which variables must be
covariant or contra-variant in order for the program’s behavior to be correct
(i.e., free of anomalies).
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Figure 2.4: LiSA Statement class hierarchy

2.5 LiSA
LiSA (Library for Static Analysis) is a Java framework designed for the cre-
ation and implementation of static analyzers based on abstract interpretation
for imperative languages. The library implements the infrastructure neces-
sary, allowing users to focus mainly on the design of abstract properties and
on the sound approximation of code semantics [7].

LiSA translates input programs into an internal control-flow graph (CFG,
for short) representation. Then, it runs a twofold analysis: first an heap
abstraction, then a value abstraction. The result of the analysis is an entry
and an exit abstract state for each node in the CFG.

A domain is able to determine how abstract information evolves thanks to
the semantics of statements. In LiSA, implementing a new abstract domain
equates to defining a value domain, which must provide the logic of lattice
operations and operations for reasoning on statement semantics, while the
infrastructure responsible for mapping variables to abstract values is encap-
sulated by the concept of environment.

This section only provides a superficial understanding of the library, pre-
senting an overview of LiSA features and classes relevant to the discussion in
the following chapters.

2.5.1 Front-end component and CFG representation

An input program is translated into a set of CFGs, one for each program
method, by a language-specific front-end component. The main language
used for testing in LiSA is imp, an imperative language handling arithmetic
expressions inspired by Java. The examples presented in Sections 3.4.3 and
5.3 take as input imp programs, which are processed by the IMPFrontend
class.

The CFG structure offered by LiSA is flexible and extensible, capable of
representing the syntax of any programming language by directly encoding
control flow structures in its own structure. Single nodes of the CFG represent
single statements which directly affect the program state, expressed as sets of
symbolic expressions, written in the internal language of LiSA.
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Figure 2.5: LiSA SymbolicExpression class hierarchy

The CFG class is the LiSA implementation of CFGs, where edges are repre-
sented by the Edge class, while nodes by the Statement class, whose hierarchy
is shown in Figure 2.4.

2.5.2 SymbolicExpression and Statement classes

SymbolicExpressions are a set of expressions which represent the semantics
of CFG nodes, written in the internal language of LiSA and defined over a
small set of operations. They are separated into HeapExpressions, modeling
operations on the heap, and ValueExpressions, that instead concern only
constant values and identifiers. Figure 2.5 shows the SymbolicExpression’s
class hierarchy. Abstract domains reason on semantics and therefore their
implementations in LiSA operate on these SymbolicExpressions.

Nodes of LiSA CFGs, which are represented by Statements, must rewrite
themselves into SymbolicExpressions that represent their semantics, that
are then passed on to abstract domains.

Note that even though function calls are Statements, they are not included
as SymbolicExpressions. This is because CFG calls are handled by the
CallGraph interface, which resolves the calls and provides their results in the
abstract domain, allowing the rest of the analysis infrastructure to abstract
away the calls themselves.

2.5.3 Lattice and SemanticDomain interfaces

In LiSA, lattice operations and semantic operations are handled by two sep-
arate interfaces: Lattice and SemanticDomain, respectively.

The generic Lattice interface represents elements of a lattice. It is para-
metric to the concrete instance L, which must implement bottom and top
elements, lub, glb and widening operations, and the partial order. For exam-
ple, the lub() method will be called by the analysis whenever encountering
two converging branches of the CFG to compute the entry state of their suc-
cessor node.

LiSA provides the BaseLattice class, which overrides these lattice op-
erations and handles their base cases, delegating the implementation of the
specific logic to auxiliary methods that must be implemented by its subclasses.
Take, for example, the lub() method implementation of BaseLattice:

1 default L lub(L other) throws SemanticException {
2 if (other == null || other.isBottom () || this.isTop()
3 || this == other || this.equals(other))
4 return (L) this;
5
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6 if (this.isBottom () || other.isTop ())
7 return other;
8
9 return lubAux(other);

10 }

The SemanticDomain interface represents domains capable of reasoning
about semantics of symbolic expressions. It is parametric on concrete instance
D, symbolic expression type E and identifier type I. An implementation of D
must implement methods:

• D assign(I id, E exp): yields a copy of the domain where id has
been assigned to the abstract value obtained from the evaluation of
exp;

• D assume(E exp): yields a copy of a domain modified by assuming that
exp holds;

• D forgetIdentifier(I id): forgets all gathered information about
identifier id;

• D forgetIdentifiers(Collection<I> ids): forgets all information
about all identifiers ids;

• Satisfiability satisfies(E exp): returns a Satisfiability ob-
ject (SAT, UNSAT, UNKNOWN or BOTTOM) representing whether exp is sat-
isfied in the program state represented by the domain;

• D smallStepSemantics(E exp): yields a copy of a domain modified
accordingly to the semantics of exp.

2.5.4 ValueDomain and HeapDomain interfaces

ValueDomain and HeapDomain are two interfaces, each parametric on its own
concrete type (V and H, respectively), that extend both Lattice (Lattice<V>
and Lattice<H>, respectively) and SemanticDomain. Their difference comes
down to the parameters of this last interface: ValueDomain extends Semantic-
Domain<V,ValueExpression,Identifier>, while HeapDomain extends Se-
manticDomain<H,SymbolicExpression,Identifier>. ValueDomain repre-
sents the value abstraction and HeapDomain the heap abstraction.

2.5.5 ValueEnvironment interface

The ValueEnvironment interface is parametric on type D, implements Value-
Domain<ValueEnvironment<D» and represents the mapping of Identifiers
(i.e., individual variables) to instances of D (i.e., abstract values).

Type D must implement NonRelationalValueDomain, an interface mod-
eling a non-relational value domain capable of computing the value of a
ValueExpression from the values of all program variables and to check if
an expression is satisfied.

BaseNonRelationalValueDomain is an abstract class provided by LiSA
that presents a base implementation for non-relational value domains.
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2.5.6 AbstractState class

A LiSA abstract state, represented in the AbstractState class, wraps to-
gether a ValueDomain and an HeapDomain. AbstractState is parametric
on the type H of HeapDomain, the type V of ValueDomain and on the type
T of TypeDomain. The TypeDomain interface, parametric on its own con-
crete type T, extends ValueDomain<T> and represent a domain for handling
dynamic typing inferences in the analysis. AbstractState also implements
Lattice<AbstractState<H,V,T» and SemanticDomain<AbstractState<H,
V,T>,SymbolicExpression,Identifier>.

Any expression to be evaluated is first passed to the HeapDomain, which
updates itself according to its semantics and rewrites it into an expression
free of heap references. Then, the rewritten expression is passed to the
ValueDomain for its evaluation. This separation between domains ensures a
high degree of modularity, as all components of the analysis can be modified
or replaced without the need for any modifications to other components. This
also means that the implementation of a new domain can be carried out with-
out any knowledge of heap access semantics, for which the standard implemen-
tations provided by LiSA (e.g., MonolithicHeap, FieldSensitivePoint-
BasedHeap) can be applied, simplifying the development of analysers.

2.5.7 Running LiSA

After the definition of an appropriate ValueDomain, the analysis is run by
creating a LiSA object, configuring it, and, finally, calling the run() method
on a Program object. The following line of code defines a Program by invoking
the imp front-end on the file located at ”filePath”.
Program program =

IMPFrontend.processFile("filePath");

One possible way of configuring the LiSA object is by passing directly to
the constructor a LiSAConfiguration object. The following code shows an
example:

1 // specify directory for generated files
2 conf.workdir = "output/sign";
3
4 // specify the visual format of the analysis results
5 conf.analysisGraphs = LiSAConfiguration.GraphType.HTML;
6
7 // indicate to produce JSON files with the serialised results
8 conf.serializeResults = true;
9

10 // specify the analysis that we want to execute
11 conf.abstractState = new SimpleAbstractState <>(
12 // heap domain
13 new MonolithicHeap (),
14 // value domain
15 new ValueEnvironment <>(new Sign()),
16 // type domain
17 new TypeEnvironment <>(new InferredTypes ()));
18
19 conf.interproceduralAnalysis = new ContextBasedAnalysis <>();
20
21 // instantiate LiSA with the configuration
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22 LiSA lisa = new LiSA(conf);
23
24 // analyze the program
25 lisa.run(program );

As shown by the code above, the different fields of a LiSAConfiguration
are set to the desired implementations to be used in the analysis.

The stabiltiyTest() method from Appendix E shows a test running
LiSA with the Stability domain implementation, Stability.
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3 The Stability Domain

This chapter presents the Stability domain, a novel abstract domain specif-
ically designed to track variations of the trends of variables within software
programs. This analysis is crucial for identifying variables that should re-
main constant or follow specific trends. By tracking how variables change
over time, it is possible to detect patterns that may indicate potential is-
sues or to prove properties that ensure correct behavior. In the scope of this
thesis, as explored in Chapter 4, Stability information aims to aid in the de-
tection of potential anomalies by identifying correlation between syntactically
independent variables as correlation of their trends.

Overall, this section provides a comprehensive examination of the Sta-
bility domain, from the intuitions behind its development and its proposed
definition, to its implementation and application.

We discuss how stability information can be inferred from code statements’
semantics and refined by interrogating an auxiliary abstract domain, with
accuracy depending on the chosen domain.

Next, we define the Stb lattice to express variables’ possible trends as ab-
stract properties and their relations. We then provide the formal definition of
the Stability abstract domain as the STB lattice, mapping program variables
to elements of Stb, along with its concretization and abstraction functions.

The final part of this chapter focuses on the implementation of the Stabil-
ity domain within the LiSA framework. We describe Trend class, represent-
ing the Stb lattice, and Stability class, which implements the analysis by
wrapping together the Stability and auxiliary domains and at each program
statement computes the new trend of a variable by reasoning on semantics
and querying the auxiliary domain. This section concludes with a practi-
cal example, running the analyser on a simple imp method and showing the
results produced.

3.1 Increasing and decreasing variables
At each statement in the program, any variable has a trend representing how
its value will be modified by that statement’s execution. The Stability domain
analysis aims to determine this trend for each variable at each statement. For
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statements that do not modify variable values, all trends are simply propa-
gated forward. For example, after the statement st : if(a > 0), the trends of
all variables will remain the same as they were before (they will not become
’stable’).

An assignment is a statement in the form st : x = e, where x is a variable
and e is an expression. In particular, e can be: a constant, another variable,
or an expression in the form a OP b, where a and b are expressions and OP is
an operator (i.e., +, −, ×, or ÷). When reaching an assignment, the analysis
needs to determine the new trend of variable x.

Definition 3.1. (Increasing (decreasing) variables) Given a statement
st which modifies the value of variable x, we say that x is increasing (decreas-
ing) at st if it is true that the value of x after st is greater than (less than)
the value of x before st.

Example 3.1. If x = 0, then at statement st : x = 1, x is increasing.

Example 3.2. For statement st : x = x + 1, whatever the value of x before
st, we can be certain that x is increasing at st.

Definition 3.2. (Stable variables) We say that a variable is stable at state-
ment st if its value before and after st is unchanged.

Example 3.3. Variable x is stable at statement st : x = x + 0.

The Stability domain must determine the trend of variables in the abstract,
meaning without access to their concrete value, only reasoning on semantics.
Examples 3.2 and 3.3 illustrate a fundamental concept: in some cases, stability
information can be inferred from the structure of the statement, regardless of
the actual concrete values.

This is not always true. Consider the following cases. The trend of x
at statement st : x = 1 cannot be determined without knowing at least a
range of values for x before st. Again, given statement st : x = x × 2, x
may be increasing or decreasing, depending on its sign before st. It may even
be stable if its value is 0. Determining the trend of x at st : x = x + y is
impossible without information at least on the sign of y. For st : x = x×y we
need information on the sign of x and the value of y. In instances like these,
the Stability domain looses precision quickly.

3.2 Auxiliary abstract domain
The definitions of increasing, decreasing and stable variables seem to indi-
cate the necessity for a comparison between the value of a variable before
and after a statement. Even when this is not the case and stability infor-
mation can be inferred from the semantics of statements, in most cases the
information obtained is not precise enough to be useful, as illustrated at the
end of the previous section. These conclusions can be refined by integrating
knowledge with the support of another abstract domain, capable of adding
key information on variables.

We say that the Stability domain queries an auxiliary abstract domain.
This allows for direct comparison of some abstraction of the value of vari-
ables before and after a statement, as well as providing information useful for
reasoning about semantics.
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Example 3.4. Suppose we have statement st : x = x + y and we can access
the Intervals abstract domain. Intervals guarantees that, before st, {x 7→ [1,
2], y 7→ [4, 6] } and that the state of x after st is [5, 8]. Then by comparing
the prestate ([1, 2]) and poststate ([5, 8]) of x in the auxiliary domain, it
is possible to conclude that x is increasing at st, since its value after st is
necessarily greater than its value before st.

Different auxiliary domains can provide different levels of precision. In
the same example, querying the Sign domain in the same way is less precise:
the prestate of x in Sign is ’+’, its poststate is ’+’ as well, and comparing
them gives no information on the trend of x.

3.2.1 Reasoning on semantics

In general, it is possible to gain more accurate information from reasoning on
the semantics of a statement in relation to a variable, rather than comparing
its prestate and poststate. Consider the following example.

Example 3.5. Suppose we have statement st : x = x + y and the Intervals
abstract domain guarantees that, before st, {x 7→ [1, 4], y 7→ [1, 2] } and that
the state of x after st is [2, 6]. We can draw no conclusions by comparing
prestate and poststate: considering only the abstract values of x in Intervals,
x could be increasing (e.g., x = 3 → x = 6), decreasing (e.g., x = 3 → x = 2),
or stable (e.g., x = 3 → x = 3). However, by reasoning on semantics and
with the numerical information provided by Intervals we can conclude that x
must be increasing at st, because we are adding a positive value to it.

For each statement in the form st : x = x OP y, where OP is one of
the operators {+, −, ×, ÷}, it is possible to construct a logic based on
the operation semantics and on queries to an auxiliary domain to determine
the trend of x. We query an auxiliary abstract domain A trough the call
queryA(x, c), where x is a variable and c a constant and queryA(x, c) returns:

• isEqual, if A is able to guarantee that property x = c holds at the
current statement st;

• isGreater, if A is able to guarantee that x > c holds at st;

• isGreaterOrEq, if A is able to guarantee that x ≥ c holds at st;

• isLess, if A is able to guarantee that x < c holds at st;

• isLessOrEq, if A is able to guarantee that x ≤ c holds at st;

• isNotEq, if A is able to guarantee that x ̸= c holds at st;

• unknown, if A is not able to guarantee that any of the previous proper-
ties holds at st.

Example 3.6. Suppose we have statement st : x = x + y and we can ac-
cess the Sign abstract domain, which can answer questions: ”is variable y at
statement st positive/negative/zero/non negative/non positive/different from
zero?”, i.e., queries in the form querySIGN (y, 0). Then, determining the trend
of variable x at st can be achieved by querying Sign, as shown by the following
pseudo-code.
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answ = querySIGN (y, 0)
switch answ do

case isEqual:
x is stable
break;

case isGreater :
x is increasing
break;

case isLess:
x is decreasing
break;

case isGreaterOrEq:
x is not decreasing
break;

case isLessOrEq:
x is not increasing
break;

case isNotEq:
x is not stable
break;

default:
x is unknown
break;

end switch
Note that the answer provided by the auxiliary domain is not based on

the concrete values of the variables, but on their abstraction. Therefore, it is
possible that none of the conditions is verified: Sign may not be able to ensure
that y is positive, negative, nor zero, etc, and the query returns unknown. If
we had its concrete value this would not be possible (a value is either positive,
negative or zero).

Example 3.7. Consider, now, statement st : x = x × y. The Sign domain
is not sufficient to reach a precise conclusion, as knowing, for example, that
both x and y are positive may still result in increasing (e.g., x = 2, y =
2), decreasing (e.g., x = 2, y = 0.5), or stable (e.g., x = 2, y = 1) trend
for x. In this case, instead, we may query the Interval abstract domain,
which can answer questions: ”is variable y at st greater than/less than/equal
to/greater or equal than/less or equal than/different from value c?” Then we
can determine the trend of x as follows:

ansx = queryINT (x, 0)
ansy = queryINT (y, 1)
switch ansx do

case isGreater :
switch ansy do

case isGreater :
x is increasing
break;

case isLess:
x is decreasing
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break;
case isEqual:

x is stable
break;

case isGreaterOrEq:
x is not decreasing
break;

case isLessOrEq:
x is not increasing
break;

case isNotEq:
x is not stable
break;

default:
x is unknown
break;

end switch
case isEqual:

...
case isLess:

...
case isGreaterOrEq:

...
case isLessOrEq:

...
case isNotEq:

...
default:

x is unknown
break;

end switch
All omitted cases hold logical structures analogous to the one shown in the
case isGreater for ansx.

Appendix A shows, with the same notation from the examples above, the
complete logic necessary for each of the operators.

Note that in the following cases:

• st is not an assignment statement;

• st is an assignment, but x is not one of the operands; and

• whenever the logic of operations returns unknown trend for x (i.e., there
is no information to be obtained from the semantics of the statement);

it is a viable approach to query the auxiliary domain with questions in the
form: ”is the value of variable x after st > / < / = / ≥ / ≤ / ̸= the value
of variable x before st?” (i.e., comparing prestate and poststate of x) and
provide an answer based on the response. If the domain cannot give a useful
response, then the trend for x at st remains unknown.
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3.2.2 Logic of operations

In this section we overview the conclusions that can be drawn from the com-
plete set of conditions that make up the logic of operations for assignment
statements in the form st : x = x OP y, with OP either {+, −, ×, ÷}, having
access to auxiliary information from a different abstract domain A.

These considerations on the semantics of operations show which type of
queries an auxiliary domain must be able to answer for each operator, as well
as aid in the implementation of the domain in LiSA, delineating what will be
necessary functions and their internal logic.

On queries’ results

Note that query(x, c) returns the most precise property it can guarantee for
x. isGreater implies isGreaterOrEq, isNotEq and unknown, for example.

Another crucial point to understand when analysing the logic in Appendix
A, is that isEqual being false, for example, does not imply that isNotEq is true,
as we are reasoning on the abstract domain and these properties represent
what the domain can infer from the semantics on the possible value of a
variable.

Inverting trends

In many cases, the logic of one operation can be regarded exactly as the
inverse of another, if we consider:

• = is the inverse of itself,

• ̸= is the inverse of itself,

• (↑, ↓) are each the inverse of the other,

• (↑=, ↓=) are each the inverse of the other.

Addition and subtraction

Consider the logic presented by Appendix A for cases st : x = x + y or
st : x = y + x. We call this paradigm increasingIfGreater(), and we can say
that for the addition operator the trend of x = increasingIfGreater(y, 0).

Considering case st : x = x − y, we can observe that, at parity of abstract
values of y in A, the trend of x at st : x = x − y is the inverse of the trend of
x at st : x = x + y or st : x = y + x, and vice versa. We can say that for the
subtraction operator the trend of x = inverse(increasingIfGreater(y, 0)).

Multiplication

Observing the different cases for st : x = x × y or st : x = y × x we note, in
particular, that:

• if queryA(x, 0) = isGreater, the trend of x = increasingIfGreater(y, 1);

• if queryA(x, 0) = isLess, the trend of x = inverse(increasingIfGreater(y, 1));

• if queryA(x, 0) = isGreaterOrEq, we can identify new paradigm non-
DecreasingIfGreater() and say that the trend of x = nonDecreasingIf-
Greater(y, 1);
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• if queryA(x, 0) = isLessOrEq, the trend of x = inverse(nonDecreasingIf-
Greater(y, 1)).

Division

In the case st : x = x ÷ y we can observe:

• if queryA(x, 0) = isGreater, we have new paradigm incIfBetweenZe-
roOne(), and the trend of x = incIfBetweenZeroOne(y);

• if queryA(x, 0) = isLess, the trend of x = inverse(incIfBetweenZeroOne(y));

• if queryA(x, 0) = isGreaterOrEq, we can identify new paradigm nonDe-
cIfBetweenZeroAndOne() and say that the trend of x = nonDecIfBe-
tweenZeroAndOne(y);

• if queryA(x, 0) = isLessOrEq, the trend of x = inverse(nonDecIfBetween-
ZeroAndOne(y)).

3.3 Formal Definition
The Stability domain can be formally defined as a complete lattice, whose
elements are in the form V arsP → Stb, meaning the abstract properties map
variables of a program P to analyse, to elements of Stb. Stb is a lattice defined
in this chapter, whose elements represent trends of variables. It is important
to note that this map corresponds to a specific point of the program and at
each statement of the program the map is different. So it is more accurate to
say, that Stability maps variables to their trends at a specific statement.

This section presents the formal definition of the Stability domain as a
lattice, along with is operators.

3.3.1 The Stb lattice

The Stb complete lattice represents the trends of variables and the relation
among these trends. We define:

Stb ≜ ⟨{⊥, ↑, =, ↓, ↑=, ̸=, ↓=, ⊤}, ⊔Stb, ⊓Stb, ⊑Stb, ⊥, ⊤⟩

The meaning of the lattice elements is explained as follows:

• ⊥, the bottom element, i.e., the variable has no trend;

• ↑, the variable is strictly increasing;

• =, the variable is stable;

• ↓, the variable is strictly decreasing;

• ↑=, the variable is non-strictly increasing (i.e., it is not decreasing);

• ̸=, the variable is not stable;

• ↓=, he variable is non-strictly decreasing (i.e., it is not increasing);

• ⊤, the top element, i.e., the variable can have any trend.
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Figure 3.1: Hasse diagram of Stb lattice.

Figure 3.1 shows the Hasse diagram representing the lattice. Definitions
for the operators can be derived from the diagram, based on the description
from Section 2.3.1.

Example 3.8. The least upper bound of elements ↑ and ↓ is ̸=, as both
elements are below it and connected to it, which indicates that both ↑ ⊑Stb

̸= and ↓ ⊑Stb ̸=. ⊤ is also an upper bound of set {↑, ↓}, but since ̸= ⊑Stb ⊤,
̸= is the lub.

Example 3.9. The greatest lower bound of elements ↑ and ↓= is ⊥, as both
elements are above it, ⊥ is directly connected to ↑ and, by the transitive
property of the order relation, ⊥ is connected to ↓= by an implied transitive
edge, indicating that both ⊥ ⊑Stb ↑ and ⊥ ⊑Stb ↓=.

3.3.2 STB abstract domain

The STB lattice represents a domain mapping variables (V arsP indicating
the set of variables of program P ) to properties representing their trend at a
statement. The STB lattice is defined as:

STB ≜ ⟨V arsP → Stb, ⊔ST B, ⊓ST B, ⊑ST B, ⊥ST B, ⊤ST B⟩

Elements of this lattice are properties mapping variables of a program to
elements of Stb.

The lattice operators ⊔ST B, ⊓ST B, ⊑ST B are defined as point-wise appli-
cations of the corresponding operators of Stb, meaning, for example, that the
⊔ST B of two maps results in another map where each variable is mapped to
the ⊔Stb of its values in the two maps. The bottom element ⊥ST B corresponds
to the empty map, while the top element ⊤ST B corresponds to the map where
every variable is mapped to ⊤ ∈ Stb.
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Example 3.10. The least upper bound ⊔ST B of {x 7→ ’↑’, y 7→ ’↑’} and {x 7→
’↓’, y 7→ ’↓=’} is: {x 7→ ’̸=’, y 7→ ’⊤’}, because ’↑’ ⊔Stb ’↓’ is ’ ̸=’ and ’↑’ ⊔Stb

’↓=’ is ’⊤’.

Elements of STB can be concretized into sets of program traces for which
the abstraction would reach that state. This means that concretization func-
tion γ is defined in terms of abstraction function α. We indicate as T the set
of all traces. Then, for an element s of STB:

γ(s) =
⋃

{T ∈ ℘(T) | α(T ) ⊑ST B s}

Example 3.11. Given an abstract state {x 7→ ’↑’, y 7→ ’↑’}, its concretization
is the set of all traces of program P for which Stability can indeed state that
both x and y are strictly increasing.

For a set of program traces T ∈ ℘(T), its abstraction α(T ) is defined as
the lub ⊔ST B of the set of all α̇(ti), ti ∈ T , with:

α̇(ti) =
{

{x 7→ ’ = ’ | x ∈ V arsP } if i = 0
{x 7→ st(ti, x) | x ∈ V arsP } otherwise

where t0 represents the initial state of the program, and st(ti, x) is a function
that determines the trend of variable x at the last statement stl of trace ti,
according to definitions 3.1 and 3.2:

st(ti, x) =



↑ if x is increasing at stl

= if x is stable at stl

↓ if x is decreasing at stl

↑= if x is not decreasing at stl

̸= if x is not stable at stl

↓= if x is not increasing at stl

Concretization and abstraction functions form a Galois connection, since
the condition: ∀T ∈ ℘(T), ∀s ∈ STB , α(T ) ⊑ST B s ⇐⇒ T ⊆ γ(s) is
inferred from the definition of γ, as, by definition, γ(s) is a set of T s for which
α(T ) ⊑ST B s.

3.4 LiSA Implementation
In this section we present how the concepts from this chapter can be applied
through the LiSA framework. Given an imp program, we are able to extrap-
olate Stability information by constructing an abstract state from the combi-
nation of both heap and value information. We implemented a ValueDomain
to represent the Stb lattice and enclosed it into a ValueEnvironment to map
identifiers to elements of this domain. Then we built the Stability class,
wrapping Stability and auxiliary domain together and implementing their
communication through the query operation.

3.4.1 Trend class

The Trend class is a ValueDomain which represents the Stb lattice defined in
Section 3.3.1. We identify four classes of methods, based on their function:
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• Lattice methods: all methods necessary to model the lattice operations
correctly, according to the logic derived from the Hasse diagram of the
Stb lattice (e.g., lubAux, glbAux, lessOrEqualAux, . . .).

• Logic of operations methods: methods that implement the paradigms
identified in Section 3.2.2 (e.g., generateTrendIncIfGt(), generate-
TrendIncIfBetween(), . . .).

• Invert method: invert() returns the inverse of a given Trend following
the rules from Section 3.2.2.

• Combination method: combine() implements the combination of two
trends, which will be relevant for determining covariance or contra-
variance of variables, as discussed in Chapter 4.

The complete implementation of the class is presented in Appendix B.
In particular, note that the logic of operation methods take as parameters a
set of boolean values, representing the possible return values for query(x, c).
For example, consider the code of method generateTrendIncIfGt(), corre-
sponding to paradigm increasingIfGreater().

1 public static Trend generateTrendIncIfGt(
2 boolean isEqual ,
3 boolean isGreater ,
4 boolean isGreaterOrEq ,
5 boolean isLess ,
6 boolean isLessOrEq ,
7 boolean isNotEq) {
8
9 if (isEqual) return STABLE;

10 else if (isGreater) return INC;
11 else if (isGreaterOrEq) return NON_DEC;
12 else if (isLess) return DEC;
13 else if (isLessOrEq) return NON_INC;
14 else if (isNotEq) return NON_STABLE;
15
16 else return TOP;
17 }

The boolean values of parameters isEqual, isGreater, isGreaterOrEq, etc,
are determined by the caller (via queries to the auxiliary domain).

The STB abstract domain is represented by a ValueEnvironment<Trend>
object, which will map variables to Trends.

3.4.2 Stability class

Stability is a generic class, parameterized over the type of its auxiliary do-
main <V extends BaseNonRelationalValueDomain<V». It itself implements
ValueDomain<Stability<V» and BaseLattice<Stability<V».

Stability has two fields: auxiliaryDomain, of type ValueEnvironment<
V>, which represents the abstract domain providing auxiliary information for
the analysis, and trend, of type ValueEnvironment<Trend>, representing
the state of the STB lattice itself. trend maps variables to their Trends, and
auxiliaryDomain maps variables to their abstract properties in V. Stability
handles simultaneously the analysis in both domains.
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For example, method lubAux() performs the lub operation between two
Stabilitys returning a Stability for which:

• auxiliaryDomain corresponds to the lub of the two auxiliaryDomains
(i.e., ⊔AUX operation, lub() method of class V), and

• trend is the lub of the two trends (i.e., ⊔ST B operation, lub() method
of class Trend).

We give a brief overview of the purposes of relevant methods of this class.

• Lattice methods: methods for handling the lattice aspects of the class
(i.e., lubAux(), glbAux(), wideningAux(), lessOrEqualAux(), top(),
bottom(), isTop(), isBottom()).

• Domain methods: methods for handling the evolution of abstract in-
formation, based on the semantics of statements and expressions (i.e.,
pushScope(), popScope(), assign(), smallStepSemantics(), assu-
me(), knowsIdentifier(), forgetIdentifier(), forgetIdentifier-
sIf(), satisfies()). For all these methods, assign() excluded, the
result is some form of combination of computations delegated to auxi-
liaryDomain and trend.

• Query method: query() is used to determine the results of the queryA(x, c)
function from Section 3.2.1.

• Auxiliary logic methods: methods implementing one specific branch of
the logic of operations, as defined in Section 3.2.2 (e.g., increasingIf-
Greater(), nonDecreasingIfGreater(), incIfBetweenZeroAndOne(),
. . .).

• Correlation methods: environmentCombine() implements function rel-
ative to determining covariance or contra-variance of variables, discussed
in Chapter 4.

Lattice methods and most Domain methods work similarly, delegating to
the two ValueEnvironments the actual operations and implementing the logic
at the Stability level. For example:

1 public Stability <V> forgetIdentifier(Identifier id)
2 throws SemanticException {
3 return new Stability <>(
4 auxiliaryDomain.forgetIdentifier(id),
5 trend.forgetIdentifier(id));
6 }

The assign() method is the notable exception, handling directly the com-
putation of the Stability abstract state, which requires information from both
domains. assign() method is called by the domain when encountering an
assignment statement st : x = e. It determines the abstract value for variable
x after st in both the auxiliary domain and in the Stability domain and yields
a copy of the current Stability where x is mapped to these new values.
The computation for the auxiliary domain is handled by auxiliaryDomain,
forwarding the call to assign() of class ValueEnvironment<V>.
ValueEnvironment <V> ad =

auxiliaryDomain.assign(id, expression , pp, oracle );
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The computation of the Stability value is implemented within assign(),
following exactly the logic presented in Appendix A and discussed in Section
3.2.2 and utilising the set of Auxiliary methods. The Auxiliary methods them-
selves call the Logic of operations methods of Trend class, whose parameters
are computed as results of query().

Consider, for example, the call to Trend.generateTrendIncIfGt() in
increasingIfGreater() method:
return Trend.generateTrendIncIfGt(

query(binary(ComparisonEq.INSTANCE , a, b, pp), pp, oracle),
query(binary(ComparisonGt.INSTANCE , a, b, pp), pp, oracle),
query(binary(ComparisonGe.INSTANCE , a, b, pp), pp, oracle),
query(binary(ComparisonLt.INSTANCE , a, b, pp), pp, oracle),
query(binary(ComparisonLe.INSTANCE , a, b, pp), pp, oracle),
query(binary(ComparisonNe.INSTANCE , a, b, pp), pp, oracle)

);

where a and b are SymbolicExpressions, with a representing x and b rep-
resenting the constant c. binary() is an auxiliary method that given a
BinaryOperator comparison operator CMP and two SymbolicExpressions
a and b returns a BinaryExpression object representing ’a CMP b’. Method
query() receives a BinaryExpression q and returns true if the result of:

auxiliaryDomain.satisfies(q, pp, oracle)

is ’SATISFIED’. generateTrendIncIfGt() receives this set of boolean values
and implements exactly the addition branch defined in the logic of operations,
as shown in Section 3.4.1. Any other case is handled in an analogous way.

After the new auxiliaryDomain ad and trend t have been computed,
assign() returns:

1 if (ad.isBottom () || t.isBottom ())
2 return bottom ();
3 else
4 return new Stability <>(ad , t);

meaning, if either domain went to bottom, the whole analysis goes to bottom.
Otherwise, we return the new Stability representing the state after st.

3.4.3 Running the analysis

In order to run the analysis we create a new LiSA object and run it on a
Program. The LiSAConfiguration parameter is defined, in particular, with
field:
conf.abstractState = new SimpleAbstractState <>(

// heap domain
new FieldSensitivePointBasedHeap (),
// value domain
new Stability <>(

new ValueEnvironment <>(new Interval ()). top()),
// type domain
new TypeEnvironment <>(new InferredTypes ()));

The results of the analysis can be dumped into a JASON file for each
method/CFG by setting:
conf.serializeResults = true;

Additionally, HTML files can be produced for better visualization by setting:
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Figure 3.2: CFG produced by LiSA analysier for code from Example 3.12

conf.analysisGraphs = LiSAConfiguration.GraphType.HTML;

The following example shows the results of running the configuration above
with this second option enabled on sample code.
Example 3.12. Suppose we run the analysis on the following imp code.

1 class tutorial {
2 constants () {
3 def c = 1;
4 def b = 0;
5 while (b < 10)
6 b = b + c;
7 return b;
8 }
9 }

The IMPFrontend produces a single CFG representing the constants() me-
thod and the analysis is run on it with Stability value domain, producing
for each node a poststate representing the stability of variables at the corre-
sponding statement. These results are transcribed into an HTML file. Figure
3.2 shows the graph presented by this file when opened on a browser. Select-
ing a node will show the corresponding results for each of the three domains
of the AbstractState. We summarise the results for the Stability environ-
ment for each node, referencing the corresponding statement from the code
and its label in the CFG.

st2 (’c = 1’): c -> stable
st3 (’b = 0’): b -> stable, c -> stable
st4 (’<(b, 10)’): b -> non-decreasing, c -> stable
st5 (’b = +(b, c)’): b -> increasing, c -> stable
st6 (’return b’): b -> non-decreasing, c -> stable

A variable is stable at the statement defining it. The trends at st4 are
the lub of trends at st3 and st5. So the ⊔ST B of {b 7→=, c 7→=} and {b 7→↑,
c 7→=}. The trend of b at st5 is increasing because of the semantics reasoning,
integrated with the knowledge provided by Interval that c is greater than
0. Finally, trends at st6 are the trends at st4, its predecessor, propagated
forward.

The stabiltiyTest() method in Appendix E shows the complete config-
uration of LiSA employed in Example 3.12.





31

4 Covariance and
Contra-variance

This chapter explores the application of the Stability domain to statically
determining correlation of variables over blocks of code.

We begin with an intuitive explanation of how to determine covariance
and contra-variance from Stability information. Next, we formally define these
concepts, including the process of combining trends to produce a cumulative
stability representing the overall change of a single variable over a code block.
We then formally define covariant and contra-variant variables.

The last section details the practical implementation of a SemanticCheck
within the LiSA framework, which runs on the results of the Stability analyser
to determine covariance and contra-variance. By integrating covariance and
contra-variance into LiSA, we enhance its capability to detect and analyze
complex variable interactions.

4.1 Intuition
Covariance and contra-variance of variables can be determined from the re-
sults provided by the Stability abstract domain: if two variables have the same
trend at statement st, then they are covariant at st, if they have ”opposite”
trends, then they are contra-variant. This evaluation is straightforward, but
not sufficient to verify covariance and contra-variance in a program.

Example 4.1. Consider the following code with corresponding results of the
Stability analysis, supposing that variables x and y are both stable before the
branch.

1 if (a > 0){
2 x = x + 1; // x -> increasing , y-> stable
3 y = y + 1; // x -> increasing , y-> increasing
4 }

It is intuitive that variables x and y are covariant for this branch. However,
a sequential analysis of the code, comparing trends statement by statement
would show that x and y do not have the same trend throughout the block;
instead, at statement st2 x and y are not covariant.
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A possible solution seems to be to only consider the last statement of the
block, when all operations have been carried out, and compare the stability
of variables there.

Example 4.2. Consider the case:
1 if (a > 0){
2 x = x - 100; // x -> decreasing , y-> stable
3 y = y + 1; // x -> decreasing , y-> increasing
4 x = x + 1; // x -> increasing , y-> increasing
5 }

with x and y both stable before the branch. At statement st4 x and y are
covariant but it is not true that they are covariant for this branch.

Our proposed solution is the introduction of a cumulative stability, de-
scribed in Section 4.2.2, capable of capturing some overall information on
the trend of a variable through multiple statements. Then, given a block of
code to analyse, we compare this cumulative information of variables over the
whole block to determine correlation.

Going back to Example 4.1, the cumulative stability of x and y over the
block is: {x 7→↑, y 7→↑}, meaning x and y are covariant. For the code
of Example 4.2, the cumulative stability of x and y after statements 1-4 is:
{x 7→ ⊤, y 7→↑}. From this we reach the correct result that x and y are not
covariant.

4.2 Formal definition
As anticipated in the previous section, in order to formalise the concepts of
covariance and contra-variance we need to provide an operation to combine
trends of multiple statements. In the following paragraphs we define the
concept of code block, of combination of two trends, of cumulative stability
of a variable over multiple statements, and, finally, of covariant and contra-
variant variables.

4.2.1 Code blocks

A code block represents the sequence of statements over which covariance and
contra-variance are evaluated. We say that statement sta precedes another
statement stb in a program if, when running the code, sta is executed first,
before stb. Statement sta is a predecessor of stb if, for some execution, stb can
be executed immediately after sta.

Definition 4.1. (Code block) A code block is a sequence of statements
identified as b(sta, stb), where sta and stb are the first and the last statement
of the block, respectively. A statement st belongs to block b(sta, stb) if it is
preceded by sta and it precedes stb.

4.2.2 Combining trends

We propose the definition of the combination of two trends into a single one,
which can be applied sequentially to determine the cumulative stability of a
code block. Intuitively, the combination of the two trends of x at statements
st1 and st2 represents the stability information that can be gained after both
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Figure 4.1: Results of the combine operation between elements of the Stb
lattice of Figure 3.1

statements, i.e., over block b(st1, st2). Figure 4.1 shows a table representation
of the combine operation, defined as follows.

Definition 4.2. (Combination) We define the combine operation on ele-
ments of the Stb lattice as the set of following rules:

1. combine(t, ’⊥’) = t for any t in Stb;

2. combine(t, ’=’) = t for any t in Stb, t ̸= ’⊥’;

3. combine(t, ’ ̸=’) = ’⊤’ for any t in Stb, t ̸= ’=’, t ̸= ’⊥’;

4. combine(t, t) = t for any t in Stb, t ̸= ’ ̸=’;

5. combine(’↑’, ’↑=’) = ’↑’;

6. combine(’↓’, ’↓=’) = ’↓’;

7. combine(t1, t2) = ’⊤’ for any t1, t2 in Stb not matching any other rule.

Any case in which one rule is in conflict with another is listed as an
exception, the reasoning being that any rule overrules the ones following it
and is overruled by those preceding it. Rule ”combine(t, ’⊤’) = ’⊤’ for any t
in Stb” can be derived from the existing set of rules and it does indeed hold
for the combine operation.

Definition 4.3. (Cumulative Stability) The cumulative stability of a vari-
able x over block b(sta, stb) is:

• the stability of x at sta if sta = stb;

• the combination of:

1. the stability of x at stb; with
2. the lub of all cumulative stabilities of x over b(sta, sti), where each

sti is a predecessor of stb;

if sta ̸= stb.
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Example 4.3. Consider the code with corresponding results provided by the
Stability abstract domain:
1 fun(a){
2 def x = 0;
3 def y = 1;
4 def z = 1;
5
6 if (a > 1){
7 x = x + 1;
8 y = y - 1;
9

10 z = z * a;
11 }
12
13 return x + y;
14 }

// {x} -> stable
// {x, y} -> stable
// {x, y, z} -> stable

// {x} -> increasing , {y, z} -> stable
// {x} -> increasing , {y} -> decreasing ,

// {z} -> stable
// {x, z} -> increasing , {y} -> decreasing

// {x, z} -> not decreasing ,
// {y} -> not increasing

Suppose we want to compute the cumulative stability of x over code block
b(st4, st13) (we leave out variable definitions for brevity). This is defined as:

combine(’ ↑ =’, lub(combine(’ ↑ ’, combine(’ ↑ ’, combine(’ ↑ ’, ’=’)), ’=’) ) ,

meaning the combination of stability at st13 (’↑=’) with the lub of cumulative
stability at st10 and at st4, predecessors of st13. The cumulative stability at
st10 is the combination of stability at st10 (’↑’) with cumulative stability at
st8, which itself is the combination of stability at st8 (’↑’) with cumulative
stability at st7, meaning the combination of stability at st7 (’↑’) with cumula-
tive stability at st4, which equals to the stability itself (’=’) because st4 is the
base case. From here, the computation consist in applying the combination
and lub operators:

combine(’ ↑ =’, lub(combine(’ ↑ ’, combine(’ ↑ ’, combine(’ ↑ ’, ’=’)), ’=’) ) =

combine(’ ↑ =’, lub(combine(’ ↑ ’, combine(’ ↑ ’, ’ ↑ ’), ’=’) ) =

combine(’ ↑ =’, lub(combine(’ ↑ ’, ’ ↑ ’), ’=’) ) =

combine(’ ↑ =’, lub(’ ↑ ’, ’=’) ) =

combine(’ ↑ =’, ’ ↑ =’ ) =

’ ↑ =’

4.2.3 Covariant and contra-variant variables

Knowing that we consider the following pairs of trends in the Stb lattice as
pairs of opposite trends:

(’=’, ’ ̸= ’), (’ ↑ ’, ’ ↓ ’), (’ ↑ =’, ’ ↓ =’) ,

and from the previous definitions in this section, we can finally provide a
definition of covariance and contra-variance.

Definition 4.4. (Covariant (contra-variant) variables) A pair of vari-
ables x and y are covariant (contra-variant) across code block b(sta, stb) if
they have the same (opposite) cumulative stability over b(sta, stb).
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Based on this definition, referencing Example 4.3 where the cumulative
stability of variables over b(st1, st14) are {x 7→ ’↑=’, y 7→ ’↓=’, z 7→ ’↑=’}, we
can say that variables x and y are contra-variant, while variables x and z are
covariant across the code block. Note that this property implies that for any
possible execution of fun(), x and y are never not contra-variant and x and
z are never not covariant.

Covariance and contra-variance of variables are strong properties for a pro-
gram. In the context of anomaly detection, if we can prove formally that vari-
ables representing determined concepts must be covariant or contra-variant,
then a static analysis capable of individuating violations of these properties
can identify potential errors, security vulnerabilities, inappropriate program
logic, or insecure system designs.

4.3 LiSA implementation
The LiSAConfiguration class holds a collection of SemanticChecks to be
executed after the fixpoint iteration has been completed. These checks are
run with access to the structure of the code and to the results of the analysis.

In order to determine the correlation between variables, we define a new
SemanticCheck, the CoContraVarianceCheck class, and implement the vi-
sit() method. This method will be called on each node of the graph and
compute the cumulative stability of variables up to that node.

The combination of Stability environments is operated according to
the rules for computing cumulative trends over code blocks. The result of
CoContraVarianceCheck is a Map from each node to a cumulative Stability
object.

4.3.1 visit() method

This method receives parameters tool, representing the results of the Stability
analysis, graph, representing the current CFG, and node, representing the
current node within the CFG. For node n, visit() identifies the state of the
analysis before and after the corresponding statement and combines them into
a single cumulative state representing the cumulative stability of all variables
from the first statement of the block to the current one. visit() retrieves two
Stability environments: a preState, computed by its predecessor nodes as
shown later on, and a postState, being the stability information of variables
at that statement, obtained from the results of the analysis. The analysis
results are accessed from within the method by calling:
tool.getResultOf(graph)

which returns a collection of AnalyzedCFGs, each mapping a CFG to the
results computed during the analysis. Then, if result is a variable containing
one of these CFGs, we have:
Stability <T> postState = result.getAnalysisStateAfter(node)

.getState ()

.getValueState ();

From here, visit() combines preState and postState into a cumulati-
veState through the environmentCombine() method, as shown below.

1 if (preStatesMap.containsKey(node)) {
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2 Stability <T> preState = preStatesMap.get(node);
3 cumulativeState = preState.environmentCombine(postState );
4 }
5 resultsMap.put(node , cumulativeState );

preStatesMap and resultsMap are two Map<Statement, Stability<T»
objects maintained by CoContraVarianceCheck. preStatesMap holds, for
each node, the lub of the cumulative stabilities of all its predecessors, while
resultsMap holds the cumulative stability for each node.

If n has no predecessors (i.e., n is the first statement of the program),
then the cumulativeState is simply its postState. This can be seen as the
base case for the computation of cumulative stability over code blocks from
Definition 4.3. Otherwise, cumulativeState is the combination of preState
and postState. The cumulativeState is saved in resultsMap.

visit() also computes the prestate of all nodes successors of n.
1 for (Statement next : graph.followersOf(node)) {
2 if (preStatesMap.containsKey(next)) {
3 try {
4 preStatesMap.put(
5 next ,
6 preStatesMap.get(next).lub(cumulativeState ));
7 } catch (SemanticException e) {
8 e.printStackTrace ();
9 }

10 } else
11 preStatesMap.put(next , cumulativeState );
12 }

If a successor of n is not yet in the preStatesMap, then the prestate of that
node is the cumulativeState of n. Otherwise, its prestate is updated to the
lub of the existing prestate and cumulativeState of its predecessor n.

By construction and by Definition 4.3 of cumulative stability, the cumula-
tiveState of n holds for each variable in the environment its cumulative
stability from the first statement of the code block to n. Therefore, after
the execution of CoContraVarianceCheck, resultsMap maps Statements to
Stability objects, which in turn map each program variable to its cumulative
stability up to that Statement.

4.3.2 environmentCombine() method

This method of the Stability class operates the combination of two Stabi-
lity objects, representing the prestate and the poststate of a statement
stn. environmentCombine() returns a new Stability where all variables
are mapped to a Trend corresponding to the combination of their stability in
the two environments.

1 ValueEnvironment <Trend > retTrendEnv =
2 new ValueEnvironment <>(new Trend((byte) 0));
3
4 for (Identifier id : post.getTrend (). getKeys ()) {
5 if (pre.getTrend (). knowsIdentifier(id)) {
6 Trend tmp = pre.getTrend (). getState(id). combine(
7 post.getTrend (). getState(id));
8 retTrendEnv = retTrendEnv.putState(id , tmp);
9 }



4.3. LiSA implementation 37

10 else
11 retTrendEnv = retTrendEnv.putState(
12 id ,
13 post.getTrend (). getState(id));
14 }
15 }

Intuitively, the stability of each variable known to one environment is com-
bined with the stability of that variable in the other environment. The com-
bine operation is handled by the combine() method of the Trend class. In the
case a variable is known after stn but not before (i.e., the current statement
is a declaration of that variable), its cumulative stability is just its stability
after stn, i.e., its poststate.

4.3.3 combine() method

The combine() method of the Trend class implements exactly the combi-
nation of two elements of the Stb lattice, represented by Trend objects, as
defined in Section 4.2.2.
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5 Study: the Scale Problem

This chapter demonstrates how covariance and contra-variance analysis can be
used to analyse a practical scenario and prove correct behavior. The analysis
is applied to imp code performing the scale transformation of rectangles, in
order to prove the correlation of specific sets of program variables.

First, we introduce the reasoning which allows us to determine covariance
of a set of program variables as a requirement for correctness in the behavior
of the sample code. Then, we run our analysis, showing how the results prove
that the property is verified for all possible executions.

5.1 Scale transformation
In geometry, scaling refers to an affine transformation that enlarges or reduces
a figure by a (separate) constant scale factor for each axis direction. A nega-
tive scale factor comports a reflection transformation along the corresponding
axis. If all scale factors are the same, we talk about uniform scaling.

Mathematically, this transformation can be described using matrices in a
coordinate system. For a figure in a two-dimensional plane, scaling can be
represented by the matrix: [

scalex 0
0 scaley

]
where scalex and scaley are the scale factors for the x and y axis, respec-

tively. When this matrix is applied to the coordinates of a point (x, y), the
resulting point (scalexx, scaleyy) represents the scaled version of the original
point. Figure 5.1 shows a rectangle being scaled with factors scalex = 2 and
scaley = 1.

5.2 Correlation of variables
By applying the scale transformation to a rectangle R we obtain rectangle R′,
such that for any point in R with coordinates (xp, yp) the coordinates of the
corresponding point in R′ are (scalexxp, scaleyyp). From this follows that:

• coordinate x′
p = xp × scalex, for any p′ in R′;
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Figure 5.1: A rectangle before and after a scale transformation with scale
factors scalex = 2 and scaley = 1

• width of R′ = width of R × scalex;

• coordinate y′
p = yp × scaley, for any p in R;

• height of R′ = height of R ×scaley.

Reasoning, for simplicity, about a rectangle R located in the first quadrant,
with all vertices having positive x and y coordinates, we can say that for any
code correctly computing the scaling of a rectangle:

• all variables representing the width of the rectangle or the x coordinate
of any of its points must be covariant;

• all variables representing the height of the rectangle or the y coordinate
of any of its points must be covariant.

Moreover, these two sets of variables may be covariant or contra-variant,
depending on the values of scalex and scaley:

• if both scalex and scaley are greater than 1, or they both are less than
1, then all variables from the two sets are covariant;

• if scalex > 1 and scaley < 1, or vice-versa, then the two sets of variables
are contra-variant;

• otherwise the two sets are neither covariant nor contra-variant.

Similar reasoning can be extended to all rectangles, generating different
sets of covariant variables. For example, in the general case we have that
all variables representing the width of the rectangle or the x coordinate of
any of its points with positive x must be covariant, and this set must be
contra-variant to the set of all variables representing the x coordinate of any
of its points with negative x. This is true because multiplying a positive or a
negative value by the same factor (positive or negative) will result necessarily
in inverse trends.
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5.3 Running the analysis
Consider the Rectangle imp class, representing a rectangle aligned with the
coordinate axes for which we know width, height, and coordinates (x, y) of
its bottom left point.

1 class Rectangle{
2 width;
3 height;
4 botLeftX;
5 botLeftY;
6 }

We analyse the following imp code to scale a Rectangle by scale factors
2 and −1:

1 enlargeAndReflect (){
2 def r = new Rectangle ();
3 def scaleX = 2;
4 def scaleY = -1;
5
6 def botRightX = r.botLeftX + r.width;
7 def topLeftY = r.botLeftY + r.height;
8
9 r.botLeftX = r.botLeftX * scaleX;

10 r.botLeftY = r.botLeftY * scaleY;
11
12 botRightX = botRightX * scaleX;
13 topLeftY = topLeftY * scaleY;
14
15 r.width = botRightX - r.botLeftX;
16 r.height = r.botLeftY - topLeftY;
17
18 }

Assuming all vertices of r have positive coordinates, we can apply the
conclusions we drew on the scale transformation:

• {r.botLeftX, botRightX, r.width} must be covariant;

• {r.botLeftY, topLeftY, r.height} must be covariant; and

• the two sets must be contra-variant, because scaleX> 1 and scaleY< 1.

In order to verify covariance and contra-variance of variables, we run the
configuration of LiSA shown in method correlationTest() of Appendix E.
This code creates a LiSA object running the analysis with an AbstractState
with value domain Stability<Interval>. This corresponds to the Stability
domain with the Interval auxiliary domain.

The results of this analysis are dumped in an HTML file, providing a CFG
representation of the program, shown in Figure 5.2. By interacting with the
graph it is possible to access the inferred Stability of variables at each node,
analogously to Example 3.12.

After the analysis is concluded, the analyser runs CoContraVarianceCheck
on the results, meaning the visit() method is invoked on each node of the
CFG. We represent, for each statement of the program, the corresponding
cumulative stabilities saved in the resultsMap.
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Figure 5.2: CFG of enlargeAndReflect() method.

st2: stable -> {r, r.width , r.height , r.botLeftX ,
r.botLeftY}

st3: stable -> {scaleX , r, r.width , r.height , r.botLeftX ,
r.botLeftY}

st4: stable -> {scaleY , scaleX , r, r.width , r.height ,
r.botLeftX , r.botLeftY}

st6: stable -> {botRightX , scaleY , scaleX , r, r.width ,
r.height , r.botLeftX , r.botLeftY}

st7: stable -> {topLeftY , botRightX , scaleY , scaleX , r,
r.width , r.height , r.botLeftX , r.botLeftY}

st9: stable -> {topLeftY , botRightX , scaleY , scaleX , r,
r.width , r.height , r.botLeftY} ,
increasing -> {r.botLeftX}

st10: stable -> {topLeftY , botRightX , scaleY , scaleX , r,
r.width , r.height} -> stable ,
increasing -> {r.botLeftX} ,
decreasing -> {r.botLeftY}

st12: stable -> {topLeftY , scaleY , scaleX , r, r.width ,
r.height , r.botLeftY} ,
increasing -> {botRightX , r.botLeftX} ,
decreasing -> {r.botLeftY}

st13: stable -> {scaleY , scaleX , r, r.width , r.height ,
r.botLeftY} ,
increasing -> {botRightX , r.botLeftX} ,
decreasing -> {topLeftY , r.botLeftY}

st15: stable -> {scaleY , scaleX , r, r.height , r.botLeftY} ,
increasing -> {r.width , botRightX , r.botLeftX} ,
decreasing -> {topLeftY , r.botLeftY}
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st16: stable -> {scaleY , scaleX , r, r.botLeftY} ,
increasing -> {r.width , botRightX , r.botLeftX} ,
decreasing -> {r.height , topLeftY , r.botLeftY}

From these sets of covariant variables, we can indeed verify that:

• {r.botLeftX, botRightX, r.width} are covariant over the whole pro-
gram since they have the same cumulative stability over code block
b(st1, st18);

• for the same reason, {r.botLeftY, topLeftY, r.height} are covariant
over the whole program; and

• the two sets are contra-variant over the program, because they have
inverse cumulative stabilities ’↑’ and ’↓’ over block b(st1, st18).

Since the analysis verified the correctness properties above and we are
ensured that the results are sound, it is possible to guarantee that there is no
execution trace of this program for which the properties do not hold.
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6 Related Work

General abstract framework has its main reference in the work of P. Cousot
and R. Cousot [3] [8], who introduced the subject in the late 70s. In the recent
past a number of different proposals have been studied and corresponding do-
mains have been developed. In particular, for numerical values these include
the Sign [3] and Interval domains [9], the Pentagon domain [10], improving
the precision of interval analysis, the Polyhedron [11] and the Octagon [12] do-
mains for reasoning on affine inequalities, the Donut domains [13] for working
on non-convex invariants, etc.

Several domains have been also proposed for the analysis of strings, such
as the Character inclusion, the Prefix and suffix, the Bricks and the String
graphs domains [14], or the String hash domain [15].

As far as we know, no domain has been studied so far regarding the
stability property.

Our proposal benefits from the work done on the extended sign domain,
because of the lattice homomorphism that can be observed between the two
domains.

Different studies considered possible combinations of domain with the aim
of enhancing the precision of representation of abstract domains, expanding
on the initial proposals of Cousot and Cousot of reduced product, disjunctive
completion and reduced cardinal power [8]. A survey by Cortesi et al. [16]
identified Granger product [17], open product [18], and reduced relative power
[19].

Anomaly detection for software systems, as we observe from the literature,
is largely employed for dynamic intrusion detection. This was introduced
first as a paradigm for a single system based on the real-time identification
of abnormal patterns of system usage [20]. A subsequent study, went on to
re-define the original assumptions in the context of software systems, as a
base for future research [21].

Different proposals have been developed, addressing several concerns, such
as the poisoning of the data for training of anomaly detection sensors [6], poor
performance and limited applicability [22].

A unified framework was proposed to define program anomaly detection
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methods in terms of their detection capability [5], identifying as the com-
mon approaches: n-gram-based dynamic modeling of normal program behav-
ior, automaton-based analysis of normal program behavior [23], probabilistic
modeling methods [24] [25], and dynamically built state machines [26].

A relatively recent proposal with promising results is the introduction of
machine learning classifiers to predict the health condition of the system [27].

As far as we know there are no domains designed in the abstract interpre-
tation framework for anomaly detection.
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7 Conclusions

This thesis allows to appreciate the benefits of applying static analysis to the
task of anomaly detection for software programs, and presents the definition of
a novel abstract domain for carrying out an analysis of correlation properties
of variables based on abstract interpretation.

The Stability abstract domain was introduced for soundly extrapolating
information on how the trends of variables change throughout a program.
We formally defined as the STB lattice, its operands, and concretization and
abstraction functions, showing they enjoy a Galois connection. This analysis
may have many applications, but in the context of this work it provides a set
of results which allow to determine properties of covariance or contra-variance
of program variables.

Covariance and contra-variance have been introduced and we described
how to determine these properties, starting from stability information, then
computing a cumulative stability for variables over multiple statements, and
finally comparing this aggregate information. In the appropriate contexts,
supported by a formal proof of the necessity for variable correlation, this
analysis provides a proof of correctness for the program behavior, guaran-
teeing that no possible state of execution violating the property can occur.
Otherwise, it raises an alarm (possibly a false alarm), allowing to identify
misconfigurations, program bugs, unusual usage patterns or other causes for
reaching states which violate the properties.

We implemented this analysis within the LiSA framework, defining the
Trend ValueDomain for representing trends, the Stability<V> ValueDomain
implementing the logic necessary to infer stability information from state-
ment semantics and auxiliary information from a domain of type V, and
the CoContravarianceCheck SemanticCheck for computing the cumulative
trends of variables at each statement. Utilising the infrastructure provided
by LiSA, we successfully created and ran a static analyser on multiple code
samples to obtain the stability of variables throughout the code and sets of
covariant variables.

We showed a practical application, taking the case of the scale transfor-
mation as an example and demonstrating how the results of the analysis were
able to verify previously determined properties.
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By introducing the Stability domain and exploring covariance and contra-
variance, this work provides new perspectives and tools for analyzing variable
trends and, more generally, relations between variables, contributing to the
development of more secure and robust software systems through static anal-
ysis and formal methods. The integration with the LiSA framework under-
scores the practical relevance of these proposals, making them accessible for
real-world applications.

7.1 Future work
The results of this work leave several possibilities for future research. One
potential direction is the further refinement and optimization of the Stability
domain. In particular, we note that the implementation in LiSA of more ab-
stract domains already present in the literature, such as the Octagon domain
[12], could lead to results with a higher level of precision.

Additionally, research can be carried out to determine the relevance of
the concepts of covariance and contra-variance in different specific classes of
applications, in order to identify use cases in which such an analysis would
provide the most benefits. By exploring the application of these techniques in
different programming paradigms we could broaden their impact and utility.
Moreover, once identified a specific class of programs for which correlation is a
critical property, it would be possible to focus on optimising the analysis based
on specific characteristics of the domain. An example would be comparing
the results obtained by running the analysis with different auxiliary abstract
domains, in order to determine the optimal one in terms of precision and
performance.

One particular area we propose to focus on, is the application of the co-
variance and contra-variance analysis to robotic system applications, running
analyses in order to evaluate its impact on improving security in this specific
field and attempting an optimization as shown above. We believe that this
is a field which would greatly benefit from a static approach to anomaly de-
tection, in particular given its continuous growth in a variety of sectors with
direct impact on everyday life and direct interaction with human beings [28].

Another promising area is the study of integration of these techniques with
other formal methods and static analysis tools, with the aim of creating a more
comprehensive framework for software verification, combining the strengths
of various approaches to achieve greater accuracy and coverage.
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A Logic of Operations

For the purposes of this appendix, suppose the STB abstract domain is
able to query auxiliary abstract domain A trough the calls queryA(x, c) and
queryABtw(x, a, b), where x is a variable and a, b and c are constants.

queryA(x, c) returns:

• isEqual, if A is able to guarantee that property x = c holds at the
current statement st;

• isGreater, if A is able to guarantee that x > c holds at st;

• isGreaterOrEq, if A is able to guarantee that x ≥ c holds at st;

• isLess, if A is able to guarantee that x < c holds at st;

• isLessOrEq, if A is able to guarantee that x ≤ c holds at st;

• isNotEq, if A is able to guarantee that x ̸= c holds at st;

• unknown, if A is not able to guarantee that any of the previous proper-
ties holds at st.

queryABtw(x, a, b) returns:

• isZero, if A is able to guarantee that property x = a holds at st;

• isOne, if A is able to guarantee that property x = b holds at st;

• isNotZero, if A is able to guarantee that property x ̸= a holds at st;

• isNotOne, if A is able to guarantee that property x ̸= b holds at st;

• isBetween, if A is able to guarantee that both x > a and x < b hold at
st;

• isBetweenOrEq, if A is able to guarantee that both x ≥ a and x ≤ b
hold at st;

• isNotBetween, if A is able to guarantee that either x < a or x > b hold
at st;
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• isNotBetweenOrEq, if A is able to guarantee that either x ≤ a or x ≥ b
hold at st;

• unknown, if A is not able to guarantee that any of the previous proper-
ties holds at st.

where q is an expression in the form x CMP c, with x variable, c con-
stant and CMP comparison operator. queryA(q) returns true if A is able to
guarantee that q holds at the current statement st.

A.1 Addition
If st : x = x + y or st : x = y + x then:

ans = queryA(y, 0)
switch ans do

case isEqual:
x is stable
break;

case isGreater :
x is increasing
break;

case isLess:
x is decreasing
break;

case isGreaterOrEq:
x is not decreasing
break;

case isLessOrEq:
x is not increasing
break;

case isNotEq:
x is not stable
break;

default:
x is top
break;

end switch

A.2 Subtraction
If st : x = x − y then:

ans = queryA(y, 0)
switch ans do

case isEqual:
x is stable
break;

case isGreater :
x is decreasing
break;
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case isLess:
x is increasing
break;

case isGreaterOrEq:
x is not increasing
break;

case isLessOrEq:
x is not decreasing
break;

case isNotEq:
x is not stable
break;

default:
x is top
break;

end switch

A.3 Multiplication
If st : x = x × y or st : x = y × x:

switch ansx do
case isEqual:

x is stable
break;

case isGreater :
switch ansy do

case isGreater :
x is increasing
break;

case isLess:
x is decreasing
break;

case isEqual:
x is stable
break;

case isGreaterOrEq:
x is not decreasing
break;

case isLessOrEq:
x is not increasing
break;

case isNotEq:
x is not stable
break;

default:
x is top
break;
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end switch
case isLess:

switch ans do
case isEqual:

x is stable
break;

case isGreater :
x is decreasing
break;

case isLess:
x is increasing
break;

case isGreaterOrEq:
x is not increasing
break;

case isLessOrEq:
x is not decreasing
break;

case isNotEq:
x is not stable
break;

default:
x is top
break;

end switch
case isGreaterOrEq:

switch ansy do
case isGreater ∨ isGreaterOrEq:

x is not decreasing
break;

case isLess ∨ isLessOrEq:
x is not increasing
break;

case isEqual:
x is stable
break;

default:
x is top
break;

end switch
case isLessOrEq:

switch ansy do
case isGreater ∨ isGreaterOrEq:

x is not increasing
break;

case isLess ∨ isLessOrEq:
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x is not decreasing
break;

case isEqual:
x is stable
break;

default:
x is top
break;

end switch
case isNotEq:

if ansy = isNotEq then
x is not stable

end if
default:

x is top
break;

end switch

A.4 Division
If st : x = x ÷ y:

ansx = queryA(x, 0)
ansy = queryBtwA(y, 0, 1)
switch ansx do

case isEqual:
x is stable
breack;

case isGreater :
switch ansy do

case isZero:
x is bottom
break;

case isOne:
x is stable
break;

case isBetween:
x is increasing
breack;

case isNotBetween:
x is decreasing
breack;

case isBetweenOrEq:
x is not decreasing
breack;

case isNotBetweenOrEq:
x is not increasing
breack;
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case isNotOne:
x is not stable
breack;

default:
x is top
break;

end switch
case isLess:

switch ansy do
case isZero:

x is bottom
break;

case isOne:
x is stable
break;

case isBetween:
x is decreasing
breack;

case isNotBetween:
x is increasing
breack;

case isBetweenOrEq:
x is not increasing
breack;

case isNotBetweenOrEq:
x is not decreasing
breack;

case isNotOne:
x is not stable
breack;

default:
x is top
break;

end switch
case isGreaterOrEq:

switch ansy do
case isZero:

x is bottom
break;

case isOne:
x is stable
break;

case isBetween ∨ isBetweenOrEq:
x is not decreasing
breack;

case isNotBetween ∨ isNotBetweenOrEq:
x is not increasing
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breack;
default:

x is top
break;

end switch
case isLessOrEq:

switch ansy do
case isZero:

x is bottom
break;

case isOne:
x is stable
break;

case isBetween ∨ isBetweenOrEq:
x is not increasing
breack;

case isNotBetween ∨ isNotBetweenOrEq:
x is not decreasing
breack;

default:
x is top
break;

end switch
case isNotEq:

if ansy = isNotOne then
x is not stable

end if
default:

x is top
break;

end switch
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B Trend Class

1 public class Trend
2 implements BaseNonRelationalValueDomain <Trend > {
3
4 /** The abstract top element . */
5 public static final Trend TOP = new Trend((byte) 0);
6
7 /** The abstract bottom element . */
8 public static final Trend BOTTOM = new Trend((byte) 1);
9

10 /** The abstract stable element . */
11 public static final Trend STABLE = new Trend((byte) 2);
12
13 /** The abstract increasing element . */
14 public static final Trend INC = new Trend((byte) 3);
15
16 /** The abstract decreasing element . */
17 public static final Trend DEC = new Trend((byte) 4);
18
19 /** The abstract not decreasing element . */
20 public static final Trend NOT_DEC = new Trend((byte) 5);
21
22 /** The abstract not increasing element . */
23 public static final Trend NOT_INC = new Trend((byte) 6);
24
25 /** The abstract not stable element . */
26 public static final Trend NOT_STABLE = new Trend((byte) 7);
27
28 private final byte trend;
29
30
31 public Trend(byte trend){ this.trend = trend; }
32
33 public Trend (){ this.trend = 0; }
34
35 public byte getTrend () { return trend; }
36
37 public boolean isTop (){ return this.trend == (byte) 0; }
38
39 public boolean isBottom (){ return this.trend == (byte) 1; }
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40
41 public boolean isStable (){ return this.trend == (byte) 2; }
42
43 public boolean isInc (){ return this.trend == (byte) 3; }
44
45 public boolean isDec (){ return this.trend == (byte) 4; }
46
47 public boolean isNotDec (){ return this.trend == (byte) 5; }
48
49 public boolean isNotInc (){ return this.trend == (byte) 6; }
50
51 public boolean isNotStable (){ return this.trend == (byte) 7; }
52
53 @Override
54 public Trend lubAux(Trend other) throws SemanticException {
55
56 if (this.lessOrEqual(other)) return other;
57 else if (other.lessOrEqual(this)) return this;
58
59 else if ((this.isStable () && other.isInc ())
60 || (this.isInc() && other.isStable ()))
61 return NOT_DEC;
62 else if ((this.isStable () && other.isDec ())
63 || (this.isDec() && other.isStable ()))
64 return NOT_INC;
65 else if ((this.isInc() && other.isDec ())
66 || (this.isDec() && other.isInc ()))
67 return NOT_STABLE;
68
69 return TOP;
70 }
71
72 @Override
73 public Trend glbAux(Trend other) throws SemanticException {
74
75 if (this.lessOrEqual(other)) return this;
76 else if (other.lessOrEqual(this)) return other;
77
78 else if ((this.isNotDec () && other.isNotStable ())
79 || (this.isNotStable () && other.isNotDec ()))
80 return INC;
81 else if ((this.isNotInc () && other.isNotStable ())
82 || (this.isNotStable () && other.isNotInc ()))
83 return DEC;
84 else if ((this.isNotDec () && other.isNotInc ())
85 || (this.isNotInc () && other.isNotDec ()))
86 return STABLE;
87
88 return BOTTOM;
89 }
90
91 @Override
92 public boolean lessOrEqualAux(Trend other)
93 throws SemanticException {
94 return (this.isStable () &&
95 (other.isNotInc () || other.isNotDec ()))
96 || (this.isInc() &&
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97 (other.isNotDec () || other.isNotStable ()))
98 || (this.isDec() &&
99 (other.isNotInc () || other.isNotStable ()));

100 }
101
102 @Override
103 public Trend top() { return TOP; }
104
105 @Override
106 public Trend bottom () { return BOTTOM; }
107
108 public Trend invert (){
109 if (this.isTop() || this.isBottom ()
110 || this.isStable () || this.isNotStable ())
111 return this;
112
113 else if (this.isInc ()) return DEC;
114 else if (this.isDec ()) return INC;
115 else if (this.isNotInc ()) return NOT_DEC;
116 else if (this.isNotDec ()) return NOT_INC;
117
118 else return BOTTOM;
119 }
120
121 /** Generates Trend accroding to arguments */
122 public static Trend generateTrendIncIfGt(
123 boolean isEqual ,
124 boolean isGreater ,
125 boolean isGreaterOrEq ,
126 boolean isLess ,
127 boolean isLessOrEq ,
128 boolean isNotEq) {
129
130 if (isEqual) return STABLE;
131 else if (isGreater) return INC;
132 else if (isGreaterOrEq) return NOT_DEC;
133 else if (isLess) return DEC;
134 else if (isLessOrEq) return NOT_INC;
135 else if (isNotEq) return NOT_STABLE;
136
137 else return TOP;
138
139 }
140
141 /** Generates Trend accroding to arguments */
142 public static Trend generateTrendNotDecIfGt(
143 boolean isEqual ,
144 boolean isGreater ,
145 boolean isGreaterOrEq ,
146 boolean isLess ,
147 boolean isLessOrEq ,
148 boolean isNotEq) {
149
150 if (isEqual) return STABLE;
151 else if (isGreater || isGreaterOrEq) return NOT_DEC;
152 else if (isLess || isLessOrEq) return NOT_INC;
153
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154 else return TOP;
155 }
156
157 /** Generates Trend accroding to arguments */
158 public static Trend generateTrendIncIfBetween(
159 boolean isEqualA ,
160 boolean isGreaterA ,
161 boolean isGreaterOrEqA ,
162 boolean isLessA ,
163 boolean isLessOrEqA ,
164 boolean isNotEqA ,
165 boolean isEqualB ,
166 boolean isGreaterB ,
167 boolean isGreaterOrEqB ,
168 boolean isLessB ,
169 boolean isLessOrEqB ,
170 boolean isNotEqB) {
171
172 if (isEqualA || isEqualB) return STABLE;
173 else if (isGreaterA && isLessB) return INC;
174 else if (( isGreaterA || isGreaterOrEqA)
175 && (isLessB || isLessOrEqB )) return NOT_DEC;
176 else if (isLessA || isGreaterB) return DEC;
177 else if (isLessOrEqA || isGreaterOrEqB) return NOT_INC;
178 else if (isNotEqA && isNotEqB) return NOT_STABLE;
179
180 else return TOP;
181 }
182
183 /** Generates Trend accroding to arguments */
184 public static Trend generateTrendNotDecIfBetween(
185 boolean isEqualA ,
186 boolean isGreaterA ,
187 boolean isGreaterOrEqA ,
188 boolean isLessA ,
189 boolean isLessOrEqA ,
190 boolean isNotEqA ,
191 boolean isEqualB ,
192 boolean isGreaterB ,
193 boolean isGreaterOrEqB ,
194 boolean isLessB ,
195 boolean isLessOrEqB ,
196 boolean isNotEqB) {
197
198 if (isEqualA || isEqualB) return STABLE;
199 else if (( isGreaterA || isGreaterOrEqA)
200 && (isLessB || isLessOrEqB )) return NOT_DEC;
201 else if (isLessA || isLessOrEqA || isGreaterB || isGreaterOrEqB) return NOT_INC;
202
203 else return TOP;
204 }
205
206 @Override
207 public StructuredRepresentation representation () {
208 if (isBottom ())
209 return Lattice.bottomRepresentation ();
210 if (isTop ())
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211 return Lattice.topRepresentation ();
212
213 String repr;
214 if (this.isStable ())
215 repr = "stable";
216 else if (this.isInc ())
217 repr = "increasing";
218 else if (this.isDec ())
219 repr = "decreasing";
220 else if (this.isNotDec ())
221 repr = "not␣decreasing";
222 else if (this.isNotInc ())
223 repr = "not␣increasing";
224 else
225 repr = "not␣stable";
226
227 return new StringRepresentation(repr);
228 }
229
230 @Override
231 public boolean equals(Object obj) {
232 if (this == obj)
233 return true;
234 if (obj == null)
235 return false;
236 if (getClass () != obj.getClass ())
237 return false;
238 Trend other = (Trend) obj;
239 return this.getTrend () == other.getTrend ();
240 }
241
242 /** Applies the combine operator to this and post */
243 public Trend combine(Trend post){
244 if (post.isBottom () || post.isStable ())
245 return new Trend(this.getTrend ());
246 else if (this.isBottom () || this.isStable ())
247 return new Trend(post.getTrend ());
248 else if (this.isNotStable () || post.isNotStable ())
249 return new Trend((byte) 0); // TOP
250 else if (this.equals(post))
251 return new Trend(this.getTrend ());
252
253 else if((this.isInc() && post.isNotDec ())
254 || (this.isDec() && post.isNotInc ()))
255 return new Trend(this.getTrend ());
256
257 if ((post.isInc() && this.isNotDec ())
258 || (post.isDec() && this.isNotInc ()))
259 return new Trend(post.getTrend ());
260
261 return new Trend((byte) 0); // TOP
262 }
263
264 }
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C Stability Class

1 public class Stability <V extends BaseNonRelationalValueDomain <V>>
2 implements BaseLattice <Stability <V>>,
3 ValueDomain <Stability <V>> {
4
5 private final ValueEnvironment <V> auxiliaryDomain;
6
7 private final ValueEnvironment <Trend > trend;
8
9 public Stability(ValueEnvironment <V> auxiliaryDomain) {

10 this.auxiliaryDomain = auxiliaryDomain;
11 this.trend = new ValueEnvironment <>(new Trend((byte )2));
12 }
13
14 public Stability(ValueEnvironment <V> auxiliaryDomain ,
15 ValueEnvironment <Trend > trend) {
16 this.auxiliaryDomain = auxiliaryDomain;
17 this.trend = trend;
18 }
19
20 @Override
21 public Stability <V> lubAux(Stability <V> other)
22 throws SemanticException {
23
24 ValueEnvironment <V> ad =
25 auxiliaryDomain.lub(other.getAuxiliaryDomain ());
26 ValueEnvironment <Trend > t = trend.lub(other.getTrend ());
27
28 if (ad.isBottom () || t.isBottom ()) return bottom ();
29 else return new Stability <>(ad , t);
30 }
31
32 @Override
33 public Stability <V> glbAux(Stability <V> other)
34 throws SemanticException {
35
36 ValueEnvironment <V> ad =
37 auxiliaryDomain.glb(other.getAuxiliaryDomain ());
38 ValueEnvironment <Trend > t = trend.glb(other.getTrend ());
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39
40 if (ad.isBottom () || t.isBottom ()) return bottom ();
41 else return new Stability <>(ad , t);
42 }
43
44 @Override
45 public Stability <V> wideningAux(Stability <V> other)
46 throws SemanticException {
47
48 ValueEnvironment <V> ad =
49 auxiliaryDomain.widening(
50 other.getAuxiliaryDomain ());
51 ValueEnvironment <Trend > t =
52 trend.widening(other.getTrend ());
53
54 if (ad.isBottom () || t.isBottom ()) return bottom ();
55 else return new Stability <>(ad , t);
56 }
57
58 @Override
59 public boolean lessOrEqualAux(Stability <V> other)
60 throws SemanticException {
61
62 return (
63 getAuxiliaryDomain ().
64 lessOrEqual(other.getAuxiliaryDomain ())
65 && getTrend (). lessOrEqual(other.getTrend ()));
66 }
67
68 @Override
69 public boolean isTop() {
70 return (auxiliaryDomain.isTop() && trend.isTop ());
71 }
72
73 @Override
74 public boolean isBottom () {
75 return (
76 auxiliaryDomain.isBottom ()
77 && trend.isBottom ());
78 }
79
80 @Override
81 public Stability <V> top() {
82 return new Stability <>(
83 auxiliaryDomain.top(),
84 trend.top ());
85 }
86
87 @Override
88 public Stability <V> bottom () {
89 return new Stability <>(
90 auxiliaryDomain.bottom(),
91 trend.bottom ());
92 }
93
94 @Override
95 public Stability <V> pushScope(ScopeToken token)



Appendix C. Stability Class 69

96 throws SemanticException {
97 return new Stability <>(
98 auxiliaryDomain.pushScope(token),
99 trend.pushScope(token ));

100 }
101
102 @Override
103 public Stability <V> popScope(ScopeToken token)
104 throws SemanticException {
105 return new Stability <>(
106 auxiliaryDomain.popScope(token),
107 trend.popScope(token ));
108 }
109
110 /** Verifies if query is satisfied in V */
111 private boolean query(
112 BinaryExpression query ,
113 ProgramPoint pp ,
114 SemanticOracle oracle)
115 throws SemanticException {
116
117 return auxiliaryDomain.satisfies(query , pp , oracle)
118 == Satisfiability.SATISFIED;
119 }
120
121 /** Builds BinaryExpression "l operator r" */
122 private BinaryExpression binary(
123 BinaryOperator operator ,
124 SymbolicExpression l,
125 SymbolicExpression r,
126 ProgramPoint pp){
127
128 return new BinaryExpression(
129 pp.getProgram (). getTypes (). getBooleanType (),
130 l,
131 r,
132 operator ,
133 SyntheticLocation.INSTANCE );
134 }
135
136 /** Builds Constant with value c */
137 private Constant constantInt(int c, ProgramPoint pp){
138 return new Constant(
139 pp.getProgram (). getTypes (). getIntegerType (),
140 c,
141 SyntheticLocation.INSTANCE
142 );
143 }
144
145 /** Auxiliary logic method */
146 private Trend increasingIfGreater(
147 SymbolicExpression a,
148 SymbolicExpression b,
149 ProgramPoint pp , SemanticOracle oracle)
150 throws SemanticException {
151
152 return Trend.generateTrendIncIfGt(
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153 query(binary(ComparisonEq.INSTANCE , a, b, pp),
154 pp, oracle),
155 query(binary(ComparisonGt.INSTANCE , a, b, pp),
156 pp, oracle),
157 query(binary(ComparisonGe.INSTANCE , a, b, pp),
158 pp, oracle),
159 query(binary(ComparisonLt.INSTANCE , a, b, pp),
160 pp, oracle),
161 query(binary(ComparisonLe.INSTANCE , a, b, pp),
162 pp, oracle),
163 query(binary(ComparisonNe.INSTANCE , a, b, pp),
164 pp, oracle)
165 );
166 }
167
168 /** Auxiliary logic method */
169 private Trend increasingIfLess(
170 SymbolicExpression a,
171 SymbolicExpression b,
172 ProgramPoint pp , SemanticOracle oracle)
173 throws SemanticException {
174 return increasingIfGreater(a, b, pp , oracle ). invert ();
175 }
176
177 /** Auxiliary logic method */
178 private Trend nonDecreasingIfGreater(
179 SymbolicExpression a,
180 SymbolicExpression b,
181 ProgramPoint pp , SemanticOracle oracle)
182 throws SemanticException {
183
184 return Trend.generateTrendNotDecIfGt(
185 query(binary(ComparisonEq.INSTANCE , a, b, pp),
186 pp, oracle),
187 query(binary(ComparisonGt.INSTANCE , a, b, pp),
188 pp, oracle),
189 query(binary(ComparisonGe.INSTANCE , a, b, pp),
190 pp, oracle),
191 query(binary(ComparisonLt.INSTANCE , a, b, pp),
192 pp, oracle),
193 query(binary(ComparisonLe.INSTANCE , a, b, pp),
194 pp, oracle),
195 query(binary(ComparisonNe.INSTANCE , a, b, pp),
196 pp, oracle)
197 );
198 }
199
200 /** Auxiliary logic method */
201 private Trend nonDecreasingIfLess(
202 SymbolicExpression a,
203 SymbolicExpression b,
204 ProgramPoint pp , SemanticOracle oracle)
205 throws SemanticException {
206
207 return nonDecreasingIfGreater(a, b, pp , oracle)
208 .invert ();
209 }
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210
211 /** Auxiliary logic method */
212 private Trend increasingIfBetweenZeroAndOne(
213 SymbolicExpression a,
214 ProgramPoint pp , SemanticOracle oracle)
215 throws SemanticException {
216
217 Constant zero = constantInt (0, pp);
218 Constant one = constantInt (1, pp);
219
220 return Trend.generateTrendIncIfBetween(
221 false ,
222 query(binary(ComparisonGe.INSTANCE , a, zero , pp),
223 pp, oracle),// Gt -> Ge
224 query(binary(ComparisonGe.INSTANCE , a, zero , pp),
225 pp, oracle),
226 query(binary(ComparisonLe.INSTANCE , a, zero , pp),
227 pp, oracle),
228 query(binary(ComparisonLe.INSTANCE , a, zero , pp),
229 pp, oracle), // Lt -> Le
230 query(binary(ComparisonNe.INSTANCE , a, zero , pp),
231 pp, oracle),
232 query(binary(ComparisonEq.INSTANCE , a, one , pp),
233 pp, oracle),
234 query(binary(ComparisonGt.INSTANCE , a, one , pp),
235 pp, oracle),
236 query(binary(ComparisonGe.INSTANCE , a, one , pp),
237 pp, oracle),
238 query(binary(ComparisonLt.INSTANCE , a, one , pp),
239 pp, oracle),
240 query(binary(ComparisonLe.INSTANCE , a, one , pp),
241 pp, oracle),
242 query(binary(ComparisonNe.INSTANCE , a, one , pp),
243 pp, oracle)
244 );
245 }
246
247 /** Auxiliary logic method */
248 private Trend increasingIfOutsideZeroAndOne(
249 SymbolicExpression a,
250 ProgramPoint pp , SemanticOracle oracle)
251 throws SemanticException{
252
253 return increasingIfBetweenZeroAndOne(a, pp , oracle)
254 .invert ();
255 }
256
257 /** Auxiliary logic method */
258 private Trend nonDecreasingIfBetweenZeroAndOne(
259 SymbolicExpression a,
260
261 ProgramPoint pp , SemanticOracle oracle)
262 throws SemanticException{
263
264 Constant zero = constantInt (0, pp);
265 Constant one = constantInt (1, pp);
266
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267 return Trend.generateTrendNotDecIfBetween(
268 false ,
269 query(binary(ComparisonGe.INSTANCE , a, zero , pp),
270 pp, oracle), // Gt -> Ge
271 query(binary(ComparisonGe.INSTANCE , a, zero , pp),
272 pp, oracle),
273 query(binary(ComparisonLe.INSTANCE , a, zero , pp),
274 pp, oracle), // Lt -> Le
275 query(binary(ComparisonLe.INSTANCE , a, zero , pp),
276 pp, oracle),
277 query(binary(ComparisonNe.INSTANCE , a, zero , pp),
278 pp, oracle),
279
280 query(binary(ComparisonEq.INSTANCE , a, one , pp),
281 pp, oracle),
282 query(binary(ComparisonGt.INSTANCE , a, one , pp),
283 pp, oracle),
284 query(binary(ComparisonGe.INSTANCE , a, one , pp),
285 pp, oracle),
286 query(binary(ComparisonLt.INSTANCE , a, one , pp),
287 pp, oracle),
288 query(binary(ComparisonLe.INSTANCE , a, one , pp),
289 pp, oracle),
290 query(binary(ComparisonNe.INSTANCE , a, one , pp),
291 pp, oracle)
292 );
293
294 }
295
296 /** Auxiliary logic method */
297 private Trend nonDecreasingIfOutsideZeroAndOne(
298 SymbolicExpression a,
299 ProgramPoint pp , SemanticOracle oracle)
300 throws SemanticException{
301
302 return nonDecreasingIfBetweenZeroAndOne(a, pp , oracle)
303 .invert ();
304 }
305
306
307 @Override
308 public Stability <V> assign(
309 Identifier id,
310 ValueExpression expression ,
311 ProgramPoint pp , SemanticOracle oracle)
312 throws SemanticException {
313
314 if (! trend.knowsIdentifier(id))
315 return new Stability <>(
316 auxiliaryDomain.assign(id, expression ,
317 pp, oracle),
318 trend.putState(id, Trend.STABLE ));
319
320 if (this.isBottom ()
321 || auxiliaryDomain.isBottom ()
322 || trend.isBottom ())
323 return bottom ();
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324
325 Trend returnTrend = Trend.TOP;
326
327 if (( expression instanceof Constant ))
328 returnTrend =
329 increasingIfLess(id , expression , pp , oracle );
330
331 if (expression instanceof UnaryExpression
332 && (( UnaryExpression) expression ). getOperator ()
333 instanceof NumericNegation)
334 returnTrend =
335 increasingIfLess(id , expression , pp , oracle );
336
337 else if (expression instanceof BinaryExpression) {
338 BinaryExpression be = (BinaryExpression) expression;
339 BinaryOperator op = be.getOperator ();
340 SymbolicExpression left = be.getLeft ();
341 SymbolicExpression right = be.getRight ();
342
343 boolean isLeft = id.equals(left);
344 boolean isRight = id.equals(right);
345
346 // x = a / 0
347 if (op instanceof DivisionOperator
348 && query(binary(ComparisonEq.INSTANCE ,
349 right ,
350 constantInt (0, pp),
351 pp), pp , oracle ))
352 return bottom ();
353
354 if (isLeft || isRight) {
355 SymbolicExpression other = isLeft ? right : left;
356
357 // x = x + other || x = other + x
358 if (op instanceof AdditionOperator)
359 returnTrend = increasingIfGreater(
360 other ,
361 constantInt (0, pp),
362 pp, oracle );
363
364 // x = x - other
365 else if (op instanceof SubtractionOperator) {
366 if (isLeft)
367 returnTrend = increasingIfLess(
368 other ,
369 constantInt (0, pp),
370 pp, oracle );
371 else
372 returnTrend = increasingIfLess(
373 id,
374 expression ,
375 pp, oracle );
376 }
377
378 // x = x * other || x = other * x
379 else if (op instanceof MultiplicationOperator) {
380
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381 // id == 0 || other == 1
382 if (query(binary(
383 ComparisonEq.INSTANCE ,
384 id,
385 constantInt (0, pp),
386 pp), pp , oracle) || query(binary(
387 ComparisonEq.INSTANCE ,
388 other ,
389 constantInt (1, pp),
390 pp), pp , oracle ))
391 returnTrend = Trend.STABLE;
392
393 // id > 0
394 else if (query(binary(
395 ComparisonGt.INSTANCE ,
396 id,
397 constantInt (0, pp),
398 pp), pp , oracle ))
399 returnTrend = increasingIfGreater(
400 other , constantInt (1, pp), pp , oracle );
401
402 // id < 0
403 else if (query(binary(
404 ComparisonLt.INSTANCE ,
405 id,
406 constantInt (0, pp),
407 pp), pp , oracle ))
408 returnTrend = increasingIfLess(
409 other , constantInt (1, pp), pp , oracle );
410
411 // id >= 0
412 else if (query(binary(
413 ComparisonGe.INSTANCE ,
414 id,
415 constantInt (0, pp),
416 pp), pp , oracle ))
417 returnTrend = nonDecreasingIfGreater(
418 other , constantInt (1, pp), pp , oracle );
419
420 // id <= 0
421 else if (query(binary(
422 ComparisonLe.INSTANCE ,
423 id,
424 constantInt (0, pp),
425 pp), pp , oracle ))
426 returnTrend = nonDecreasingIfLess(
427 other , constantInt (1, pp), pp , oracle );
428
429 // id != 0 && other != 1
430 else if (query(binary(
431 ComparisonNe.INSTANCE ,
432 id,
433 constantInt (0, pp),
434 pp), pp , oracle) && query(binary(
435 ComparisonNe.INSTANCE ,
436 other , constantInt (1, pp),
437 pp), pp , oracle ))
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438 returnTrend = Trend.NOT_STABLE;
439
440 // else returnTrend = Trend.TOP;
441 }
442
443 // x = x / other
444 else if (op instanceof DivisionOperator ){
445 if (isLeft) {
446
447 // id == 0 || other == 1
448 if (query(binary(
449 ComparisonEq.INSTANCE ,
450 id,
451 constantInt (0, pp),
452 pp), pp , oracle) || query(binary(
453 ComparisonEq.INSTANCE ,
454 other ,
455 constantInt (1, pp),
456 pp), pp , oracle ))
457 returnTrend = Trend.STABLE;
458
459 // id > 0
460 else if (query(binary(
461 ComparisonGt.INSTANCE ,
462 id,
463 constantInt (0, pp),
464 pp), pp , oracle ))
465 returnTrend = increasingIfBetweenZeroAndOne(
466 other , pp , oracle );
467
468 // id < 0
469 else if (query(binary(
470 ComparisonLt.INSTANCE ,
471 id,
472 constantInt (0, pp),
473 pp), pp , oracle ))
474 returnTrend = increasingIfOutsideZeroAndOne(
475 other , pp , oracle );
476
477 // id >= 0
478 else if (query(binary(
479 ComparisonGe.INSTANCE ,
480 id,
481 constantInt (0, pp),
482 pp), pp , oracle ))
483 returnTrend = nonDecreasingIfBetweenZeroAndOne(
484 other , pp , oracle );
485
486 // id <= 0
487 else if (query(binary(
488 ComparisonLe.INSTANCE ,
489 id,
490 constantInt (0, pp),
491 pp), pp , oracle ))
492 returnTrend = nonDecreasingIfOutsideZeroAndOne(
493 other , pp , oracle );
494
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495 // id != 0 && other != 1
496 else if (query(binary(
497 ComparisonNe.INSTANCE ,
498 id,
499 constantInt (0, pp),
500 pp), pp , oracle)
501 && query(binary(
502 ComparisonNe.INSTANCE ,
503 other ,
504 constantInt (1, pp),
505 pp), pp , oracle ))
506 returnTrend = Trend.NOT_STABLE;
507
508 } // end isLeft branch
509
510 else returnTrend = increasingIfLess(
511 id, expression , pp, oracle );
512
513 } // end division branch
514
515 } // end isLeft || isRight branch
516 else returnTrend = increasingIfLess(
517 id, expression , pp, oracle );
518 }
519
520 ValueEnvironment <V> ad = auxiliaryDomain.assign(
521 id, expression , pp, oracle );
522 ValueEnvironment <Trend > t = trend.putState(
523 id, returnTrend );
524
525 if (ad.isBottom () || t.isBottom ()) return bottom ();
526 else return new Stability <>(ad , t);
527 }
528
529 @Override
530 public Stability <V> smallStepSemantics(
531 ValueExpression expression ,
532 ProgramPoint pp ,
533 SemanticOracle oracle)
534 throws SemanticException {
535
536 ValueEnvironment <V> ad =
537 auxiliaryDomain.smallStepSemantics(
538 expression , pp, oracle );
539
540 if (ad.isBottom ()) return bottom ();
541 else return new Stability <>(ad , trend);
542 }
543
544 @Override
545 public Stability <V> assume(
546 ValueExpression expression ,
547 ProgramPoint src ,
548 ProgramPoint dest ,
549 SemanticOracle oracle)
550 throws SemanticException {
551
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552 ValueEnvironment <V> ad = auxiliaryDomain.assume(
553 expression , src , dest , oracle );
554 ValueEnvironment <Trend > t = trend.assume(
555 expression , src , dest , oracle );
556 if (ad.isBottom () || t.isBottom ()) return bottom ();
557 else return new Stability <>(ad , t);
558 }
559
560 @Override
561 public boolean knowsIdentifier(Identifier id) {
562 return (auxiliaryDomain.knowsIdentifier(id)
563 || trend.knowsIdentifier(id));
564 }
565
566 @Override
567 public Stability <V> forgetIdentifier(Identifier id)
568 throws SemanticException {
569 return new Stability <>(
570 auxiliaryDomain.forgetIdentifier(id),
571 trend.forgetIdentifier(id));
572 }
573
574 @Override
575 public Stability <V> forgetIdentifiersIf(
576 Predicate <Identifier > test)
577 throws SemanticException {
578 return new Stability <>(
579 auxiliaryDomain.forgetIdentifiersIf(test),
580 trend.forgetIdentifiersIf(test ));
581 }
582
583 @Override
584 public Satisfiability satisfies(
585 ValueExpression expression ,
586 ProgramPoint pp ,
587 SemanticOracle oracle)
588 throws SemanticException {
589 return Satisfiability.UNKNOWN;
590 }
591
592 @Override
593 public StructuredRepresentation representation () {
594 return new ListRepresentation(
595 auxiliaryDomain.representation (),
596 trend.representation ());
597 }
598
599 @Override
600 public boolean equals(Object obj) {
601 if (this == obj)
602 return true;
603 if (obj == null)
604 return false;
605 if (getClass () != obj.getClass ())
606 return false;
607 Stability <V> other = (Stability <V>) obj;
608 return this.auxiliaryDomain
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609 .equals(other.auxiliaryDomain)
610 && this.trend.equals(other.trend);
611
612 }
613
614 @Override
615 public int hashCode () { return 0; }
616
617 @Override
618 public String toString () {
619 return auxiliaryDomain.representation (). toString ()
620 + trend.representation (). toString ();
621 }
622
623 public ValueEnvironment <Trend > getTrend () { return trend; }
624
625 public ValueEnvironment <V> getAuxiliaryDomain () {
626 return auxiliaryDomain;
627 }
628
629 /** combines two {@code Stability } */
630 public Stability <V> environmentCombine(Stability <V> post){
631 ValueEnvironment <Trend > retTrendEnv =
632 new ValueEnvironment <>(new Trend((byte) 0));
633
634 for (Identifier id : post.getTrend (). getKeys ()) {
635 if (this.getTrend (). knowsIdentifier(id)) {
636 Trend tmp = this.getTrend (). getState(id)
637 .combine(post.getTrend (). getState(id));
638 retTrendEnv = retTrendEnv.putState(id , tmp);
639 }
640 else
641 retTrendEnv = retTrendEnv.putState(
642 id, post.getTrend (). getState(id));
643 }
644
645 return new Stability <>(
646 post.getAuxiliaryDomain (), retTrendEnv );
647 }
648
649 }
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D CoContraVarianceCheck
Class

1 private static class CoContraVarianceCheck <
2 T extends BaseNonRelationalValueDomain <T>>
3 implements SemanticCheck <SimpleAbstractState <
4 MonolithicHeap ,
5 Stability <T>,
6 TypeEnvironment <InferredTypes >>> {
7
8 Map <Statement , Stability <T>> preStatesMap =
9 new HashMap <>();

10 Map <Statement , Stability <T>> resultsMap =
11 new LinkedHashMap <>();
12
13 @Override
14 public boolean visit(
15 CheckToolWithAnalysisResults <
16 SimpleAbstractState <
17 MonolithicHeap ,
18 Stability <T>,
19 TypeEnvironment <InferredTypes >>>
20 tool ,
21 CFG graph ,
22 Statement node) {
23
24 if (graph.containsNode(node)) {
25 for (AnalyzedCFG <
26 SimpleAbstractState <MonolithicHeap ,
27 Stability <T>,
28 TypeEnvironment <InferredTypes >>>
29 result : tool.getResultOf(graph)) {
30
31 Stability <T> postState =
32 result.getAnalysisStateAfter(node).
33 getState (). getValueState ();
34
35 Stability <T> cumulativeState = postState;
36
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37 // computing cumulative trend for node
38 if (preStatesMap.containsKey(node)) {
39 Stability <T> preState =
40 preStatesMap.get(node);
41 cumulativeState =
42 preState.environmentCombine(postState );
43 }
44 resultsMap.put(node , cumulativeState );
45
46 // computing new entry state for next
47 for (Statement next : graph.followersOf(node)) {
48 if (preStatesMap.containsKey(next)) {
49 // join converging branches
50 try {
51 preStatesMap.put(
52 next ,
53 preStatesMap.get(next)
54 .lub(cumulativeState ));
55 } catch (SemanticException e) {
56 e.printStackTrace ();
57 }
58 } else
59 preStatesMap.put(next , cumulativeState );
60 // the pre of next is the post of this
61 }
62 } // end for each
63 }
64 return true;
65 }
66 }
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E Running the Analysis

1 @Test
2 public void stabiltiyTest ()
3 throws ParsingException , AnalysisException {
4
5 /**
6 * parse the program at " filePath " to get the
7 * CFG representation of the code in it
8 */
9 Program program = IMPFrontend.processFile("filePath");

10
11 // build a new configuration for the analysis
12 LiSAConfiguration conf = new DefaultConfiguration ();
13
14 // specify where files are generated
15 conf.workdir = "output/stability";
16
17 // specify the visual format of the analysis results
18 conf.analysisGraphs =
19 LiSAConfiguration.GraphType.HTML;
20
21 // specify the analysis to execute
22 conf.abstractState = new SimpleAbstractState <>(
23 // heap domain
24 new MonolithicHeap (),
25 // value domain
26 new Stability <>(
27 new ValueEnvironment <>(new Interval ())
28 .top()),
29 // type domain
30 new TypeEnvironment <>(new InferredTypes ()));
31
32 // instantiate LiSA with our configuration
33 LiSA lisa = new LiSA(conf);
34
35 // tell LiSA to analyze the program
36 lisa.run(program );
37
38 }
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1 @Test
2 public void correlationTest () throws ParsingException {
3
4 Program program = IMPFrontend.processFile("filePath");
5 LiSAConfiguration conf = new DefaultConfiguration ();
6 conf.workdir = "output/correlation";
7 conf.abstractState = new SimpleAbstractState <>(
8 new FieldSensitivePointBasedHeap (),
9 new Stability <>(

10 new ValueEnvironment <>(new Interval ())
11 .top()),
12 new TypeEnvironment <>(new InferredTypes ()));
13 conf.interproceduralAnalysis =
14 new ContextBasedAnalysis <>();
15
16 conf.semanticChecks.add(
17 new CoContraVarianceCheck <Interval >());
18
19 LiSA lisa = new LiSA(conf);
20 lisa.run(program );
21 }
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