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Chapter 1

Introduction

Making our communication secure over untrusted networks is a crucial aspect of cryp-
tography. Currently, the common approach involves using Public Key Cryptography, which
rely on complex math problems and assumptions about the computational power of poten-
tial attackers. In theory, these methods fall into the category of security measures that could
be broken with enough computational power. With the advancement of technology and the
rise of quantum computing algorithms, like Shor’s Algorithm [2], that can efficiently solve
certain complex math problems, our current security solutions face significant threats and
might not be reliable in the long run.

Quantum Key Distribution (QKD)[5] uses quantum information principles to make se-
cure cryptographic keys. Unlike regular keys, these quantum keys aren’t restricted by the
increasing computational power of computers. By using quantum properties, QKD is a safe
way to share keys.

The goal of the thesis is to implement a Quantum Key Distribution (QKD) network
where a message exchange from node A and node B is possible only on every hop on the
path, made on Free Space Optic (FSO) links, connecting the two nodes has a quantum key
generated with the Bennett-Brassard (BB84) [7] and Cascade [25] protocol and subsequently
analyze its performance. To do so it was used an open source quantum simulator written
in Python called SeQUeNCe (Simulator of Quantum Network Communication) developed
by Argonne National Laboratory [1].

In the extension we assume that the nodes of the network, where we will run the simu-
lations, are trusted nodes. This is because communication happens hop by hop, and each
node decrypts the traffic before encrypting it again. Through SeQUeNCe, we modeled an
extension for simulations on trusted QKD networks, representing the quantum channel as a
Free-Space Optical (FSO) link. Parts of the SeQueNCe simulator’s source code were mod-
ified to make the extension effective and accurate. We will discuss the various changes in
the chapters related to the implementation.

We noticed during the development of the extension that SeQUeNCe faces some memory
management issues. This becomes apparent, especially when running protocols for Quantum

3



Cap. 1 Introduction

Key Distribution (QKD) and correcting errors in the generated keys. In fact, simulations
under heavy load could end up using all available memory during their execution. For
instance, simulations on networks with 15 nodes or more, under heavy load, and with a
simulation time of 1 second, in our tests, reached consuming more than 20 GB of RAM. We
therefore note that as the execution time of the simulation increases, the memory increases
linearly with time, thus reaching a point where it is completely saturated. During the project
an issue 1 was opened on the SeQUeNCe GitHub page to make it known to developers.

While writing the thesis I made use of translation tools to improve the English form,
tools such as Google Translate and ChatGPT. Tools used for the sole purpose of translation.

1Issue link: https://github.com/sequence-toolbox/SeQUeNCe/issues/174
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Chapter 2

Theoretical Background

The fundamental idea behind QKD is the use of two main principles: the Heisenberg
uncertainty principle and the no-cloning theorem to securely exchange keys between Alice
(the sender) and Bob (the receiver). The Heisenberg uncertainty principle states that it is
impossible to measure certain properties of a quantum particle (such as speed and momen-
tum) with unlimited precision. The other principle that composes the basis of QKD is the
no-cloning theorem. It states it is impossible to create an identical copy of an unknown
quantum state.

As mentioned earlier, with the rise of quantum computers, the security of our com-
munications using traditional cryptography might not be enough. That’s where quantum
cryptography becomes important. At the core of it, we rely on a significant result from
quantum physics, Heisenberg’s Uncertainty Principle, along with Quantum Entanglement.
Before going into the details of Quantum Key Distribution (QKD), it’s essential to introduce
some basic concepts. So, in this chapter, we’ll get to know these fundamental ideas.

2.1 Definition of a Qbit

Quantum communications uses what is called Qbit. A Qbit is an analogue to the classical
bit. In addition to having a value of 0 or 1 it can be in a so-called superposition of the two.
This is due to the principles of quantum mechanics, which allow for particular phenomena
such as superposition and entanglement. Thanks to this ability, qubits have the potential
to perform calculations in parallel, making a so-called quantum computer faster than a
classical one. Qubits can be made using various physical systems, such as photons.

So, what’s interesting for communication purposes is that we can encode information
on top of it. So a photon, for example, can be seen as a Qbit. We can encode information
inside with plarization. In technical terms, polarization refers to the orientation of the
vibration of an electromagnetic wave, such as a photon. The polarization can be horizontal,
vertical, or in any of the infinite possible angular directions between these two. They are
usually polarized into one of two orthogonal states, for example, horizontal or vertical. The
quantum information is therefore encoded in the polarization of the photon. An example of
polarization states is the following:
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Cap. 2 Theoretical Background §2.2 Entanglement

• You can associate the horizontal polarization, written in this form |H⟩ called Dirac
notation, with bit 0 and the vertical polarization |V ⟩ with bit 1.

The photon, or Qbit, will subsequently be sent to a destination through a so-called quan-
tum channel, for example an optical fiber, at the destination. The measurement depends
on the state of the photon and the direction of the analyzer. For example, if a photon is
vertically polarized and the analyzer is set to measure horizontal polarization, the probabil-
ity of detecting the photon will be zero. It is important to note that reading a photon will
change its state.

2.2 Entanglement

Entangled states can involve two or more qubits. In entangled states, the individual
states of each qubit cannot be described in isolation. In other words, when the wave function
of one qubit collapses due to measurement, it can instantaneously influence the state of the
other, regardless of the physical distance between them.

To know what entanglement is, we just need to see how it’s not like independent or
classically connected systems. Systems are independent when knowing about one doesn’t
really tell you anything about the other [4]. For example, suppose we have two systems that
are two objects. Our objects come in two shapes, square and circular, which we identify
as states. Then the four possible joint states are (square, square), (square, circle), (circle,
square), (circle, circle).

Figure 2.1: Example of what the odds might be of finding the system in each of these four
states.
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We say that our objects are ”independent” if knowing the state of one of them does not
provide useful information about the state of the other. The table has this property. If the
first object is square, we are still unaware of the shape of the second. Likewise, the shape
of the second reveals nothing useful about the shape of the first.

If our objects are entangled, information about one also reveals something about the
other. In that case, whenever the first object is circular, we know that the second is also
circular. And when the first is square, so is the second. Knowing the shape of one, we can
definitely deduce the shape of the other.

Figure 2.2: Example of what the odds might be of finding the system in each of these four
states.

The quantum version of entanglement is essentially the same phenomenon, namely the
lack of independence. In quantum theory, states are described by mathematical objects
called wave functions.

The two-level system of a quantum computer can be represented by the vertical and
horizontal polarization of a photon, the spin up and spin down of an electron, or any other
proposed state variable [1]. Two or more Qbits can be in an entangled state. When states are
entangled, the state of each QUbit cannot be described independently. That is, collapsing
the wave function of a QUbit by measurement can immediately affect the other state of the
pair regardless of the physical distance between them. Consider someone who prepares two
photons whose polarization is intertwined and then sends them in opposite directions along
a fiber-optic cable. Classically, when we measure that one photon is polarized vertically or
horizontally, we know for sure that the other will be the opposite.
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Chapter 3

Quantum Key Distribution

3.1 Cryptography Overview

In recent years, quantum cryptography has seen significant attention and rapid progress
[5]. The central challenge of cryptography in this period was the secure distribution of
keys to authorized users, ensuring the confidentiality of these keys in the face of potential
adversaries. This challenge is commonly called secret key agreement problem.

A cryptosystem achieves information-theoretical security (ITS), also called unconditional
security[24], when its security relies solely on principles from information theory. In other
words, it does not rely on unverified assumptions regarding the complexity of certain
mathematical problems, and therefore remains secure even in the presence of adversaries
with unlimited computational capabilities.

3.1.1 Computationally secure symmetric-key cryptographic schemes

Symmetric-key cryptography, a cryptographic approach where both the sender and re-
ceiver utilize a shared secret key, is employed to ensure the confidentiality of encrypted mes-
sages. Secret key agreement, based on classical and computationally secure symmetric-key
cryptography, can be realized by exclusively utilizing symmetric-key cryptographic primi-
tives. For instance, combining a symmetric-key encryption scheme with a symmetric-key
authentication scheme enables the creation of a secret key agreement primitive.

The security of confidential key agreement in traditional symmetric-key cryptography
depends on the security of the cryptographic building blocks used and how they can be
combined. Claude Shannon demonstrated that there’s no encryption method that’s uncon-
ditionally secure and requires fewer key bits than the one-time pad[23][5]. One-time pad
(OTP) is a cipher that uses a unique secret key, which is the same length as the message
to be encrypted, and it is used only once. The secret key is made up of a random sequence
of bits or characters. To encrypt a message, each bit of the message is combined bit by bit
with the corresponding bit of the secret key, using a logical operation like XOR . The result
is the encrypted message. To decrypt, the same process is used, combining the encrypted
message with the secret key. This bears a fundamental implication: to establish an uncon-
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ditionally secure scheme, the entropy of the encryption key must be at least as extensive as
the message to be encrypted [5].

Nevertheless, it is possible to construct a secret key agreement scheme using classical
symmetric-key encryption and authentication schemes that lack unconditional security. The
security model applicable to such symmetric-key classical encryption schemes does not meet
the criteria of unconditional security, as the key’s entropy is smaller than that of the message,
nor does it offer provably computational security.

3.1.2 Quantum key distribution

Quantum key distribution (QKD) [7] emerges as a quantum cryptographic remedy for
the challenge of establishing a secret key agreement between two mutually trusting users
in the presence of potential adversaries, offering an alternative to conventional public-key
cryptography. Unlike its counterparts, QKD is established as unconditionally secure, guar-
anteeing protection regardless of the computational capabilities an attacker may possess.

To understand the fundamental structure of QKD, consider a QKD link. Illustrated in
the figure 3.1, a QKD link forms a direct connection between two users, Alice and Bob,
who aim to exchange secret keys. The QKD link include a quantum channel and a classical
channel. Alice generates a random stream of bits, encoding them into a sequence of quan-
tum states of light transmitted through the quantum channel. Bob, upon receiving these
quantum states, conducts measurements that yield classical data correlated with Alice’s
bit stream. The classical channel is then employed to verify these correlations [5]. If the
correlations meet a certain threshold, it statistically indicates minimal eavesdropping on
the quantum channel. Consequently, there is a very high probability of distilling a perfectly
secure symmetric key from the correlated data shared by Alice and Bob. Contrary, if the
correlations fall below the threshold, the key generation process is halted and restarted.
Particularly, any substantial disturbance on the quantum channel, causing noise exceeding
the security threshold, practically disrupts key generation. An active attacker with access
to the quantum channel can effectively launch denial-of-service (DoS) attacks in such cases
[5].

Figure 3.1: Structure of a QKD link. Figure taken from [5].

Ensuring the authenticity of the classical channel and maintaining constant security in
Quantum Key Distribution (QKD) requires the use of a symmetric secret key agreement
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method [5]. This approach involves having initial resources, specifically a public quantum
channel and an authenticated public classical channel. To adhere to the highest security
model, known as the Information-Theoretically Secure (ITS) paradigm, message authenti-
cation codes based on universal hashing can be employed to authenticate communications
on the classical channel. To incorporate ITS authentication into QKD, Alice and Bob need
to share a short secret key beforehand. When QKD operates within this framework, it acts
as an Information-Theoretically Secure symmetric secret key expansion scheme [5].

Enhancing the security of a direct classical communication link involves integrating
Quantum Key Distribution (QKD) with symmetric encryption. QKD serves as a secret
key agreement method achievable at the physical layer. Now, our focus shifts to exploring
how the secret keys generated through QKD can be employed for a link layer cryptographic
objective, specifically, safeguarding the transmitted data on a classical communication link.
This is achieved by leveraging keys produced by QKD, in conjunction with initially shared
compact secret authentication keys, and employing symmetric-key cryptographic primitives.

In a more formal context, we address the challenge of transmitting classical messages
(payload) securely from Alice to Bob through the following generic protocol [5]:

1. Establishment of a symmetric secret key KS = Kencrypt · Kauth between Alice and
Bob. Where · is a concatenation operator.

2. Secure and authentic transmission of the message M over the classical channel, with
symmetric-key cryptographic primitives: M is encrypted with encryption key Kencrypt

and authenticated with the authentication key Kauth.

As previously mentioned, the only encryption scheme with provable information-theoretic
security is the one-time-pad encryption, making it a logical choice to integrate with Quantum
Key Distribution (QKD). Establishing an unconditionally secure classical communication
link stands out as a vital application of QKD. Exploiting the constant secrecy provided by
the one-time-pad and the unconditional security of QKD-generated keys, message encryp-
tion reaches a level of security that cannot be achieved without QKD in the key agreement
process. The messages reach complete confidentiality against adversaries, ensuring robust
resistance to any future events that might compromise their security.

Numerous specific scenarios demand long-term security [8], such as safeguarding medical
records, industrial secrets, and classified military or governmental information. Present com-
putationally secure schemes, however, cannot assure long-term security for highly sensitive
data. Notably, when dealing with encrypted information transmission, adversaries can store
ciphertext and await decryption until more advanced cryptanalysis methods or hardware
emerge. For instance, the advent of more efficient factoring algorithms or breakthroughs
in attacking Advanced Encryption Standard (AES) could pose risks. In this context, the
fusion of QKD with the one-time-pad emerges as a practical solution, ensuring uncondition-
ally secure data transmission over a point-to-point link. This integration serves as a natural
and effective response to meet the strict requirements of high-security communication in-
frastructures, particularly in the context of long-term security.
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3.2 QKD Networks

Implementations of Quantum Key Distribution (QKD) networks commonly depend on ei-
ther optical switching or trusted relays. Alternatively, untrusted relays or quantum re-
peater, based solutions are also utilized. Among these, the optical switching and trusted
relay schemes demonstrate a higher level of maturity compared to the untrusted relay and
quantum repeater-based approaches [9].

3.2.1 Optical Switching Based QKD Networks

In a QKD network based on optical switching, classical optical functions like beam
splitting and switching are applied to the quantum signals transmitted over a quantum
channel, connecting a pair of QKD nodes. These functions can be readily implemented
using commercial technologies. Quantum signals can traverse short quantum links without
interacting with untrusted nodes, making these short links less susceptible to eavesdropping
compared to long-range one. However, their applicability is limited to small-scale access
networks and relatively compact metropolitan networks due to the inability to eliminate
quantum signal attenuation through amplification [10] [11].

3.2.2 Trusted Relay Based QKD Networks

In contrast to the earlier described short-range setting, a QKD network based on trusted
relays, commonly known as a trusted-node QKD network, involves generating local secret
keys for each QKD link. These keys are then stored in nodes positioned at both ends of
the respective QKD link. Enabling long-distance QKD between two end nodes, this setup
relies on a one-dimensional chain of trusted relays connected by QKD links. The secret keys
are transmitted from the source node to the destination node through a sequence of trusted
relays in a hop-by-hop manner along the QKD path. The one-time pad technique is utilized
for encryption, ensuring end-to-end information-theoretic security for the secret keys, as
previously described. This implementation option for QKD networks is both practical and
highly scalable, leading to widespread adoption for network deployment. It’s essential to
note that each trusted relay is assumed to be safeguarded against intrusion or any form of
attack.

Figure 3.2: Hop-by-hop unconditionally secure message passing on a path made of trusted
relay nodes connected by QKD links. Figure taken from [5].

Utilizing classical trusted repeaters allows the construction of a long-distance QKD net-
work, and practical-scale implementations of such networks have already been showcased,
initially with the DARPA Quantum network [12].
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Figure 3.3 illustrates the four primary aspects of key relay. In Figure 3.3-A, it is evident
that a key relay network runs parallel to a comprehensive network that carries communi-
cation messages and control traffic, including QKD protocols. In this context, the Internet
serves as the communication network, with each link below representing a distinct QKD
link, and circular nodes depicting key relay stations. In Figure 3.3-B, a specific source
QKD endpoint (S) aims to establish key material with a distant destination QKD endpoint
(D). As both endpoints, S and D, are linked to a ubiquitous communication network, they
can engage in QKD protocols to derive key material. Once the keys are agreed upon, the
Internet becomes the secure means of communication between them [12].

Figure 3.3: Major Aspects of the Key Relay, Figure taken from [12].

Figure 3.3-C illustrates the key relay path from S to D, with darkened lines representing
the key relay network and resulting pairs of QKD key material on the right. Each QKD-
derived key, such as K(S,R1) between S and R1 or K(R1, R2) between relay nodes R1
and R2, is denoted accordingly. With all pairwise keys established, S and D can easily
derive their end-to-end shared secret key through key relay. One approach is for node S to
generate a new random number R, protect it with K(S,R1), and transmit the result to R1.
R1 decrypts the message to obtain R, re-encrypts it with K(R1, R2), and sends it to R2,
repeating the process until reaching D. At this point, both S and D share the same secret
random sequence, R, using it as key material [12]. The extension developed in the thesis
uses a symmetric key for each pair of nodes which will be used to encrypt and decrypt the
traffic, unlike the protocol just seen which uses this mechanism to bring a common secret
key from node A to node B.

Lastly, Figure 3.3-D demonstrates that BBN key relay protocols [12] can autonomously
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detect failures along the key relay path, whether due to cut fiber or eavesdropping, and
reroute the key material around these failures.

3.2.3 Untrusted Relay Based QKD Networks

A QKD network relying on untrusted relays necessitates the use of more secure QKD
protocols, particularly those within the family of entanglement-based protocols. An un-
trusted relay based protocol is also capable of extending the secure distance of QKD quite
considerably, this is because relays can be used as quantum repeaters [13][14]. Until now, a
practical implementation of repeaters is not yet present.

3.2.4 Quantum Repeater Based QKD Networks

Quantum repeaters are used to tackle the issues caused by distance-dependent impair-
ments affecting quantum signals [9]. Positioned at intermediate nodes, a quantum repeater
utilizes a physical process called entanglement swapping to establish long-distance entangle-
ment between source and destination nodes. The primary function of a quantum repeater is
to purify and transmit quantum signals without directly measuring or cloning them. Despite
the conceptual ideal of such quantum repeaters, as of the present writing [9], a practical
implementation remains unavailable. Consequently, the deployment of long-range quantum
repeater-based QKD networks in real-world scenarios is still pending.

3.3 Protocols

QKD protocols exhibit variations based on different criteria, with one of the most crucial
factors being the method of encoding information for transmission. These protocols can be
categorized into two main types: prepare-and-measure protocols and entanglement-based
protocols.

Entanglement-based protocols utilize entanglement source Einstein-Podolsky-Rosen (EPR)
particle pairs, while prepare-and-measure protocols, involve the preparation and measure-
ment of quantum states for the secure transmission of information. For example, this type
of protocol uses the polarization of photons to encode information inside, which will subse-
quently be measured to obtain the data. Furthermore these protocols perform error correc-
tion and privacy amplification after measuring the received quantum particle. This sequenc-
ing allows the extraction of classical information (a bit) initially. In the final step of QKD
we perform the classical error correction. In this chapter, we will only explore protocols not
relying on entanglement, specifically the Bennett-Brassard1984 (BB84) Protocol for QKD
and Cascade protocol for error correction.

In this section we are going to see a high-level overview of the most well-known QKD
protocols.

3.3.1 BB84 Protocol

The most widely recognized Quantum Key Distribution (QKD) scheme is the Bennett-
Brassard1984 (BB84) protocol, as introduced by Bennett and Brassard in 1984 [7]. This

14



Cap. 3 Quantum Key Distribution §3.3 Protocols

protocol enables two users, namely Alice and Bob, who share a quantum channel (such as
an optical fiber or free space) along with an authenticated classical channel, to establish a
secure key even in the presence of an eavesdropper possessing unlimited quantum computing
capabilities. In the BB84 protocol, Alice transmits a sequence of single photons, each
carrying qubit states, to Bob through the quantum channel. Figure 3.4 presents a schematic
diagram of the BB84 protocol [15].

Figure 3.4: BB84 scheme. Figure taken from [15].

The steps of the protocol are the following:

1. Alice randomly encodes a single photon with one of four polarization states-vertical,
horizontal, 45-degree, or 135-degree-for each signal. She then sends the photon through
a quantum channel to Bob.

2. For each signal, Bob selects one of two bases-rectilinear and diagonal-to conduct a
measurement on the polarization of the received photon. After detection, Alice and
Bob publicly disclose their basis choices through an authenticated classical channel.

3. The polarization data encoded and detected in different bases are discarded by Alice
and Bob. Only the data in the same basis are retained to form the sifted key. From
this sifted key, Alice and Bob randomly select a sample to compute the Quantum Bit
Error Rate (QBER).

4. If the computed QBER surpasses a certain threshold, they abort the process. Oth-
erwise, they proceed with classical post-processing, including error correction and
privacy amplification, to generate a secret key.

3.3.2 B92 Protocol

In 1992, Charles Bennett introduced the B92 protocol [16]. The B92 protocol represents
a modified iteration of the BB84 protocol, distinguishing itself primarily in the choice of
polarization states.
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3.3.3 Information Reconciliation Protocol

The classic protocols seen previously consist of both a quantum phase and a classical
post-processing phase. The quantum phase involves the utilization of both the quantum
channel and the classical channel for key exchange. The subsequent classical post-processing
phase exclusively relies on the classical channel and consists of two distinct components [12]:

1. Information reconciliation, tasked with identifying and rectifying unavoidable bit er-
rors (noise) in the key exchanged during the quantum phase.

2. Privacy enhancement, responsible for minimizing information leakage during the in-
formation reconciliation step.

This section focuses solely on a particular information reconciliation protocol, namely
the Cascade protocol.

Key bit errors

Key distribution protocols invariably introduce noise into the key. The key received by
Bob exhibits some noise, such as bit errors, in comparison to the key originally sent by
Alice. Consequently, we label the key transmitted by Alice as the correct key, and the key
received by Bob as the noisy key.

Figure 3.5: Example of noisy key, Figure taken from [20].

Noise may arise from imperfections in hardware or random environmental fluctuations.
Alternatively, eavesdropper Eve observing traffic can also introduce noise. It’s crucial to
note that in quantum mechanics, the act of observing a photon induces changes, leading to
detectable noise. Quantum key distribution protocols universally provide an assessment of
the noise level, typically expressed as an estimated bit error rate. A bit error rate of 0.0
indicates that no key bits have been altered, while a rate of 1.0 signifies that all key bits
have undergone changes.
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Classical post-processing

When the estimated bit error rate surpasses a predefined threshold, it leads us to the
inference that Eve is monitoring the traffic, attempting to decipher the secret key. Un-
der such circumstances, we opt to discontinue the key distribution attempt. Conversely,
if the estimated bit error rate falls below the threshold, we proceed with classical post-
processing. This involves the two steps mentioned earlier, Information reconciliation and
Privacy enhancement, both of which are classical protocols, exclusively involving classical
communications and void of any quantum communications.

Information reconciliation

The initial step in classical post-processing is information reconciliation [12]. Even when
the bit error rate falls below the threshold, it is not reduced to zero.; there remains some
noise in the form of bit errors within the noisy key received by Bob compared to the correct
key from Alice. The objective of the information reconciliation step is to identify and rectify
these residual bit errors.

There are different ways to reconcile information, and here, we’re focusing on one called
the Cascade protocol. The challenge in this process is to prevent too much information
from being leaked. If someone, like Eve, who’s trying to eavesdrop, gets hold of any leaked
information during reconciliation, it could make it easier for them to decrypt the encrypted
messages. Even if Eve doesn’t get the entire key, having some leaked information about it
makes it simpler for her to try fewer options when attempting to break the code. Each piece
of leaked key information significantly reduces the number of attempts Eve needs to make
during a brute force attack [12].

Nevertheless, it’s inevitable that the information reconciliation protocol will leak a lim-
ited amount of information. This is acceptable as long as the leaked information is both
bounded and known, allowing us to compensate for it.

The Cascade protocol

The Cascade protocol serves as an illustration of an information reconciliation protocol.
Its primary objective is to identify and correct any persistent bit errors within the noisy key
received by Bob in comparison to the correct key sent by Alice.

Consider a scenario where Alice and Bob, having completed the quantum phase of a
quantum key distribution like BB84, find themselves in possession of the correct key and a
noisy key, respectively. The noisy key, although resembling Alice’s correct key, contains a
limited number of bit errors. Subsequently, Alice and Bob initiate the Cascade protocol to
pinpoint and correct any remaining bit errors within Bob’s noisy key [12].

Cascade operates entirely within the classical channel, exclusively relying on the ex-
change of classical messages. It does not engage in any quantum communications. Tradi-
tional techniques, such as TCP/IP, are employed to ensure reliability, flow control, and other
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functionalities. It is not a prerequisite for the classical channel to be encrypted; we operate
under the assumption that eavesdropper Eve can openly observe all classical messages.

Nevertheless, it is essential for the classical channel to offer authentication and integrity.
We presume the existence of a mechanism enabling Alice and Bob to confirm that all
classical messages originated from the legitimate sources, Bob and Alice, and have not been
manipulated or forged by Eve. This requirement is crucial in preventing man-in-the-middle
attacks by Eve, where she intercepts all classical traffic, impersonating Bob to Alice and
vice versa.

Cascade operates through iterations involving random permutations to evenly distribute
errors within the sifted key. The permuted sifted key is initially divided into equal blocks of
size ki bits. After each iteration and new permutations, the block size doubles to ki = 2·ki−1.
Parity tests are conducted for each block, and a binary search is employed to identify and
rectify errors within the block. To enhance efficiency, the Cascade protocol explores errors
in pairs of iterations through a recursive approach.

Rather than outright rejecting error bits in the initial stage, information regarding the
existence of an error bit within the block is harnessed in subsequent iterations to identify
errors overlooked due to measurement parity. Any errors discovered in later iterations enable
the identification of at least one corresponding error in the same block from the previous
iteration, initially presumed error-free. Through a binary search, an extensive exploration
for errors in such a block is conducted, facilitating the recursive detection of masked errors.
The illustration in Fig. 3.6 depicts two passes of the Cascade protocol.

The Cascade protocol depends on employing a binary search for pinpointing error bits.
This binary search involves iteratively dividing the block into two smaller subblocks, where
the parity check values are compared until the identification of an error.

The Figure 3.6 illustrates the first two steps of the Cascade protocol. In step 1, as seen
in the upper part of the image, Alice has sent bits to Bob, and now both have a sequence
of bits representing a key. Due to noise, some bits received by Bob are incorrect. The two
streams of bits are divided into blocks of a length of k1 = 4. Now, Bob locally computes
the parity of each block, where the parity value is 1 if the number of ’1’s in the block is
odd. Parity is used to reveal only a small amount of information about the key; hence, we
cannot have an initial block size of 1, as it would leak the entire key. Once the parity bits
are calculated, Bob compares them with the parity bits of Alice’s blocks. If he finds a block
with different parity bits, he knows there is at least one error. Bob further divides the block
in half and again compares the parity bits of the two sub-blocks to identify the error until he
obtains a single block and corrects the bit. At the end of this first step, we have corrected
only one bit. If there are no other blocks with different parity bits, we proceed to the next
step, as now all blocks have correct parity compared to Alice’s blocks. In the second step
shown in the figure, we observe that the bit sequence has been randomly reordered. This is
necessary and helpful to recalculate the parity bits of the blocks, as two blocks may have the
same parity bit but contain errors. Bob must inform Alice of the reordering, for example,
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with a list of indices of permuted bits. Additionally, in the second step, the block size is
doubled k2 = k1 × 2 = 8. The block size is doubled because in the previous step, some bits
were corrected, resulting in a lower error rate. The same search process will be used in this
step as well. At the end of this second step, if we are fortunate, the entire key has been
corrected. The original implementation of Cascade uses 4 iterations, at the end of which it
is highly likely that all errors have been corrected.

The cascade protocol also includes a so-called privacy amplification phase, for each parity
bit sent on the classic channel for a block, a bit of the block will have to be discarded since
the parity bit reveals information about the block.
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Figure 3.6: Illustration of the first two passes of reconciliation using a Cascade protocol.
Figure taken from [21].
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Chapter 4

QKD Simulator

In this chapter we will talk about the type of simulation used and the SeQUeNCe (Simu-
lator of Quantum Network Communication) simulator [18]. Simulations provide a controlled
environment to explore and understand the behavior of Quantum Key Distribution (QKD)
systems before they are implemented in real environments. However, it is crucial to exper-
imentally verify implementations in the laboratory to ensure the safety and effectiveness
of the system in practice. QKD is an ever-evolving field, with numerous theoretical and
experimental developments seeking to address challenges and improve the performance of
the technology.

4.1 DES - Discrete Event Simulation

Lots of computer and communication systems use something called discrete event simu-
lation. Basically, it involves using a global time called currentTime and an event scheduler.
In simple terms, events are like actions that represent different changes, and each has a
specific time when it happens. The event scheduler keeps a list of these events in order of
when they’re supposed to happen.

During simulation, the program selects the first event from the scheduler, advances
currentTime to the firing time of this event, and executes the event. Event execution may
result in scheduling new events with firing times greater than or equal to currentTime, as
well as modifying or deleting events previously listed in the scheduler. It’s important to
note that the global simulation time, currentTime, remains unaltered by an event, causing
the simulation time to transition discretely from one event firing time to the next [19].

4.2 SeQUeNCe: Simulator of QUantum Network Communi-
cation

SeQUeNCe (Simulator of Quantum Network Communication) is an open source quantum
simulator written in Python developed by Argonne National Laboratory [18].

The SeQUeNCe simulator has the following features, as reported in the Paper [18]:
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• Realism of Quantum States: The simulator should accurately trace quantum
states, including entanglement, and assess their fidelity. Quantum states may be
encoded using methods such as time bins, polarization of light, or states in quan-
tum memories. The quality of entanglement, a crucial metric for quantum network
performance, requires modeling for factors like loss and decoherence. In SeQUeNCe,
entanglement states are represented as complex arrays, and the simulator includes
hardware models to record entanglement fidelity.

• Realism of Timing: Simulation events must be executed precisely at their designated
timestamps and in their exact order to prevent causality errors. Quantum networks are
time-sensitive, and the arrival times of photons, which encode quantum information,
determine their identity. Furthermore, the limited lifetime of qubits in memories
necessitates low-latency operations. The simulator operates with picosecond precision
to meet these temporal requirements.

• Flexibility: For the development of future quantum networks, the simulator needs
to simulate diverse network architectures, new protocols, and applications, while al-
lowing reconfigurable topologies and traffic traces. SeQUeNCe employs a modularized
design, separating functionality into modules containing reprogrammable protocols.
This design facilitates quick testing of numerous scenarios by adjusting parameters in
JSON files.

• Scalability: The need arises for large-scale studies of wide area networks with numer-
ous components and the tracking of quantum states at the individual photon level. In
contrast to classical packet-level network simulations, the simulation involves tracking
photons generated at megahertz frequencies, leading to a significant increase in the
number of simulated events. Additionally, a stand-alone simulation kernel has been
designed to enable portability to high-performance computing systems.

4.2.1 Modularized Design of SeQUeNCe

In simulating quantum networks, certain assumptions must be made about their archi-
tecture. However, it’s noteworthy that quantum network architectures have not yet been
standardized, and ongoing discussions on this matter are taking place within the recently
formed Internet Engineering Task Force (IETF) standardization group [18]. SeQUeNCe is
structured around a modular design, as in Figure 4.1, employing six modules to generate
events. The following models are taken from the SeQUeNCe paper [18].

• Simulation Kernel acts as the core of SeQUeNCe, facilitating discrete-event sim-
ulation. Simulation time progresses in discrete clock ticks, and events generated by
simulation models in other modules are stored in a priority queue, sorted by their
timestamps. Continuously, the kernel executes the top event in the queue, advancing
the simulation time accordingly. This process repeats until the queue is empty or a
specified simulation end condition is reached. The Kernel offers users significant con-
trol over event execution orders for realistic timing and includes interfaces for potential
future parallelized implementation to enhance scalability.
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Figure 4.1: Modularized design of SeQUeNCe, figure taken from [18].

• Hardware module includes models of elementary hard- ware components used in
a quantum network, including quantum channels, classical channels, quantum gates,
photon detectors, and quantum memories.

• Entanglement Management module includes models of protocols for reliable high-
fidelity end-to-end distribution of entangled qubit pairs between network nodes.

• Resource Management module manages local resources within one node. It records
the state of the hardware, efficiently allocates resources to applications and entangle-
ment protocols based on commands issued by the network management, and regains
control of the hardware with updated states when resources are released.

• Network Management module provides quantum network services based on re-
quests from the local Applications and remote Network Managers.

• Application module represents quantum network applications and their requests for
quantum network resources.
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Chapter 5

Implementation

This chapter delves into the development process of the SeQUeNCe simulator extension,
specifically designed for analyzing the performance of Quantum Key Distribution (QKD)
using Free-Space Optical (FSO) Links. Subsequent chapters provide a comprehensive ex-
ploration of node structures, links, messaging protocols, and routing details. Commencing
with an overview of sequence graph structures, we explore how these graphs are customized
to suit simulation requirements with the extension.

5.1 Introduction

SeQUeNCeuses, as anticipated, a customized structure to represent a network. For the
purposes of our extension, we would be interested in simulating graphs with specific charac-
teristics (for example, a certain number of nodes, distance between nodes, channel bit-rate,
BER, etc.). NetworkX is a powerful and popular Python package designed for the creation,
manipulation, and analysis of complex networks and graphs. It provides a comprehensive set
of tools and functions that enable users to study various aspects of network science, social
network analysis, and graph theory [22]. NetworkX allows us to generate custom graphs by
specifying some characteristics. However these graphs are not compatible with SeQUeNCe.
In fact, to allow us to use these types of graphs in our extension, a simple parser has been
created that ”translates” a NetworkX graph into a SeQUeNCe-compatible graph.

At its core, NetworkX represents networks as collections of nodes (also known as vertices)
and edges (also known as links or connections) that connect these nodes. NetworkX supports
a wide range of network types, including directed and undirected graphs, multi-graphs
(graphs with multiple edges between the same nodes), and graph sequences. Moreover
NetworkX provides convenient functionality to export networks and graphs to JSON files,
allowing users to store and share their network data in a widely supported format. With
NetworkX, you can export a network to a JSON file using the json graph module, which is
part of the NetworkX package. This module provides functions to convert NetworkX graphs
into JSON-compatible data structures.

To export a network to a JSON file, is possible to use the
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networkx.json graph.node link data function. This function takes a NetworkX graph
as input and returns a dictionary representation of the graph that can be easily serialized
to JSON.

So to ensure compatibility between NetworkX’s output and SeQUeNCe, a dedicated
parsing function was created, for implementation refer to the repository. This converts the
JSON output from NetworkX into a modified JSON format that SeQUeNCe can understand.
The modified JSON file retains the original network topology while being formatted in a
way that allows SeQUeNCe to load the network topology along with its internal objects. By
utilizing this parser, we ensure a base integration between the generated network topology
and the functionality provided by SeQUeNCe.

We can see in listings 5.1 and 5.2 an example of a graph in NetworkX and one in
sequence obtained from the parsing functions. The graph will be populated with predefined
attributes, for more specific simulations the attribute of interest will have to be modified.
The various attributes will be explained in the following sections.

1 {

2 ...

3 "nodes": [

4 {

5 ...

6 "id": 0

7 },

8 ...

9 ],

10 "links": [

11 {

12 ...

13 "source": 0,

14 "target": 1

15 },

16 ...

17 ]

18 }

Listing 5.1: NetworkX Graph Example

1 {

2 "nodes": [

3 {

4 "name": "node0",

5 "type": "QKDNode"

6 },

7 ...

8 ],

9 "qchannels": [

10 {

11 "name": "qchannel0_0to1",

12 "source": "node0",

13 "destination": "node1",
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14 "distance": 1000,

15 "bit_rate" : 1000000000

16 },

17 ...

18 ],

19 "cchannels": [

20 {

21 "name": "cchannel0_0to1",

22 "source": "node0",

23 "destination": "node1",

24 "distance": 1000,

25 "bit_rate" : 1000000000

26 },

27 ...

28 ]

29 }

Listing 5.2: Sequence Extension Graph Example

5.2 QKD Link

In this section we will see the details of the implementation of the quantum and classical
channels, with more attention on the quantum channel. The class that deals with modeling
optical channels is OpticalChannel and is implemented by the SeQUeNCe simulator. For
our objectives we are interested in modeling an FSO Link, so for the implementation we
used the class offered by SeQUeNCe as support, but we also customized some parameters.

Let’s see an overview of how an optical channel is made up in SeQUeNCe and then let’s
see how it is used in the extension.

5.2.1 ClassicalChannel

The classic channel, used for classic message exchange, is implemented very simply through
the following parameters, for more details refer to the SeQUeNCe documentation:

• Sender: node at sending end of optical channel.

• Receiver: node at receiving end of optical channel.

• Distance: length of the fiber (in m).

• Delay: delay (in ps) of message transmission.

The channel is very simple, the delay is calculated based on the distance and speed of
light in the fiber, so that it is possible to schedule a transmission delay in the simulation.
The transmission is carried out by scheduling a message event received on the recipient
node.
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5.2.2 QuantumChannel

The quantum channel is more complex, some of the parameters that characterize it are the
following:

• Attenuation: attenuation of the fiber (in dB/m).

• Polarization Fidelity: probability of no polarization error for a transmitted qubit.

• Frequency: maximum frequency of qubit transmission (in Hz).

The quantum channel is used exclusively by QKD protocols. For the BB84 for example
it is used to send polarized photons. A very relevant parameter for the quantum channel
is the Polarization Fidelity, which specifies the probability that there are no polarization
errors of the photon at the moment of sending. Being a probability, its value will be within
an interval ranging from 0 to 1. So for example, once the photon has been prepared by
encoding the information to be transmitted, if the Polarization Fidelity is set to 1, then
when the photon is sent there will be no noise applied to the photon. While if we have a
Polarization Fidelity of 0.5 then we expect that the probability that noise will be applied
to the photon is 50%.

5.2.3 Free-Space Optic (FSO) Link

SeQUeNCe does not provide a class that models Free-Space Optic (FSO) Link, so to
model one of these links a QuantumChannel appropriately configured with adequate pa-
rameters was used. Let’s see briefly what an FSO Link is.

An Free-Space Optic (FSO) Link, which stands for Free-Space Optical Link, is an op-
tical communication system that transmits data through free space, typically using laser
light beams. This technology is also known as free-space optical communication or optical
communication through the air. The operation of an FSO Link involves sending optical
signals through the atmosphere without the use of cables or optical fibers. FSO devices
consist of laser transmitters and optical receivers positioned at two communication points.
The light signals travel through free space and are received by the other device, where they
are then converted back into electrical signals for data processing.

This type of technology can be used for short-distance communication between build-
ings, university campuses, or other limited geographical areas. However, free-space optical
communication can be influenced by environmental factors such as fog, rain, and other
weather conditions that may attenuate or disrupt the optical signal. FSO Links are often
chosen when the installation of physical cables (such as optical fibers) is impractical or too
costly. They are also used in scenarios where a high-speed connection is required, and the
distance between communication points is relatively short.

To model the FSO Link, we are going to use an instance of a QuantumChannel. What
we are interested in knowing about our link will be the distance, a BER (Bit error rate) and
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the frequency. With a model built for FSO Link, within the FSOQKD class, we estimate a
BER through the distance and frequency (bit rate) of the link. To model the BER of the
FSO link we are going to use the BER value obtained from the model mentioned above. In
fact, this will represent a fundamental value for the link, as it will influence the percentage
in which the bits are altered. To do this, the source code was modified when generating the
bits to be sent before the BB84 protocol, as in Listing 5.3.

1 bit_list_noise = []

2

3 for i in range(num_pulses):

4 if numpy.random.random (1) [0] < self.ber:

5 bit_list_noise.append (1 - bit_list[i])

6 else:

7 bit_list_noise.append(bit_list[i])

Listing 5.3: Code to Model BER in SeQUeNCe

5.3 Design of a QKD node

In this section, we will explore the idea behind how nodes are modeled within the
simulation.

SeQUeNCe provides us with QKDNodes that have all the hardware setup necessary for
the execution of a QKD protocol, making our lives much easier. However, we encountered
a problem with this setup. Suppose you have three nodes named node0, node1, and node2,
and you want each of them paired with each other to exchange quantum keys. This proves
challenging due to the strict sender-receiver roles each QKDNode assumes in its protocol
stack. In practical terms, if node0 is paired with node1 where node0 is the sender and
node1 is the receiver, then we cannot have node0 paired as the sender with node3 or any
other node. This restriction arises because its internal protocol stack encounters simulation
conflicts in such scenarios.

For this reason some wrappers have been created around the SeQUeNCe QKDNode.
The first wrapper is the Transceiver class, which is nothing more than a wrappers for the
QKDNode, which will be used to connect to a Transceiver on another adjacent one. The
second wrapper is the class SuperQKDNode, this structure will contain a Transceiver for
every other node it is adjacent to. The Figure 5.2 will clarify these structures, with an
example of two connected SuperQKDNodes. An example SeQUeNCe graph of this simple
network is shown in Listing 5.4.

1

2 "nodes": [

3 {

4 "name": "node0",

5 "type": "QKDNode"

6 },

7 {
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Figure 5.1: Abstract representation of a super QKD node.

8 "name": "node1",

9 "type": "QKDNode"

10 }

11 ],

12 "qchannels": [

13 {

14 "name": "qchannel0_0to1",

15 "source": "node0",

16 "destination": "node1",

17 "distance": 1000,

18 "bit_rate" : 1000000

19 },

20 {

21 "name": "qchannel0_1to0",

22 "source": "node1",

23 "destination": "node0",

24 "distance": 1000,

25 "bit_rate" : 1000000

26 }

27 ],

28 "cchannels": [

29 {

30 "name": "cchannel0_0to1",

31 "source": "node0",

32 "destination": "node1",

33 "distance": 1000,

34 "bit_rate" : 1000000

35 },

36 {

37 "name": "cchannel0_1to0",

38 "source": "node1",

39 "destination": "node0",

40 "distance": 1000,

41 "bit_rate" : 1000000

42 }

43 ]

44 }

Listing 5.4: SeQUeNCe-Extension 2 node graph example
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The Transceiver class, as previously mentioned, is a wrapper around the QKDNode class,
in fact an instance of this structure will contain a QKDNode, a reference to the messaging
protocol and one to the key Manger. While a SuperQKDNode instance will contain a
collection of Transceivers and a routing table, for routing the various messages between the
SuperQKDNodes.

Figure 5.2: Abstract representation of a SuperQKDNode and Transceivers.

Therefore the QKD will take place between the pairs of Transceivers (therefore the
exchange of keys through the BB84 and Cascade protocols) and the exchange of messages.
So the SuperQKD Node will be responsible for routing and will delegate message forwarding
to the Transceivers, this will be explored in more detail when we talk about routing. As
discussed previously, each Transceiver has a Key Manager, who will be responsible for
starting the protocols for key agreement and key storage.

The key manager is modeled in the following way, it has three methods (for more detail
refer to the repository):

1. send request: which takes care of starting the QKD between two paired QKD nodes.

2. pop: which is an interface for Cascade (class implemented by the SeQUeNCe simula-
tor) to return the generated keys.

31

https://github.com/luckyluke98/QKDSimulator/blob/master/project/key_manager.py


Cap. 5 Implementation §5.4 Messaging Protocol

3. consume: which takes care of consuming a key, of the generated and saved keys when
sending a message.

Each QKD Node, within a Transceiver, has a LightSource, the LightSource component
acts as a simple low intensity laser. This component is responsible for emitting photons
towards the recipient, as can be seen in the Figure 5.3, as seen in the previous chapter, the
extension uses a QuantumChannel with peronslaizated parameters to model an FSO link.
LightSource is configured with the following parameters:

• Frequency: frequency (in Hz) of photon creation.

• Mean photon number: mean number of photons emitted each period.

The light source frequency is the one defined in the FSO Link (QuantumChannel). A pe-
riod is defined by the frequency of the component expressed in picoseconds, i.e. 1e12/Frequency.

Figure 5.3: High-level view of the sending and receiving components, figure taken and
modified from [17].

5.4 Messaging Protocol

In this section we will see how the Messaging Protocol was developed. Each Transceivers,
as shown in Figure 5.2, has an instance of MessagingProtocol which is the class responsible
for sending and receiving messages through the classic channel. This class is a subclass
of the Protocol class of SeQUeNCe, this class defines the protocol type inherited by all
implementations of the protocol code.

Through the start messaging function of the Topology class of the extension it is
possible to start the exchange of messages between the nodes of the network. This function
will generate random traffic, establishing a destination for each node. It is also possible to
establish customized traffic through a json file that defines a destination for each node, as
shown in Listing 5.7.
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1

2 {

3 "packets" : [

4 {

5 "src_node" : "node0",

6 "dst_node" : "node1"

7 }

8 ]

9 }

Listing 5.5: Example of custom traffic of a network of 2 nodes

The sending of messages will be determined by a rate that defines the load, i.e. how
many packets each node generates for sending in one second. This rate is the average of an
exponential random variable. Furthermore, the sending of messages is also limited by the
capacity of the classic channel, i.e. its frequency or bit rate. We see that some fundamental
parameters of the protocol are the following, for more details refer to repository:

• mess rate: it is the rate that defines the load, the average of an exponential random
variable.

• packet period: defines the period for transmitting a packet. It is calculated starting
from the bit rate of the classic channel and the size of a packet.

• buffer capacity: queue capacity.

Sending a packet depends on the presence of keys to encrypt it and the availability of
the queue. Once a packet has been generated, it is checked whether there is space in the
queue, if there is space, the packet is queued, otherwise it is dropped. Sending will only
be possible if there are keys. If a key is present, then a packet is extracted from the queue
which is encrypted with it and sent to the destination. In the simulation it is assumed that
the packet is the same size as a key, so if we have 128 bit keys we will have that the packet
will be 128 bits. A packet therefore consumes a key.

In addition to a packet generated by the node itself, it is possible that a packet may also
arrive from another node and need to be forwarded, if the destination is not the node itself.
Then node checks whether there is space in the queue, then it can be added to the queue
or dropped. We discuss Routing in the next section.

5.5 Routing

In this section, we will explore how routing is implemented. Once the network is gener-
ated, a path is calculated for each SuperQKDNode to reach every other node in the network,
using the NetworkX shortest path function. This way, each SuperQKDNode will know
the path to reach every other node in the network. As mentioned in previous chapters, it
is the responsibility of the SuperQKDNode to route packets, which involves selecting the
correct Transceiver for sending or forwarding packets.
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Through the method send message(self, tl, dest node, plaintext msg,

forwarding) in the SuperQKDNode class, it’s possible to send a message to the destination
node. The method takes parameters such as the name of the destination node, the packet,
and a forwarding parameter. The forwarding parameter is necessary for the extension to
understand whether it’s a forwarded message or a message generated by the node for sending.
In Listing 5.6, we can see the format of a packet. The fields hop and time are two fields
that will be modified. The time field will be set to the sending time when the packet is sent,
and the hop field will be incremented with each hop the packet makes.

1 {

2 "src": "node0",

3 "dest": "node1",

4 "payload": "text",

5 "hop": 0,

6 "time": None

7 }

Listing 5.6: Example of Packet format

So, once the send message method is called, the SuperQKDNode will check its routing
table and delegate the sending or forwarding of the packet to the Transceiver connected to
the next hop. Once the receiving Transceiver gets the packet, the messaging protocol’s job
is to check if the packet has reached its destination or if it needs to be forwarded. If the
packet needs to be forwarded, then the messaging protocol will delegate forwarding to the
SuperQKDNode, calling the send message method with the forwarding parameter set.

When a packet needs to be sent, whether it’s forwarding or sending a packet generated
by the node, it gets placed in a queue. The packet transmission depends on the presence of
keys. So, all packets will be queued in the respective Transceiver’s queue and sent using the
keys generated by the QKD for that specific Transceiver and its destination. If the queue
is full, incoming or generated packets will be dropped. Figure 5.4 illustrates how sending
messages works after the SuperQKDNode picks the right Transceiver for sending, and it
also shows how message reception behaves.

34



Cap. 5 Implementation §5.6 Simulations

Figure 5.4: Sending and receiving a packet.

5.6 Simulations

In this section, let’s see how to set up a simulation and the various outputs that it will
return. Each run will generate a folder in the sim directory folder, named with the current
timestamp, in which are saved files containing the simulation results. Some outputs depend
on the types of input parameters. For example, if a graph of a Sequence network is provided
directly, the simulator will not return a graphical image of the network, as this is possible
if the graph is first generated with NetworkX.

Simulation parameters are customizable using the following CLI arguments when launch-
ing a simulation:

• --sim-time SIM TIME: Establishes the simulation time in seconds.

• --netx-graph NETX GRAPH: Specifies the path to a network json file in Net-
workX.

• --seq-graph SEQ GRAPH: Specifies the path to the json file of a network in Se-
quence.

• --key-size KEY SIZE: Indicates the length of keys that QKD will generate for node
pairs.

• --mess-rate MESS RATE: Specifies the load rate, i.e. how many packets each
node will generate per second on average, times generated by an exponential random
variable with mess-rate as parameter.

• --num-nodes NUM NODES: If we want to generate a random network with Net-
workX, this parameter indicates how many nodes we want in our network.
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• --buff-capacity BUFF CAPACITY: Indicates the capacity of the buffers in the
nodes.

• --inspection-rate INSPECTION RATE: This rate is used to inspect the buffers
and keys in each node, that is, how often we visit the nodes to obtain information.

• --traffic TRAFFIC: A path must be specified to a json file that contains custom
traffic.

In addition to the parameters for customizing a simulation, customization also occurs
through the json files that represent the network. In fact, as seen in Listing 5.4 , with these
files it is possible to establish the bit rates of the classical and quantum channels and the
lengths, through which the BER of the quantum channel will subsequently be calculated.

Now to give an example of use, let’s say that we want to simulate on the Listing 5.4
network, for a second of time, the exchange of 128 bit messages and keys with a mess rate
of 10 packets per second and personalized traffic as in Listing 5.7. Then the command line
will be:

1 python3 project/sim_ext.py --seq -graph sequence_2_node_graph.json --traffic

traffic.json --inspection -rate 0.001 --sim -time 1.0 --mess -rate 0.1

Listing 5.7: Example of simulation command

The structure of the simulation folder is as in Figure 5.5, in which are saved the JSON
files containing the network topology, a JSON that contains the simulation parameter, the
image containing the graphical representation of the network, one csv file that contains the
capacity of the buffers of the nodes during the simulation, a csv that contains information on
the packets and a csv that contains for each node the total number of keys exchanged during
the simulation. Let’s take a look at the format of the files resulting from the simulations:

• packet result.csv : The file contains all the information about the generated packets,
indicating whether they were sent, delivered, or dropped. Additionally, it includes the
source and destination nodes, the number of hops, and the send and receive times.
Listing 5.8 shows the header of the csv file.

1 Sim. Command ,Source ,Destination ,Sent ,Delivered ,Dropped ,Num. Hop ,Sending

Time ,Sim. Time ,Tot. Time

Listing 5.8: Headers of packet result.csv file

The headers Source and Destination will contains the name of the nodes. The headers
Sent, Delivered and Dropped are boolean headers, so for example if the packet is sent
the header will be True. If the packet is dropped the Dropped header will contains
the name of the Transceiver that dropped it.

• buffers.csv : Based on the inspection time parameter, in this file, we will find, for each
Transceiver, the buffer length, meaning how many packets are in the buffer at that
moment. The headers of this file will be the names of all the transceivers, and in the
rows, you’ll find the corresponding buffer length for each transceiver.
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• tot keys.csv : In this file, we will find, for each Transceiver, the total number of keys
generated. The headers of this file will be the names of all the transceivers, and in the
rows, you’ll find the corresponding total keys generated for each transceiver.

• sim params.json: In this json file we will find a resume of the values of the parameter.
Listing 5.9 shows an example of this json file.

1 {

2 "sim_time": 1.5,

3 "netx_graph": null ,

4 "seq_graph": "project/file/graph_15_nodes.json",

5 "key_size": 128,

6 "mess_rate": 0.002 ,

7 "num_nodes": 10,

8 "buff_capacity": 10,

9 "inspection_rate": 0.001 ,

10 "traffic": "project/file/traffic_15_nodes_net.json"

11 }

12

Listing 5.9: Example of sim params.json file

The others file, such as traffic.json and file concerning SeQUeNCe and NetworkX graphs,
have been explained in the previous chapters.

Figure 5.5: Structure of the simulation folder.

Figure 5.6 provides a high-level view of the various explained components of the exten-
sion.
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Figure 5.6: High-level view of Sequence extension components.
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Chapter 6

Evaluation

In this chapter we will run and analyze the various simulations on QKD networks with
FSO Link, but before going on to run and analyze the simulations we will see an introductory
part to analyze the coherence of the extension.

6.1 Extension Consistency

To analyze the consistency of the extension we are going to perform simulations with
the aim of seeing its behavior. As a first analysis we are going to carry out simulations in
which we send a sequence of bits with the BB84 protocol on which the Cascade protocol
will act.

6.1.1 Bit Error Rate analysis

We will simulate on links with a fixed bit rate of the quantum channel at 1 Mbps as
the BER varies, to verify the number of bits obtained from the receiver. The simulations
were not conducted using the extension directly but rather through the use of SeQUeNCe
and the BB84 and Cascade protocols. A very important variable, within the component
responsible for the emission of photons, is the mean photon number, which follows a Poisson
distribution with a customizable mean. This variable indicates the mean number of photons
emitted each period. This variable will therefore influence the number of photons sent, in
fact it may be that in a period a photon is not sent thus generating losses.

For example, if we want to send a certain number of qubits and we have a
mean photon number of 0.1, per period, we will send a number of qubits determined by the
result of the Poisson distribution with a mean of 0.1. So, it’s possible that in one period,
we may send zero qubits, and in another, one or more qubits. This, of course, will result in
losses. However, we are interested in perfect emission, meaning that one and only one qubit
is sent in each period. To achieve this, the code in the SeQUeNCe source code related to
photon emission has been modified, forcing the sending of only one qubit per period. The
modification was made within the LightSource class in the emit method, Listing 6.1 shows
this modification. So, in the next chapters, we will see results coming from simulations with
this modification.
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1 time = self.timeline.now()

2 period = int(round (1e12 / self.frequency))

3

4 for i, state in enumerate(state_list):

5 # num_photons = self.get_generator ().poisson(self.mean_photon_num) (

removed)

6 num_photons = 1 # new value

7

8 ...

9

10 for _ in range(num_photons):

11 # schedule emission (unchanged)

12

13 time += period

Listing 6.1: Modification on LightSource class in emit method

So we will simulate on 4 different BERs, 0%, 25%, 50% and 75%. For each BER
we are going to perform 30 simulations in which A, through BB84, sends 10’000 bits and
subsequently the error correction is applied on the bits with Cascade. Figure 6.2 shows
these results. Figure 6.1 outlines with a block diagram the process we will analyze. There
is a first phase involving sending bits from the source node to the destination node using
the BB84 protocol, a second phase involving the Sifting stage, and a third and final phase
where the Cascade protocol is applied to the bits obtained after the Sifting phase.

Figure 6.1: Descriptive diagram of the Sifting and Cascade process.

As can be seen from Figure 6.2, for each BER we are going to run 30 simulations, each
of which sends 10,000 bits. In the first box plot on the top left we see that the blocks are
flat, in fact it is correct because we have that for each period we send exactly one bit, and
since we have not set parameters to simulate losses, we see that before the sifting phase
the bits sent they are always and exactly 10,000. Obviously in this phase the BER is not
influential. So this meets our predictions. So, after this step, the receiving node has all the
bits sent by the source node without doing the sifting phase. This is at Point 1 in Figure
6.1, the end of sending and receiving bits.
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Figure 6.2: Result of simulations with varying BER.

The box plot at the bottom left shows the number of bits obtained after the sifting
phase. We are at Point 2 in Figure 6.1. During the Sifting phase, as explained in the
previous chapters, approximately half of the bits are discarded following the exchange of
bases. In fact, what we observe in the graph is that on average we see that approximately
half of the bits are discarded.

Finally, in the box plot that occupies the right part of the image, we see the number
of bits obtained after executing the Cascade protocol. Finally we are at Point 3 in Figure
6.1. As described in previous chapters, Cascade, based on BER, will reveal bits for error
correction, these bits will then have to be removed from the key once leaked, so based on
BER we expect to see a percentage gap of bits as the BER percentage. In fact, in the graph
we see that on average the number of bits discarded in percentage is like the BER. So if we
have a BER of 50% we expect about 50% of the key bits to be discarded.

6.1.2 Key Rate and Link analysis

Once we have seen the consistency of the BER, let’s now look at the Key rate and its
consequences on the classic channel, for the exchange of messages, as a second analysis. As
with the previous simulations, in this case too we are sending exactly one photon per period,
so as not to have losses.
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As explained in the previous chapters, the extension uses a model for determining the
BER through mainly two parameters: the distance and the bit rate of the channel. So
to verify the results on different BERs we will perform 4 simulations, each based on links
of different lengths, exactly on lengths of 2000, 3000, 4000 and 5000 meters, in order to
estimate a key rate.

Therefore each simulation will have the following characteristics (Figure 6.3 summarizes
the results obtained):

• Simulation time 1 second

• Link capacity 1 Mbps

• Key length 128 bits

• Lengths ranging from 2000 to 5000 meters, with steps of 1000 meters

Figure 6.3: Result of simulations for Key Rate.

In Figure 6.3 we see the results after the Sifting phase. We see that with a distance
equal to 2000 meters we have a key rate of approximately 420,000 bits, with a BER of
approximately 0%. Considering that the maximum capacity of the link is 1 Mbps and the
simulation time is 1 second, we expect 1,000,000 bits to be transmitted in the link and then
approximately half depending on the sifting phase. In fact, we observe this behavior in the
graph. With a BER of about 0% we have that the available bits are approximately half of
1,000,000 bits.
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Subsequently, taking the maximum available bit value for 2000 meters as the value,
we see that the BER successes are also coherent. In fact we observe that with a BER of
approximately 43% the available bits are approximately 43% of 420’000 bits.

Next we analyze how the classic channel behaves. We expect that the classical channel
is limited by the quantum channel, in fact, as explained in the previous chapters, sending a
message depends or not on the presence of keys. So if the quantum channel is slower than
the classical channel we expect it to take on the role of a bottleneck.

To see this behavior we are going to run some simulations in the following way: we are
going to run some simulations at various distances, each of these simulations will have an
increasing load, what we expect to see is that at a certain point the number of bits sent
will be limited, but not to the maximum capacity of the classic link, so it is not saturated.
In reality we are seeing that it is the quantum link that is saturated so the sending of bits
in the classical channel will be limited by the quantum channel. In Figure 6.4 we see the
results of these simulations.

Figure 6.4: Simulation results for increasing load.
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In the initial graph, at the top, of Figure 6.4 we see the results of the simulations
performed on classical links of 20 Mbps, as indicated in the title of the graph, in parallel
the QKD takes place on a quantum channel (FSO) with distance of 3000 meters and a fixed
bit rate of 1 Mbps.

We see that there is an increase in the load, i.e. in the bits sent per second, we can also
see that in this graph we do not see a limitation, rather we see that as the load increases
the bits sent also increase, this is because with these loads we do not reach the saturation
of the quantum link. An estimate of the key rate for these simulations is the value for the
distance of 3000 meters in Figure 6.3, which is approximately 370’000 bits.

In the central graph of Figure 6.4 we see the result of the simulations always on a classic
link of 20 Mbps while in parallel a QKD is performed on a quantum channel with a distance
of 4000 meters and a bit rate of 1 Mbps, an estimate of the key rate for these simulations is
given from the value for 4000 meters in Figure 6.3, i.e. approximately 300’000 bits. In fact
we see that at a certain point as the load increases we see a flattening, this means that we
have reached the maximum key rate, therefore the classical channel will not saturate and
will be limited by the quantum one. Analogously this is observed for the bottom graph of
Figure 6.4.

6.2 Simulations Evaluation

6.2.1 Simulation on 10-nodes chain Network

We will now conduct two type simulations to observe the behavior of a 10-node chain
network under both low and heavy loads. Two networks will be constructed, each comprising
10 nodes in a chain. The key distinction lies in the distances between the nodes, with one
network having a node-to-node distance of 1000 meters and the other 4000 meters. This
ensures a lower Bit Error Rate (BER) for the former, thereby resulting in a greater number of
keys during the simulation. The traffic pattern, defined in a JSON file, dictates that all nodes
exchange messages with each other, excluding self-interactions. In both configurations, each
channel will have a bit rate of 1 Mbps. We can see in Listings 6.2 and 6.3 the configuration
of the two networks, in Listing 6.4 the traffic configuration for both.

1 {

2 "nodes": [

3 {

4 "name": "node0",

5 "type": "QKDNode"

6 },

7 ...

8 {

9 "name": "node9",

10 "type": "QKDNode"

11 }

12 ],

13 "qchannels": [

14 {

15 "name": "qchannel0_0to1",
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16 "source": "node0",

17 "destination": "node1",

18 "distance": 1000,

19 "bit_rate" : 1000000

20 },

21 ...

22 ],

23 "cchannels": [

24 {

25 "name": "cchannel0_0to1",

26 "source": "node0",

27 "destination": "node1",

28 "distance": 1000,

29 "bit_rate" : 20000000

30 },

31 ...

32 ]

33 }

Listing 6.2: Configuration of a 10-node network with link lengths of 1000 meters.

1 {

2 "nodes": [

3 {

4 "name": "node0",

5 "type": "QKDNode"

6 },

7 ...

8 {

9 "name": "node9",

10 "type": "QKDNode"

11 }

12 ],

13 "qchannels": [

14 {

15 "name": "qchannel0_0to1",

16 "source": "node0",

17 "destination": "node1",

18 "distance": 4000,

19 "bit_rate" : 1000000

20 },

21 ...

22 ],

23 "cchannels": [

24 {

25 "name": "cchannel0_0to1",

26 "source": "node0",

27 "destination": "node1",

28 "distance": 1000,

29 "bit_rate" : 20000000

30 },

31 ...

32 ]

33 }

Listing 6.3: Configuration of a 10-node network with link lengths of 4000 meters.
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1 {

2 "packets" : [

3

4 {

5 "src_node" : "node0",

6 "dst_node" : ["node1","node2","node3","node4","node5",

7 "node6","node7","node8","node9"]

8 },

9 {

10 "src_node" : "node1",

11 "dst_node" : ["node0","node2","node3","node4","node5","node6",

12 "node7","node8","node9"]

13 },

14 {

15 "src_node" : "node2",

16 "dst_node" : ["node0","node1","node3","node4","node5","node6",

17 "node7","node8","node9"]

18 },

19 {

20 "src_node" : "node3",

21 "dst_node" : ["node0","node1","node2","node4","node5","node6",

22 "node7","node8","node9"]

23 },

24 {

25 "src_node" : "node4",

26 "dst_node" : ["node0","node1","node2","node3","node5","node6",

27 "node7","node8","node9"]

28 },

29 {

30 "src_node" : "node5",

31 "dst_node" : ["node0","node1","node2","node3","node4","node6",

32 "node7","node8","node9"]

33 },

34 {

35 "src_node" : "node6",

36 "dst_node" : ["node0","node1","node2","node3","node4","node5",

37 "node7","node8","node9"]

38 },

39 {

40 "src_node" : "node7",

41 "dst_node" : ["node0","node1","node2","node3","node4","node5",

42 "node6","node8","node9"]

43 },

44 {

45 "src_node" : "node8",

46 "dst_node" : ["node0","node1","node2","node3","node4","node5",

47 "node6","node7","node9"]

48 },

49 {

50 "src_node" : "node9",

51 "dst_node" : ["node0","node1","node2","node3","node4","node5",

52 "node6","node7","node8"]

53 }

54 ]
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55 }

Listing 6.4: Traffic for 10-nodes network

One of our focus during the simulations is on observing the number of transmitted bits
on each classical link. Our expectation is that, under a low load, only the central links of
the chain will become saturated. Conversely, with a heavy load, we anticipate an undefined
behavior where more links become saturated. We will perform 30 simulations under low load
and 30 under heavy load on the network. The 30 simulations for each load configuration
will differ due to random seeds, as they are modeled by random variables. Each run will be
executed under different seeds. The simulation parameters for low load are as follows:

• The duration of a single simulation is 1 second.

• Message: 25 messages per second on average (1/25 = 0.04 interdeparture time).

• Key size 128 bits.

• Packet size 128 bits.

While the simulation parameters for heavy load are as follows:

• The duration of a single simulation is 1 second.

• Message: 500 messages per second on average (1/500 = 0.002 interdeparture time).

• Key size 128 bits.

• Packet size 128 bits.

The first simulations result for a low load, illustrated in Figure 6.5, reveal a bell-shaped
distribution of the graph. In the graph, we are observing the number of bits transmitted
by each link. On the x-axis, we see the link number, from 1 to 9. On the y-axis, we see
the number of bits transmitted by the corresponding path on the x-axis. This visually
indicates that the saturated links are predominantly the central ones. Notably, the network
configuration involves a 1000-meter distance between links, resulting in a zero BER.

The outcomes for heavy load are also depicted in Figure 6.5. In this instance, the links
that become saturated are not solely the central ones; the distribution takes on a bimodal
shape. Additionally, we observe that the saturated links follow the maximum key rate for
networks configured with a 4000-meter distance between links, as illustrated in Figure 6.3.

The results we are interested in analyzing include, for each destination node, the number
of bits successfully received in both low load and heavy load configurations. The simulation
parameters remain the same as in the previous simulations, as the data analyzed is derived
from those same simulations. Therefore, the results are based on 30 simulations for low load
and 30 for heavy load. In Figure 6.6, we observe the results. On the x-axis, we have the
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Figure 6.5: Simulation results increasing load.

nodes, and on the y-axis, we have the number of bits successfully delivered for the respective
node. In the upper part, we see the results for heavy load, noting that graphically it forms
a kind of parabola. Thus, we observe that central nodes receive fewer bits than peripheral
nodes in the network, which is due to the saturation of central nodes occurring earlier than
in peripheral nodes, leading central nodes to receive fewer bits. Additionally, we expect
that in heavy load, longer paths have a lower success probability, as we will analyze in the
subsequent results. Meanwhile, in the lower part of Figure 6.6, we see that the bits received
by each destination node are approximately similar, as the network is not under heavy load,
and even packets with a longer path have a higher success probability.

In order to better visualize the number of bits received by each destination node, we
display the heatmap in Figure 6.7, generated from the previous simulations. As can be
observed, for heavy load and paths longer than 2, the received bits decrease drastically,
indicating a low success probability for long paths. In the right part of Figure 6.7, the
heatmap for low load is presented, showing a more uniform distribution. However, it’s
noticeable that longer paths receive fewer bits. Figure 6.8 and Figure 6.9 provides a more
explicit representation of the distributions for heavy load and low load.

Figure 6.8 shows the average number of bits received by destination nodes for paths of
length from 1 to 9, meaning from the smallest simple path to the longest existing simple
path. Additionally, the second y-axis shows the number of paths of a certain length present
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Figure 6.6: Result of bits received by each destination node.

Figure 6.7: Bits successfully delivered by source node and destination node.

in the network. In the top part, we see the results for a Heavy Load configuration, where
the average number of bits decreases as the path length increases. This is the expected
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Figure 6.8: Distribution of successfully delivered bits by path length.

behavior for a Heavy Load configuration. In the bottom part of the image, we find the
results for the Low Load configuration, where we notice that in this case, the number of
bits slightly decreases with the increasing length of the paths compared to a Heavy Load
configuration, as the central nodes have not reached saturation. For both configurations,
since the network is the same, the number of paths of a certain length will be the same.
Being a chain, we see that the number of paths of length 1 is the highest, and as the length
increases, they decrease linearly.

In Figure 6.9, we have a representation of success probabilities for paths of different
lengths, from 1 to 9. On the x-axis, we have the path lengths, while on the y-axis, we have
the success probability. In the top part of the image, we see the results for the Heavy Load
configuration, where longer paths equal to or greater than 4 have an almost zero success
probability. The probabilities are calculated as the fraction between the average of sent bits
and the average of correctly delivered bits for each path length. In the bottom part of the
figure, we find the results for the Low Load configuration. In this case, we notice that all
paths of length from 1 to 9 have a success probability greater than 80%.
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Figure 6.9: Probability of successfully delivered bits by path length.

6.2.2 Simulation on a connected 15-nodes Network

In this section, we will perform a simulation on a random network of 15 connected nodes
created using NetworkX and parsed by our parser to be executed within our extension. In
this simulation, similar to the previous ones, we will analyze the amount of bits received by
each node from every other node in the network, the success probability of paths of different
lengths, and the average bits received by each node. This allows us to study the saturation
points of the network and its overall behavior.

We begin with the generation of the network. The network is generated using the Net-
workX method random internet as graph(num nodes), which will provide us with an ob-
ject representing a connected network of 15 nodes. Through the extension, we will generate
an image of the network and a JSON file representing the network in a format suitable for
sequences. The JSON file will initially return default values for certain parameters, which
will later be modified with appropriate values for the simulation before its initiation. The
Figure 6.10 depicts the randomly generated network that will be used for the simulation.

The length of the links between the nodes in the network will be 1000 meters, both for
quantum and classical channels. Additionally, the bit rate for quantum channels will be 1
Mbps, while for classical channels, it will be 20 Mbps. We are interested in ensuring that
during the simulation, each node receives at least 50 packets from every other individual
node. Therefore, the simulation parameters are as follows:
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Figure 6.10: Randomly generated network used for the simulation

• Key size: 128 bit

• Packet size: 128 bit

• Message: 100 messages per second on average (1/100 = 0.01 interdeparture time).

• Duration: 15(nodes)× 50(num.packet)× 0.01(Mess.rate) = 7.5 seconds

The simulation command, once the parameter setup is complete, is as follows (the packet
and key size are default parameters set to 128 bits in the extension):

1 python3 project/sim_ext.py --sim -time 7.5 --seq -graph project/file/

graph_15_nodes.json --traffic project/file/traffic_15_nodes_net.json --

inspection -rate 0.001 --mess -rate 0.01

Listing 6.5: Command for run the simulation

As a first result, we will analyze the heatmap representing the fraction of bits received
by each node from all other nodes in the network, shown in Figure 6.11.

As we can see from Figure 6.11, each node in the network correctly receives all the bits
sent by the source node. As most values in the matrix, except for the diagonal, have a value
of 1, this means that the sent bits are equal to the bits received correctly. These values are
indeed a fraction between the received bits and the sent bits, indicating the percentage of
bits received compared to the total. The columns represent the source nodes, while the rows
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Figure 6.11: The resulting heatmap after the simulation

represent the destination nodes. The central diagonal will have a zero value as there are
no message transmissions from a node to itself. From the distribution of bits, we observe
that there are no nodes receiving a significantly lower amount of bits. Therefore, for the
specified parameters, we are in a low-load configuration.

Subsequently, we analyze, for each node, the number of bits received correctly from every
other node in the network. This provides a different perspective compared to the heatmap.
In Figure 6.12, we see the total bits received for each destination node. As we can observe,
the number of bits received by each node is roughly the same. This is because we are in a
Low load configuration, and thus, there are no central nodes reaching saturation, resulting
in a lower probability of success for longer paths.

Now, let’s analyze the average of correctly received bits by destination nodes for paths
of different lengths. For each path length x, from node A to node B, we calculate how many
bits the destination node has correctly received and then take the average. We repeat this
process for all paths of lengths from 1 to L, where L is the length of the longest path. In
Figure 6.13, we see the results for the simulation. On the left y-axis of the graph, we indicate
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Figure 6.12: Received bits for each node

the average number of bits correctly received for each path length from 1 to L. We observe
that for our network of 15 nodes, there are simple paths (no cycles) with a maximum length
of 8. Meanwhile, on the right y-axis, we indicate the number of paths of a certain length x.
We can observe that, on average, the number of bits correctly received by each destination
node on paths of lengths from 1 to 8 is approximately the same.

Figure 6.13: Average received bits for each node

As a final result, let’s analyze the success probability of each path length. In Figure 6.14,
we can see the results for the simulation. Being in a low-load configuration, we observe that
the success probabilities for each length are very high. This is because the number of packets
sent by each node to various destinations, even for distant destinations, is approximately
equal to the number of packets received correctly.
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Figure 6.14: Success probability of paths

Figure 6.15, instead, shows us the centrality of nodes within the network. We calculate
the centrality of each node using the NetworkX function called betweenness centrality.
Betweenness centrality is a measure of centrality in a graph based on the shortest paths.
For each pair of vertices in a connected graph, there is at least one shortest path between
them. The betweenness centrality for each vertex is the number of these shortest paths that
pass through the vertex.

As we can see from Figure 6.15, we have the centrality values for each node. On the
x-axis, we have the names of the nodes sorted based on their centrality values, which are on
the y-axis. Notice that Node 3 has a higher centrality value than all the others, followed by
nodes 4, 2, 5, and 0. The remaining nodes have a centrality value of zero.
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Figure 6.15: Centrality of the nodes.

Now, let’s analyze the results for a simulation with a Heavy Load configuration on the
same network, as shown in Figure 6.10. We will be examining the same data as in the
previous simulation. The configuration parameters for this simulation are the follows:

• Key size: 128 bit

• Packet size: 128 bit

• Message: 500 messages per second on average (1/500 = 0.002 interdeparture time).

• Duration: 15(nodes)× 50(num.packet)× 0.002(Mess.rate) = 1.5 seconds

In addition to increasing the load by increasing the messages each node has to send, we
also changed the length of the quantum links (FSO) in the network topology to increase
the Bit Error Rate (BER). As mentioned in the introduction of this thesis, simulations with
heavy loads could saturate the computer’s RAM, so by increasing the BER, we limit the
key generation. The length of the quantum links has been set to 4000 meters with a Bit
rate of 1 Mbps. Meanwhile, the length of the classical links remains unchanged at 1 meter,
with a Bit rate of 20 Mbps.

The simulation command, once the parameter setup is complete, is as follows (the packet
and key size are default parameters set to 128 bits in the extension):
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1 python3 project/sim_ext.py --sim -time 1.5 --seq -graph project/file/

graph_15_nodes.json --traffic project/file/traffic_15_nodes_net.json --

inspection -rate 0.001 --mess -rate 0.002

Listing 6.6: Command for run the simulation

As a first result, let’s analyze the heatmap in Figure 6.16. On the x-axis, we have the
source nodes, ranging from 0 to 14. On the y-axis, we find the destination nodes, also
ranging from 0 to 14. In the various cells, we have the fraction of correctly received bits
compared to the bits sent for each source-destination pair. Unlike the heatmap for the Low
Load configuration, here we observe a significant difference. In fact, most nodes receive a
percentage of bits between 0% and 50% compared to those sent. We can better understand
these values by looking at Figure 6.17, which indicates the total number of bits each node
has correctly received on the y-axis. As we observe in Figure 6.17, nodes 0 to 7 receive
fewer bits because, as seen in Figure 6.10 of the topology, they are central nodes that have
a higher incoming bit load, leading to an accumulation of packets to forward, filling the
queues, and dropping various messages to send.

Figure 6.16: Fraction of bits delivered correctly.
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Figure 6.17: Bits delivered correctly per nodes. Sorted for node centrality.

Let’s now look at the distribution of correctly delivered bits by path length and the
success probability for each length, similar to the analysis for Low Load. In Figure 6.18, we
observe the quantity of correctly delivered bits to each destination node on paths of length
1 to 8. On the x-axis, we have the length of the various paths. On the left y-axis, we find
the average number of bits delivered correctly, and on the right y-axis, we find the number
of paths for a given length. It can be noted that we are in a heavy load configuration as
the quantity of correctly delivered bits decreases with the increase in path length. This is
because it is more likely to encounter more congested nodes in longer paths. We observe this
behavior in Figure 6.19 as well, representing the success probability of path lengths. On the
x-axis, we have the various path lengths, while on the y-axis, we find the success probability.
We notice that as the lengths increase, the success probability decreases, indicating again
that we are in a Heavy Load configuration.

Figure 6.18: Average received bits for each node.
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Figure 6.19: Success probability of paths.
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Chapter 7

Conclusion

In this thesis, we have provided an implementation of an extension for the Sequence
simulator [18] to simulate networks implemented with Free Space Optic (FSO) Links and
analyze their performance. As discussed at the beginning of this thesis, Quantum Key Dis-
tribution (QKD) will be fundamental in the near future as quantum computing becomes
more accessible, rendering current cryptography less effective. During the thesis, our focus
was on implementing the extension, conducting various simulations and analyses to test
its correctness and reliability. The initial part of the implementation involved modeling
the Free-Space Optical (FSO) links and integrating a model for calculating the Bit Error
Rate (BER), developed by Leonardo Maccari1 and Peppino Fazio2 [26]. Once we achieved
a certain reliability, we shifted our attention to simulations on Quantum Key Distribution
(QKD) networks. These simulations were performed using our extension and its compo-
nents. An interesting addition to the work could be implementing dynamic routing based
on link saturation or the available keys of a node. Additionally, with suitable hardware,
conducting simulations on real hardware to create a trusted relay-based QKD network.

1Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice,
Italy

2Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Italy
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