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Abstract

In this study, we focus on solving jigsaw puzzles and introduce a novel ap-

proach using self-supervised deep metric learning to analyze the adjacency re-

lationships between puzzle tiles and arrange them in the correct order. Our

methodology involves constructing a Siamese Neural Network (SNN) and ex-

ploring various configurations to capture the compatibility between image tiles.

Initially, we treat the task as a supervised learning problem to identify the op-

timal configuration for our model. Subsequently, we leverage self-supervised

learning, a subtype of unsupervised learning, to enhance the model’s capabil-

ity without the need for labeled data. Our objective is to train the network

exclusively on the particular puzzle we aim to solve. This approach allows the

network to grasp the intrinsic information from the specific problem. Finally,

we contrast two methods: Relaxation Labeling (ReLab) and Puzzle Solving by

Quadratic Programming (PSQP), and assess the performance of our model by

testing it against some of the most effective hand-crafted compatibility metrics

designed for puzzle solving. These evaluations are conducted on publicly avail-

able datasets, demonstrating the practicality and effectiveness of our proposed

methodology.
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Chapter 1

Introduction

In 1760, John Spilsbury, a British cartographer and engraver, is believed to

have created the first jigsaw puzzle. He intended to use these puzzles as a

tool for teaching European geography to the children in 18th-century London.

To achieve this, he affixed a world map to a piece of wood and intricately

carved each country into separate pieces. Originally termed "dissections" due

to their nature of breaking down a map, the puzzles later adopted the name

"jigsaw puzzle" around 1880. Recognizing the value of his invention, Spilsbury

turned it into a business, producing puzzles based on various countries and

regions. Initially, these puzzles were exclusive to the wealthy, including their

use in teaching geography to royal children. As the popularity of puzzles grew,

they transcended geography education and began featuring diverse subjects,

the first version for adults came on the market around 1900.

1.1 Puzzle Solving

A jigsaw puzzle is a recreational activity that involves assembling a certain

number of pieces into a combined and well-fitting unit without creating gaps

between adjacent pieces. Formally speaking, this can be defined as the system-

atic exploration for finding the right permutation of those individual pieces.

Two-dimensional puzzles are divided into two main categories (as shown in

Fig. 1.1):
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• The “apictorial” in which the only information available is the shape of

the pieces.

• The “pictorial” which takes into account not only the shape of the pieces

but also their content.

FIGURE 1.1: Different types of jigsaw puzzle.

Solving puzzles can pose significant difficulty, especially when dealing with

images that depict nature, buildings, or, more broadly, repetitive designs and

patterns. When the compatibility among tiles is unclear, solving the puzzle is

classified as NP-complete [DD07]. In recent years, tasks similar to this have gar-

nered significant attention and find application in various problems, such as re-

constructing archaeological paintings [MK03] [Bro+08], piecing together shred-

ded documents [ZZH07] [JOF06], as well as in speech recognition [Zha+07],

image editing [CAF09], DNA modeling [MB07], and more. Additionally, nu-

merous methods have been employed to address jigsaw puzzles. These meth-

ods include using deep neural networks to anticipate suitable positions for the

tiles or utilizing manually crafted measures of compatibility along with algo-

rithms for rearranging the puzzle [PPT18] [PPT20] [PSB11] [SHC18]. Each of

these methods tackles puzzle-solving with distinct constraints.
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In our research, we concentrate on the challenge of reconstructing images from

small square, non-overlapping tiles, all of the same size. These tiles must be

arranged in a rectangular grid, mirroring the shape and size of the original

picture. Additionally, we take into account that each tile has a designated ori-

entation. Unlike physical tiles, the pieces we work with have linear boundaries,

lacking additional geometric details, which adds an extra layer of complexity

to the rearrangement process. An example can be observed in the following

image.

FIGURE 1.2: Example of jigsaw puzzle reconstruction.

Solving a jigsaw puzzle involves two key components: compatibility extraction

and tile reordering. Compatibility extraction entails determining, for each tile,

which other pieces are likely to be its neighbors based on their color and pattern

information. This becomes particularly challenging when puzzle pieces share

similar color information.

On the other hand, tiles reordering is the process of finding the optimal arrange-

ment of tiles so that the resulting configuration closely resembles the original

image. The primary challenge in tile reordering is the exponential growth in

potential solutions as the number of tiles increases.
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1.2 A different approach for Puzzle Solving

Currently, the majority of puzzle-solving methods rely on finely crafted com-

patibility measures to accurately predict whether two tiles are adjacent or not.

Our objective is to shift towards learning compatibility through the utilization

of deep neural networks’ feature extraction capabilities. The neural network’s

task is to discover similar embeddings for neighboring pieces. These embed-

dings are then subjected to a similarity function that assesses whether the tiles

have been classified similarly.

In addition, we intend to introduce an innovative approach to address this par-

ticular problem. The existing methods entail training a network on a large set

of puzzles and then utilizing the same network to solve new puzzles. How-

ever, we believe this approach is unsuitable for the given task because most

puzzles have their unique distribution. Consequently, it’s challenging to create

a network that can adapt to unforeseen puzzles. Our proposed method, on the

other hand, entails training the network on the individual puzzle it is meant

to solve. This involves using a self-supervised approach to capture the specific

distribution of the current puzzle, offering a more effective solution. By doing

so, we eliminate concerns about the network’s generalization, focusing instead

on enabling the network to learn the specific patterns within the given puzzle

and understand its distribution for effective problem-solving.

Our approach involves three main steps. First, a deep neural network cate-

gorizes each tile in the image, classifying neighboring pieces in a way that en-

hances their similarity. Second, the embeddings of each tile are paired and input

into a correlation similarity function constructing a compatibility matrix, which

determines the actual compatibility of the tiles. Notably, our proposed metric

avoids relying on manually crafted measures for evaluating the compatibility

of adjacent pieces. Finally, a solver is employed to identify the best permu-

tation of tiles, we employ two established solvers from the existing literature:



Chapter 1. Introduction 5

PSQP by Andalo et al. [ATG16] and relaxation labeling by Khoroshiltseva et

al. [Kho+21]. To evaluate the effectiveness of our approach, we conduct tests

on publicly available datasets (MIT and McGill). We then compare the perfor-

mance of our method with other existing techniques in the literature.
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Chapter 2

Related Work

Freeman and Garder [FG64] initiated the computational solution to jigsaw puz-

zles in 1964, marking the first attempt. Subsequently, other methods for solv-

ing apictorial puzzles were introduced [BW89] [GMB02] [SS87]. In apictorial

puzzles, matching is based solely on shape, while in pictorial puzzles, vari-

ous types of pieces, including identical rectangular, traditional, and irregularly

shaped pieces, are considered, with the primary matching characteristic being

chromatic information, here are a few instances of various puzzle types.

FIGURE 2.1: Different jigsaw puzzle problems.

Kosiba et al. [Kos+94] pioneered a method that integrated both jigsaw shape

and image information, successfully solving puzzles of 54 pieces using a greedy

strategy. This method computed adjacent tiles’ compatibility by considering

color samples along the edges. Following this, similar methods were proposed

[NDH08] [SE06] [YS03], and the research focus shifted towards color-based

square-tiles puzzle solvers.
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Cho et al. [CAF10] in 2010, introduced a probabilistic pictorial puzzle solver

which obtained an approximate reconstruction of the original image using graph-

ical models and a probabilistic function, requiring prior knowledge about the

original image layout. To accomplish this, they employed two approaches:

firstly, estimating a low-resolution image from a subset of tiles to provide lo-

cal evidence in the graphical model, and secondly, having the user accurately

fixate on certain tiles, referred to as anchors. While this method successfully

solved puzzles of up to 432 pieces, it necessitated some level of user interven-

tion.

Pomeranz et al. [PSB11] presented a fully automated square jigsaw puzzle

solver in 2010, handling puzzles of up to 3000 pieces. Their approach involves

a stepwise process: initially, employing a compatibility function to gauge the

affinity between every pair of tiles. Subsequently, it incorporates three modules:

positioning, segmentation, and translation. The positioning module strategi-

cally places all the tiles on the grid following predetermined logic and con-

sidering randomly selected seeds. The segmentation module utilizes the best

buddies metric to identify regions that are correctly assembled. Finally, the

translation module relocates both regions and tiles on the board, aiming to re-

construct a more optimal solution.

Gallagher et al. [Gal12] proposed a general solution working on square pieces

without considering piece orientation or puzzle dimension. It utilized a new

compatibility measure based on expected smoothness in gradient distributions

across boundaries, allowing for reassembly puzzles.

Sholomon et al. [SDN13] introduced a genetic algorithm capable of solving

puzzles up to 22834 pieces, considering tile rotation and puzzle dimensions.

In the field of literature, alternative puzzle-solving strategies have been ex-

plored, including those proposed by Andalo et al. [ATG16] and Khoroshiltseva

et al.[Kho+21]. Andalo et al. [ATG16] simplified the puzzle-solving problem by

framing it as the maximization of a constrained quadratic function, a task that
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can be addressed through the gradient ascent approach [Ros60]. The suggested

deterministic approach can successfully tackle puzzles comprising up to 3300

pieces, including scenarios with arbitrarily identical rectangular pieces.

Furthermore, Khoroshiltseva et al. [Kho+21] introduced an innovative method

leveraging previously mentioned compatibility measures. This method reframes

the puzzle-solving task as a consistent labeling problem, involving the maxi-

mization of a quadratic function over a probability space. This can be addressed

using standard relaxation labeling algorithms.

Sholomon et al. [SDN16] proposed a different approach to compatibility extrac-

tion, introducing the first deep neural network capable of predicting with high

precision whether two puzzle tiles are neighboring, although they trained their

network in a supervised manner.
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Chapter 3

Methodology

In this section, we aim to elucidate the employed architecture and outline the

workflow undertaken to attain the model used in chapter 4.

3.1 Architecture

In this thesis, we opt to employ a Siamese Neural Network (SNN) to address the

problem at hand. Siamese Neural Networks, introduced in 1994, represent an

artificial neural network architecture where two identical neural networks, ini-

tially perceptrons, evaluate the similarity between two elements [Bro+93]. This

architecture is particularly well-suited for scenarios where learning similarity

is a critical aspect of the application. Furthermore, it has proven to be scalable

and efficient. While Siamese Networks were overlooked for many years, recent

advancements in artificial neural network architectures have revitalized their

use, especially in the multimedia domain. In this domain, they leverage these

improvements to achieve high precision in calculating the similarity between

elements. The increasing popularity of Siamese networks in recent years can be

attributed to their ability to learn effectively from limited data.
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FIGURE 3.1: Siamese Neural Network structure.

Given the chosen architecture, we have to make decisions regarding the fea-

ture extractor (backbone) and the fully connected neural network (FNN) to be

used. For the feature extractor, we opt for ResNet, which stands for Resid-

ual Networks. ResNet represents a category of convolutional neural network

(CNN) architecture developed by He et al. [He+16]. This architecture was in-

troduced to address challenges such as vanishing and exploding gradients that

commonly arise in deeper networks. The vanishing gradient problem occurs

when, in a deep network, the gradients calculated by the loss function diminish

to zero due to multiple applications of the chain rule. This leads to the weights

not updating, resulting in a lack of learning. ResNets overcome this challenge

by allowing gradients to directly flow through skip connections backward from

later layers to initial filters.

FIGURE 3.2: Residual building block.

Specifically, we choose to utilize the ResNet architecture with 18 layers for this

thesis. Given that the objective is to train the network on a single puzzle and
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subsequently solve it, for this reason, we conclude that a deeper model would

not contribute to enhancing performance.

FIGURE 3.3: ResNet 18 architecture.

Instead as FNN, we decide to implement a shallow network composed of one

hidden layer where its aim is to create the similarity vector with a size of 512.

Regarding the choice of loss function, we decide to attempt two different func-

tions introduced in the following subsections.

3.1.1 Loss functions

3.1.1.1 Triplet Margin Loss

Triplet margin loss is a loss function commonly used in the training of deep

neural networks for tasks such as face recognition and image retrieval. It is

specifically designed to enforce a desired similarity or dissimilarity between

three instances (or triplets) of data points within the training set. In the context
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of deep learning for similarity-based tasks, a triplet typically consists of three

data points:

• Anchor: The data point for which we want to learn a representation.

• Positive: A data point that is similar or should be close to the anchor. This

is typically a sample of the same class or category as the anchor.

• Negative: A data point that is dissimilar or should be far from the anchor.

This is usually a sample from a different class or category than the anchor.

The goal of the triplet margin loss is to encourage the network to minimize

the distance between the anchor and the positive example while maximizing

the distance between the anchor and the negative example by a certain margin.

The loss function is computed as follows:

L(a, p, n) = max(d(a, p)− d(a, n) +margin, 0) (3.1)

Where a is the anchor point, p is the positive point and n is the negative point.

Regarding the distance function, d(a, p) and d(a, n) respectively indicate the

distance between the anchor and positive points and the anchor and negative

points in the learned embedding space. margin is a hyperparameter that rep-

resents the desired minimum difference between the distances of positive and

negative pairs.

The loss is zero when the distances d(a, p) and d(a, n) satisfy the margin require-

ment. If this condition is not met, the loss encourages the network to adjust its

parameters to meet the margin criteria.

This loss helps in learning a meaningful and compact representation of the data

in the embedding space, where similar instances are close together and dissim-

ilar instances are separated by a margin.
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3.1.1.2 Contrastive Loss

The contrastive loss was first introduced in 2005 by Yann Le Cunn et al. [HCL06]

is a type of loss function particularly used in the context of learning represen-

tations or embeddings. The basic idea behind contrastive loss is to encourage

the model to minimize the distance between similar examples in the embed-

ding space while maximizing the distance between dissimilar examples. This

is achieved by defining a function that penalizes the model when the distance

between similar examples is too large and rewards the model when the distance

between dissimilar examples is large. The loss function is computed as follows:

Li = − log
exp(z⊤i z

′
i/τ)∑K

j=0 exp(z
⊤
i z

′
j/τ)

(3.2)

Where all vectors z are extracted using SNN which acts as a feature extractor

that maps the images from pixel space to a hypersphere space.

To use the same taxonomy of Triplet Loss Function in this case the anchor

is covered by zi, the positive is covered by z′i and negatives are covered by

∀j = 0, . . . , K | j ̸= i : z′j . The sum in the denominator is computed over one

positive and K negative pairs in the same minibatch, intuitively this can be un-

derstood as a non-parametric version of (K+1)-way softmax classification of zi

to the corresponding z′i. The hyper-parameter τ is called temperature, it plays

an important role in controlling the strength of penalties on hard negative sam-

ples (with lower temperature, the contrastive loss tends to punish more on the

hard negative samples).

3.2 Workflow

In this section, we will walk through the sequential steps leading to the model

utilized in the chapter 4. Along this trajectory, our emphasis has been on a spe-

cific image, depicted below, to facilitate the execution of numerous tests within
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a condensed time frame.

FIGURE 3.4: Image belonging to MIT dataset.

In order to use this image as a jigsaw puzzle, we have to divide it into numer-

ous pieces, each of which has the same size and the correct orientation, in order

to match the c-type puzzle shown in figure 2.1. Furthermore, we decide to try

different sizes, from 2× 2 to 5× 6, where we decide to focus our efforts. More-

over, we opt to cut the image in order to remove constant tiles being that they

introduce confusion during the network training process. Below the above im-

age is transformed into a jigsaw puzzle of dimension 5 × 6 without constant

tiles.
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FIGURE 3.5: Image from MIT dataset transformed in a jigsaw puz-
zle problem.

In devising the optimal approach to address this issue, our initial step involves

utilizing the ground truth. In this scenario, each tile serves as an anchor, posi-

tive or negative, as part of the evaluation process. In addition, the network is

trained from scratch using ground truth, as mentioned above, to generate an

excellent feature extractor. As the loss function we decide to use during this

phase the triplet margin loss is explained in subsection 3.1.1.1.
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3.2.1 Baseline approach

In our initial approach, we input a tile of a puzzle into the neural network, and

it produces an embedding. The objective is to generate similar embeddings for

adjacent tiles. To achieve this, we replace the input layer of FNN with a modi-

fied version. This modified layer takes input from the last layer of the backbone,

along with a positional encoding representing the tile’s position. This positional

encoding is treated as a vector composed of 32 floating point. To be clearer, we

would in this thesis identify positional encoding with integer values, 1 or −1

corresponds to the left or right position in a horizontal pair, while 2 or −2 rep-

resents the top or bottom position in a vertical pair.

The aim is to input the entire set of tiles into the network, each with its cor-

responding positional encoding. This process results in an output embedding

for every combination of tile and positional encoding. Subsequently, to evalu-

ate horizontal and vertical compatibility, we assess the similarity of these em-

beddings using the Euclidean distance. To achieve this, we consider pairs of

embeddings—one from the set forwarded with position value 1 (for horizon-

tal compatibility) or 2 (for vertical compatibility), and the other from the set

forwarded with position −1 (for horizontal compatibility) or −2 (for vertical

compatibility). Finally, we compute a distance matrix, aiming for low distances

between embeddings of adjacent tiles. To make sure that the network does not

confuse learning both horizontal and vertical compatibilities at the same time,

we decided to define two equal networks, so we were able to divide the learn-

ing for the two compatibilities.

To accomplish this objective during the training phase, we implement the triplet

margin loss method, as detailed in section 3.1.1.1. As already explained, a, p,

and n refer to the anchor, positive, and negative examples, respectively. The

selection of these three examples is crucial.
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FIGURE 3.6: Example of pipeline for horizontal compatibility.

Once a puzzle is chosen, our approach involves randomly selecting a tile to

serve as the anchor example. Depending on whether we are investigating hor-

izontal or vertical compatibility, we pick the tile immediately to the right or

at the bottom of the anchor as the positive example. The negative example is

chosen randomly from the remaining tiles. For positive and negative examples

in horizontal compatibility, we use −1, while in vertical compatibility, we use

−2. Each of these examples, along with its assigned position value, is processed

through the network, producing embeddings that are then used to calculate the

triplet loss. It’s important to note that this method assumes knowledge of the

pair-wise placement of tiles in the training set. As mentioned earlier, we opt to

utilize the specified image illustrated in figure 3.4 from the MIT dataset for both

training and validation purposes.

In summary, the entire process begins with two identical neural networks, one

used for horizontal and the other used for vertical compatibility. These net-

works take as input a tile and a corresponding position value. The Convolu-

tional Neural Network (CNN) then extracts features from the image, combines

them with the provided positional encoding, and passes the result to the fully

connected layer. The output from this network is an embedding, a condensed
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representation, which is used to calculate the Euclidean distance. The underly-

ing concept is that two adjacent tiles should exhibit closeness in this embedding

space.

In essence, this methodology serves as the foundational framework against

which we compare subsequent approaches. Figure 3.7 illustrates an example

of anchor, positive, and negative samples. Specifically, for assessing horizontal

compatibility (top row), the tile serves as the anchor example and is forwarded

with position value 1. The positive example is derived from the tile on the

right of the anchor, with distinct position values, and the negative example is

chosen at random. Similarly, for evaluating vertical compatibility, we follow a

comparable process, utilizing the tile at the bottom of the anchor for a positive

example.

FIGURE 3.7: Example of input for both horizontal compatibility
(top row) and vertical compatibility (bottom row).
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3.2.2 Removing average pooling

As a first test, we decide to train the entire network directly without making

any changes to the structure and we obtain the following results:

Horizontal Vertical

Accuracy@1 0.760 0.500

Accuracy@2 1.000 0.625

Accuracy@3 1.000 0.708

Accuracy@4 1.000 0.792

TABLE 3.1: Top K accuracy from puzzle showed in image 3.5 using
baseline approach.

Based on our findings, we observe that determining horizontal compatibility is

more straightforward compared to vertical compatibility, specifically within the

context of the single puzzle being analyzed. Consequently, we hypothesize that

the network’s backbone struggled to retain spatial information. Here, spatial

information pertains to intricate details and interconnections within the spatial

arrangement or distribution of features in a given context. This notion gains

significance in our scenario, given that we are working with images, which in-

herently possess a spatial structure.

To address this, we decide to eliminate the average pooling layer at the end

of the backbone, which tends to average patches of a feature map and create a

down-sampled feature map, leading to a loss of spatial context. In its place, we

introduce a convolution layer to reduce the number of feature maps (from 512

to 300) before feeding them into the fully connected neural network (FNN). The

new results with this configuration are the following:



Chapter 3. Methodology 20

Horizontal Vertical

Accuracy@1 0.680 0.667

Accuracy@2 0.920 0.917

Accuracy@3 1.000 0.958

Accuracy@4 1.000 1.000

TABLE 3.2: Top K accuracy from puzzle showed in figure 3.5 with-
out avg pooling.

From these results, we can deduce that our hunch was correct and that the

removal of the average pooling helped maintain spatial information. This is

evident in the outcomes, where we experienced a minor decrease in horizontal

accuracy, but concurrently witnessed a notable improvement in vertical accu-

racy.

3.2.3 HPO for horizontal and vertical margin

In this subsection, we present the results of the hyper-parameter optimization

(HPO) of the margin in the loss function. Additionally, considering that we

have two separate networks to capture both horizontal and vertical similari-

ties, we make the decision to employ two distinct margins. This approach is

aimed at enhancing the expressiveness of the network in effectively capturing

both types of similarities.

The margin within the triplet margin loss is a pivotal parameter that profoundly

influences the learning trajectory of a neural network, particularly in applica-

tions such as face recognition, image retrieval, or any task involving learning

similarities. Essentially, the margin sets the minimum desired gap between the

distances of positive pairs (similar items) and negative pairs (dissimilar items).
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The significance of the margin lies in its assurance that the embeddings of simi-

lar items (anchors and positive samples) are positioned at a minimum distance

closer to each other than the embeddings of dissimilar items (anchors and neg-

ative samples). This separation within the embedding space enhances the net-

work’s ability to effectively distinguish between similar and dissimilar pairs.

Additionally, the margin serves as a control parameter, providing the flexibil-

ity to adjust the required degree of dissimilarity for the network to update its

weights. A larger margin enforces a more substantial gap between dissimilar

pairs, potentially leading to more distinct learned embeddings.

FIGURE 3.8: Margin HPO executed on puzzle showed in figure
3.5.

Thanks to this analysis we have discovered that the best margin value for both

has a value less than 1. Moreover the performances of all margins with a value

≤ 1 are greater, showing that a small distance between anchor-positive and

anchor-negative brings the model to achieve better performance.
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3.2.4 Emphasising specific tile parts

In this subsection, we aim to highlight specific sections of each puzzle piece

more prominently. As detailed in section 3.1, our architecture comprises two

Siamese networks responsible for assessing horizontal and vertical compatibil-

ity, respectively. Focusing on horizontal compatibility, as previously outlined,

we introduced a positional encoding in the input layer of the fully connected

neural network (fnn) to signify the position of the tile, distinguishing between

left and right. In addition to this positional embedding, we choose to amplify

the weight assigned by the network to particular sections of the tile. By do-

ing so, the architecture places increased importance on the features present in

those specific positions during the compatibility assessment. Here’s a visual

representation to illustrate this concept.

FIGURE 3.9: Example of highlighted portion in an image for hori-
zontal compatibility, right and left respectively.

In the pursuit of this, we first introduce a parameter w, its value determined

through hyper-parameter optimization (hpo). However, we later choose to in-

corporate an additional parameter that undergoes training alongside the neural

network. By training this parameter as a net weight, we enhance its generality,

making it less dependent on fine-tuning.

Below are the performances achieved using ground truth as a training set.
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FIGURE 3.10: Bar plots that show the difference in top K accuracy
between highlighted specific portion (using model defined in sub-

section 3.2.4) or not (using model defined in subsection 3.2.3).

3.2.5 Highlighting contours

When a person tries to identify which tile is adjacent to another, he/she typ-

ically concentrates on the outlines or contours of the tiles to discern the most

likely pairing. Following this human intuition, we aim for the backbone of our

network to learn, during training, the extraction of tile contours, enabling it to

determine the optimal matches.

As this behavior may not be entirely certain, we opt to enhance the learning

process by applying a transformation to all puzzle tiles. Here is an example.

FIGURE 3.11: Example of highlighted contours with respect to the
left image.

This transformation involves extracting the existing contours, and the degree to
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which these contours are emphasized is determined through hyper-parameter

optimization, and the final performance is illustrated in the accompanying bar

graph.

FIGURE 3.12: Bar plots that show the difference in top K accuracy
between highlighted contours (using model defined in subsection

3.2.5) or not (using model defined in subsection 3.2.4).

These performances make us realize that the network was not going to extract

the contours.
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3.2.6 Randomize negative examples

In this subsection, we want to emphasize the importance of randomness in

choosing negative examples.

In fact, choosing the right negative examples in Triplet Margin Loss is crucial

for the effective training of deep neural networks. This selection directly im-

pacts the learning process and the quality of the learned embeddings. Here are

some key reasons highlighting the importance of carefully choosing negative

examples:

• Effective Learning Dynamics: Selecting informative negative examples

ensures that the model encounters challenging instances during training.

If negative examples are too easy, the model might converge quickly but

may not learn a robust representation. On the other hand, if negative ex-

amples are too hard, the learning process can become unstable. Striking

the right balance by choosing negatives that are challenging but not too

difficult is essential for effective learning dynamics.

• Avoiding Degenerate Solutions: Poorly chosen negative examples can

lead to degenerate solutions where the model learns to minimize the loss

without effectively capturing the underlying patterns in the data. The

model might collapse the embeddings to trivial solutions, making them

less useful for downstream tasks.

• Encouraging Discriminative Embeddings: The purpose of Triplet Margin

Loss is to learn embeddings where similar items are close and dissimi-

lar items are far apart. Carefully selecting negative examples that are se-

mantically dissimilar to the anchor encourages the model to create more

discriminative embeddings, improving the overall performance of tasks

such as classification or retrieval.
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• Adapting to Data Distribution: The distribution of the negative examples

should reflect the diversity of the data. If the negative examples do not

cover the full range of variations present in the dataset, the model may

struggle to generalize to unseen examples. Ensuring a representative set

of negative examples helps the model adapt to the inherent complexity

and diversity of the data.

• Dynamic Selection Strategies: In some cases, employing dynamic or on-

line strategies for negative example mining during training can be bene-

ficial. This involves adaptively selecting negatives based on the current

state of the model, which can help in focusing on more challenging exam-

ples as the model improves.

In summary, the right choice of negative examples in Triplet Margin Loss is piv-

otal for effective learning, preventing degenerate solutions, encouraging dis-

criminative embeddings, and adapting to data distribution. It requires thought-

ful consideration of the characteristics of the dataset and the learning dynamics

of the model.

Therefore, we make the decision to select the negative randomly. By doing so,

we ensure adherence to the considerations mentioned earlier, aiming to pin-

point a more favorable local minimum in the loss function.

To be sure of the choice we just made, we decide to train the model using a static

negative choice. Static choice in this case means that the negative tile is the tile

immediately to the right of the positive in the case of horizontal compatibility

and the tile immediately below the positive in the case of vertical compatibility.

Below are the results obtained.
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Random negative Static negative

Horizontal Vertical Horizontal Vertical

Accuracy@1 0.96 1 0.4 0.21

Accuracy@2 1 1 0.56 0.29

Accuracy@3 1 1 0.72 0.42

Accuracy@4 1 1 0.88 0.58

TABLE 3.3: Show the difference in top K accuracy between the
choice to use either static or random negative.

As evident, opting for a fixed choice of the negative counterpart results in a

substantial decline in performance.
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3.2.7 Maintenance of spatial information

At this point, we are getting very good results with the ground truth, but con-

vergence is slow. We therefore decide to speed up convergence by removing the

tile-down sampling performed by ResNet18. To do this, we modify the back-

bone of the network by maintaining the size of the tiles and replacing the last

conv layer with a Spatial Pyramid Pooling (SPP) [He+15].

SPP is a technique used in deep learning, particularly in the context of convo-

lutional neural networks applied to computer vision tasks such as image classi-

fication. It is designed to handle input images of varying sizes and proportions

by enabling the network to produce fixed-size feature vectors regardless of the

input size.

The main idea behind Spatial Pyramid Pooling is to divide the input feature

map into different regions or grids and apply pooling operations independently

within each of these regions. The pooling operation is typically max pooling,

which selects the maximum value from each region, but average pooling can

also be used. The key innovation is that the regions are defined at multiple

scales, forming a pyramid structure.

Here are the main steps of Spatial Pyramid Pooling:

• Input Feature Map: Start with a convolutional feature map obtained from

the earlier layers of a CNN.

• Divide into Regions: Divide the feature map into a predefined number

of levels or layers. For each level, divide the feature map into a grid of

spatial bins.

• Pooling Operation: Apply pooling independently within each spatial bin

at each level. The pooling can be either max pooling or average pooling.

• Concatenate: Concatenate the results from all the pooled regions at differ-

ent levels into a single fixed-size vector.
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• Flatten: Flatten the concatenated vector to serve as a fixed-size represen-

tation of the input feature map.

The advantage of Spatial Pyramid Pooling is that it allows the network to cap-

ture information at multiple scales, enabling it to be more robust to variations

in object sizes and locations within the input image. This is particularly useful

when dealing with images of different dimensions during training and testing.

FIGURE 3.13: Spatial Pyramid Pooling.

With this expediency, we are able to achieve the same results highlighted in

table 3.3 but with faster convergence of Accuracy@1.
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Chapter 4

Experimental Results

In this chapter, our focus is on evaluating the performance of our finalized net-

work, as outlined in subsection 3.2.7. Unlike earlier stages where we relied on

ground truth for training, we have now transitioned to using self-supervised

learning.

Self-supervised learning is a method where a model learns to predict specific

aspects of its input data without explicit supervision. Unlike traditional super-

vised learning, which relies on labeled datasets, self-supervised learning aims

to design tasks that tap into the inherent structure or information present in the

data, eliminating the need for external labels.

To implement this approach, we depart from the conventional knowledge of tile

placement. Instead, we opted to horizontally or vertically break each tile from

the puzzle we want to solve in two pieces, creating anchor and positive pairs

for our network. Notably, the negative pair, as elaborated in subsection 3.2.6, is

selected randomly from among the other split tiles. This shift in methodology

allowed us to leverage the intrinsic information within the data itself, contribut-

ing to the overall effectiveness of our self-supervised learning approach.



Chapter 4. Experimental Results 31

FIGURE 4.1: Example of a horizontal random split of a tile in two
parts.

Furthermore, we decided to exclude constant tiles from our training set due to

their tendency to cause confusion in the network training process. Constant

tiles are characterized by borders with consistent color information, encom-

passing both monochromatic pieces and those featuring regular patterns, as

depicted in the accompanying image. Moreover, our analysis disclosed that

more than 50% of each image in our datasets comprised these constant tiles.

FIGURE 4.2: Examples of constant tiles, monochromatic, or with
repetitive patterns.

Moreover, we have consistently employed ResNet18 as the backbone in our ex-

periments. However, in contrast to prior trials, the network was undergoing

pretraining using the ImageNet dataset before fine-tuning during the training
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process. We decided to block the training after 1500 epochs being that the accu-

racy metric results are stable. Regarding the loss functions described in section

3.1.1, we decided to continue using the triplet margin loss, since we noticed that

both lead the network to the same result.

The datasets that we decided to use for this phase are MIT and McGill.
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4.1 Ablation studies

In this section, our aim is to conduct various ablation studies utilizing the self-

supervised approach outlined earlier.

An ablation study is a type of experiment in scientific research, where specific

components or features of a system are systematically removed or "ablated" to

understand their individual contributions to the overall performance. The goal

is to analyze and quantify the impact of each component on the system’s be-

havior or performance. In the context of machine learning models, an ablation

study involves training and evaluating the model with variations, where cer-

tain features, modules, or components are selectively disabled or removed. By

observing how the model’s performance changes in response to these modifica-

tions, researchers can gain insights into the importance of different elements in

the system. They provide a systematic and rigorous way to analyze the internal

workings of models and contribute to the overall understanding and improve-

ment of machine learning systems.

Taking up this last line our goal is to systematically explore and comprehend

the behavior of our model through these experiments.

4.1.1 Random split

The initial experiment we chose to conduct revolves around determining the

level of randomness applied during the tile-splitting process.

To clarify, a static split occurs when the tile is precisely divided either horizon-

tally or vertically, resulting in each piece occupying exactly 50% of the original

tile’s area. However, we can introduce variability by imposing a constraint that

sets the minimum percentage of the area (< 50%) for each split relative to the

entire tile. This approach injects randomness into the network’s training phase,

creating a more diverse training set. Consequently, the network is exposed to

a greater variety of information about the puzzle, ensuring that when the same
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tile is presented multiple times, it will likely be split in different ways, con-

tributing to a more robust learning experience.

In this experiment, we decided to show the best combined (mean between hor-

izontal and vertical accuracy@1) accuracy@1 among all puzzles of the same

dataset.

FIGURE 4.3: Ablation study for random split using the mean be-
tween horizontal and vertical acc@1 as metric.

By examining this graph, we can infer that decreasing the minimum percentage

of area allowed for tile division corresponds to an increase in performance. This

observation reinforces our earlier reasoning and leads us to the conclusion that

the idea described previously holds true.
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4.1.2 Positional encoding

Positional encoding is a technique used in the context of sequence-to-sequence

models, particularly in attention-based models like Transformer, to provide in-

formation about the relative or absolute positions of tokens in a sequence. Since

these models do not inherently understand the order of the input tokens, posi-

tional encoding helps inject positional information into the input embeddings.

This technique was also used in the paper titled "Representing Scenes as Neural

Radiance Fields for View Synthesis" [Mil+], the authors employ a method that

involves transforming input coordinates into a higher-dimensional space using

sinusoidal functions.

In our case, the purpose of positional encoding is to facilitate the Multilayer

Perceptron (MLP) in better approximating a function with higher frequency.

We opted to employ this technique to enable the network to discern specific re-

gions within a tile, directing its attention towards the key areas critical for task

resolution, as elucidated in sub-section 3.2.1.

In this ablation, we opted to study three different types of positional encoding:

• Absolute position: use integer values.

• Randomized: use a vector composed of random values between 0 and 1.

• Sinusoidal functions: use a vector formed using sine and cosine functions

as in the paper "Attention Is All You Need" [Vas+17].

The function to define the vector is:

P (k, 2i) = sin(
k

n
2i
d

)

P (k, 2i+ 1) = cos(
k

n
2i
d

)

(4.1)

Where:

– L: length of the input sequence.
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– k: position of an object in the input sequence, 0 ≤ k < L
2

.

– d: dimension of the output embedding space.

– P (k, j): position function for mapping a position in the input se-

quence to index (k, j) of the positional matrix.

– n: set to 10000 by the authors of "Attention Is All You Need".

– i: used for mapping to column indices 0 ≤ i < d
2
, with a single value

of i maps to both sine and cosine functions.

For this thesis, we chose to set the length of each vector equal to 32.

In the above sub-section, we show the best combined (mean between horizon-

tal and vertical accuracy@1) accuracy@1 among all puzzles of the same dataset.

FIGURE 4.4: Ablation study for positional encoding using the
mean between horizontal and vertical acc@1 as metric.

From this graph, it can be deduced that using absolute position worsens perfor-

mance, while using the sine function performs slightly better, leading us to infer

that as in the paper "Representing Scenes as Neural Radiance Fields for View
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Synthesis," positional encoding makes it easier for the MLP to approximate a

function with a higher frequency.

4.1.3 Backbone

In this final ablation, we aim to examine how the network’s behavior is affected

by employing a more intricate model, such as Resnet34.

FIGURE 4.5: Ablation study for choosing backbone using the
mean between horizontal and vertical acc@1 as metric.

As highlighted in the plot, utilizing a more sophisticated network does not im-

prove performance in the specified task, aligning with our expectations in sec-

tion 3.1.
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4.2 Comparisons

In this section, our goal is to evaluate how well our implementation addresses

the specified problem. We have assessed its performance by employing the

MIT and McGill datasets as benchmarks. Firstly, we aim to compare two dis-

tinct algorithms for reconstructing the puzzle using the compatibility matrix

determined by our model. Subsequently, we have chosen to further evaluate

our solution by comparing it with some of the most effective hand-crafted com-

patibility metrics available. Before starting we want to remark as said in the

previous section, that this is a self-supervised approach, and to implement this

approach we split each tile randomly into two parts in order to capture the in-

trinsic information from the specific problem in object. In summary, we opted

to employ the identical model applied in subsection 4.1. However, we incorpo-

rated insights gained from the ablation study by setting the minimum area per-

centage to 10%. For positional encoding, we chose the sinusoidal function due

to its superior performance in the study. Additionally, we retained ResNet18

as the backbone for our model. This is our final model determined during this

thesis. Similar to previous practices, we uphold the threshold to halt training

after 1500 epochs, given the stability observed in the accuracy metric results.

These results showcase the outcomes derived from the network described ear-

lier. Prior to delving into the details, we aim to present the acc@k values for our

final model, as determined through the examination of the two datasets.

Accuracy@1 Accuracy@2 Accuracy@3 Accuracy@4

MIT 44.53% 48.45% 65.12% 75.28%

McGill 43.32% 46.24% 58.76% 73.92%

TABLE 4.1: Results of our model using acc@k as metric
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4.2.1 Relaxation Labeling vs PSQP

As described above we now delve into a detailed description of these algo-

rithms, aiming to assess and identify which one better aligns with our specific

requirements.

4.2.1.1 Relaxation Labeling

The initial algorithm is Relaxation Labeling, where a consistent labeling prob-

lem involves a set of n objects B = 1, . . . , n and a set of m labels Λ = 1, . . . ,m.

The objective in such problems is to assign a label from Λ to each object in B.

At the start, the algorithm initializes with an initial m-dimensional probability

vector for each object i ∈ B:

p
(0)
iλ = (p

(0)
i1 , . . . , p

(0)
im)

⊤

with p
(0)
iλ ≥ 0 and

∑
λ

p
(0)
iλ = 1

(4.2)

Every p
(0)
iλ signifies the probability distribution for object bi being labeled with

λ at time 0. For each object in B, there exists one associated probability dis-

tribution. Concatenating all these probability vectors p
(0)
1 , . . . , p

(0)
n results in the

initial weighted labeling assignments p(0) ∈ Rnm. Alternatively, the assignment

of labels can be conceptualized as a matrix p within the space IK, defined as:

IK = Λm = Λ× · · · × Λ (4.3)

Where Λ is the standard simplex of Rn.

Λm =
{
p ∈ Rm | piλ ≥ 0, λ ∈ Λ ∧

m∑
λ=1

piλ = 1, i = 1, . . . , n
}

(4.4)
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Each vertex of IK is called an unambiguous labeling assignment [Pel97].

The initial labeling assignment can be grounded in local measures, which cap-

ture pertinent features of individual isolated objects. Additionally, contextual

information is employed to enhance the accuracy of weak label assignments

derived from local measures. This contextual information is represented by a

matrix of compatibility coefficients with dimensions n2 ×m2:

R = rijλµ (4.5)

Where rijλ,µ rappresents the compatibility between the hypothesis bi has label

λ and bj has label µ. We can measure the support given by the context to the

hypothesis bi has label λ at time t as [HZ83]:

qiλ(t) =
∑
j

∑
µ

rijλµpjµ(t) (4.6)

By properly weighting and combining the support of all labels at all objects,

we can also quantify the average support of the assignment, or the so-called

average local consistency [HZ83][Kho+21].

A(p) =
∑
i,j

∑
λ,µ

rijλµpiλpjµ (4.7)

A labeling assignment p is consistent if ∀v ∈ Λn×m

m∑
λ

piλqiλ ≥
m∑
λ

viλqiλ (4.8)

And if the matrix R is symmetric, then any local maximizer p ∈ Λn×m of A(p) is

consistent [HZ83].

At each iteration step, the algorithm updates the probability vectors using the

heuristic formula, provided by Rosenfeld, Hummel, and Zucker in 1976 [RHZ76]
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[Pel97]:

piλ(t+ 1) =
piλ(t)qiλ(t)∑
µ piµ(t)qiµ(t)

∀i, λ (4.9)

The advantages of this updating rule include the absence of the need to select a

step size. Furthermore, the non-negativity and symmetry conditions imposed

on the matrix R ensure convergence to a consistent labeling [RHZ76].

To cast the puzzle-solving task as a consistent labeling problem, we designate

the set of objects B as the puzzle tiles, and the labels Λ as all the potential po-

sitions in the grid. The objective is for each tile in B to be assigned a distinct

position from Λ, ensuring that the average local consistency is maximized.

In our situation we deviate from "ideal" compatibility, the algorithm could con-

verge to an inaccurate permutation matrix. Despite the update rule ensuring

that p is a stochastic matrix with rows summing to 1, the convergence might

lead to a solution where multiple tiles are assigned to the same position, while

other positions remain unassigned. This discrepancy occurs because p is not a

doubly stochastic matrix.

To address this issue and facilitate convergence to a permutation matrix, we

employed the Alternating Projection method [Kho+21]. This process begins af-

ter t steps, with t set to 10. Initially, it applies the update rule in equation 4.9 for

t steps. Subsequently, it alternates between the update rule in equation 4.9 and

the following:

piλ(t+ 1) =
piλ(t)qiλ(t)∑
j pjλ(t)qjλ(t)

∀i, λ (4.10)

This procedure is applicable because, in the puzzle-solving abstraction, the ob-

jects and labels are interchangeable.

4.2.1.2 PSQP

The alternative algorithm, Puzzle Solving by Quadratic Programming (PSQP),

shares a similar approach with Relaxation Labeling, relying on maximizing a

global compatibility function. However, PSQP introduces extra constraints and
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employs the gradient projection method suggested by Rosen to address the

maximization problem [Ros60].

By maximizing the global compatibility function, we aim to reach a solution

that identifies the optimal arrangement of tiles, considering both the overall

compatibility among tiles and a local measure that assesses how well tiles fit

into adjacent positions. Similar to the previous approach, we use a 2D grid con-

sisting of N labeled locations 1 . . . N and N tiles represented as t1 . . . tN . The

task involves determining a new placement for each tile in a distinct location.

This one-to-one relationship between locations and tiles is expressed through a

permutation π of the N tiles. We organize this expression into a directed graph

denoted as G = {V,E = EH ∪ EV }, where the vertices V = {1, . . . , N} corre-

spond to the locations. The edge set E encompasses pairs of adjacent locations,

with EH and EV specifically designating horizontal and vertical neighboring lo-

cations, respectively. The graph G is directed because swapping two tiles leads

to a change in the overall compatibility value, signifying a directional relation-

ship between the locations. For every pair of tiles (ti, tj), where 1 ≤ i, j ≤ N

and i ̸= j, we establish two local compatibility metrics, denoted as CHi,j
≥ 0 and

CVi,j
≥ 0. These metrics signify the compatibility between the two tiles when

placed in locations connected by either a horizontal edge e ∈ EH or a vertical

edge e ∈ EV . The global compatibility function of a permutation π is:

ϵ(π) =
∑

(i,j)∈EH

CHπ(i)π(j)

∑
(i,j)∈EV

CV π(i)π(j) (4.11)

Where (i, j) represents the edge linking the neighboring locations i and j, and

π(i) denotes the tile that has been permuted to occupy location i [ATG16]. Con-

sidering all possible permutations π of N elements, the objective is to maximize

the function expressed in equation 4.11.

Now, our aim is to rephrase equation 4.11 as a homogeneous quadratic function

involving a square matrix.
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We can use a permutation matrix to symbolize each permutation π of N ele-

ments:

Pik =

1, if k = π(i)

0, if k ̸= π(i)

(4.12)

Permutation matrices are a special case of doubly stochastic matrices [Sen06],

non-negative matrices in which each row and each column sum up to 1. With

this notation, we can rewrite the equation 4.11 as:

ϵ(π) =
∑

(i,j)∈EH

(P⊤CHP )ij +
∑

(i,j)∈EV

(P⊤CV P )ij (4.13)

(P⊤CP )ij , representing the edge e = (i, j), it corresponds to the element at the

position i, j within the square matrix (P⊤CP ). It’s important to note that, for

each edge e = (i, j), the expression P⊤CP forms a homogeneous non-negative

quadratic function based on the elements of the matrix P [ATG16]. If we ar-

range the columns p1, . . . , pN from the matrix P with dimensions N × N into a

column vector p of size N2, we obtain:

ϵ(π) =
∑

(i,j)∈EH

(p⊤i CHpj) +
∑

(i,j)∈EV

(p⊤i CV pj)ij (4.14)

We can express this equation in the standard quadratic form p⊤Ap, where A is

a symmetric non-negative block matrix with dimensions N2 ×N2. This matrix

corresponds to the Hessian of ϵ(P ).

A crucial aspect to note is that every doubly stochastic matrix adheres to N2

inequality constraints, ensuring that the elements of the column vector p are

non-negative. Additionally, there are 2N equality constraints, stipulating that

the sum of elements in each row and each column of matrix P equals 1.

With these considerations, we are now equipped to present the problem formu-

lation as a quadratic optimization problem and outline the corresponding algo-

rithm for its solution. If we extend the domain of ϵ(P ) for all doubly stochastic
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matrices, we can reduce the problem to finding a solution for the quadratic op-

timization problem:

max f(p) = p⊤Ap,

s.t. P 1̄ = 1̄,

P⊤1̄ = 1̄,

pk ≥ 0, ∀k = 1, . . . , N2

(4.15)

where 1̄ is an N-column vector of ones.

Given that all diagonal elements of matrix A are zero, the matrix is not positive

definite nor positive semi-definite. Consequently, even if the objective function

f(p) is positive within the feasible set, it does not necessarily exhibit concavity.

This absence of concavity implies no assurance of reaching the global maxi-

mum. However, by navigating through the constraints, we can pursue a local

maximum for Equation 4.15, representing an approximation to the global max-

imum.

4.2.1.3 Results

Following this concise overview of the employed algorithms, it is now time to

observe how they perform in the context of this specific task.

The following tables are provided to highlight the variation in accuracy when

taking into account constant tiles or not. To assess accuracy in the table 4.3 es-

sentially, even if a tile is visually similar to the correct one but placed in the

wrong position, we do not categorize it as misplaced.
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PSQP Relaxation Labeling

MIT McGill MIT McGill

41.52% 40.05% 38.95% 38.47%

TABLE 4.2: Accuracy on puzzle solving with error caused by con-
stant tiles

PSQP Relaxation Labeling

MIT McGill MIT McGill

54.85% 51.72% 47.29% 46.66%

TABLE 4.3: Accuracy on puzzle solving without error caused by
constant tiles

Referring to the results from the previous tables, it’s evident that when disre-

garding errors stemming from constant tiles, the performance is notably strong.

The two puzzle-solving algorithms exhibit nearly identical results, with PSQP

showing slightly better outcomes. For a visual illustration, please refer to Fig-

ure 4.6, which provides an example of image reassembly using an image from

the MIT dataset.

(A) (B)

FIGURE 4.6: Example if image reassembling with tiles of size
100x100, (A) original image, (B) our result using PSQP.
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4.2.2 Hand-crafted compatibility metrics

In this section, our objective is to evaluate our model by comparing it to certain

manually designed compatibility metrics. The selected methods for compar-

ison all rely on measuring dissimilarity. An approach introduced by Cho et

al. [CAF10], calculates the local horizontal compatibility between two tiles, de-

noted as ti and tj , as follows:

CHij ∝ exp

(
−DHij

2σ2
c

)
(4.16)

Where DHij is the horizontal dissimilarity between two tiles ti and tj and the

equation is:

DHij =

(
⊤∑

k=1

3∑
l=1

(|ti(k, T, l)− tj(k, 1, l)|)p
) q

p

(4.17)

where T represents the dimension of a tile, the up script of the inner summation

is the number of color channels, ti and tj are T × T × 3 matrices representing

square tiles, and the color difference is computed in the normalized color space.

Instead σc is defined as the difference between the lowest and the second lowest

DHij , for 1 ≤ j ≤ N . The parameters p and q are set to 2. The vertical dissimi-

larity DV ij and the local vertical compatibility CV ij are estimated similarly.

Another approach introduced by Pomeranz et al. [PSB11], employs the same

equation 4.17 with a notable distinction in the parameterization. They observed

that the parameters p and q used by Cho et al. were linked to the L2 norm, and

by experimenting with different values of the norm Lq
p, they suggested using

p = 3
10

and q = 1
16

for improved results.

The last approach was introduced by Gallagher [Gal12] and it is an alternative

approach to jigsaw puzzle solving, specifically through a metric known as Ma-

halanobis Gradient Compatibility. This metric addresses changes in intensity

gradients by considering the covariance between color channels and utilizing

the Mahalanobis distance. Essentially, the goal is to ensure that the boundaries
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between adjacent tiles exhibit a similar distribution of gradients to those on ei-

ther side of the boundary. To implement this, one starts by defining an array

of gradients, denoted as GiL, consisting of T rows (corresponding to the pixel

dimension of the tile) and 3 columns (representing each color channel). GiL sig-

nifies the alterations in intensity along the right side of the tile ti, positioned on

the left side of the pair. The objective is to calculate the average distribution of

these gradients specifically on the right side of the tile ti.

µiL(c) =
1

T

⊤∑
k=1

GiL(k, c)

GiL(k, c) = ti(k, T, C)− ti(k, T − 1, c)

(4.18)

In each color channel, µiL represents the average disparity in the final two

columns of tile ti. The 3 × 3 covariance matrix SiL is derived from the gradi-

ents in GiL, encapsulating the interplay among gradients near the edge of the

tile across color channels. Subsequently, the horizontal dissimilarity between

tiles ti and tj is approximated by:

DLR(ti, tj) =
⊤∑

k=1

(GijLR(k)− µiL)S
−1
iL (GijLR(k)− µiL)

⊤ (4.19)

Here, GijLR(p, c) denotes the gradient originating from the right side of the piece

ti and extending to the left side of piece tj , specifically at row position k. This

gradient is characterized by:

GijLR(k, c) = tj(k, 1, c)− ti(k, T, c) (4.20)

Because the assessment of the connection between pieces ti and tj relies on

the distributions derived from the ti side of the boundary, the dissimilarity

DLR(ti, tj) is asymmetric. The horizontal symmetric dissimilarity indicates with

DHij is determined as the sum between DLR(xi, xj) and DRL(xj, xi).
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Finally, we convert the just obtained dissimilarities into the horizontal compat-

ibility between tiles ti and tj as follows

CHij ∝ exp

(
− DHij

KminH(i)

)
(4.21)

where KminH(i) is the K-min value of the dissimilarity between all other pieces

to piece i. As suggested by Gallagher [Gal12] we set K = 2. Naturally, the

equation above is properly adapted to compute the vertical dissimilarity and

the local vertical compatibility.

Regardless of the methods employed, after obtaining horizontal and vertical

compatibilities for each tile, we reset the compatibility values to zero for all

non-best-buddy matches and assigned a value of 1 for the compatibility of any

two best buddies. This approach, known as the "best buddies concept", was

introduced by Pomeranz et al. [PSB11].

With constant Without constant

Method MIT McGill MIT McGill

Ours 41.52% 40.05% 54.85% 51.72%

Pomeranz et al. [PSB11] 84.33% 82.50% 85.27% 86.05%

Gallagher [Gal12] 90.83% 90.21% 92.12% 91.38%

TABLE 4.4: Accuracy of various methods, considering both sce-
narios with and without errors induced by constant tiles.

In Table 4.4, we conduct a comparative analysis between our proposed method,

which utilizes PSQP for puzzle reconstruction, and several manually designed

compatibility metrics discussed in this section. It becomes clear that when ac-

counting for errors stemming from constant tiles, our method notably differs

in performance from the other metrics. Even after removing constant tiles, the
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disparity lessens but remains significant. Consequently, our approach still falls

short of competing with handcrafted methods.
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Chapter 5

Conclusions

This thesis focuses on the challenge of reconstructing images from square tiles

that do not overlap, arranging them in a rectangular grid matching the original

image’s shape and size. We specifically deal with tiles featuring linear bound-

aries and set orientations. While existing literature covers various approaches

to puzzle solving, most methods either directly tackle puzzle solving by search-

ing for optimal permutations or utilize manually crafted compatibility mea-

sures in conjunction with advanced solvers. Only a limited number of works

address puzzle solving by learning compatibility in a supervised manner. In

our research, we developed a neural network that operates in a self-supervised

environment and effectively extracts compatibility training. The network in ob-

ject is trained only on the individual puzzle it is meant to solve. Although our

results are promising, they still fall short of matching the performance of the

top hand-crafted compatibility measures.

At the outset of this detailed exploration, we selected a specific architectural

approach to address the problem. Following this initial decision, we delved

into finding the optimal configuration for the chosen network. Consequently,

we opted to operate within a supervised framework. This method allowed us

to enhance the performance of our approach significantly.

Following this initial investigation, we transitioned to a self-supervised ap-

proach to direct our focus toward the core problem. During this phase, we

conducted ablation studies to thoroughly examine and measure the influence
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of various components on the system’s behavior. These analyses enabled us to

implement minor adjustments to our model.

In our final step, we employed our model to compare the performance of two

solvers for image reassembly: relaxation labeling and PSQP. We discovered

that PSQP outperforms relaxation labeling in this context. Additionally, as a

concluding evaluation, we compared our model to specific manually designed

compatibility metrics.

Presently, our solution hasn’t quite reached the pinnacle of performance seen in

the finest hand-crafted compatibility metrics. Nevertheless, it delivers quite sat-

isfactory results. Our primary challenge lies in handling constant tiles. We’ve

observed that excluding errors caused by these tiles leads to notably higher

outcomes. Moreover, we introduced a model capable of extracting tile compat-

ibility for jigsaw puzzle solving. This model operates within a self-supervised

framework, learning intricate patterns only in the puzzle to be solved and dis-

cerning their distribution to facilitate effective problem-solving.

Future works. As demonstrated, once we successfully tackle the management

of constant tiles, it becomes feasible to develop a self-supervised neural network-

based compatibility metric for jigsaw puzzle solving. Such a metric has the po-

tential to surpass all existing hand-crafted metrics documented in the literature.

Here are some possible improvements:

• Training the deep neural network to be agnostic to constant tiles.

• Replace the backbone of the network with a modern architecture such as

the Vision Transformer.
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