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Abstract
Historically, the S&P 500 Index has been the object of numerous efforts by

scholars and investment professionals seeking to deploy statistical and quantitative
techniques in forecasting attempts. To this extent, a wide range of macroeconomic
and financial variables have been studied to understand their potential influence
on the Index’s performance, primarily focusing on price-based fundamental and
technical financial metrics.

This study diverges from the conventional approach by centring its analysis on
the Cyclically-Adjusted Price-to-Earnings Ratio (CAPE), a concept made famous
by Robert Shiller and John Campbell. Specifically, it implements linear regres-
sion models combined with ARIMA processes and the Newey–West estimator, to
examine the extent to which behavioural and macroeconomic variables, such as
investor sentiment and economic indicators, may carry explanatory power in fore-
casting CAPE fluctuations. Accordingly, this research argues that CAPE repre-
sents a more appropriate object of analysis rather than the raw Index price and
explores the possibility of leveraging the evidence produced by statistical modelling
to achieve superior portfolio returns.
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1 Foundations and Context

1.1 Introduction

Over recent decades, global financial markets have undergone significant transforma-
tions, contending with economic crises and unparalleled market volatility. Accordingly,
investors have been compelled to continuously refine and update investment method-
ologies, technological frameworks and operational processes. Herein, the last century
has seen the introduction and development of numerous novel concepts, metrics, ana-
lytical tools and perspectives within the financial domain, aimed at dealing with and
capitalising on diverse market inputs.

Among these, the Price-to-Earnings (P/E) ratio has captured the sustained attention
of both academic critics and professional investors. The P/E ratio’s prominence in
financial analysis dates back to 1934 when Benjamin Graham and David Dodd first
emphasized its meaningfulness and power in the inaugural edition of their seminal
work, ”Security Analysis” (Graham and Dodd (1934)). The implementation of portfolio
strategies based on this basic yet insightful metric gave rise to the investment philosophy
known as value investing. Two of the most famous proponents of this movement, which
contributed to its rise to maximum peaks in the 20th century, are Warren Buffet and
Charlie Munger, the renowned investors behind the birth of Berkshire Hataway.

The P/E ratio is a rather simple fundamental1 metric, defined as the ratio between
the asset price and its earnings. Across the financial environment, there are several
declinations regarding the terms of this metric, which can be applied; for example:

• Price: the price used to compute this metric may be chosen from either the spot
(current) price of the asset, the price relative to the last fiscal year (FY), the price
of the trailing twelve months (TTM) or the expected price for the next TTM;

• Earnings: in a similar fashion, earnings can be chosen to be either backwards-
looking (i.e. using earnings from the last FY/TTM) or forward-looking (usually

1The term fundamental is used here in the context of highlighting the discrepancy between funda-
mental and technical financial analysis. Specifically, fundamental analysis refers to a financial analysis
which takes into consideration the accounting and financial figures of a company (or index). Herein,
fundamental metrics are based on tangible economic values, such as debt, equity, turnover, assets,
liabilities and other similar financial statement elements. On the other hand, technical analysis pri-
marily originates from the price chart of the company (or index) and goes on to elaborate on the price
movements of the asset to derive graphical elements such as resistance and support zones, average
daily ranges (ADRs) and different time horizons moving averages (MAs), among others.

1



the preferred pick from Wall Street financial analysts, reflecting forecasts of the
company earnings for the future TTM).

The strategy of value investing generally stems from the empirical evidence that
the P/E ratio may be interpreted as a proxy for potential speculation in the price
of an asset. The reason behind this intuition is that, as it follows from the metric’s
definition, the P/E ratio measures how much are investors willing to pay for (i.e. how
much are investors evaluating) one unit of earnings of the underlying company (this
concept is largely explored in Chapter 2). Herein, stocks carrying significantly high
P/E values are more likely to be overpriced, while the ones displaying a low P/E tend
to be regarded as underpriced. This interpretation of the P/E ratio was first enounced
in Graham (1949) and further developed by Warren Buffet. Most importantly, given
the practical importance of this fundamental metric, the P/E ratio has been under the
radar of several international academics for the whole 21st century. As a result, this
metric was tested and analysed by a multitude of studies, which in turn produced the
positive externality of refining and extending the framework around the meaning and
the impact of the P/E ratio on portfolio returns, laying the general foundations of this
study.

One of the most notable works in this field is from Campbell and Shiller (1988);
the authors extended the concept of the P/E Ratio and introduced a broader and
smoother metric, called the Cyclically-Adjusted Price-to-Earning Ratio (CAPE)2. Dif-
ferently from the classical P/E ratio, CAPE is computed using a moving average of the
previous 10 years of inflation-adjusted earnings (i.e. real earnings) of the underlying
asset. In so doing, this metric acquires a smoother and possibly more comprehensive
declination.

The academic literature, which will be discussed in the subsequent section, has de-
voted considerable effort to the integration of these two metrics (P/E and CAPE) into
statistical models used for forecasting future stock prices. These metrics are also of-
ten combined with other fundamental indicators to enhance the predictive accuracy of
these models. A primary focus of these studies is represented by the S&P 500 Index,
managed by the eponymous rating agency Standard & Poor’s. However, two significant
challenges are commonly encountered when developing statistical and forecasting mod-
els incorporating a range of fundamental metrics for predicting future prices of stock

2The CAPE ratio is also commonly referred to as P/E10 ratio or Shiler’s P/E ratio.
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indexes:

• Significant autocorrelation: the majority of fundamental metrics used by academic
studies in this field contain the price of the index itself, but it also represents
the dependent variable. This situation may (and often does) lead to complex
bias and autocorrelation dynamics, which are harder to be dealt with given the
contamination of the dependent variable into the models’ regressors;

• As this study presents in depth (see Chapter 2, it is possible to empirically show
that price levels are highly correlated with the earnings of the relative underlying
assets. Nevertheless, Campbell and Shiller (2001) found that fundamental met-
rics have little capability of predicting earnings shifts, as well as similar dynamics
related to the companies’ business operations. Consequently, it appears counter-
intuitive to continue pursuing using these metrics to make forecasts about raw
price levels, instead of considering alternative approaches or methodologies.

To this extent, this work diverges from the conventional approach of using the CAPE
ratio as a (potential) explanatory variable for the S&P 500 Index returns. Addition-
ally, it aims to reverse this paradigm by focusing instead on forecasting future CAPE
scenarios, specifically examining the extent to which behavioural and macroeconomic
variables (such as investor sentiment and economic indicators) may play a role in pre-
dicting this metric’s future fluctuations. Accordingly, this research argues that CAPE
represents a more appropriate object of analysis rather than the raw Index price and
explores the possibility of leveraging the evidence produced by statistical modelling to
achieve higher portfolio returns through CAPE-based strategies.

This study is structured as follows: Chapter 1 sets the academic framework and
defines the scope of the research. Chapter 2 investigates the financial data utilised
and the variables considered. Chapter 3 applies statistical methodologies, particularly
linear regression combined with ARIMA processes (ARIMAX) and heteroskedasticity
and autocorrelation consistent error structures, as well as first differencing variables to
deal with spurious regressions. Finally, Chapter 4 exploits the statistical models and
empirical findings from Chapter 3 to formulate investment and portfolio management
strategies.
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1.2 Literature Review

Basu (1977) represents one of the pivotal publications in this field; the author has
been the pioneer of the academic movement which backed the importance of P/E in
the following decades. In particular, he investigated the possibility of exploiting P/E
to achieve excess (i.e. above-par, risk-adjusted3 portfolio returns. He concluded that
even when adjusting for different systematic risk levels (represented by β) and for tax
effects4, low P/E portfolios systematically provided higher returns, compared to high
P/E stocks selection. Basu’s research further challenged the semi-strong form of the
Efficient Market Hypothesis (EMH) by presenting evidence that investors could poten-
tially exploit the P/E ratio to achieve excess returns. Additionally, his findings called
into question the Capital Asset Pricing Model (CAPM), as higher returns observed on
low P/E portfolios did not correspond with increased risk. Conversely, high P/E stocks
did not exhibit the expected association with higher risk, suggesting a deviation from
CAPM’s foundational principle that would advocate for higher returns.

Dreman and Berry (1995) found that a stock’s P/E level significantly impacts and
leads to an asymmetrical market response to positive and negative news on the stock.
High P/E stocks (which the author defines as “glamorous”, underlining their higher rel-
ative price stemming from a boosted popular market demand) systematically delivered
lower returns compared to low P/E stocks in case of positive news. At the same time,
this selection of glamorous stocks also experienced harsher performances following neg-
ative news. Finally, the authors observed the significant presence of a mean reversion
process5 on stocks, especially impacting the highest and lowest quantiles (based on their
P/E ratios). This effect appeared to extend over a period of up to five years following
the initial news, irrespective of its positive or negative nature. This finding underscores

3In finance, the term excess returns refers to the instance of an investment earning a return higher
than what the CAPM model would provide. Herein, excess returns are defined as above-par, risk-
adjusted, since after controlling for the specific risk component of a portfolio (as CAPM does), the
investment ranks above other comparable portfolios.

4Dividend taxation may carry a different tax rate with respect to capital gains. Most importantly,
dividend taxation periodically reduces the cash flows received from the investor, thus hampering the
re-investable amount and curbing the compounding effect of the investment itself. On the other hand,
capital gains are only taxed when realized (i.e. at maturity), thus do not impact the effective investor’s
portfolio returns prior to that date

5The mean reversion process is a fundamental financial theory arguing that asset prices and histor-
ical returns eventually move back towards the mean or average level over time. In the context of the
P/E ratio, mean reversion implies that if a stock’s P/E ratio is significantly higher or lower than the
industry average or its own historical average, it is expected to revert to its mean value. This reversion
can occur due to adjustments in the stock price, changes in earnings, or a combination of both.
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the persistent influence of mean reversion on stock performance, highlighting its role
across various market segments delineated by P/E metrics.

Kane et al. (1996) developed a multivariate relationship model between P/E and a set
of additional macroeconomic and fundamental variables tested as potential explanatory
variables, including inflation, dividend yield (DY), and market volatility. The authors
developed and tested this model in order to be able to evaluate the complex economic
environment that was unravelling in the years prior to their publication. Indeed, they
concluded that the high P/E levels of 1994 were not actually alarming when controlling
for the variables mentioned above.

Campbell and Shiller (1988), which were previously cited as two of the most influ-
ential academics in this field, explored the predictive capabilities of both P/E and DY
in forecasting long-term stock returns by regressing a combination of lagged earnings
moving average (spanning 10 and 30 years) alongside growth in DY, against the price
levels of the S&P500. Remarkably, the authors first introduced in this work the idea
of extending the scope of the P/E ratio to more than a single year, by encompassing
a broader earnings average. The ratio that Shiller and Campbell refer to as P/E106 in
this work is the foundation of what will be introduced later in history as the CAPE
ratio.

Another following work from Campbell and Shiller (2001) researched whether the
predictive capabilities of fundamental metrics (as demonstrated in prior literature),
stemmed from the effective ratios’ ability to forecast increases (and decreases) in future
production levels, earnings and dividends. Contrary to expectations, the authors de-
termined that fundamental metrics, such as the P/E ratio, exhibit limited effectiveness
in predicting ”organic” trends within the market. However, this study showed that
fundamental metrics do possess substantial predictive value for the price component
of these ratios. This finding suggests that, while such metrics may not directly reveal
earnings and production level movements, they are instrumental in forecasting future

6Literature uses figures next to elements in fundamental ratios in order to indicate whether the
correspondent element should be taken as the spot value or as the average of a number of years, as
indeed indicated by the figure. In this context, P/E10 indicates the ratio between the stock/index price
and the average of the last 10 years of earnings. Similarly, P/E30 suggests the same interpretation,
using an average of the last 30 years of earnings instead. Some studies also rely on the average as well
for the price component of this ratio; in this case, the relative indication would appear next to the
price factor at the nominator (e.g. P10/E10). This notation is found as well in following academic
works.
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price adjustments.

Fisher and Statman (2000) investigated the relationship between investor sentiment
and stock market returns. This study analysed whether investor sentiment, as mea-
sured through various surveys and indicators, was able to provide significant predictions
of future stock returns. The paper also examined the correlation between changes in
sentiment among multiple groups of investors and stock market performance, empha-
sizing the diverse impacts of sentiment across different investor types. This research
provided an important and pioneeristic insight into an investment approach based on
behavioural finance factors.

Similarly, W. Y. Lee et al. (2002) explored the impact of investor sentiment on stock
market volatility and excess returns. Utilizing the Investors’ Intelligence sentiment
index, the study employed a generalized autoregressive conditional heteroskedasticity
model to assess how changes in sentiment affected market returns and volatility. This
study concluded that sentiment, particularly shifts in it, systematically influenced mar-
ket risk and return dynamics, underlining the impact of investor psychology in shaping
market outcomes.

A following work by Fisher and Statman (2003) focused instead on the relationship
between consumer confidence and stock market performance. This research primarily
examined how consumer confidence, measured through the University of Michigan and
the Conference Board surveys, was able to predict stock returns. The study found
a generally negative relationship between high consumer confidence and subsequent
stock returns, especially for the Nasdaq Index and small-cap stocks. Additionally,
the paper explored the interplay between consumer confidence and investor sentiment,
highlighting that changes in consumer confidence correlate with shifts in investor sen-
timent, particularly among individual investors. Herein, this research contributed to
understanding the predictive power of consumer sentiment on market dynamics and
extended the framework around behavioural finance.

Chahine and Choudhry (2004) investigated the effectiveness of value versus growth
investment strategies in the European markets. Specifically, this study assessed the
Price-to-Earnings Growth (PEG) ratio’s role in these strategies, finding that low PEG
ratio portfolios generally outperformed those with high PEG ratios, indicating a pref-
erence for value strategies over growth strategies within the European context. These
results are consistent with the literature aforementioned.
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Weigand and Irons (2005) analysed the impact of high P/E and P/E10 (CAPE)
ratios during different historical periods on subsequent stock performance. Specifically,
the authors discriminated between high valuations due to rapid price increases (without
corresponding earnings growth) and those resulting from temporary earnings recessions.
The findings indicated that high P/E levels, when caused by a temporary dip in earn-
ings, did not necessarily lead to poor subsequent returns, as earnings often rebounded
to their prior levels in the following years. Conversely, significant price increases that
were not supported by a comparable growth in earnings consistently resulted in ad-
verse outcomes for investors, irrespective of whether the perspective was short-term,
medium-term, or long-term.

Aga and Kocaman (2006) tested relevant propositions concerning the effects of infla-
tion and the P/E ratio on the Istanbul Stock Exchange (ISE). Their analysis revealed
that neither the Industrial Production Index (IPI) nor the Consumer Price Index (CPI)
provided adequate explanatory power for stock movements, encompassing both returns
and volatility. To address this, they employed an EGARCH(1,1) model, which effec-
tively captured the asymmetry observed in the ISE, and tested the explanatory power
of the P/E ratio in this framework. Finally, they found that this metric was able to
successfully provide insights about future ISE movements.

Huang et al. (2007) explored the strategy of leveraging the P/E ratio in order to
build portfolios that would yield above-average returns, drawing on the mean-reversion
process aforementioned. Their study, focusing on a 3-year holding period, revealed that
stocks within the top decile by P/E ratio (which the authors again define as ”glamour
stocks”) exhibited a significant tendency to deliver poor returns. Conversely, stocks in
the bottom decile by P/E ratio (referred to as ”value stocks”) demonstrated notably
superior returns. This distinction underscored the potential for mean reversion as a
basis for investment strategy.

Aras and Yilmaz (2008) analysed short- and mid-term stock return predictability in
12 emerging markets, using a set of explanatory variables that included the P/E ratio,
DY and the Market-to-Book (MtB) ratio. The study revealed that these variables
possess significant forecasting power for returns over a one-year period, with the MtB
ratio emerging as the most powerful predictor, followed closely by DY and P/E.

Akintoye (2008) critically revised the EMH in light of the paradigms of behavioural
finance. In particular, this research found that, indeed, cognitive biases and emotions
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significantly influence investor behaviour, leading to market anomalies which should not
exist under EMH. The study finally examines empirical research on market efficiency,
the impact of accounting information and the effects of behavioural factors on financial
markets, highlighting the complexity and interplay of rational and irrational behaviours
in market dynamics.

Kelly et al. (2008) examined the performance of low P/E ratio stocks in the Aus-
tralian market, aiming to test the viability of a low P/E-based trading strategy. This
study extended the research from Basu (1977), effectively finding that low P/E stocks
provided significant excess risk-adjusted returns, further challenging the semi-strong
form of the EMH.

Angelini et al. (2013) introduced a dynamic model for predicting stock index returns,
structured around three primary components: momentum, fundamental and driving
forces. Following a similar analytical approach, the authors further substantiated the
predictive efficacy of the CAPE ratio, particularly highlighting its utility in long-term
forecasting. This work emphasizes the value of integrating diverse market indicators to
enhance the accuracy of return predictions, with CAPE standing out for its significant
long-term predictive power.

Bathia and Bredin (2012) conducted an in-depth analysis on the influence of dif-
ferent investor sentiments, proxied by market returns of G7 countries, on both value
and growth stocks, categorized according to their price-to-book value (P/BV) ratio.
The study revealed that sentiment from investor surveys had a significant impact on
aggregate market returns. In contrast, the Put-Call Ratio (PCR) provided mixed and
inconsistent findings, with its effects dissipating rapidly. Herein, the authors’ overarch-
ing observation was that high investor sentiment showed a consistent correlation with
lower future returns, while, on the other hand, low sentiment was frequently associated
with higher future returns. This research underscores the predictive value of investor
sentiment on market performance.

Smales (2017) examined the impact of investor sentiment, particularly fear, on stock
market returns. Utilizing a range of sentiment proxies, including the VIX as a measure
of investor fear, the study showed a significant relationship between sentiment and
returns. It highlighted that sentiment, especially fear, plays a more influential role
during recessions, affecting returns across various firm sizes and industries. The research
underscored the complexity of investor sentiment’s role in financial markets and its
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variable impact depending on economic conditions.

Baek and I. Lee (2018) investigated the potential presence of structural changes
in S&P 500 historical P/E. Employing interesting techniques, such as a cumulative
sum control chart and the Bai-Perron algorithm, the authors identified multiple struc-
tural breakpoints in P/E ratios over a 142-year period, finding that these structural
changes significantly influenced long-term returns. This research challenges the tradi-
tional mean-reverting view of P/E ratios by showing that structural shifts can asym-
metrically affect future returns, depending on whether the P/E period is high or low.

Allahyaribeik et al. (2020) used a Bohemian quantum approach7 to analyse a bucket
of Tehran’s Stock Market companies and investigate the joint behaviour of P/E and
price returns. By extending the quantum potential concept, the research reveals that
both P/E ratios and price returns are confined within specific domains, influenced by
underlying quantum potentials. This innovative approach facilitates a deeper under-
standing of market dynamics, concluding that quantum mechanics can offer valuable
insights into financial market fluctuations and the relationship between critical financial
indicators.

Campisi and Muzzioli (2020) explored the influence of investor sentiment on financial
market dynamics. Focusing on two groups of investors following a value investing ap-
proach, encompassing different perceptions of fundamental value, the paper introduced
a sentiment index to model trading decisions and analyse complex market scenarios,
including fear and greed dynamics. The study demonstrates that investors’ sentiment,
measured through the sentiment index, significantly impacts market volatility and stock
return asymmetry. The paper’s insights contribute to understanding how investor psy-
chology and market sentiment drive financial market fluctuations and highlight the
importance of investor sentiment as a key factor in financial market behaviour.

Kenourgios et al. (2022) analysed the forecasting capabilities of CAPE and CAPE58

on the Greek Stock Market. Through regression models assessing 1, 3, 5, and 10-
year real returns against fundamental variables, such as P/E, CAPE5, CAPE and

7In the context of this paper, the ”Bohemian Quantum Approach” refers to a formulation of quan-
tum mechanics that includes particle positions along with wave functions. In the context of this paper,
the Bohemian mechanic principles are used to analyse financial markets, exploiting the concept of
”quantum potential” to model and predict stock market behaviours, such as the P/E ratio and price
return dynamics.

8CAPE5 is a variations of CAPE fundamental metric, built by employing the moving average of
the last 5 years of inflation-adjusted earnings, rather than the 10-years horizon used by CAPE
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P/BV, the study reveals a departure from traditional findings. Specifically, the authors
indicate that the P/E ratio and P/BV have limited predictive value for future returns.
Conversely, CAPE and CAPE5 display significant forecasting power for mid- and long-
term market returns, suggesting their superior utility in predicting market movements
in the Greek context.

Wang et al. (2021) extended the framework of behavioural financial analysis to en-
compass both developed and emerging markets, utilizing the Consumer Confidence
Index (”CCI”) to explore its impact on market returns. This research found that CCI
displayed a significant impact on market returns, even after controlling for potential
outside economic indicators that could have affected CCI. Additionally, the research
underscored the importance of a broader set of classical behavioural metrics, including
IDV, UAI, and MAS9, as well as intelligence and education factors like IQ and literacy
levels, in explaining the divergent responses to comparable macroeconomic situations
between developed and emerging markets.

9IDV (Individualism), UAI (Uncertainty Avoidance Index), and MAS (Masculinity) are dimensions
from Hofstede’s cultural dimensions theory, which provides insights into the influence of culture on
values in the workplace and society. Individualism (IDV) measures the degree of interdependence a
society maintains among its members. Uncertainty Avoidance Index (UAI) assesses a society’s tolerance
for uncertainty and ambiguity. Masculinity (MAS) reflects the distribution of emotional roles between
the genders. These metrics are used to understand behavioral differences across cultures, influencing
consumer behavior, market trends, and investment decisions.
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2 S&P 500 Index Analysis and Long-Term CAPE
Trends

2.1 S&P 500 History and Data Methodology

The S&P 500 is one of the most famous index funds, designed by Standard & Poor’s
to track the performance of 500 of the largest and most important companies based in
the United States. Specifically, as of February 2024, the Index covered approximately
80% of the total available market capitalization (S&P 500® Overview (2024)). It was
officially established in March 1957 (Valetkevitch (2013)), yet data is available extending
back to 1871. This retrospective extension of the S&P 500 Index data was made possible
through a collaborative effort between Standard & Poor’s and the economist Alfred
Cowles. Standard & Poor’s describes the extension of the Index to periods predating
its official inception in 1957 as ”hypothetical back-tested”, since it employs the S&P 500
methodology that was in effect at the time of the Index launch (S&P 500® Overview
(2024)). Herein, the company exploited this backward interpolation in order to reflect
a hypothetical performance of this index extended back to 192310. In a similar fashion,
Alfred Cowles and associates (Cowles (1939)) broadened the S&P 500 time horizon
back to the year 1871.

The S&P 500 is widely accepted in the finance world as one of the main benchmark
indexes for investment comparison and it is arguably the main one in the field of equity
investments11. For this reason, as mentioned in the introduction, it has been the centre
of attention of academics and institutional investors for over a century, particularly
representing the object of statistical and forecasting modelling using broad and diverse
sets of macroeconomic, behavioural, fundamental and technical variables. An inter-
esting publication in this field, named ”The Little Book of Common Sense Investing”
(Bogle (2017)), applied an alternative point of view to decompose the S&P 500 Index

10Standard & Poor’s disclaims that this methodology may be potentially affected by survivor or
look-ahead bias, in addition to a multitude of financial risks that could not have been accounted
for when building the Index hypothetical performance prior to 1957. For this reason, financial data
implying ad-hoc, backward-looking construction, are not to be taken as references for actual returns.
Nevertheless, the scope of this study is not affected by the facts stated, since the use of the S&P 500
Index as a benchmark for investment comparison made in Chapter 4 only encompasses data from July
2001.

11Given its importance, the S&P 500 Index is also commonly referred to as ”the market”. This study
may refer to it accordingly.
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performance. The author, late founder of The Vanguard Group12, argued that returns
from the S&P 500 Index13 could be split into two main categories:

• An organic component, representing the earnings growth of the underlying assets
(thus, aggregate earnings of the 500 companies underlying the S&P 500);

• A speculative component, stemming from investors’ behaviour and other sets of
factors which may be able to influence it. In this context (and from now on, in
this study) the speculative component is simply defined as the difference between
the S&P 500 Index returns and the relative organic component (earnings growth).

This work attempts to test the accuracy of the framework laid out in Bogle (2017),
as well as implementing an alternative view based on the CAPE ratio to provide a
more extensive analysis of the S&P 500. Specifically, this chapter aims to elaborate on
the Index’s performance in order to weigh the influence of the organic and speculative
components on the S&P 500’s historical returns. Accordingly, this project assesses to
which extent the Index’s performance was fuelled by actual earnings growth of underly-
ing companies and, on the other hand, which part of it was instead driven by speculative
market dynamics, proxied by the CAPE ratio.

The dataframe used for this purpose is curated by Robert Shiller, Sterling Professor
of Economics at Yale University and recipient of the Nobel Prize in Economic Sciences.
This dataset is widely used in the academic environment and it is publicly available
on the author’s website, alongside several other insightful collections of historical data.
Specifically, the dataframe used is called: ”U.S. Stock Markets 1871-Present and CAPE
Ratio”.

In light of the purposes of this research, as can be seen by downloading the dataset
mentioned above, the raw data provided by Robert Shiller is quite inconvenient for a
few reasons: (i) column names are spread among multiple rows, (ii) there are a lot
of empty columns in between useful variables and (iii) real (inflation-adjusted) data is
computed on last observation’s CPI (which is September 2023, as the date of writing);
however, since quarterly (Q3) financial information was not available yet at that time,
last observations are incomplete. For these reasons, it is necessary to transform data

12As of February 2024, The Vanguard Group retained approximately $7.7 billion of assets under
management; it was the largest global provider of index funds and the second largest provider of
ETFs, only behind BlackRock.

13This approach can be applied to whatever stock index or, alternatively, to individual companies.

12



adequately before handling it. Specifically, in order to address the 3 issues mentioned
above:

• Column names are collapsed (and renamed when necessary) in one row only, so
they will present the correct form in order to be taken as column labels;

• Empty, unused or redundant columns are deleted;

• Real price, earnings and dividends are adjusted to take June 2023 CPI as the base
figure;

• 2023 data is trimmed at the end of June 2023, to avoid confusion potentially
stemming from unused and incomplete data.

Finally, for the purpose of handling the final dataframe, as described and adjusted,
this work exploits the R environment. The following snippet of code offers a preview
of how the comprehensive dataframe first presents, alongside a general summary of the
main variables explored by this study.
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print(df, n = 2, width = Inf)

Date S&P500 Dividend Earnings CPI Long Int. Rate (GS10)
1881-01-01 6.19 0.27 0.49 9.42 3.70
1881-02-01 6.17 0.27 0.48 9.51 3.69

Real Price Real Dividend Real Total Return Price Real Earnings Real
200.50 8.58 370.94 15.74
197.86 8.66 367.38 15.45

TR Scaled Earnings CAPE 10yr Ann.Stock.Real.Ret
29.11 18.47 0.045353
28.68 18.15 0.046774

10yr Ann.Bond.Real.Ret 10yr Ann.Excess.Real.Ret
0.056468 -0.011115
0.056199 -0.009425

#1,708 more rows

Date S&P500 Dividend
Min. :1881-01-01 Min. : 3.810 Min. : 0.180
1st Qu.:1916-08-08 1st Qu.: 8.685 1st Qu.: 0.470
Median :1952-03-16 Median : 24.745 Median : 1.430
Mean :1952-03-16 Mean : 395.898 Mean : 7.988
3rd Qu.:1987-10-24 3rd Qu.: 268.825 3rd Qu.: 8.748
Max. :2023-06-01 Max. :4674.770 Max. :68.710

Earnings CPI Long Int. Rate Real Price
Min. : 0.16 Min. : 6.28 Min. : 0.620 Min. : 107.0
1st Qu.: 0.67 1st Qu.: 10.95 1st Qu.: 3.120 1st Qu.: 222.1
Median : 2.51 Median : 26.45 Median : 3.695 Median : 357.6
Mean : 18.79 Mean : 68.73 Mean : 4.469 Mean : 778.1
3rd Qu.: 16.10 3rd Qu.:115.38 3rd Qu.: 5.000 3rd Qu.: 843.2
Max. :197.91 Max. :305.11 Max. :15.320 Max. :5123.5

Real Dividend CAPE
Min. : 7.59 Min. : 4.78
1st Qu.:11.16 1st Qu.:11.95
Median :17.39 Median :16.47
Mean :21.07 Mean :17.38
3rd Qu.:26.33 3rd Qu.:21.10
Max. :70.98 Max. :44.20
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2.2 Monthly Data Overview

The dataframe described above provides observations collected on a monthly basis,
which is notably convenient for refined granularity and precision, and addresses multiple
insightful fields of information. The main 3 variables taken into greater consideration by
this Chapter are represented by the S&P 500 Index price, earnings (S&P 500 companies
aggregate earnings level) and dividends (S&P 500 companies aggregate dividends level).

In order to provide a general overview of these different time series, it is useful to
graphically present the 3 main variables in all of their main declinations, specifically:
(i) nominal (standard) levels, (ii) real (inflation-adjusted) levels and (iii) logarithmic
levels.

Figure 1: S&P 500 Monthly Returns

Figure 1 displays the graphs relative to the previously mentioned elements, pertain-
ing to monthly price levels of the S&P 500 Index from January 1881 to June 2023.

• The top plot illustrates the nominal price, which, upon initial observation, exhibits
a more pronounced curvature for the periods encompassing the last 50 years. This
is due to the large extension of the dataset in terms of the historical period covered,
as well as the very different magnitude of the latest price levels, compared to the

15



first century of data;

• The plot in the bottom-left corner presents the real prices of the S&P 500, offering
a neat visual representation of the significant impact of inflation on the movements
of the Index.

• Lastly, the bottom-right plot illustrates the logarithmic trajectory of prices. From
this perspective, it becomes evident that the notable spikes observed in the other
graphs are attributable to the compounding effect14 of returns rather than an
improved performance in recent years.

In a similar fashion, Figure 2 focuses on the S&P 500 earnings level, providing a
measure of the aggregate earnings of the 500 companies underlying the Index.

Figure 2: S&P 500 Monthly Earnings

It is quite intuitive to notice large similarities between these plots and the ones
displayed in Figure 1. However, at a deeper level, earnings appear to present two

14In a financial investment framework, the compounding effect refers to the process by which both
capital gains and interest accumulate additional returns over time, in addition to the principal invested.
This phenomenon occurs as investment earnings are reinvested to generate their own share of returns.
Mathematically, compounding is the result of the exponential growth of the initial principal amount
of an investment, stemming from the accumulation of reinvested interest or dividends over multiple
periods.
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distinctive characteristics, in contrast with price levels. On the one hand, earnings seem
to report more accentuated drawdowns in recession periods, as can be seen right after
the year 2000, in the occurrence of the burst of the doc.com bubble and the subprime
mortgage crisis (2007-2010). This observation is supported by the logarithmic plot
(bottom-right corner), which underlines notable sharp declines not present with the
same magnitude in the S&P 500 logarithmic price level chart. On the other hand,
earnings also seem to follow a smoother trajectory, both in nominal and real terms, as
they produce an overall significantly more linear logarithmic plot.

Figure 1 and Figure 2 already seem to indicate a notable correlation between the
S&P 500 earnings and the Index’s price. As remarked by Bogle (2017), stock assets’
prices (especially on a long-term basis) are largely driven by their ”organic” component
in the long run. This appears to be evident by analysing the plots described above
and this study will try to display the quantitative arguments backing this graphical
intuition. Nevertheless, it seems to be also true that stock prices do not forcefully
follow this process on a short- and mid-term15 basis. Indeed, under shortened horizons,
a broad set of outside variables referred to as speculative factors impact and alter the
Index’s performance, which does not have sufficient time to re-align with the organic
component.

Finally, Figure 3 pictures insightful information regarding the dividends level of
the S&P 500. Once again, the dividends trajectory appears to be very similar to the
dynamics displayed in the Index’s price and earnings, as previously discussed. One
thing that captures the attention is a steep increase in the inflation-adjusted value of
real dividends following the 2008 financial crisis, as can be seen in the bottom-left corner
plot. Dividends represent a fundamental aspect of value investing and DY, as mentioned
in the first chapter, has been tested as a potential predictor of future index returns,
sometimes showing satisfactory results. Nevertheless, dividends will not constitute a
fundamental factor in this work, as they do not play a significant role in the context of
the CAPE ratio nor are influenced by behavioural factors (since investors’ behaviour
does not affect companies’ dividend payout policies). For these reasons, dividends will
not enter this specific field of research.

15Generally speaking, in finance, the expression short-term refers to periods of up to 1 year, while
a mid-term horizon encompasses from 1 to 3/5 years. However, these references do not have a largely
agreed definition but rather depend on the time horizon under scrutiny.
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Figure 3: S&P 500 Monthly Dividends

2.3 On The Impact of CAPE

In the preceding section, the study examined historical dynamics affecting the S&P
500’s price, earnings and dividends. As mentioned, the first two components are of
particular interest and warrant a detailed joint analysis. In this framework, the CAPE
ratio becomes particularly relevant and represents a fundamental tool to explore the
interplay between the Index’s price and earnings movements.

Figure 4 provides a visual representation of the CAPE ratio levels historical time se-
ries, boxplot and frequency distribution. A few consideration arises from these different
graphs:

• As can be noticed from the plot displayed in the top row, the S&P 500’s CAPE
ratio trajectory indicates that valuations have not been stationary over time,
suggesting a dynamic interplay between organic factors and speculative variables;

• The pronounced peak in the CAPE ratio around the year 2000 appears to have
initiated a relatively consistent uptrend, persisting approximately over the past
decade and establishing a new resistance level. This breakout16 event encompasses

16In financial technical analysis, a breakout denotes the scenario where a security’s price surpasses
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Figure 4: S&P 500 Cyclically-Adjusted P/E Ratio

the latest structural change in the CAPE ratio outlined in Baek and I. Lee (2018)
(which the authors refer to as P/E10).

• The box plot depicted in the lower left quadrant of the figure serves as a compact
representation of the CAPE ratio’s distribution, picturing the median and the
interquartile (”IQR”) range of the dataset. As can be noticed, this plot presents
clear evidence of the high recent values being the primary outliers, as observations
are notably above the historical average levels;

• The histogram pictured in the bottom-right corner further illustrates the empiri-
cal density of observed values and reaffirms that, for the majority of history, the
CAPE ratio showed values comprised from 10 to 20. Moreover, the distribution
appears to be right-skewed, as evidenced by a longer tail extending towards the
higher end of the CAPE ratio spectrum. This skewness is coherent with a con-
centration of lower CAPE ratios and fewer instances of recent significantly high
ratios.

Despite it may be pictured as a simple descriptive ratio, CAPE has a deep intrinsic
power on investment returns. First of all, considering the nature of this metric, CAPE

established support or resistance levels, indicating a strong market inclination to trade the asset at
new price points, either higher or lower, depending on whether the breakout is upward or downward.
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may be regarded as a proxy for speculative market dynamics. This characteristic stems
from the fact that, by definition, this ratio measures how much are investors willing to
pay for (i.e. how much are investors valuing) one unit of earnings of the underlying
asset. Herein, the further CAPE values are from historic averages, the more probable
it is that the market entered a speculation-dominated territory. On the one hand, a
high CAPE may indicate extended market overpricing, implying an increased risk of a
potential sudden price decline. On the other hand, low CAPE values may represent a
signal of the economy entering into a generalised recession, with investors not finding
companies’ growth appealing anymore and hampering the market’s development. It
follows from this reasoning that, as further developed in the cited literature (Kane
et al. (1996), Weigand and Irons (2005)), the CAPE (P/E) ratio may be regarded as
a powerful tool to evaluate the overall speculative dynamic of the market, assessing
whether stocks are approaching under- or overpricing territories.

In this context, the financial critic tried to argue that, in some circumstances,
high/low CAPE (P/E) value may be justified by the relative expectations on future
stock/index performance (as mentioned by Graham (1949), among others). Herein, a
low CAPE ratio may incorporate a curbed future outlook, reflecting the impact that
limited earnings growth would have on re-balancing the CAPE ratio back to standard
(higher) levels. A similar argument can be made for some circumstances leading to
high CAPE values, which may be seen as enhanced expectations of future earnings. If
positive forecasts are realised, higher earnings levels are likely to lower the CAPE ratio
over time.

Shifting towards a pragmatic context, following the significant considerations afore-
mentioned, CAPE may also be regarded as a “financial leverage” for portfolio returns.
Specifically, this leverage effect is provided by the impact of speculative forces (embed-
ded in the numerator of this metric) on the earnings of the underlying companies (at
the denominator). The meaning of leverage in this circumstance refers to the fact that
the price and earnings may grow/decline at different paces. It follows that, while an
investor may theoretically expect his investment to grow at a rate close to the underly-
ing company(-ies) growth/decline, this does not always happen (especially in the short-
and mid-term, as previously mentioned). Remarkably:

• In periods of upward CAPE movements, an increase in companies’ earnings would
have a more-than-proportional impact on portfolio returns and a decrease in earn-
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ings will not be matched by a decrease in the portfolio’s value of the same size.
In these situations, the CAPE ratio provides investors with a positive leverage
effect;

• On the other hand, a CAPE downtrend supplies negative leverage, as investors
earn limited returns for positive earnings news and harsher performances in case
of earnings declines.

These two conclusions logically draw on the fact that CAPE is defined as the ratio
between the price of the Index and the (moving average of) inflation-adjusted earnings
of underlying companies. This CAPE fundamental principle, which was referred to as
financial leverage, constitutes the basis of the portfolio strategy developed in Chapter
4. Specifically, investment strategies will be developed in order to exploit the process
described above, such that portfolio returns would be able to take advantage of the
positive leverage and maintain a neutral state in circumstances of negative financial
leverage.

2.4 Comparing S&P 500 Cumulative Logarithmic Returns vs
Organic Growth

The previous sections introduced the general framework and the overall theoretical
foundations around the CAPE ratio. It follows that a more detailed analysis is needed
to investigate different historical periods and spot possible trends, as well as to best
comprehend the impact that CAPE (and the leverage effect previously described) may
have had on past S&P 500 returns. Specifically, this work will analyse the aspects
aforementioned under 2 different time perspectives, focusing on:

• Exploring cumulative returns for different time horizons;

• Computing average decade returns to asses macro-trends.

This section will address the first point, while the following will take care of the
latter.

Cumulative returns are a common approach in financial analysis, particularly in the
context of evaluating two (or more) investment performances over time. The simple
cumulative return over a period measures the total percentage change in the value of
an investment, accounting for the compounding of returns. Given a sequence of prices
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p0, p1, . . . , pn, where pi is the price at time i, the simple return Ri from time i − 1 to i

can be expressed as:
Ri = pi − pi−1

pi−1

The simple cumulative return CR over the period from 0 to n is then computed by
multiplying the individual period returns plus one, and then subtracting one to find
the overall percentage change:

CR =
(

n∏
i=1

(1 + Ri)
)

− 1 = pn

p0
− 1

Simple cumulative returns show how the initial investment value grows over time,
considering the compounding effect of returns. They provide a straightforward measure
of the total return, reflecting both capital gains and losses over the investment period.

However, it is a best practice to use a logarithmic scale, rather than a nominal one,
for data clarity’s sake. The main reason for this lies in the difference between S&P 500
Index price (for example, as of the first observation in 1881-01-01, the price is equal
to $6.19) and earnings ($0.49). It follows that the same increase in absolute terms
will lead to a higher relative (percentage) increase for the latter, and vice versa. This
dynamic would depict misleading data and translate into erroneous interpretations. The
cumulative logarithmic return over a period is calculated by summing the logarithmic
returns of individual periods. Given a sequence of prices p0, p1, . . . , pn, where pi is the
price at time i, the logarithmic return ri from time i − 1 to i is given by:

ri = ln
(

pi

pi−1

)

Hence, the cumulative logarithmic return R over the period from 0 to n is:

R =
n∑

i=1
ri =

n∑
i=1

ln
(

pi

pi−1

)
= ln

(
pn

p0

)

This formula emphasizes the additive property of logarithmic returns, making them
particularly suitable for analyzing the performance of investments over time, as it di-
rectly relates to the total percentage change from the initial to the final period. Herein,
this study exploits this methodology to compare the S&P 500 returns with the growth
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of the relative organic component. In so doing, this analysis will show the trajectory
difference between these two factors and, by construction, the resulting cumulative
difference will represent the impact of speculative market dynamics (i.e. CAPE up-
trend/downtrend periods, in which the market yields higher/lower returns compared to
earnings growth).

The first reference point taken into consideration to compute cumulative logarithmic
returns starts with the year 1900. Herein, Figure 5 pictures the trajectory of the S&P
500 Index total returns compared to its relative companies’ aggregate earnings over
more than a century. Additionally, this plot highlights the correlation in the movement,
as well as the divergences between market performance and fundamental corporate
profitability.

Figure 5: Total vs. Earnings Cumulative Logarithmic Returns

The orange line, representing the S&P 500 index, and the purple line, denoting
earnings, exhibit periods of confluence and disparity, reflecting the dynamic interplay
between investor sentiment and corporate financial health. Notably, the relative steep-
ness of each line indicates the rate of growth, with steeper ascents suggesting more
rapid increases in returns/earnings. On a deeper level, the graph illustrates that while
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the two measures tend to move in tandem over the long term, there are intervals where
the S&P 500 index either outpaces or lags behind the growth in earnings, potentially
indicating market overvaluation or undervaluation trends, respectively.

This analysis reveals that the S&P 500 Index’s total cumulative logarithmic returns
from 1900 to the present have outpaced the earnings growth of the underlying compa-
nies. Specifically, the Index’s price has increased by approximately 59% more than the
earnings, as retrieved by looking at the current level of cumulative logarithmic returns.

last(from.1900$Tot.cumlogreturns)-last(from.1900$Earnings.cumlogreturns)

[1] 0.5912372

This indicates that the CAPE ratio has increased accordingly, providing investors
with returns exceeding the actual earnings growth of the companies within the same
time frame. Nevertheless, it is possible to notice also that under the historical horizon
analysed, the trajectories of the two time series intersected multiple times. This fact
underscores the impact of speculative market dynamics on short- and mid-term returns
(Bogle (2017)).

In order to expand the range of this analysis, carried out through cumulative loga-
rithmic returns, it is of great interest to repeat the same process for different windows
of time. Herein, the second illustration (Figure 6) narrows the focus to the time horizon
starting from 1957, which (recalling from Chapter 2) represents the official inception
year of the S&P 500 Index as it is known today. This reference point is particularly
useful in removing potential bias and instrumental inaccuracies potentially, stemming
from the backward computation of the Index prior to its launch date.

Cumulative logarithmic returns from 1957 to the present show comparable dynam-
ics with respect to the previous plot (Figure 5). However, under this time frame,
the movements of the two time series become more pronounced, highlighting periods
of occasional divergence. Specifically, Figure 6 vividly pictures intervals of volatility,
particularly during economic downturns, where earnings temporarily plummeted (as
visualized by the sharp decline in the purple line) while the S&P 500’s price exhibited
a more muted response. This divergence can be indicative of the market’s anticipatory
nature, combined with the presence of non-earnings-related factors influencing investor
sentiment (i.e. speculative dynamics). Conversely, the rapid ascents observed in both
lines (e.g. after the subprime mortgage crisis) suggest robust economic expansion phases
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Figure 6: Total vs. Earnings Cumulative Logarithmic Returns

where market valuations and earnings ascend in tandem. It is interesting to note that,
under this time frame, the S&P 500 grew ≈ 64% more than the underlying companies’
earnings, implying that, on average, the Index provided an additional investment return
of around 1% for the period ranging from 1957 to 202217.

To conclude this analysis, a final insightful focus is provided on a more recent and
restricted time period, ranging from the year 2000 to the present day. Figure 7 under-
lines more closely both the S&P 500 Index’s price and earnings reactions to the burst
of the dot.com bubble at the beginning of the century, followed as well by the 2008
financial crisis. Remarkably, this plot presents a contrasting trend compared to earlier
periods. Indeed, as can be noticed from Figure 7 , in the 21st century the earnings
of S&P 500 companies have exceeded the growth in the Index’s price by a margin of
≈ 27%. Recalling the financial leverage effect exposed in earlier sections, this downward
CAPE trajectory translates into lower portfolio returns for investors, with respect to
relative earnings growth.

17It will be shown in the next section that this value is coherent with the average yearly impact of
speculative returns throughout the whole dataset analysed.
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Figure 7: Total vs. Earnings Cumulative Logarithmic Returns

2.5 Decadal Returns Analysis

The preceding sections of the paper primarily focused on the analysis of monthly and
annual data. To bring this chapter to a more comprehensive conclusion, it is insightful
to extend the scope to longer time frames. Therefore, this section will segment returns
into distinct decades, ranging from 1890 until present. This approach facilitates a
clear and systematic presentation of average market returns, as well as picturing the
evolution of the CAPE ratio for each decade. Additionally, this perspective aims to
enhance the depth of the analysis presented in this Chapter and to unveil patterns and
trends emerging over these historical intervals. The code provided below explains how
the dataframe containing decadal data (decade.dft) was built, drawing from yearly
data (year.dft). Specifically, it is worth noting that the following results represent the
averages of yearly logarithmic returns.

decade.dft <- year.dft[-1, ] %>%
group_by(Decade) %>%
summarise(Total.logreturns = mean(Total.logreturns) %>%

multiply_by(100) %>% round(digits = 2),
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Earning.logreturns = mean(Earning.logreturns) %>%
multiply_by(100) %>% round(digits = 2),

Speculative.logreturns = mean(Speculative.logreturns) %>%
multiply_by(100) %>% round(digits = 2))

Figure 8 displays a bar chart offering an extended overview of the S&P 500 perfor-
mance in every decade. Specifically, each bar represents the average yearly Index loga-
rithmic returns. Notice that, as for the cumulative returns approach, data is presented
through a logarithmic scale, as to deal with the same potential issues aforementioned.

Figure 8: Decadal S&P 500 Total Returns

This analysis of the S&P 500 returns constitutes the basis for assessing decadal or-
ganic and speculative components. Herein, average yearly logarithmic earnings growth
can be computed and graphically presented (Figure 9) in a similar fashion, to picture
the impact of underlying companies’ profitability growth against average market total
returns.

As already noticed throughout the cumulative logarithmic returns analysis, there
are some rather significant discrepancies between total returns and earnings growth.
This overall effect has been referred to as speculative returns. To this extent, Figure 10
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Figure 9: Decadal S&P 500 Earnings Growth

provides a comprehensive representation of the actual impact of speculative dynamics
on the S&P 500 Index returns, displaying the impact that the “financial leverage”
embedded in the nature of CAPE delivered across different decades.

This graph provides utterly important pieces of evidence in portraying the discrep-
ancy between S&P 500 returns and relative earnings growth, emphasising the different
magnitude of speculative returns. Surprisingly, overall speculative returns appear to
cancel each other out, in aggregate terms. As computed in the code below, from the pe-
riod of time ranging from 1890 to 2022, speculative returns reported an average yearly
logarithmic value of 0.165%.

mean(decade.dft$Speculative.logreturns) %>% paste("%", sep = "")

[1] "0.165%"

This fact is coherent with the arguments exposed in Bogle (2017), stating that,
under a long-term time horizon, total market returns ultimately align with the organic
component. On the other hand, Figure 10 likewise proves that short- and mid-term
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Figure 10: Decadal S&P 500 Speculative Returns

investments are highly exposed to a set of non-companies-centred factors, providing a
significant positive or negative leverage to portfolio returns. Additionally, this piece of
evidence also constitutes a compelling argument backing the academic literature (e.g.
Dreman and Berry (1995) and Huang et al. (2007)) advocating for the presence of
tangible mean reversion processes in the context of the CAPE (P/E) ratio.

The 3 plots commented on above (Figures 8, 9 and 10) provided an insightful and
comprehensive overview of the various dynamics occurring at different historical stages,
highlighting a notable discrepancy between S&P 500 returns and the earnings growth
of underlying assets. The pertinent conclusion is encapsulated in Figure 10, which
accurately depicts the impact of CAPE leverage across decades, from 1890 to the current
2020 decade.

To bring this chapter to a valuable conclusion, Figure 11 enhances the interpretation
of CAPE’s box plot previously discussed in this study (see Figure 4). This expanded
analysis demonstrates and reaffirms considerable temporal fluctuation and heterogene-
ity in market valuations, with median CAPE values exhibiting significant variability, as
well as pronounced elevation during the 2000s. Notably, decades of compressed CAPE
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Figure 11: Decadal S&P 500 Speculative Returns

shifts alternate with periods of great volatility, with upward movements appearing to
provide the most fluctuations18. Additionally, the presence of outliers in the data fur-
ther underscores periods of exceptional valuation deviations.

Following the overall conclusion discussed in this section, Chapter 3 will assess
whether, using a different set of statistical models, it is viable to forecast future swings
in the CAPE ratio and, subsequently, predict the impact of speculative returns on the
total S&P 500 returns. Accordingly, Chapter4 attempts to incorporate the evidence
produced in an investment strategy, exploiting the financial leverage effect provided by
positive speculative returns, as previously discussed.

18This piece of evidence can be interpreted by Figure 11 interquartile ranges. Specifically, 1920s and
1990s seemingly experienced the most pronounced period of enhanced market valuation, as demon-
strated by the extended upper-quartile section of corresponding boxplots.
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3 Financial Modelling - CAPE Forecasts

3.1 Introducing Behavioural Variables

This chapter aims to test the viability of building a statistical model capable of success-
fully forecasting future CAPE ratio value movements. Accordingly, this study argues
that recalling the interpretation of this metric as a proxy for speculative market dynam-
ics, investors’ sentiments play a notable role in influencing CAPE levels and directly
impact the S&P 500 returns. Declinations of this proposition were widely tested in
the academic literature presented (Fisher and Statman (2000) and 2003, W. Y. Lee
et al. (2002), Bathia and Bredin (2012), Smales (2017), Campisi and Muzzioli (2020),
Akintoye (2008), Wang et al. (2021)), which found consistent evidence of fear and
greed components of investors’ sentiment having a tangible repercussion on the forward
economic outlook.

It is worth providing a clear perimeter of the types of variables tested by other studies
and explaining the choice of the parameters used in this work, as it could be a potential
source of ambiguity. Literature has recognised embedded behavioural components in
a multitude of metrics, such as the PCR (Bathia and Bredin (2012)), as reflecting the
proportion between short-side versus long-side investors, as well as CAPE and P/E
themselves (Dreman and Berry (1995), Weigand and Irons (2005)), as measures of the
potential over- and underappreciation of the market. These variables could be referred
to as ”indirect” behavioural metrics since they do not represent a direct measure of
sentiment- and behavioural-related factors, but rather a secondary impact they have
on variables relating to different underlying components. Diverging from this approach,
this study mainly focuses on behavioural-centred measures, primarily encompassing in-
dexes and surveys tracking different sides of investors’ sentiment. Herein, the dataframe
pertinent to confidence and valuation surveys, as will be explained below, is maintained
once again by Robert Shiller, the same source of the S&P 500 dataset used in Chapter
2. Indeed, he is also the director of Yale University’s Investor Behavior Project, which
he claims being ”the longest-running effort to measure investor confidence and related
investor attitudes”Yale School of Management, International Center for Finance (2024),
with observations dating back to 198919.

19To this extent, it is worth noting that, even though the dataset regarding individual and institu-
tional investors’ confidence and valuation indexes does extend back to 1989, it does so with varying
observations’ frequency. Indeed, observations used to be collected biannually (in April and October of
every year) until July 2001, which represents the beginning of the monthly collection of observations.
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The snippet of code provided below aims to present an overview of the dataset of
variables used by this study, which encompasses behavioural surveys retrieved from the
dataset mentioned above and sentiment-related indexes (CCI, BCI, V IX), in addition
to a general macroeconomic variable (UNRATE).

summary(regressiondata)

Date Real Price PE CAPE3
Min. :2001-07-01 Min. :1086 Min. : 13.50 Min. :11.50
1st Qu.:2006-12-24 1st Qu.:1794 1st Qu.: 18.15 1st Qu.:20.79
Median :2012-06-16 Median :2129 Median : 22.03 Median :23.66
Mean :2012-06-16 Mean :2505 Mean : 25.51 Mean :23.71
3rd Qu.:2017-12-08 3rd Qu.:3161 3rd Qu.: 24.90 3rd Qu.:26.43
Max. :2023-06-01 Max. :5123 Max. :123.73 Max. :33.97

CAPE5 CAPE Confidence.inst Confidence.ind
Min. :11.38 Min. :13.32 Min. :61.54 Min. :58.16
1st Qu.:21.76 1st Qu.:23.13 1st Qu.:72.72 1st Qu.:68.51
Median :24.71 Median :26.19 Median :76.70 Median :75.00
Mean :24.17 Mean :26.16 Mean :76.51 Mean :75.28
3rd Qu.:26.42 3rd Qu.:28.94 3rd Qu.:80.57 3rd Qu.:81.86
Max. :35.34 Max. :38.58 Max. :92.59 Max. :95.62

Valuation.inst Valuation.ind UNRATE CCI
Min. :36.71 Min. :28.57 Min. : 3.400 Min. : 96.13
1st Qu.:57.68 1st Qu.:47.95 1st Qu.: 4.575 1st Qu.: 98.52
Median :66.28 Median :59.67 Median : 5.400 Median : 99.73
Mean :65.40 Mean :56.99 Mean : 5.926 Mean : 99.57
3rd Qu.:74.86 3rd Qu.:66.90 3rd Qu.: 6.900 3rd Qu.:100.88
Max. :88.76 Max. :81.82 Max. :14.700 Max. :101.64

BCI VIX
Min. : 95.77 Min. : 9.51
1st Qu.: 99.40 1st Qu.:13.99
Median :100.05 Median :17.79
Mean :100.03 Mean :20.01
3rd Qu.:100.80 3rd Qu.:23.81
Max. :102.12 Max. :59.89

In order to provide a better explanation of the variables included, it is worth com-
menting on the most important aspects of the dataframe.
Herein, to guarantee consistency in the data, observations preceding June 2001 have been discarded.

32



• Real price: as in previous sections, it is the inflation-adjusted S&P 500 Index
price

• PE: spot price-to-earnings ratio, computed using earnings of the correspondent
fiscal year instead of a broader moving average of the same variable;

• CAPE3 and CAPE5: represent variations of the CAPE ratio, computed as
a moving average of the past 3 and 5 years of real earnings of the underlying
companies, respectively;

• Confidence.inst and Confidence.ind: report the percentage of institutional
and individual respondents (respectively) who expected an increase in the Dow
Jones Industrial Average Index20 for the following year;

• Valuation.inst and Valuation.ind: similarly, show the percentage of institu-
tional and individual respondents (respectively) who thought that current stock
prices (at the time of the survey) were either low or correctly valued;

• UNRATE: represents the unemployment rate for the U.S., sourced from the
FRED (Federal Reserve Economic Data). Notably, the unemployment rate is
also strictly tied to a profound social aspect, besides being a widely used macroe-
conomic variable. For this reason; it may be considered an indirect indicator of a
more generalised population sentiment;

• CCI and BCI: Consumer Confidence Index and Business Confidence Index are
significant economic indicators that represent the overall confidence levels of con-
sumers and businesses within an economy21, respectively. These two variables are
sourced from the OECD (Organization for Economic Co-operation and Develop-
ment);

• VIX: the Implied Volatility Index, calculated and published by the Chicago Board
Options Exchange (CBOE), measures the stock market’s expectation of volatility
based on S&P 500 index options, over the next 30-day period (Chicago Board

20The Dow Jones Industrial Average (“DJIA”, also known as “the Dow”) is the oldest US stock
market index. It is one of the 2 most followed indexes, alongside the S&P 500. The Dow encompasses
30 of the largest companies based in the United States.

21CCI measures how optimistic or pessimistic consumers are regarding their expected financial situ-
ation, as well as their country’s economic situation in the short term. Similarly, BCI reflects the level
of optimism or pessimism that business executives feel about the prospects of their companies and the
overall economy. High index values indicate an increased optimism, and vice versa

33



Options Exchange (2024)). This index was notably proposed as an explanatory
variable in Smales (2017), as a proxy for investor fear22.

At the beginning of this chapter, it was mentioned that the scope of this work was to
test whether behavioural variables carried any explanatory power in forecasting future
n-step forward CAPE values. Specifically, this chapter tests this proposition for a 1-
month ahead CAPE forecast. The dataset has been split into two distinct parts, as
best practice to create convenient training and test sets. To this extent, the scientific
literature does not provide clear indications relative to the proportion of observations
to be attributed to either of these two sets. Toleva (2021) indicates that a 70/30 split
particularly improved issues of classification accuracy in the context of the data frame
analysed. On the other hand, Joseph (2022) suggests a ratio (between training set and
test set) of √

p :1, where p represents the number of statistically significant parameters
of the linear regression model built on the dataset of interest. However, both studies
highlight that there is not a one-fits-all measure and that this proportion should be
adjusted according to the size of the dataset under consideration. Herein, a common
rule of thumb in the field of machine learning and statistical modelling suggests a split
of 80/20. Given the not-so-large dimension of the dataset presented (264 observations),
this study decides to allocate the first 80% of the dataframe for model training purposes
and the latest 20% of observations to the test set.

3.2 Linear Regression Models with Behavioural Variables

In order to test the relevancy of the behavioural variables aforementioned on one-month
ahead values of the CAPE ratio, this study employs a linear regression model, defined
as follows:

CAPEt = β0 + β1 × Confidence.instt−1 + β2 × V aluation.instt−1

+ β3 × Confidence.indt−1 + β4 × V aluation.indt−1 + β5 × V IXt−1

+ β6 × BCIt−1 + β7 × CCIt−1 + β8 × UNRATEt−1 + ϵt

Notably, all of the explanatory variables are lagged for one period, with respect to the
independent variable (CAPE). In so doing, this process effectively tests whether the

22Indeed, VIX is often referred to as ”fear index”. The reason behind this is that this index is derived
from the implied volatility underlying price inputs of S&P 500 index options. Hence, high values of
the VIX indicate increased uncertainty in the market, as well as investors fearing significant changes
in the S&P 500 Index levels.
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set of information explored in the preceding section may be able to explain forward
movements of the CAPE ratio, to any extent. Herein, model1 is defined from the
formula provided above. Running the linear regression testing via R yields the following
results:

Call:
lm(formula = f.CAPE ˜ Confidence.inst + Valuation.inst + Confidence.ind

+ Valuation.ind + VIX + BCI + CCI + UNRATE, data = trset)

Residuals:
Min 1Q Median 3Q Max

-3.0821 -0.7697 -0.0668 0.6372 5.5348

Coefficients:
Estimate | Std. Error | t value | Pr(>|t|)

------------------------------------------------------------
(Intercept) -59.00315 | 18.05916 | -3.267 | 0.00128 **
Confidence.inst -0.05341 | 0.02252 | -2.372 | 0.01864 *
Valuation.inst -0.07018 | 0.01722 | -4.075 | 6.63e-05 ***
Confidence.ind 0.07241 | 0.02053 | 3.527 | 0.00052 ***
Valuation.ind -0.04499 | 0.02163 | -2.080 | 0.03877 *
VIX -0.09568 | 0.01746 | -5.481 | 1.26e-07 ***
BCI 0.73163 | 0.12130 | 6.032 | 7.67e-09 ***
CCI 0.24801 | 0.17001 | 1.459 | 0.14617
UNRATE -1.00955 | 0.09210 |-10.961 | < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.314 on 201 degrees of freedom
Multiple R-squared: 0.8849,Adjusted R-squared: 0.8803
F-statistic: 193.2 on 8 and 201 DF, p-value: < 2.2e-16

As can be noticed from the output of the linear regression provided above, model1
appears to show a notable fit, displaying an adjusted R2 of 88.03%, paired with the
statistical significance of all variables but one (namely: CCI). However, in order
to make any type of significant inference, the model first needs to be evaluated and
validated to ensure its reliability and accuracy in making predictions. This phase,
known as model diagnostic, involves a series of steps designed to assess the model’s
performance and identify any potential issues that could compromise its effectiveness.
Notably, model diagnostic largely involves the examination of residual plots, in order to
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spot patterns that might suggest violations of the model’s assumptions. Additionally,
the diagnostic process also requires the use of statistical tests and criteria to evaluate
the model’s overall fit and the significance of individual regressors. Overall, model
diagnostic is primarily focused on spotting 3 potential statistical issues, notably: non-
stationarity, heteroskedasticity and autocorrelation.

• Non-stationarity: arises when the statistical characteristics of the residuals
change over time. Stationarity of residuals is a fundamental assumption in re-
gression analysis and, specifically, encompasses a constant mean, constant vari-
ance and no autocorrelation. The presence of non-stationarity in residuals poses
several issues for regression analysis, as it can lead to biased or inconsistent pa-
rameter estimates, undermining the interpretability and reliability of the model.
Moreover, non-stationarity can also impair the model’s predictive accuracy, in
case of trends/patterns that the model is not able to account for;

• Heteroskedasticity: occurs when the variance of the error terms of a regression
model is not constant across all levels of the independent variables, violating one
of the key assumptions of ordinary least squares (OLS) regression. This condition
may lead to inefficient estimates and affect the reliability of hypothesis tests due
to incorrect standard errors;

• Autocorrelation: also known as serial correlation, refers to the correlation of
a time series with its own past (and future) values. Herein, it quantifies the
degree to which current values of the series are related to previous observations
over different time lags. Autocorrelation may lead to biased statistical inferences
if not properly accounted for. and models assuming independent errors can be
inappropriate if they show autocorrelated residuals. Autocorrelation may indicate
model inadequacies, such as the omission of important predictors or the presence
of a more complex dynamic structure not captured by the model.

As mentioned above, model diagnostic combines both graphical and quantitative
elements to spot either of the potential issues presented. Herein, Figure 12 exploits
the checkresiduals functions from the forecast package to provide a comprehensive
overview of model1 residuals, picturing the relative trajectory, autocorrelation function
(ACF23) and distribution function.

23In the context of model diagnostics, the ACF is a tool used to analyze the correlation between
observations of a time series separated by various time lags. ACF plot is a crucial graphical tool for
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Figure 12: Model Diagnostic

At first glance, the plot in the bottom-left corner (the ACF of residuals from model1)
seems to show evidence of autocorrelation. This inconvenience can be graphically spot-
ted since autocorrelation between residuals at different lags of time decreases slowly
and shows notable values (graphically represented by the bars’ height) up to 8 lags.
A common statistical approach to test for the presence of autocorrelation in a dataset
is represented by the Ljung-Box test (LB). The Ljung-Box test (Ljung and G. E. P.
Box (1978)) is a statistical approach designed to evaluate the presence of autocorrelation
in the residuals of a time series regression model, at several (k) lags. Specifically, the LB
test statistic (Q) is computed as follows (as outline in Ruppert and Matteson (2015)):

Q = n(n + 2)
k∑

l=1

ρ̂2
l

n − l

where:

• n is the sample size,

• ρ̂l is the sample autocorrelation at lag l,

• k is the number of lags being tested.

Under the null hypothesis of no autocorrelation up to the kth lag, the test statistic

identifying the presence of autocorrelation.
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Q follows a chi-squared (χ2) distribution with k − p degrees of freedom (where p indi-
cates the number of predictors in the model excluding the intercept). Confirming the
graphical intuition stemming from Figure 12, running the LB test on model1 residuals
yields a relative p-value < 2.2e−16, confirming autocorrelation suspects24.

Box.test(model2$residuals, fitdf = 4, lag=10, type="Ljung")

Box-Ljung test
data: model2$residuals
X-squared = 337.26, df = 6, p-value < 2.2e-16

Moreover, the plot on the top row of the same model diagnostic tool (Figure 12) may
hint at (limited) heteroskedasticity phenomenons (especially in the first observations
of the dataset). This intuition can be graphically noticed from the large downward
variations seemingly characterising the initial part of the residuals, while the second
half seems to be steadier, implying different volatility values. Several statistical tests
can be used in order to assess heteroskedasticity in a given dataset; one of the most
famous (and the one this study exploits) is the Breusch-Pagan (BP) test. The BP
test is a statistical procedure used to detect the presence of heteroscedasticity in the
residuals of a regression model25. Specifically, it tests the null hypothesis of constant
variance in the model’s residuals (homoskedasticity), against the alternative hypothe-
sis of the variance being dependent on one or more independent variables, indicating
heteroskedasticity issues. A statistically significant result from the BP test indicates
evidence of heteroskedasticity, suggesting that the model’s residuals’ variance changes
across levels of the independent variables. As shown in the code below, model1 exhibits
a p-value for the BP test of 1.889e−10 (largely statistically significant at the 0.05 signif-
icance level) confirming the suspects of heteroskedasticity graphically hinted by Figure
12.

24In this study, the significance level is set at 0.05.
25The test involves first estimating the original regression model and obtaining the squared residuals.

Then, a new auxiliary regression is performed where these squared residuals are regressed on the original
independent variables (and potentially their transformations or additional variables). The test statistic
is derived from this auxiliary regression, typically following a chi-square distribution, which is then
used to determine whether the null hypothesis of homoscedasticity can be rejected Johnston and
DiNardo (1997).
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Studentized Breusch-Pagan test
data: model1
BP = 61.996, df = 8, p-value = 1.889e-10

The diagnostic process relative to model1 assessed the presence of autocorrelation
and heteroskedasticity in the residuals, thus providing evidence of a flawed regression
model. To this extent, model diagnostic is of fundamental importance, as it suggests
that model1 cannot be trusted to directly produce forecasts about future CAPE values
and make inferences about the model’s parameters.

Financial data often exhibits autocorrelation; hence, this finding is not surprising.
There are several ways to deal with these inconveniences and adjust model1 in order
to fix the statistical issues arising from these two circumstances. Specifically, the next
sections will address these points in two different ways:

• Exploiting robust standard errors: heteroskedasticity and autocorrelation consis-
tent (HAC)26 estimators are used to mitigate the impact of autocorrelation and
heteroskedasticity in the error terms of a regression model (Ruppert and Matte-
son (2015)). Specifically, this study relies on the Newey-West covariance matrix,
which extends the concept of robust standard errors by adjusting the covariance
matrix of the model’s coefficients to account for potential autocorrelation, as well
as possible non-constant variance in the error terms;

• Estimating a linear regression model with ARIMA errors: this statistical process
combines the traditional linear regression framework with an ARIMA (AutoRe-
gressive Integrated Moving Average) model for the error terms.

It is worth noticing that the methodologies mentioned above and followed by this
study to adjust the model’s error structure are not the only viable options for proceeding
in such occurrences. For example, the presence of either non-stationarity, heteroskedas-
ticity or autocorrelation in residuals may first indicate the absence of an explanatory
variable which could capture (i.e. is responsible for) otherwise unexplained volatility
movements in the observations. Herein, one way of proceeding is testing additional vari-

26Traditional ordinary least squares (OLS) regression assumes that the error terms are independently
and identically distributed with constant variance. In this context, HAC estimators are used to adjust
standard errors for the presence of heteroskedasticity and autocorrelation within the error terms.
Specifically, they provide a method to correct the covariance matrix of the regression coefficients,
ensuring that hypothesis tests and confidence intervals remain valid even when the classical assumptions
are violated.
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ables in order to check whether the implemented model works better and presents more
adequate properties than the preceding one. It is also worth mentioning that another
interesting way of handling statistical issues in a linear regression model’s residuals
is represented by implementing a dynamic regression process instead of HAC estima-
tors (Baillie et al. (2022)). However, as the next section and Chapter 4 show, the
two methodologies implemented by this study provided satisfactory results; thus, these
latter options were not pursued as well.

3.3 Dealing with Autocorrelation and Heteroskedasticity: Newey-
West Robust Covariance Matrix

The Newey-West (NW) estimator (Newey and West (1987)) provides a way to calcu-
late consistent covariance matrices in the presence of both serial correlation and het-
eroskedasticity in a model’s residuals. The implementation of the Newey-West robust
covariance matrix is a standard practice and it is particularly pertinent in the financial
environment, given the propensity for financial time series to display autocorrelation.
Specifically, the Newey-West estimator draws from the aggregate of squared residuals
in order to mitigate autocorrelation, as follows:

Ω̂NW = 1
T

T∑
t=1

û2
t xtx′

t + 1
T

L∑
l=1

wl

 T∑
t=l+1

ûtût−l(xtx′
t−l + xt−lx′

t)


where:

• Ω̂NW is the Newey-West adjusted covariance matrix.

• T is the total number of observations.

• ût is the residual at time t.

• xt is the vector of regressors (including any constant term) at time t.

• L is the lag length, chosen by the researcher.

• wl is a weight function for lag l, which typically decreases as l increases to reduce
the influence of distant observations27.

27A common choice is the Bartlett weight: wl = 1 − l
L+1 .

40



While the econometric process behind the computation of the NW estimator may
be complex and extensive, its implementation is straightforward in the R environment.
The function NeweyWest from the sandwich package directly estimates the NW robust
(HAC) covariance matrix. Herein, model2 is derived by applying the Newey-West test
on the former model1 specification. The resulting NW estimator can then be used as a
reference to create a new model (model2), whose variance-covariance matrix28 will work
under the assumption to be HAC. The code provided below shows how it is possible to
do so, specifying the base model and modifying its error terms with the NW estimator.

coeftest(model1, vcov. = NeweyWest(model1, adjust = T, verbose = T,
diagnostics = T, prewhite = F))

t test of coefficients:

Estimate | Std. Error | t value | Pr(>|t|)
-------------------------------------------------------------
(Intercept) -59.003148 | 50.854302 | -1.1602 | 0.247328
Confidence.inst -0.053407 | 0.043306 | -1.2333 | 0.218920
Valuation.inst -0.070179 | 0.035791 | -1.9608 | 0.051285 .
Confidence.ind 0.072414 | 0.067487 | 1.0730 | 0.284557
Valuation.ind -0.044995 | 0.040560 | -1.1093 | 0.268610
VIX -0.095677 | 0.030367 | -3.1507 | 0.001877 **
BCI 0.731634 | 0.321724 | 2.2741 | 0.024016 *
CCI 0.248009 | 0.293155 | 0.8460 | 0.398558
UNRATE -1.009548 | 0.143526 | -7.0339 | 3.083e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Applying the Newey-West estimator shows that the only variables still retaining
statistical significance at the 95% confidence level are V IX, BCI and UNRATE. All
of the other regressors appear to be disregarded by this test, implying that their presence
in the regression model may be linked to the error term presenting either autocorrelation
or heteroskedasticity issues. For this reason, the non-statistically significant variables
need to be removed from the model specification by re-estimating the model. Herein,
the output of the final regression, consistent with the NW estimator, is represented in

28Note that the Newey-West estimator does not need to be directly incorporated in the original
model. Indeed, inference about future predictions and interpretation of parameters does not depend
on the error term. However, HAC standard errors provided by the NW estimator need to be used
under the statistical inference framework (e.g. hypothesis testing, constructing confidence intervals).
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the code below29.

Call:
lm(formula = f.CAPE ˜ VIX + BCI + UNRATE, data = trset)

Residuals:
Min 1Q Median 3Q Max

-4.2608 -0.8419 -0.0503 0.6034 7.6544

Coefficients:
Estimate | Std. Error | t value | Pr(>|t|)

----------------------------------------------------------
(Intercept) -82.51187 | 13.80782 | -5.976 | 9.94e-09 ***
VIX -0.08621 | 0.01984 | -4.345 | 2.19e-05 ***
BCI 1.17599 | 0.13631 | 8.627 | 1.70e-15 ***
UNRTE -1.40748 | 0.07218 | -19.499 | < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.666 on 206 degrees of freedom
Multiple R-squared: 0.8104,Adjusted R-squared: 0.8076
F-statistic: 293.5 on 3 and 206 DF, p-value: < 2.2e-16

Since this model is now consistent with the NW estimator, autocorrelation and
heteroskedasticity can be considered successfully addressed; model2 is then defined as:

CAPEt = β0 + β1 × V IXt−1 + β2 × BCIt−1 + β3 × UNRATEt−1 + ϵt

It is then possible to start making inferences about important characteristics provided
by model2. As previously mentioned, the adjusted R2 usually represent one of the
most important aspects of a statistical model, as it assesses the goodness of the model’s
fit on the training set used to construct it. In this case, the adjusted R2 reports a
value of 80.76%, which represents a largely remarkable result and provides evidence of
the notable explanatory power of behaviour-linked factors (V IX, BCI), as well as the
macroeconomic and social component (UNRATE). Another instance worth noting is
represented by the coefficients displayed by the three variables:

• The negative V IX coefficient is coherent with the academic findings presented
29Running the NW test on this set of regressors provides that all of the independent variables are

statistically significant at the 0.05 level.

42



in Chapter 1, underlining that increased uncertainty in future market outlooks
(implied by increased volatility level) is negatively correlated with forward move-
ments of the CAPE ratio, and vice versa;

• A significantly high BCI coefficient (1.17599) indicates that one-month ahead
CAPE values appear to be directly correlated with shifts in the level of busi-
ness executives’ sentiment about the prospects of their companies and the overall
economy. This finding produces evidence that a generalised optimism by busi-
ness directors may not only indicate an increase in their companies’ (aggregated)
earnings but also a more-than-proportional response from the market;

• UNRATE may be interpreted according to what was mentioned in the previous
section: indeed, the notable UNRATE negative coefficient (−1.40748) signals
that increased unemployment is deeply correlated with a decline in the CAPE ra-
tio. This result shows that economic recessions, proxied by rising unemployment
rates, tend to hamper the equity market (in this case, recall, represented by the
S&P 500) more than companies’ earnings. This intuition (derived from the neg-
ative correlation between UNRATE and CAPE) underlines the behavioural and
sentiment component implied by this metric, as its impact is ultimately perceived
more by market prices than by the relative organic component.

After having assessed the reliability of model2 through the application of the NW
estimator and having made inferences about the meaning of the resulting coefficient, it
is finally possible to exploit the regression model to try and forecast future expectations
of one-month ahead CAPE values. For this purpose, the model’s parameters are applied
to the set of explanatory variables previously excluded from the training set (trset),
hence stored in the test set (teset). This process enables the forecasting of one-step
ahead expected CAPE values through model2. Figure 13 displays the result of the
forecasting process, comparing one-month ahead predictions with the realised values of
the one-month forward CAPE ratio.

It is possible to notice that the forecasts provided by this study seem to systemati-
cally underestimate the actual forward CAPE values. Even though this situation may
generate some confusion, this is actually not surprising for a notable reason. In this
study, model2 is estimated through a linear regression of a fixed and limited training set,
encompassing observations from 07/2001 to 01/2019. This implies that the dataframe
used to train the model is based on data which may potentially become outdated as
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Figure 13: Test Set CAPE Forecasting

time passes. Additionally, the test set unfortunately retains observations related to
the COVID-19 pandemic, which coincide (in Figure 13) with the time period of the
furthest discrepancy between the model’s estimates and realised values. To this extent,
the model may require to be fine-tuned more dynamically, in order to encompass up-
dated information every specified period of time and to adjust the model’s parameters
accordingly.

Nevertheless, and more importantly, the two issues acknowledged above do not in-
fluence the final scope of this study and, consequently, should not be the centre of
additional adjustment efforts. The reason behind this is that recalling what mentioned
in Chapter 1 and 2, this work aims to develop a statistical model to predict future
movements of the CAPE ratio and to produce superior portfolio returns from there.
Specifically, as Chapter 4 explains in depth, the latter objective does not involve ac-
curate predictions of the nominal value of the CAPE ratio but rather draws on the
direction of this metric’s movements. Herein, even though model2 appears to have a
negative bias which compromises the model’s accuracy on the y-axis, it works well in
predicting upward and downward CAPE shifts, as noted from the R2 of the model
(referring to backwards estimates), as well as graphically shown in Figure 13 (for future
predictions).

For the reason mentioned above, running standard accuracy tests may result in mis-
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leading and counterproductive inferences. Indeed, computing main statistical accuracy
metrics yields the results provided in the following snippet of code.

accuracy(pred, teset$f.CAPE)

ME RMSE MAE MPE MAPE
Test set 5.273902 6.993208 5.301739 16.07537 16.18754

Specifically, each accuracy metric presented refers to different aspects of the statisti-
cal model tested. The following paragraph aims to provide a clear overview of the pieces
of information provided by these statistics. Given a set of observations yt and corre-
sponding forecasts ŷt, where T represents the number of observations of the dataset,
the forecast accuracy metrics are defined as follows.

Mean Error (ME) = 1
T

T∑
t=1

(yt − ŷt)

The ME is the arithmetic average of the residuals, thus the differences between predicted
and observed values. It serves as an indicator of systematic bias in the predictions; a
mean error of zero implies no bias, whereas a non-zero mean error indicates a tendency
of the model to either overestimate or underestimate the observed values systematically.
In this model, a mean error of approximately 5.27 suggests a tendency to overestimation
(positive bias)-

Root Mean Squared Error (RMSE) =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2

The RMSE is a widely used measure of the average magnitude of predictive errors,
particularly sensitive to large errors and providing an estimate of the standard deviation
of the unexplained variance.

Mean Absolute Error (MAE) = 1
T

T∑
t=1

|yt − ŷt|

The MAE represents the average of the absolute values of the residuals.

Mean Percentage Error (MPE) = 100%
T

T∑
t=1

(
yt − ŷt

yt

)
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The MPE is the average of the percentage errors. It can reveal the tendency of the
model to systematically overestimate or underestimate the observed values in percent-
age terms. An MPE of approximately 16.08, indicates that the average forecast is about
16.08% lower than the actual value

Mean Absolute Percentage Error (MAPE) = 100%
T

T∑
t=1

(
|yt − ŷt|

yt

)

Finally, the Mean Absolute Percentage Error (MAPE) represents the mean of the abso-
lute values of the individual percentage errors. This metric expresses the average error
as a percentage of the actual values, which provides an intuitive understanding of the
prediction accuracy in relative terms. It is particularly useful when comparing models
across different scales. For this model, the MAPE is approximately 16.19, meaning that
the average absolute error is 16.19% of the actual values.

Figure 14: CAPE Forecasting on the complete dataset

As previously mentioned, these figures are not utterly relevant in the context of this
study, since the scope of the model is to best capture CAPE trends and shifts, rather
than precise values. As a last step, model2, needs to be applied to the whole dataset of
observations available, in order to estimate the one-month ahead CAPE predictions that
will constitute the basis for developing the investment strategies explored in Chapter 4.
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Herein, Figure 14 shows the estimated one-step ahead CAPE predictions against actual
values for the whole length of the dataframe.

For reference, the code below reports the same accuracy snippet previously men-
tioned for the application of model2 on the test set alone.

accuracy(pred2, regressiondata$f.CAPE)

ME RMSE MAE MPE MAPE
Test set 1.063409 3.474622 1.958478 2.888244 6.818769

To the extent of providing a clearer measure of accuracy for this model, one viable
and more coherent solution could be represented by the Pearson correlation coefficient,
which is not as influenced by vertical gaps as the accuracy metrics described above.
The Pearson correlation coefficient (r) is computed as follows:

r = n(∑xy) − (∑x)(∑ y)√
[n∑x2 − (∑x)2][n∑ y2 − (∑ y)2]

Where:

• n is the number of data points;

• ∑n
i=1 xy is the sum of the product of paired scores;

• ∑n
i=1 x and Σy are the sums of the X scores and Y scores, respectively;

• ∑n
i=1 x2 and Σy2 are the sums of the squared X scores and Y scores, respectively.

Let x be the time series composed of the forecasts from model2 and y the time series
referring to realised CAPE observations. Computing the r coefficient for model2 yields
a value of 0.7014 confirming a significant correlation between the model’s predictions
and actual values from the test set.

3.4 Linear Regression Models with ARIMA Errors (ARIMAX)

In the previous section, autocorrelation found in residuals from model2 was dealt with
by exploiting a HAC variance-covariance matrix, specifically provided by the Newey-
West estimator. An alternative interesting process in this field (as explored by Hyn-
dman and Athanasopoulos (2018) and Maggina (2011)) is represented by linear re-
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gression models with ARIMA (AutoRegressive Integrated Moving Average30) errors.
This statistical methodology is a convenient approach when dealing with financial data
particularly, as it draws on residuals from the linear regression model exhibiting auto-
correlation, thus violating OLS usual assumption of independent errors. Herein, model3
is constructed starting from the same linear regression of the former model:

CAPEt = β0 + β1 × Confidence.instt−1 + β2 × V aluation.instt−1

+ β3 × Confidence.indt−1 + β4 × V aluation.indt−1 + β5 × V IXt−1

+ β6 × BCIt−1 + β7 × CCIt−1 + β8 × UNRATEt−1 + ϵt

However, in this case, the error term ϵt follows an ARIMA(p, d, q) process:

(1 −
p∑

i=1
ϕiL

i)(1 − L)dϵt = (1 +
q∑

j=1
θjL

j)ηt

which is equivalent to

ϕ(L)∇d(L)(yt − x′
tβ) = θ(L)ϵt

where yt = CAPEt and x′
t is the vector containing all of the model’s regressors at time

t.

This approach extends linear regression analysis by explicitly modelling the error
structure to capture autocorrelation and non-stationarity within the residuals. In
essence, after fitting a linear regression to explain the relationship between indepen-
dent variables and the dependent variable, any residual autocorrelation is addressed by
applying an ARIMA model to the residuals. This particular statistical approach is a
further extension of the ARMA (AutoRegressive Moving Average) model with exoge-
nous variables explored in G. Box et al. (2015), which literal sense indicates an ARMA
model encompassing external variables (i.e. the independent variables of the regression
model). For this reason, this specification is also commonly referred to as ARMAX.

30An AutoRegressive Integrated Moving Average (ARIMA) process is a forecasting model combining
autoregressive features (i.e. where future values are assumed to be a linear function of past observa-
tions) with moving average components (i.e. where future values are modelled as a function of past
errors). Additionally, the integration component is incorporated to make the data stationary, remov-
ing potential trends and seasonality. The model is specified by three parameters: p (autoregressive
order), d (degree of differencing needed to make the series stationary), and q (moving average order),
collectively represented as ARIMA(p,d,q).
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Throughout this section, as well as in the following chapters, this study uses the term
ARIMAX to refer to a linear regression model with ARIMA errors (as also in Hyndman
and Athanasopoulos (2018)), indeed.

There are two main benefits stemming from applying an ARIMA process to model
the error term of a linear regression:

• Enhanced accuracy of the parameter estimates of the regression model;

• Adjusted standard errors enable more reliable statistical inferences.

In the R environment, ARIMAX can be implemented directly through the function
auto.arima, whose term xreg allows to specify the linear regression to be fitted first. To
this extent, one important precaution is to transpose all of the regressors into a matrix,
as the argument xreg only works with matrixes, indeed. It is also important to note
that, through the auto.arima function, different potential models are automatically
compared and selected by means of the Akaike or Bayesian Information Criterion31

(AIC/BIC) and estimates are computed via maximum likelihood estimation, assuming
a normal distribution. Let L being the maximized value of the likelihood function for
the estimated model, k the number of estimated parameters in the model and n the
number of observations in the dataset. Then, the two ICs are defined as follows:

AIC = −2 ln(L) + 2k

BIC = −2 ln(L) + k ln(n)

In this study, both ICs provided the same final model. Herein, AIC is reported in the
code provided below (as well as in the following sections).

31In the context of statistical modelling, information criteria (IC) are measures used to evaluate and
balance the goodness of the fit of a model and the number of parameters included. In so doing, ICs
contribute to the specification of the most appropriate final model.
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reg <- trset %>% select(Confidence.inst, Confidence.ind, Valuation.ind,
Valuation.inst, CCI, BCI, UNRATE,
VIX) %>% as.matrix()

model2 <- auto.arima(trset$f.CAPE, max.p = 5, max.q = 5, stepwise = F,
stationary = F, seasonal = F, ic = 'aic',
test = 'adf', xreg = reg)

coeftest(model2)

z test of coefficients:

Estimate | Std. Error | z value | Pr(>|z|)
--------------------------------------------------------------
ar1 -0.5505264 | 0.3778928 | -1.4568 | 0.145163
ar2 0.7467707 | 0.3127463 | 2.3878 | 0.016950 *
ar3 0.7259450 | 0.1253425 | 5.7917 | 6.968e-09 ***
ma1 1.5228601 | 0.5122810 | 2.9727 | 0.002952 **
ma2 0.6781697 | 0.2395630 | 2.8309 | 0.004642 **
intercept -81.9633786 | 31.8478870 | -2.5736 | 0.010065 *
Confidence.inst -0.0386294 | 0.0313679 | -1.2315 | 0.218138
Confidence.ind -0.0048480 | 0.0257074 | -0.1886 | 0.850419
Valuation.ind 0.0033978 | 0.0232667 | 0.1460 | 0.883892
Valuation.inst 0.0206193 | 0.0267022 | 0.7722 | 0.439999
CCI 0.4305970 | 0.2452919 | 1.7554 | 0.079183 .
BCI 0.6735022 | 0.2255836 | 2.9856 | 0.002830 **
UNRATE 0.0994235 | 0.3633560 | 0.2736 | 0.784372
VIX -0.0609112 | 0.0176317 | -3.4546 | 0.000551 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Herein, the snippet of code provided above creates a linear regression model with
an ARIMA error structure (model3). Notably, the regressors selected are the same
tested for both two of the previous regression models. Coefficients from model3 are
also shown in the snippet of code provided below32. Similar to the former model,
the z-test of coefficients shows that the only statistically significant parameters from
model3 appear to be BCI and V IX, while the UNRATE variable encompassed in
model2 seems to be left out. This is not surprising nor constitutes evidence against the
finding of the previous model, since this latter model3 introduced an ARIMA structure
for the error term and thus may yield different results. Accordingly to what was noted
above, model3 needs to be re-estimated in order to only retain the variables that showed

32Since the function auto.arima does not work properly with the standard summary command, the
code exploits the coeftest function from the lmtest package.
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statistical significance, hence the V IX and BCI indexes. Running the same process
presented above leads to estimating an improved ARIMAX, exhibiting the following
parameters:

z test of coefficients:

Estimate | Std. Error | z value | Pr(>|z|)
-------------------------------------------------------
ar1 1.002778 | 0.076557 | 13.0984 | < 2.2e-16 ***
ar2 -0.012943 | 0.109619 | -0.1181 | 0.906011
ar3 -0.014727 | 0.074212 | -0.1984 | 0.842700
intercept -44.205537 | 22.370223 | -1.9761 | 0.048145 *
BCI 0.712808 | 0.222591 | 3.2023 | 0.001363 **
VIX -0.061925 | 0.013005 | -4.7615 | 1.921e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected, all the linear regression parameters now appear to be statistically
significant at the 0.05 level. However, it can be noted from the output of the coefficients
provided above that only the first parameter of the autoregressive component (ϕ1) of
the ARIMA(3,0,0) process fitted seem to be significant. Conversely, ϕ2 and ϕ3 does not
provide evidence to significantly differ from 0, as they exhibit high p-values. Recall that
this output is obtained through the auto.arima function, which automatically searches
for an appropriate ARIMA(p,d,q) fit. However, in this case, the model needs to be
fine-tuned by explicitly specifying the order of the ARIMA process to be used to model
the linear regression’s residuals. In a similar fashion to the path followed previously,
model3 needs to be re-estimated once again, in order to fit an ARIMA(1,0,0) process33

to the error term of the regression. The code below provides the steps implemented to
address the issues aforementioned, from the adjustments needed to the fitting of the
desired ARIMA process to the re-estimation of the model.

33Meaning, an AR(1) process.
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model2 <- Arima(trset$f.CAPE, order=c(1,0,0), xreg=reg)
coeftest(model2)

z test of coefficients:

Estimate | Std. Error | z value | Pr(>|z|)
-------------------------------------------------------
ar1 0.976352 | 0.014136 | 69.0698 | < 2.2e-16 ***
intercept -44.500908 | 21.129299 | -2.1061 | 0.0351936 *
BCI 0.717141 | 0.209982 | 3.4153 | 0.0006372 ***
VIX -0.063350 | 0.011637 | -5.4439 | 5.212e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notably, the two parameters pertaining to the linear regression part of this model
report similar coefficients to the ones estimated through model2. Specifically, BCI

reports a positive correlation (close to 1 as for the previous model) and V IX reports
a negative coefficient (once again, very close to the VIX coefficient for model2). The
intuition provided by this model is consequently consistent with the findings previously
expressed for model2.

Recall from the previous section that, for a statistical model to be validated, it is
not enough to assess whether the relative coefficients carry any statistical significance.
In a similar fashion, model3 needs to be analysed through the model diagnostic pro-
cess, which may encompass both graphical and quantitative tools. Recall also that this
statistical approach primarily aims to establish whether the residuals from the model
under scrutiny may be affected by occurrences of non-stationarity, heteroskedasticity
or autocorrelation. Either of these issues may signal an unreliable model and unable to
correctly capture the data’s nature, thus suggesting necessary adjustments. Neverthe-
less, ARIMAX diagnostic requires a slightly different process compared to the approach
followed to validate model2. This is strictly correlated to the model’s nature: since the
residuals originating from the linear regression have been modelled through an ARIMA
process, model diagnostic is consequently performed on the residuals stemming from the
application of the ARIMA itself. In this context, the tsdiag34 function helps to display
the three most important graphical representations needed to make inferences about
the model’s residuals, which are the standardized residuals, ACF and the Ljung-Box

34The tsdiag function is a useful and common diagnostic tool which mainly works with ARIMA
processes and cannot be applied to standard linear regressions. Hence, it was not used for previous
model diagnostics.
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test statistics plots. Results are pictured in Figure 15.

Figure 15: Diagnostic relative to model3 ARIMAX

These three plots contain significant pieces of information worth commenting on:

• For a model to exhibit a notable and acceptable fit, the standardized residuals
graph (in the top row) should ideally resemble a white noise process, thus fluc-
tuating randomly around zero with constant variance. In this case, the residuals
appear to be stationary (they do not display any trends), suggesting that the
model has captured the underlying process adequately. Additionally, variance
also seems to be constant over time, with an exception made for a few initial
observations. However, these occurrences are very limited in number and they
are typical of financial data. Hence, they do not constitute any threats to the
homoskedasticity assumption of model3;

• The ACF (in the middle row) exhibits values that are largely within acceptable
bounds (represented by the blue dotted lines). The fact that autocorrelation
(always equal to 1 at lag 0) drops to near-zero values from lag 1 onwards presents
strong evidence against the presence of autocorrelation in the error term, implying
that the ARIMA component of model3 correctly modelled the residuals of the
linear regression;
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• Finally, the bottom plot displays the p-values for the Ljung-Box test at various
lags. This test checks for autocorrelation in the residuals at different lags, collec-
tively. If the p-values are above the typical significance level of 0.05 (represented
once again by the blue dotted line), the null hypothesis of no autocorrelation at
those lags cannot be rejected. It follows vividly from the relative plot that all
p-values are above the statistical significance level mentioned, further supporting
the absence of autocorrelation in model3 residuals;

• Some characteristics from the residuals analysed (especially the trajectory pic-
tured in the top row plot) may hint at the threat of the presence of a spurious
regression. This phenomenon may imply that two seemingly related time series
exhibit a notable correlation owing to chance or external factors, rather than gen-
uine causation. The next section will address this potential issue by re-modelling
non-stationary explanatory variables, as well as the independent variable, through
first-differentiation.

Even though the tsdiag function already provided satisfactory results, it is possible
to expand the quantitative side of the Ljung-Box test presented in the bottom plot of
Figure 15. Specifically, this further step may be of interest in order to check the impact
of the declining p-values displayed in the aforementioned plot starting at lag 5. Herein,
the Box.test function implements this test (which in the R snippet is referred to as the
Box-Ljung test); results are reported in the code below, showing a p-value of 0.0706
(above the 0.05 level and coherent to the conclusion of no autocorrelation in model3
residuals).

Box.test(model3$residuals, fitdf = 4, lag=10, type="Ljung")

Box-Ljung test:
data: model3$residuals
X-squared = 11.636, df = 6, p-value = 0.0706

Finally, from the evidence presented in Figure 15 and through the Box-Ljung test,
as well as from the considerations laid out in the points above, it follows that model3
is correctly validated and can be exploited to make predictions about future CAPE
values. Herein, model3 is defined as a linear regression model with parameters BCI

and V IX, paired with an ARIMA(1,0,0) error term. The linear regression backing this
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model is then as follows:

CAPEt = β0 + β1 × BCIt−1 + β2 × V IXt−1 + ϕ1ϵt−1 + ηt

At this point, it is possible to exploit this model in order to assess its accuracy in the
forecasting process. Recall that this is done by applying model3 to the set of explanatory
variables stored in the test set, and then comparing the output with the realised CAPE
values (left out from the training set as well). To this extent, it is worth mentioning
that the predict function used in the forecasting process with model2 is not designed to
support ARIMA processes, hence it cannot be exploited to generate predictions with
model3. In this situation, it is instead convenient to exploit the forecast function,
from the eponymous forecast package. This process is implemented through the code
provided below and estimates one-step ahead CAPE values through model3 ARIMAX.
In a similar fashion to the initial model fitting, the forecast function draws on a matrix
containing the regressors’ observations excluded from the training set.

newdata <- teset %>% select(BCI, VIX) %>% as.matrix()
pred3 <- forecast::forecast(model3, xreg = newdata)

A useful characteristic of the forecast function applied to ARIMAX models is that
it additionally provides upper and lower bounds for different confidence intervals (under
residuals normality assumption, which will be tested below). Herein, Figure 16 pictures
the output of the forecasting process, showing predictions’ mean alongside 95% and
80% confidence interval ranges. The overlying black line represents instead the actual
realised CAPE values, drawn from the test set.

Overall, model3 appears to exhibit notable predictive power against forward CAPE,
up to the unravelling of the COVID-19 pandemic shortly after observation 22035. Specif-
ically, the model still produces satisfactory results in light of the sudden CAPE drop
at the beginning of the year 2020; on the other hand, it does not seem able to keep up
with the large upside movement shown starting from observation 230 (August 2020).
Nevertheless, this situation does not indicate a deteriorating fit of the model but rather
underlines the huge rebound the S&P 500 had following the first pandemic period.
Specifically, this period saw a large increase in the Index’s price, not backed by a pro-

35The number of observations expressed in Figure 16 refers to the whole set of observations. Herein,
predictions (and the test set) start with the 212th observation from the regressiondata dataframe,
corresponding to January 2019, and end in June 2023.
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Figure 16: model3 ARIMAX one-step ahead forecasts

portional rebound in earnings levels. This context created a rare environment in which
the price’s steep upward run was not supported adequately by model3 parameters. Fig-
ure 17 provides evidence of this interpretation, noting that the S&P 500 almost doubled
its spot P/E in a period of time shorter than one year.36 In the subsequent year, the
CAPE ratio for the S&P 500 index started to deflate back to the range of forecasts orig-
inated by model3. Recall that also model2 produced looser predictions relative to this
period (Figure 13). Unfortunately, financial data encompasses extreme events that do
not always find explanations in statistical terms; the COVID-19 pandemic represented
one such period in which financial markets exhibited out-of-frame behaviours.

The impact of some inconsistent and extreme data also reflects in the distribution of
model3 residuals, as pictured by the Q-Q plot37 provided in Figure 18. The assumption
of normality used to compute the model seems to hold for the majority of the dataset,
with the exception of the lower quantile. This circumstance may signal the presence of

36This study refers to spot P/E as the P/E ratio computed with each month’s price and the earnings
of the trailing twelve months, both in real terms.

37The quantile-quantile (Q-Q) plot serves as a graphical tool to evaluate the goodness of fit of a
dataset to a specific distribution. Herein, the calculated quantiles from the data under scrutiny are
plotted against the theoretical quantiles of the distribution which is assumed to be followed by the
dataset. Alignment along a straight line in the plot suggests conformity with the assumed distribution,
while deviations indicate potential disparities.
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Figure 17: S&P 500 spot P/E levels provide a tangible explanation about the CAPE sudden
increase not followed adequately by model3

slightly left-skewed residuals. In this context, it is worth commenting on the distribution
of the residuals shown by model3. As mentioned, they appear to be slightly left-skewed,
meaning that the first quantile seems to depart from the assumption of normality in
the model’s residuals implied in linear regression. Nevertheless, it is important to
note that this circumstance does not invalidate the model and, more specifically, its
predictive power. The assumption of normality in linear regression is fundamental
to the theoretical framework of inferential statistics, encompassing hypothesis testing
and the establishment of confidence intervals. However, the Central Limit Theorem
provides assurance that, with a sufficiently large sample size, the sampling distribution
of the mean will approximate a normal distribution, irrespective of the population
distribution’s shape. Consequently, despite observed skewness in the residuals, the
model retains robustness for prediction purposes. Moreover, it is acknowledged that
financial data frequently deviates from idealized assumptions. In this instance, the
marginal skewness observed in the residuals was determined to have a negligible impact
on the model’s predictive validity (as proved in Chapter 4). Consequently, the model
was deemed suitable for generating dependable predictions.
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Figure 18: Quantile-Quantile plot relative to model3 residuals

The snippet of code provided below displays the output of the accuracy function
used also for model2, in order to be able to compare the level of accuracy of the two
models. However, it is worth mentioning again that the scope of this study does not
rely on forward CAPE values accurate estimates, but it is rather centred on capturing
this metric’s upward and downward trends. As Chapter 4 shows, model2 and model3
exhibit significant results in this context.

accuracy(pred3, teset$f.CAPE)

ME RMSE MAE MPE MAPE
Training set -0.02676369 0.7213908 0.5450894 -0.2143404 2.286704
Test set 3.92146015 4.9545338 3.9707267 11.6118638 11.810382

To conclude this chapter, model3 is used to produce one-month ahead predictions
of CAPE value for the whole dataset. Similarly to model2 estimates, this forecast
set will be used to test different portfolio strategies in Chapter 4. Figure 19 pictures
the results of this fitting process. It is apparent that model3 forecasts exhibit a less
accurate solution with respect to predictions provided by model2 (previously portrayed
in Figure 14). However, recall once again that the scope of this study is not to be able
to forecast precise CAPE values, but rather to test these statistical models’ ability to
predict upward/downward CAPE movements and potentially exploit them in order to
achieve superior portfolio returns. Chapter 4 will test the capabilities of the two models
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Figure 19: model4 one-month ahead estimates on the entire dataset

provided to this extent.

3.5 Dealing with Spurious Linear Regressions

In the previous section, it was mentioned that model3 may pose threats of being a
spurious regression. In time series analysis, this concept relates to the fact that a set of
variables may exhibit a notable correlation with the time series object of analysis, but
this explanatory power may stem from a casual relationship or external factors (i.e. not
included in the model) but correlated with both the dependent and the independent
variable(s). This issue also draws from the fact that financial time series are often
nonstationary or they tend to exhibit long-term autocorrelation. Thus, regressing a
nonstationary series upon another may lead to substantial autocorrelation issues in the
model’s residuals (Ruppert and Matteson (2015)).

In order to address this situation and prove the validity of the findings explored by
model3 (ARIMAX), this section implements a variation of the linear regression model
with ARIMA errors previously presented. Specifically, the regressors suspected of not
being stationary (all of the variables, with the exception of V IX and UNRATE) are
first differentiated. Similarly, the dependent variable (formerly represented by the one-
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step ahead CAPE) has to be adjusted accordingly as well. To this extent, as a shared
best practice used when dealing with financial time series, forward CAPE values are
transposed to a logarithmic series and then first differentiated38. The approach of con-
verting a (nominal) time series using a logarithm function is ”probably the most widely
used transformation in data analysis”, as mentioned in Ruppert and Matteson (2015).
In this context, the use of logarithmic returns (instead of first difference) for the in-
dependent variable provides convenient advantages for statistical inference purposes,
among which:

• The variance of the dataset is stabilised, addressing the issue of heteroskedasticity
often observed in raw financial time series and posing threats to the homoskedas-
ticity assumption in linear regression modelling (with both OLS or MLE estima-
tors);

• The impact of extreme values and outliers (which may represent a notable issue
in the dataset under scrutiny, since it encompasses data from the COVID-19
pandemic, as previously mentioned) is mitigated, limiting the potential distortion
of the results of regression analysis and its robustness.

Following these specific transformations, model4 can be constructed in a similar
fashion to model3, thus by implementing a linear regression model with an ARIMA
error structure. The snippet of code provided below displays the model’s coefficients
computed from this process; notably, the ”d.” preceding the name of a variable means
that it has been first differentiated. Consistently, dl.CAPE implies that the variable
represents the first difference of the logarithmic series of the CAPE values. In so doing,
it may be also considered to represent the logarithmic CAPE change.

38Note that, the process of first differentiating a logarithmic times series implies computing the log-
arithmic returns pertinent to that series. This stems from the fact that ln(pt)− ln(pt−1) = ln(pt/pt−1),
which is the definition of logarithmic returns (also outlined in Chapter 2).

60



z test of coefficients:

Estimate | Std. Error | z value | Pr(>|z|)
----------------------------------------------------------------
ar1 -0.13112527 | 0.06935428 | -1.8907 | 0.05867 .
ar2 -0.18354658 | 0.07507994 | -2.4447 | 0.01450 *
ar3 -0.04381990 | 0.07344324 | -0.5966 | 0.55074
ar4 0.03997135 | 0.07423110 | 0.5385 | 0.59025
ar5 0.15049641 | 0.07162039 | 2.1013 | 0.03561 *
d.Confidence.inst -0.00165206 | 0.00083833 | -1.9706 | 0.04876 *
d.Confidence.ind 0.00182947 | 0.00098807 | 1.8516 | 0.06409 .
d.Valuation.ind 0.00073166 | 0.00085091 | 0.8599 | 0.38987
d.Valuation.inst 0.00118756 | 0.00086563 | 1.3719 | 0.17009
d.CCI 0.03994402 | 0.00741829 | 5.3845 | 7.263e-08 ***
d.BCI 0.04242642 | 0.00674994 | 6.2854 | 3.269e-10 ***
UNRATE 0.00470948 | 0.00077754 | 6.0569 | 1.388e-09 ***
VIX -0.00156809 | 0.00024874 | -6.3041 | 2.898e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As for all of the other models explored in this study, it is important to notice that
only a few regressors appear to be statistically significant (at the 0.05 level), namely:
d.Confidence.inst, d.CCI, d.BCI, UNRATE and V IX. However, re-estimating the
model only encompassing significant variables returns a high p-value for d.Confidence.inst,
which then has to be discarded39. Hence, the final parameters of model4 are d.CCI,
d.BCI, UNRATE and V IX (as shown in the snippet of code below). Notably, the
three latter variables are the same which previously resulted as effectively significant in
the computation of model3. On the other hand, the first-differentiated series from the
Consumer Confidence Index seems to play a significant role in this regression, as well.

39This step is not reported for redundancy and clarity’s sake.
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z test of coefficients:

Estimate | Std. Error | z value | Pr(>|z|)
-----------------------------------------------------
ar1 -0.44327990 | 0.08551742 | -5.1835 | 2.178e-07 ***
ar2 -0.94557912 | 0.05891800 |-16.0491 | < 2.2e-16 ***
ar3 -0.20362079 | 0.07500647 | -2.7147 | 0.006633 **
ma1 0.36453934 | 0.05794597 | 6.2910 | 3.154e-10 ***
ma2 0.87824820 | 0.07805547 | 11.2516 | < 2.2e-16 ***
d.CCI 0.04227228 | 0.00812679 | 5.2016 | 1.976e-07 ***
d.BCI 0.04019823 | 0.00728808 | 5.5156 | 3.476e-08 ***
VIX -0.00156046 | 0.00024186 | -6.4519 | 1.105e-10 ***
UNRATE 0.00465035 | 0.00075666 | 6.1459 | 7.949e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the output presented above, it emerges that all the coefficients tied to the
ARIMA process are significant this time. Since model4 does not need any additional
adjustment efforts up to this point, it can be defined as a linear regression model with
an ARIMA(3,0,2) error term, as follows:

dl.CAPEt = β1 × d.CCIt−1 + β2 × d.BCIt−1 + β3 × VIXt−1

+ β1 × UNRATEt−1 + ϕ1ϵt−1 + ϕ2ϵt−2 + ϕ3ϵt−3

− θ1at−1 − θ2at−2 + ηt

Overall, this result provides evidence in favour of the reliability of the former model,
since they share most of the significant variables and an autoregressive component of
the same order. The usual model diagnostic is performed on model4 and pictured in
Figure 20.

Results displayed in the diagnostic plots are worth commenting on, emphasising the
common points of interest analysed in the preceding sections as well:

• Standardized residuals appear to be stationary with zero mean, with a few in-
stances of large values (e.g. in the initial part of the observations). The same
reasoning made for former models applies, meaning that financial time series may
exhibit such extreme values in a few occurrences;

• ACF provides strong evidence of no autocorrelation in model4 residuals, as for
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Figure 20: Diagnostic relative to model4 ARIMAX

lags > 0 autocorrelation values do not cross the statistically significant threshold
(represented by the dotted blu line);

• Similarly, the Ljung-Box test’s plot displays p-values largely above the statisti-
cal significance level for all of the lag considered, supporting the hypothesis of
uncorrelated residuals.

The usual quantitative implementation of the Ljung-Box test (as follows) confirms
the graphical intuition stemming from the plot mentioned above, returning a p-value
for the test statistic of 0.3422 (again, largely above the 0.05 significance level.

Box.test(model4$residuals, fitdf = 4, lag=10, type="Ljung")

Box-Ljung test
data: model4$residuals
X-squared = 6.7747, df = 6, p-value = 0.3422

Hence, model4 is considered correctly validated from a statistical point of view.
Remarkably, considering the models tested until this point, it also appears to be the
most sensible one, in strict terms of forecasts’ accuracy. Notably, Figure 21 displays a
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Figure 21: Comprehensive overview of model4 performance and analytics

comprehensive picture of the three points of focus on which previous analysis similarly
lingered:

• The top row plot outlines the one-month ahead predictions for the dl.CAPE vari-
able (meaning, the forward CAPE logarithmic returns) on the test set. Notably,
as for the estimates provided by model3, the shaded areas surrounding the main
forecast line represent the 95% and 80% confidence intervals, respectively, assum-
ing normality. It appears from this graph that model4 is able to accurately pick
up the sharp decline corresponding to the beginning of the COVID-19 pandemic,
as well as the subsequent rebound to initial logarithmic levels. This feature of
model4 is not shared with the former models, which conversely displayed a higher
discrepancy in this circumstance;

• The Q-Q plot (shown in the bottom-left corner) displays similar overall results
with respect to model3. Specifically, once again the first quantile’s dynamic ap-
pears to be hinting at a slightly left-skewed distribution, while the normality
assumption seems to well capture the majority of residuals. The same comments
made on model3 Q-Q plot apply;

• Finally, the plot pictured in the bottom-right corner shows the estimates, com-
puted through model4, for the whole dataset, with the relative 95% and 80%
confidence intervals (light blue lines).
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4 CAPE-Based Portfolio Strategies

4.1 Theoretical Strategy Basis

Academic literature, as presented in Chapter 1, extensively argued that low-P/E ra-
tio portfolios systematically seemed to deliver superior returns, compared to high-P/E
investments, even after controlling for the level of risk carried by these different strate-
gies. Evidence of the tendency of low-P/E stocks to outperform high-P/E ones emerges
vividly from the conclusions drawn in Basu (1977), Chahine and Choudhry (2004),
Weigand and Irons (2005), Huang et al. (2007), Aga and Kocaman (2006) and Kelly
et al. (2008). In this context, P/E and CAPE were also broadly tested as potential
explanatory variables for future economic outlooks, as represented by the S&P 500 and
other foreign equity market indexes (Kane et al. (1996), Campbell and Shiller (1988)
and 2001, Aras and Yilmaz (2008), Angelini et al. (2013), Allahyaribeik et al. (2020),
Kenourgios et al. (2022)).

Focusing instead on a different framework, a notable part of the literature men-
tioned explored the influence that investors’ behaviour (intended as sentiment, emo-
tional reactions, hopes and fears) appears to exercise on market returns (Fisher and
Statman (2000) and 2003, W. Y. Lee et al. (2002), Akintoye (2008), Bathia and
Bredin (2012), Smales (2017), Campisi and Muzzioli (2020), Wang et al. (2021)). No-
tably, the considerations provided by the authors in this field of research are coherent
with the results outlined in Chapter 3, where both model2 and model3 found that be-
havioural variables retain significant predictive capability against forward CAPE values.

Encompassing both of the points of interest presented above, this study proposes
to further strengthen the framework around the CAPE ratio by incorporating into one
theory the two concepts outlined by the academic literature. To this extent, the next
sections exploit model2, model3 and model4, as constructed in Chapter 3 around in-
vestors’ behaviour-centred variables, to implement three different investment and port-
folio management strategies, specifically:

• Long CAPE: this strategy implies entering into a long position in one unit of the
S&P 500 Index for the upcoming month, where the model used (model2/ model3/
model4) forecasts an upward CAPE movement for that period. If, conversely,
predictions indicate a decline in the CAPE ratio value for the following month,
the investor will maintain a neutral position, thus exiting the market if he was
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invested in the previous period or not opening any new positions in case he was not
already invested. This methodology aims to exploit the positive financial leverage
effect provided by CAPE uptrends, whose effects were explored in Chapter 2;

• Long/Short: this strategy builds on the Long CAPE approach mentioned above,
replicating the same process in the case of positive forward CAPE expectations.
However, the fundamental variation provided by this approach is that, where the
forecasting model predicts a downward shift of the CAPE ratio for the following
month, the investor will enter into a short position, thus short-selling one unit
of the S&P 500 Index (instead of remaining ”outside” of the market, as in the
Long CAPE strategy). This strategy tests the extent to which negative CAPE
expectations may be exploited to bet against the market and achieve even higher
returns;

• Leveraged Long: as the name suggests, this approach aims to replicate the
first strategy, but exploits a leveraged (long) position when the forecasting model
predicts a larger increase in the CAPE ratio. Herein, where predictions expect this
metric to rise at a monthly rate of > 2%, the investor will leverage its position40

for 25% of its value. It is worth noting that while a leveraged position may increase
returns, it also increases the risk of significant losses of the same magnitude. For
this reason, if the forecasting models chosen would not prove accurate in spotting
large potential movements, this strategy could in turn provide worse results than
the Long CAPE one.

Overall, implementing these portfolio management strategies on model2, model3
and model4 predictions has the double scope of (i) testing whether these models are
capable of efficiently capturing CAPE trends and (ii) assessing the extent to which
investment methodologies based on the CAPE ratio’s expected movements may be
used in practice to achieve superior portfolio returns. This latter point of interest is
remarkable for one particular reason. To the best of the author’s knowledge, this is the

40There are several ways to implement a leveraged position in the stock market. The most common
approaches are represented by the use of financial derivatives, borrowing or leveraged exchange-traded
funds (ETFs). Derivatives like options and futures allow investors to control large amounts of stocks
with relatively small capital outflows. Borrowing to invest, commonly referred to as ”buying on
margin”, involves using funds borrowed from a broker to purchase more securities than what the
investor could do with his own funds. Leveraged ETFs are financial vehicles built to deliver multiples
(e.g. 2x, 3x) of the daily performance of the index they track. This study does not discriminate on
the means to achieve a leveraged position, since it does not impact the final result of the strategy.
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first academic study testing the viability of exploiting movements in CAPE valuations to
enhance a portfolio’s profitability. Several works (mentioned in the literature presented
in Chapter 1 and in this section) based different investing strategies on P/E and CAPE
absolute values. Herein, the approach which this study referred to as value investing is
based on findings showing that low-CAPE stock portfolios appeared to systematically
outperform high-CAPE ones, which instead seemed to deliver below-average returns.
In this context, this research argues that the most important underlying factor is not
the nominal value of the CAPE ratio, but rather the direction of this metric’s trajectory
in the subsequent investment period. This chapter explores the argument according to
which overall low CAPE values were not the actual strength of value investing strategies
per se, but they only indicated an increased probability that CAPE valuations would
reverse to their historical (higher) mean, thus following an upward movement for the
subsequent periods. The same argument may be similarly used to disregard the other
side of the theory, under which high-CAPE values are systematically tied with below-
par returns. Indeed, this study argues that high CAPE values may only warn about an
enhanced probability of a decline in this metric, but do not constitute a negative stock
factor per se.

To compare the performance of the aforementioned strategies, the relative invest-
ment benchmark selected is a ”buy and hold” strategy in the S&P 500, consisting of
entering into one long position at the start (t = 0) and never adjusting the portfolio ex-
posure again. The following two sections will implement the strategies discussed above
using model2 (linear regression model with Newey-West estimator for robust standard
error), model3 (linear regression model with ARIMA error terms) and model4 (first-
differentiated ARIMAX based on logarithmic CAPE series), respectively. All of the
portfolio simulations presented are based on the one-month ahead predictions made on
the whole dataset of data available, as mentioned in Chapter 3. Finally, it is impor-
tant to acknowledge that the three portfolio strategies investigated in this study do not
incorporate the adverse impact of trading costs, short-selling fees and taxes on invest-
ment returns. This omission is attributed to the significant variability of these factors
across investors’ capital, jurisdiction of residence, brokerage specifications and other
pertinent variables. Nevertheless, to offer a comprehensive understanding of the poten-
tial influence exerted by these components on the efficiency of the strategies proposed,
a simulation assessing their effects will be presented in the concluding section.
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4.2 Investing Strategies with Behavioural CAPE-based Model

The three investment strategies, outlined in the previous section, are based on the
discriminant of whether one-month ahead predictions of the CAPE ratio are increasing
(upward) or decreasing (downward). Herein, incorporating a dummy variable (DV ) in
the methodology tested represents a useful statistical approach, enabling the control
of categorical factors and the assessment of their impact on the dependent variable. A
dummy variable (or indicator variable) is generally a binary factor whose only scope is
to discriminate between the presence or the absence of some categorical effect that may
be expected to shift the outcome of a statistical model. In this context, the categorical
factor to which the dummy variable should refer to is the presence of positive CAPE
forecasts (for which DV will take a value of 1) or not (DV = 0). Herein, the term DV

is computed as follows:

DVt =

1 if ˆCAPEt − ˆCAPEt−1 ≥ 0

0 if ˆCAPEt − ˆCAPEt−1 < 0

where ˆCAPEt and ˆCAPEt−1 represent the one-month ahead predictions of CAPE
values made at time t and t − 1, respectively.

The snippet of code provided below presents the step necessary to implement the
DV into the dataframe containing the final estimates used for the portfolio simulation
(sim)41.

sim$DV <- c(NA, ifelse(diff(sim$pred.CAPE)<0,0,1))

After implementing the dummy variable through the process described above, it is
possible to compute cumulative logarithmic returns to compare the performances of
the two investments. Recall that Chapter 2 outlined the mathematical process behind
the computation of both simple and logarithmic cumulative returns. Also recall that,
in that circumstance, the latter methodology resulted in a more appropriate solution.
Nevertheless, the strategy tested here is built on the same underlying portfolio (consti-
tuted by the S&P 500 Index) of the benchmark referred to. For this reason, there is no
need to use logarithmic returns, as these two investments are directly comparable.

41It is worth mentioning that the first value of the DV column is put as an NA. The reason for
this is the fact that DV, by definition, is computed through estimate differences. Thus, at t = 0, only
one estimate is available and it is not possible to assess whether it implies an upward or downward
movement.
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In order to include the dummy variable, simple cumulative returns for the Long
CAPE strategy are computed as follows. Let ptft be the value of the portfolio at time
t. Similarly to Chapter 2, the notional amount invested at time t = 0 is chosen to be
1, while for 1 ≤ t ≤ k − 1 (where k is the number of observations in the whole dataset,
including both training and test sets42) cumulative returns are computed recursively:

ptft =

1 if t = 0

ptft−1 × (1 + S&P 500 returnt × DVt) if 1 ≤ t ≤ k − 1

Cumulative returns are computed similarly for the S&P 500 buy-and-hold (B&H)
benchmark, leaving out the DV term since it only refers to the strategy tested. Figure
22 pictures the overall performances of the Long CAPE strategy on the S&P 500 versus
a buy-and-hold approach on the same index.

Figure 22: Long CAPE strategy vs. S&P 500 buy-and-hold

It appears vividly from the plot that the Long CAPE investing approach yielded
remarkable results. In the 12 years ending as of the last observation’s date of the

42As mentioned throughout Chapter 3, the models explored have been constructed on the training
set (comprising n observations) and tested on the test set (with m observations). Finally, portfolio
simulations are implemented exploiting the entire range of data available, meaning k = n + m
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dataset (July 2001 - June 2023), the notional amount invested in the S&P 500 with
a buy-and-hold strategy (represented by the blue line) grew to a portfolio value of
2.1, implying a total cumulative growth43 of ≈ 110% (or an average yearly return44

of ≈ 6.4%). On the other hand, the Long CAPE strategy yielded a total cumulative
growth of ≈ 701% (or ≈ 18.93% in yearly terms), with the simulated portfolio growing
up to a value of 8.01. Hence, the Long CAPE portfolio provides significant evidence
of both (i) model2 capabilities in forecasting CAPE upward shifts and (ii) the viability
of exploiting a portfolio management strategy based on this ratio to achieve superior
returns. Notably from Figure 22, the enhanced performance of the tested strategy
particularly reflects on model2 accuracy in predicting two harsh drawdowns which hit
the market during the subprime mortgage crisis and the COVID-19 pandemic, avoiding
significant losses.

The second strategy discussed was referred to as Long/Short, underlining its focus
on exploring both sides of the CAPE ratio leverage effect. Similarly to the previous ap-
proach, a DV is introduced in the model. However, its definition is adjusted accordingly
to the scope of this strategy, as follows:

DVt =

1 if ˆCAPEt − ˆCAPEt−1 ≥ 0

−1 if ˆCAPEt − ˆCAPEt−1 < 0

The equations outlined above provide that in case of a lower expected CAPE for the
subsequent month, the investor will enter into a short position (−1) on the underlying
portfolio, thus earning a capital gain if the S&P 500 declines, and vice versa. In so doing,
the DV successfully allows the investor to capture the potential of both expected CAPE
uptrend and downtrend movements. Figure 23 pictures the results of this strategy.

Remarkably, the Long/Short approach appears to largely enhance the investing ap-
plication of model2, providing an astonishing cumulative return of ≈ 2390% in the
near 12 years of the period under scrutiny (translating into an average annual return of
≈ 30.7%). Notably, declines in the strategy trajectory (represented by the purple line)
underline periods in which model2 was not able to correctly forecast the direction of the
CAPE ratio for the subsequent month, in either direction. Conversely, an increasing

43From the simple cumulative return formula expressed in Chapter 2, it follows that: CR = 1 +∏n
i=1(1 + Returni) = ptfi − 1.
44Cumulative returns can be transposed in yearly terms by computing their geometrical average, as

follows: Average AR = (1 + CR)
1

n of years − 1.
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Figure 23: Long/Short strategy vs. S&P 500 buy-and-hold

trajectory implies the model successfully predicting upward/downward CAPE shifts.

Finally, the last strategy implemented using forecasts from model2 is the Leveraged
Long. This approach aims to test whether above-average CAPE shift expectations may
be exploited to produce additional portfolio returns, with respect to the Long CAPE
strategy. Herein, this methodology also explores whether model2 is able to capture the
magnitude of CAPE trends. The dummy variable needs to be adjusted accordingly
again, in order to specify the periods in which to leverage the position. To this extent,
define a variable c.CAPE computing the percentage change in expected CAPE values,
such that:

c.CAPEt =
ˆCAPEt − ˆCAPEt−1

ˆCAPEt−1

Hence, DV will be defined as follows:

DVt =


0 if c.CAPEt < 0

1 if 0 ≤ c.CAPEt < 0.025

1.25 if c.CAPEt ≥ 0.025

Stemming from the equations outlining the dummy variable, in months where model2
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forecasts an increase in the CAPE ratio of 25%, the return earned by the portfolio will
be leveraged by a factor of 1.25. If, on the other hand, this circumstance is not verified,
the portfolio will similarly follow a Long CAPE approach. Figure 24 pictures the result
of this strategy.

Figure 24: Leveraged Long strategy vs. S&P 500 buy-and-hold

The Leveraged Long strategy appears to perform better than Long CAPE, yielding
a total cumulative return of ≈ 880% (corresponding to an average return of ≈ 20.9% in
annual terms). This fact provides evidence of model2 capabilities to capture significant
jumps in forward CAPE valuations and the viability of exploiting these above-average
movements to achieve higher portfolio returns.

To bring this section to a comprehensive conclusion, it is useful to provide a joint
overview of all three strategies explored. Herein, Figure 25 picture a clear overview of
the comparison between the different performances explored in this section.
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Figure 25: CAPE-based strategies (model2) vs. S&P 500 buy-and-hold

4.3 Investing Strategies with ARIMA-errors Model

The same three portfolio strategies (Long CAPE, Long/Short and Leveraged Long)
described in the previous section may be implemented using predictions generated from
model3. The equations used to make predictions and to compute the appropriate
DV for each strategy are the same as those explored for model2, hence they are not
repeated here. Additionally, since the previous section already detailed the process of
implementing the three different approaches mentioned, this part will not provide a
separate focus for each strategy. Instead, Figure 26 provides a comprehensive overview
of the performances of the three strategies, this time based on model3 estimates.

Notably, there are some similarities, as well as a few significant differences (with
respect to what was shown in Figure 25), which are worth commenting on:

• Overall, all three strategies proposed appear to largely and consistently outper-
form the S&P 500 Index, with similar trajectories compared to the same strategies
applied through model2. This is a quite remarkable result considering that a buy-
and-hold strategy in such a diversified index is often argued to be one of the most
efficient investing strategies providing steady returns;
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Figure 26: CAPE-based strategies (model3) vs. S&P 500 buy-and-hold

• The Long CAPE strategy yielded a ≈ 476% cumulative return in the 12 years
of simulated performance, transposing to an average annual return of ≈ 15.7%.
This represents a considerably worse performance compared to the same approach
implemented with model2 (which provided an annual return of 18.9%), confirming
the points of interest touched before;

• The Long/Short approach appears to be once again the most profitable, by a large
margin. In this simulation, the portfolio following this strategy achieved a total
cumulative return of ≈ 1181% (or ≈ 23.7% in annual terms). Similarly to Long
CAPE, this result appears to be inferior to the performance achieved through
the same strategy based on model2 (which yielded an average annual return of
30.7%);

• Finally, the Leveraged Long approach provides a slightly enhanced performance
with respect to the Long CAPE strategy, also for this model. Figure 26 shows
that Leveraged Long (represented by the green line) has yielded a higher return
consistently for the whole investment period. However, also note that this strategy
outperforms Long CAPE only by a thin margin, while for the majority of the
time, the two methodologies were almost interchangeable. This intuition suggests
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that large CAPE shifts do not occur often and cannot be relied on to achieve
a significantly superior portfolio management strategy Hence, Leveraged Long
achieved a cumulative return of ≈ 553% (or ≈ 16.9% in annual terms) which,
while still being slightly superior to the Long CAPE strategy, is considerably
lower than the same approach backed by model2 (≈ 20.9% annual return).

4.4 Investing Strategies with First-Differenced-Logarithmic ARI-
MAX Model

Bringing this chapter to a comprehensive conclusion, the three investment strategies
previously outlined are tested for estimates stemming from model4 as well. Note that,
since this model encompasses logarithmic CAPE variations as the independent variable
(rather than the nominal CAPE itself), the construction of DV has to be adjusted
to reflect this factor accordingly. Recall that the Long CAPE strategy discriminates
whether the expected one-month ahead CAPE value is higher than the one pertaining
to the current month. In model4, this circumstance is addressed by requiring that
logarithmic variations should be > 0. Specifically:

DVt =

1 if ˆdl.CAPEt ≥ 0

0 if ˆdl.CAPEt < 0

where ˆdl.CAPEt represents one-month ahead predictions of logarithmic CAPE move-
ments. The second strategy tested (Long/Short) requires a similar approach, but recall
that DV should reflect a value of −1 in case of negative expectations, in order to cap-
ture the short-selling performance of the portfolio when forecasting a decline in CAPE.
For this reason, the dummy variable relative to Long/Short is defined as follows:

DVt =

1 if ˆdl.CAPEt ≥ 0

−1 if ˆdl.CAPEt < 0

Lastly, the Leveraged Long strategy requires one additional consideration, before
computing the final DV . This is due to the fact that model4, as mentioned, produces
forecasts on the logarithmic change in CAPE value, the factor c.CAPE exploited for
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previous models needs to be adjusted accordingly. Since, in this case:

ˆdl.CAPEt = ln( ˆCAPEt) − ln( ˆCAPEt−1) = ln
( ˆCAPEt

ˆCAPEt−1

)

and c.CAPE represent the percentage change in CAPE value, defined as

c.CAPEt =
ˆCAPEt − ˆCAPEt−1

ˆCAPEt−1
=

ˆCAPEt

ˆCAPEt−1
− 1

then it must follow that

c.CAPEt = exp( ˆdl.CAPEt) − 1

From here, the DV for the Leveraged Long strategy applied through model4 estimates
may be computed similarly to what was mentioned for previous models, specifically:

DVt =


0 if c.CAPEt < 0

1 if 0 ≤ c.CAPEt < 0.025

1.25 if c.CAPEt ≥ 0.025

The reiterating portfolio value is then computed encompassing the different dummy
variables explored for the three different strategies, as follows:

ptft =

1 if t = 0

ptft−1 × (1 + S&P 500 returnt × DVt) if 1 ≤ t ≤ n − 1

Similarly to the previous section, Figure 27 displays an overall picture of the perfor-
mance achieved by the three strategies, applied through estimates from model4.

As mentioned in the last section of Chapter 3, this model appeared to be the most
precise in terms of accuracy of capturing CAPE shifts. Herein, Figure 27 provides clear
evidence of this fact, noting that:

• The portfolio based on the Long CAPE strategy achieved a cumulative return of
≈ 970% in the period under scrutiny, corresponding to an average annual return
of ≈ 21%. Note that this result is considerably higher than the same approach
implemented through the former models. Also, it appears from the plot that for

76



Figure 27: CAPE-based strategies (model4) vs. S&P 500 buy-and-hold

the period starting in April 2021, this strategy displays a flat trajectory. This is
due to the fact that, for the corresponding period, model4 appears to predict a
consistently downward CAPE trend;

• Once again, Long/Short retains its title of most profitable investment strategy,
achieving an astonishing cumulative return of ≈ 4278% (or ≈ 36.96% in an-
nual terms). This result represents the best performance by any strategy applied
through any of the models analysed in this study, by a notably large margin;

• Finally, the Leveraged Long strategy confirms the intuition mentioned throughout
previous sections regarding the low reliability of such a strategy to achieve a
significantly better performance than the base Long CAPE approach. Specifically,
such a portfolio returned a cumulative return of ≈ 1187%, transposing to an
average annual return of ≈ 23.7%. Similarly to the two other strategies, this
performance is still superior to the one achieved by exploiting model2 and model3.

To recapitulate the most important point of interest outlined in this chapter, it is
possible to conclude that all the three strategies presented, implemented through the
three models constructed in Chapter 3, achieved notable results in the context of pro-
viding different portfolio management methodologies able to outperform the benchmark
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of a buy-and-hold investment in the S&P 500 Index. Specifically, this study provided
significant evidence in favour of a Long/Short strategy systematically displaying the
highest profitability, outperforming the other two strategies by a large margin. This
finding is especially remarkable considering that, as mentioned at the beginning of this
Chapter, this study has a pioneeristic role in this field, as CAPE movements were not
explicitly taken into consideration in any of the previous academic literature, to the
best of the author’s knowledge.
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5 Final Thoughts and Conclusion

This study aimed to redefine the academic framework surrounding the field of financial
forecasting through the Cyclically-Adjusted Price-to-Earnings (CAPE) ratio. Specifi-
cally, it was argued that employing this metric as an explanatory variable to predict
future price levels constituted a rather inconvenient and outdated approach. The rea-
son behind this intuition is underlined by the empirical analysis relative to the S&P
500 Index presented in Chapter 2, which provided evidence about how the Index’s price
level is ultimately largely driven by earnings growth (or decline) of the underlying com-
panies. This factor’s impact on the S&P 500 returns was labelled as the Index’s organic
component. Additionally, this study introduced the concept of speculative component
as well, measured as the difference between total S&P 500 returns and earnings growth.
Herein, it was concluded that speculative market dynamics largely affect the Index’s
price in the short- and mid-term, while extending the analysis on a longer horizon
provides evidence that the speculative component tends to average out, implying that
returns are ultimately fuelled by organic companies’ growth.

Following the empirical intuitions aforementioned, this study argued that rather than
using the CAPE (or P/E) ratio as a potential explanatory variable, it would have been
of greatest interest attempting to shift its role as the centre of attention of a statistical
analysis. Specifically, the scope behind this process stemmed from the finding that,
where the S&P 500 price struggled to align with underlying companies’ earnings, the
Index generated higher/lower returns (as represented by the speculative component
previously introduced).

Herein, this research tested and successfully assessed the impact of variables related
to investors’ behaviour and population’s sentiment on the CAPE ratio, outlining the
extent to which this metric appears to be notably correlated with optimism/pessimism
dynamics implied by the U.S. economy. These variables showed significant predictive
capabilities for one-month-ahead CAPE movements. Hence, Chapter 3 found that the
main behavioural variables displaying notable correlation with forward CAPE values are
mainly represented by the Business Confidence Index and the Implied Volatility Index
(which were found to be statistically significant in all three models analysed). Addi-
tionally, the Unemployment Rate and the Consumer Confidence Index also displayed
significant predictive capabilities. Specifically, it is possible to provide a summary on
the process behind each model, as well as the different final parameters retained:
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• model2 was built as a linear regression exploiting a HAC robust error structure.
This model encompassed the Newey-West estimator in order to compute an ad-
justed variance-covariance matrix which could address the evidence of residuals
autocorrelation and heteroskedasticity found through the model diagnostic pro-
cess. The final form of the model was concluded to be the following:

Intercept VIX BCI UNRATE
Coefficient -82.512 -0.086 1.176 -1.407
Std. Error 13.808 0.02 0.136 0.072

Table 1: model2 parameters

• On the other hand, model3 exploited the common approach to financial time series
modelling of incorporating an ARIMA process in the regression’s error structure.
Herein, this model resulted in a linear regression model with an ARIMA(1,0,0)
error term. Hence, model3 parameters were proven to be the following:

Intercept VIX BCI ar1
Coefficient -44.501 -0.063 0.717 0.976
Std. Error 21.129 0.012 0.21 0.014

Table 2: model3 parameters

• The last model analysed (model4) exploited first differentiation for non-stationary
variables, exploring the correlation with logarithmic CAPE shifts. Herein, it
was found that this model, stemming from its higher complexity, was also the
one which more accurately seemed to capture the CAPE trajectory. Specifically,
model4 was built as follows:

d.CCI d.BCI VIX UNRATE
Coeff. 0.042 0.04 -0.002 0.005

Std. Error 0.008 0.007 0.0002 0.0008

ar1 ar2 ar3 ma1 ma2
Coeff. -0.443 -0.946 -0.204 0.365 0.878

Std. Error 0.086 0.059 0.075 0.058 0.078

Table 3: model4 parameters

Finally. Chapter 4 tested three different investing strategies, based on different
methodologies of managing a portfolio built around one unit of the S&P 500 Index. Each
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strategy (Long CAPE, Long/Short and Leveraged Long) was designed to test different
extents to which was possible to exploit CAPE movements to achieve higher portfolio
returns, with respect to a standard buy-and-hold strategy on one unit of the same index.
This concept represents what was defined in Chapter 2 as the financial leverage effect
provided by the CAPE ratio. Specifically, one-month ahead CAPE estimates derived
from model2, model3 and model4 were used to evaluate whether CAPE was expected to
move upward or downward in the following month and to adjust the portfolio according
to the different strategies tested.

Remarkably, this study found that all three strategies proposed, applied through
all three models, systematically provided significantly superior returns, compared to
the benchmark aforementioned. Notably, the Long/Short approach yielded the best
results for each model specification, providing an average annual return of approxi-
mately 30.7%, 23.7% and 37% (for model2, model3 and model4, respectively), against
the notably inferior performance of the S&P 500 buy-and-hold portfolio, whose average
annual return assessed on a much lower 6.4%). This enhanced performance stems from
(i) the ability of the constructed models to forecast upward/downward shifts in the
CAPE ratio for subsequent months (even though, as mentioned in Chapter 3, they did
not seem to provide much accuracy in terms of nominal values, with the exception of
model4) and from (ii) the tested viability of the CAPE ratio to provide a leverage effect,
by providing more- or less-than-proportional returns compared to earnings growth of
the companies underlying the portfolio.

Recall that all the simulations stemming from the CAPE-based portfolio manage-
ment approaches proposed were implemented without taking into consideration the neg-
ative impacts of transaction costs, brokerage fees, tax effects and other similar factors
which could hamper the cumulative investment returns, for the reasons aforementioned.
Nevertheless, it is possible to provide evidence of these strategies proving effective and
profitable (with respect to the usual S&P 500 buy-and-hold benchmark), even account-
ing for the potential impact of these negative components. To this extent, Figure 28
pictures the performance of the three approaches proposed in this study, based on
one-month ahead expectations forecasted by model4, assuming that the investor would
incur a 2% transaction fee every time he adjusts the portfolio’s exposure.

Notably, all three strategies still appear to outperform the S&P 500 buy-and-hold
investment, with Long/short similarly representing the most profitable methodology
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Figure 28: CAPE-based strategies (model4) with 2% transaction costs

by a considerable margin. Overall, the effect of a 2% transaction fee has the impact
of approximately halving the cumulative return achieved by the portfolio management
approaches explored. Specifically:

• Long CAPE displays a total cumulative return of ≈ 387% (compared to ≈ 970%
achieved assuming the absence of transaction fees). Hence, this strategy resulted
in being the most hampered by the occurrence of investment costs, reducing the
final cumulative value of the portfolio by ≈ 60%;

• The presence of investment costs impacted Long/Short by decreasing its cumu-
lative returns to ≈ 2325% (from ≈ 4278%). However, even accounting for poten-
tial negative factors, this strategy still significantly outperformed the S&P 500
buy-and-hold portfolio, providing evidence in favour of the potential practical
application of this study’s finding in real investment scenarios;

• Lastly, Leveraged Long’s cumulative performance declined from ≈ 1187% to ≈
538%;

• Conversely, it is important to note that the performance of the S&P 500 buy-
and-hold strategy remains unchanged compared to previous representations, since
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the definition of the benchmark in question requires that the portfolio is never
adjusted throughout the investment period analysed.

This study shed light on an alternative view relative to the role of the CAPE ratio in
investment strategies, exploring portfolio simulations on the set of data encompassing
the S&P 500 Index, from August 2001 to May 202345, paired with the selected be-
havioural variables extensively described throughout this work. To conclude, it is worth
mentioning as a disclaimer that the implementation of the methodologies discussed may
vary depending on the current condition of financial markets and the investor’s bro-
kerage account (e.g. short-selling and leveraged positions may not be allowed or the
margin required may change significantly depending on the current interest rates level),
as well as on the tax rate applied in different jurisdictions, among other similar factors.
Additionally, the Long/Short and Leveraged Long approaches require an increased risk
exposure, by definition. Hence, this implies that the strategies explored in this study
may result attractive and efficient only to a selected group of professional investors. As
a final remark, also note that this work did not argue nor test that the propositions
mentioned applied to other countries, stock indexes or equity market instruments.

45The original dataset, as described at the beginning of Chapter 3, included observations from
July 2001 to June 2023. However, due to the computation of variables such as forward CAPE and
differentiated series, the final simulations have been carried out on the horizon mentioned in this
paragraph.
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