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1 INTRODUCTION 
 

Nowadays, the progressive increase in the global average temperature has emerged as the foremost 

consequence of climate change, posing a significant threat to sustainable development due to its 

impacts on the environment, economy, and society. Particularly, Tochaiwat et al. (2023) described 

the loss of thermal comfort for population of urban areas as major threat to society during summer, 

with direct and indirect effects on the economy and environment. 

To date, efforts to combat excessive summer temperatures within cities have focused on downstream 

solutions, such as air conditioning systems, to cool indoor spaces within artificial structures. 

However, this choice proved to be unsustainable because of the significant economic and 

environmental costs. For example, the increased cooling energy consumption in summer season 

causes both a high economic expense for the purchase of electricity and a high environmental expense 

related to its production (Li et al., 2019). As a consequence, climate change becomes self-sustained, 

creating a dangerous loop that affects not only human beings but also all ecosystems and their 

processes. Moreover, focusing on ensuring comfort within facilities has not solved the problem of 

high temperatures for those who engage in outdoor activities, and summer heatwaves are still a major 

cause of public health resulting in high healthcare costs (Singh et al., 2020). 

During the summer period, highly artificial areas experience a greater temperature increase compared 

to more natural areas, thus amplifying the increase in temperatures linked to climate change. This 

phenomenon is called Urban Heat Island (UHI) effect and highlights a temperature increase between 

5 and 10°C (Heaviside et al., 2017) in urban area compared to surrounding rural areas, primarily due 

to the increasing of artificial elements and human activities (Mohajerani et al., 2017). Urbanization 

implies the replacement of natural and seminatural elements in favour of artificial ones. Artificial 

buildings and structures within cities absorb and retain heat from the sun, causing surfaces and local 

climate to become much hotter than in natural and seminatural elements. Indeed, artificial elements, 

composed by artificial material, do not provide a cooling effect just as the natural elements due to the 

presence of vegetation (Jacobs et al., 2020). At the same time, urbanization increases the intensity of 

several human activities that release heat. One of the most significant activities is air conditioning of 

buildings, which inherently generates a greater level of heat (Grimmond, 2007). Additionally, the 

contribution of other human activities on enhancing UHI effect was highlighted by the Covid-19’s 

pandemic lockdown where, according to (Wai et al., 2022), in five international cities the UHI 

intensity has reduced. 

Secondly, the wind blocking effect by buildings and the local release by human activities of heat and 

pollutant, as Greenhouse Gasses (GHGs) or particulate matter, also contribute to the UHI effect 
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(Singh et al., 2020). The reduction of wind within cities creates a more stagnant air more difficult to 

be mixed with cooler air from nearest areas through the convective heat transfer (Yan et al., 2022). 

Air mixing is also hindered by the high temperature itself that causes the instauration of local Hardley 

type of circulation that does not allows the dispersion of pollutants outside the urban area (Oke, 1974). 

In addition, pollutants that include GHGs and particulate matter absorb and hold part of infrared 

radiation emitted from the ground creating a local greenhouse effect. Moreover, high temperature 

increases photochemical smog production rate, enriching the air of more dangerous pollutants. 

Therefore, there exists a synergy between UHI and urban pollution island (Ulpiani, 2021) that further 

threats human health.  

Additionally, the increase in temperature and the decrease in ventilation result in an increase in 

relative humidity that fosters the UHI effect reinforcing the loss of thermal comfort. As a result, the 

physiologically equivalent temperature (PET) further increases causing heat stress for humans (Fahed 

et al., 2020).  

Recently, research highlighted the crucial role that natural land cover can play in supplying a cooling 

effect service in urban areas, thereby possibly representing an upstream solution able to ensure 

thermal comfort and sustainability simultaneously (Tochaiwat et al., 2023). Indeed, several studies 

emphasised the benefits for the economy and society given by cooling effect service related to natural 

and seminatural landscape elements, such as the protection of human health (Norton et al., 2015; Jay 

et al., 2021) or the reduction of energy consumption to lower temperature inside buildings (Elmqvist 

et al., 2015). 

According to Su et al. (2022) the vegetation present in green landscape elements provides cooling 

effect essentially through canopy shading and evapotranspiration. Canopy shading induces the 

sheltering effect of sunlight. This phenomenon refers to the canopy’s ability to protect the underlying 

ground from the direct sunlight, thereby reducing the ground adsorption of energy and lowering the 

ground temperature. The subsequent decrease in infrared radiation emissions from the ground in turns 

leads to a reduction of local temperature. Conversely, evapotranspiration, changing the state of water 

from liquid to gas, consumes the energy provided from the sunlight as latent heat of evaporation, 

thereby reducing sensible heat which is responsible for increasing ground temperature. In this way a 

decrease in ground temperature leads to a reduction in the emission of infrared radiation from the 

ground, reducing the local temperature. 

Moreover, Sugawara & Takamura (2014) observed that the presence of vegetation in urban areas 

increases albedo, providing a brighter surface than artificial urban materials. Scientific research has 

already confirmed the existence of a negative relationship between albedo and local temperature 



6 

(Andrés-Anaya et al., 2021; Tahooni et al., 2023), because of the lower amount of energy absorbed 

by physical bodies within artificial areas. 

It is also important to consider that vegetation, through the sequestration of CO2 which primarily 

results is an increase of the average global temperature, has a strong capacity to mitigate climate 

change. Therefore, vegetation provides thermal comfort even in the long term on a global scale. Thus, 

limiting urbanization on a large scale with proper landscape management and the restoration of green 

elements in human dominated areas may be an effective way to restore the thermal comfort directly 

and indirectly through climate change mitigation (Shadman et al., 2022). Despite some recent 

literature questioned the contribution of urban vegetation to climate change mitigation through e.g., 

carbon stock (e.g., Velasco et al., 2016; Zhang et al., 2022), several studies are consistent in 

highlighting that confirmed it is indubitable that the removal and fragmentation of natural or 

seminatural landscape elements due to strong urbanization has led to the alteration of ecosystem 

processes and a decrease of the ecosystem services provided, including cooling effect (Weng et al., 

2004; Zhang et al., 2022; Guo et al., 2015; Qiu et al., 2017). 

To overcome the problem, the European Union is promoting policies for cities and rural areas in order 

to reintegrate natural elements to cope with climate change impacts and build sustainable and resilient 

cities. In particular, in 2013 the European Commission adopted an EU strategy on Green 

Infrastructure (GI strategy) (European Union, 2013). GI is defined as a network of natural and 

seminatural areas, as well as green spaces, strategically planned and managed to deliver a wide range 

of ecological, economic, and social benefits by providing multiple ecosystem services (European 

Union, 2013). GI is also mentioned in the new EU Strategy on Adaptation to Climate Change 

(European Union 2021) as a nature-based solution to adapt to climate change. 

Several authors (Mell, 2009; Marando et al., 2022; Coutts & Hahn, 2015) have highlighted Green 

Infrastructure (GI) as one of the main measures to restore the supply of ecosystem services and the 

benefits for the population. However, despite the recognized role of GI, there still remains uncertainty 

as far as GI spatial structure and configuration are concerned as well as about the role these GI features 

play in providing ecological functions and supplying services. Retrieving insights about the 

composition and the spatial configuration of the patches within a GI to maximize Ecosystem Services 

(ESs) supply and the flow and understanding how they change across scales are crucial for ensure the 

sustainability of GI interventions (Heremans et al., 2021; Capotorti et al., 2023). 

With reference to the enhancement of the cooling effect service, only a few studies analysed aspects 

related to composition and configuration attributes of landscape and patches to retrieve useful insights 

for GI implementation. For example, Chen et al. (2022) and Zhang (2020) have focused only on 
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aspect related to the composition of patches, while Kowe et al. (2021), Zhang et al. (2022) and Zhang 

et al. (2009) have focused on spatial configuration of GI’s elements.  

Additionally, the studies conducted till now have evaluated the influence of landscape and patch 

attributes only based on a unique scale investigation (i.e., local scale or regional scale). Thus, cross-

scale evaluation of the influence of such attributes on ESs supply is still lacking and requires to be 

addressed (Li et al., 2023). Particularly, the evaluation of the influence of both composition and 

configuration attributes on ESs capacity and supply differences across scales is likely to provide 

useful insights to help the strategical planning of an effective Green Infrastructure (Lindborg et al. 

2017).  

Moreover, studies conducted to date focused mainly on metropolitan cities centres, i.e., areas with 

high population density, characterized by a compact and very homogeneous built-up area. 

Conversely, areas characterized by low-density population and buildings have mostly been neglected, 

precluding the study of cooling effect on all the continuum of variability for landscape and patch 

attributes necessary to fully understand the supply of this ES. Thus, the study on small cities typical 

of the countryside is an important opportunity to better understand the influences of the GI’s 

composition and configuration attributes of green elements to cooling effect supply because of their 

major variability of green areas with respect to metropolitan city contexts. 

In such a context, our aim is to clarify the effect of GI element attributes on the provision of the 

cooling effect and the thermal comfort to people and investigate the differences of ES supply for 

different natural and seminatural elements across scales and in different land use and land cover 

settings to define requirements and insights for a proper GI planning (Lindborg et al., 2017). 

Specifically, we defined two main research questions at two different spatial scales: i) How is cooling 

effect related to landscape composition and configuration attributes of natural and seminatural areas? 

(Landscape level); ii) How does cooling effect vary according to patch type and configuration? (Patch 

level). A multiscale approach will allow a comprehensive evaluation of cooling effect. 

1.1 Green Infrastructure 
 

To foster the supply of a wide range of ecosystem services (ESs) in urban and rural areas, including 

cooling effect, the European Union implemented the Green Infrastructure Strategy (European Union, 

2013). This policy instrument aims to implement a nature-based solution called Green Infrastructure 

(GI), which is an evolution of the concept of ecological network that operates in human dominated 

areas. GI aims at conserving biodiversity as a key element for the ESs supply useful to ensure 
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multibenefits purpose (Jones & Somper, 

2014; Matthews et al., 2015; De la Sota et al., 

2019). Basically, the spatial structure of GI, 

like any ecological network, consists of an 

array of corridors or stepping stones (link) that 

connect core areas (hub). Due to the intense 

exploitation of urban and rural areas, space 

represents the major constraint for ecosystems 

and the elements that compose links and hubs. 

GI elements can have both a vegetated and an 

artificial component (hybrid solutions), where 

other elements can be totally natural. 

However, GI elements aims at substituting 

some artificial elements serving the same 

function and additional secondary functions 

simultaneously, this property is called 

multifunctionality (European Union, 2012). 

Rain gardens (Fig. 1.1) well exemplify the 

concept of multifunctionality. Here, substrate 

(that can be natural or artificial) and plant 

roots promote water infiltration, while 

vegetation also provides other services such 

as cooling effect, pollination, aesthetic 

beauty, and more. Other examples of GI 

elements are recreational green areas, tree 

lines, green walls, bioswale, rooftop gardens, 

tree box filters, and green traffic islands (Fig. 1.1). 

Strategic landscape planning is needed to ensure the effectiveness and the multifunctionality of GI 

and go further the constitution of single separate green elements of urban and rural areas. Indeed, the 

primary aim of strategic GI planning is to develop structural connectivity, and consequently, the 

species-specific functional connectivity. Functional connectivity represents the base to sustain 

biodiversity and ecosystem processes (Salomaa et al., 2017). From an ecological perspective, GI is 

crucial for the conservation of those ecological functions that underpin ESs provision, maintaining 

the diversity of ESs provided and, consequently, the multifunctionality of a GI according to Harrison 

Figure 1.1: a) bioswale (source: Living concept, 2013, 

https://www.livingconceptslandscape.com/2015/09/bioswales/

), b) green traffic island (source: Sempergreen, 

https://www.sempergreen.com/en/references/traffic-island), c) 

green wall (source: Tiziona Codiferro, 

https://www.codiferro.it/la-fertirrigazione-come-nutrire-le-

piante-attraverso-lirrigazione/), d) rain garden  (source:  Paul 

Edwars, https://www.pinterest.it/pin/306315212140896953/), 

e) rooftop garden (source: Instapro, 

https://www.instapro.it/porte-finestre/articoli/pac-s19-

vantaggi-svantaggi-tetto-verde), f) tree box filter (source: 

flickr, https://www.flickr.com/photos/mocobio/8816807664), 

g) tree line (source: bikewinnipeg, 2016, 

https://www.bikewinnipeg.ca/event/webinar-planning-for-

facility-maintenance-and-management-costs/), h) recreational 

green area (source: u-earth, https://it.u-earth.eu/smart-cities).. 

https://www.livingconceptslandscape.com/2015/09/bioswales/
https://www.livingconceptslandscape.com/2015/09/bioswales/
https://www.sempergreen.com/en/references/traffic-island
https://www.codiferro.it/la-fertirrigazione-come-nutrire-le-piante-attraverso-lirrigazione/
https://www.codiferro.it/la-fertirrigazione-come-nutrire-le-piante-attraverso-lirrigazione/
https://www.pinterest.it/pin/306315212140896953/
https://www.instapro.it/porte-finestre/articoli/pac-s19-vantaggi-svantaggi-tetto-verde
https://www.instapro.it/porte-finestre/articoli/pac-s19-vantaggi-svantaggi-tetto-verde
https://www.flickr.com/photos/mocobio/8816807664
https://www.bikewinnipeg.ca/event/webinar-planning-for-facility-maintenance-and-management-costs/
https://www.bikewinnipeg.ca/event/webinar-planning-for-facility-maintenance-and-management-costs/
https://it.u-earth.eu/smart-cities
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et al. (2014). Soulé et al. (2004) suggested that ecological connectivity should be preserved and 

investigated at different spatial scales to optimize biodiversity conservation. Thus, to increase the 

resilience of the GI networks, it is important to involve landscape planning at different spatial scales: 

neighborhood, district, urban settlement, municipality, province, region, etc. 

From a social and economic point of view, strategic GI planning has strong benefits for the sustainable 

development of urban and rural areas. A properly planned GI optimizes both the supply and the flow 

of ESs, avoiding conflicts of interest that may arise from law, security, available space, and available 

founding. For example, a correct planning to implement a GI able to provide noise reduction service, 

so strategically locating green elements in a site with significant noise pollution, such as the border 

of a road or a railroad, allows the coexistence of economic and social activities in the same place. 
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2 MATERIALS AND METHODS 
 

2.1 Study area 
 

The study took place in the Cartigliano Municipality, located in northeastern Italy, in the Veneto 

Region (45° 42´ 26.950" N, 11° 42´ 0.436" E) (Fig. 2.1). 

 Figure 2.1: Location of the study area 

Cartigliano municipality 
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In 2021, the municipality counted 3711 residents (ISTAT https://www.tuttitalia.it/veneto/95-

cartigliano/statistiche/popolazione-andamento-demografico/) for an area of approximately 7.37 km2. 

Most of the territory of Cartigliano is characterized by the presence of agricultural land (48%), 

followed by natural areas (linked to SIC/ZPS “Grave e zone umide della Brenta” IT3260018; 24%), 

residential areas (22%), and industrial areas (6%; Fig. 2.2).  

 

 
Based on ARPAV database (https://www.arpa.veneto.it/dati-ambientali/open-data/) which provides 

measurements from 1994 to 2022 carried out by the station located in the nearby municipality of Rosà 

(Annex 1), the mean maximum air daily temperature is 28.1°C for June, 30.3°C for July, and 30°C 

for August, while the mean air temperature is 23.4°C for June, 24°C for July, and 23.8°C for August 

(Fig. 2.3). The precipitation regime is bimodal with a lower maximum in spring and a higher 

maximum in autumn (Bocchiola et al., 2013; Fig. 2.3). 

Figure 2.2: Land use and land cover repartition of Cartigliano municipality surface  

 

Field Code Changed

Field Code Changed

https://www.tuttitalia.it/veneto/95-cartigliano/statistiche/popolazione-andamento-demografico/
https://www.tuttitalia.it/veneto/95-cartigliano/statistiche/popolazione-andamento-demografico/
https://www.arpa.veneto.it/dati-ambientali/open-data/
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Wind speed (ARPAV database; https://www.arpa.veneto.it/dati-ambientali/open-data/) varies from 

0.6 m/s in June to 0.4 m/s in July and August, indicating low wind condition during summer, a feature 

typical of Po Valley climate (Bocchiola et al., 2013). 

2.2 Mapping Land Use and Land Cover of the study area 
 

To quantify patch and landscape attributes, we constructed a categorical map at 1m of resolution.  

Through QGIS 3.22.6 and GuidosToolbox software, we first processed AGEA 2018 orthophotos of 

the study area (available at https://idt2.regione.veneto.it/). Through the segmentation process based 

on the information associated to each pixel, we retrieved a vector layer output in which patches 

corresponded to different landscape elements. Due to the presence of shadows, it was necessary to 

edit the vector layer to correct patches boundaries across the entire surface of the Cartigliano 

municipality. Additionally, another correction was required to address the presence of small micro-

polygons generated by the GuidosToolbox software (<0.001 m2). To merge micro-polygons to the 

closest polygon that shared more perimeter, we used the “multiparts to singleparts” function. 

After completing the correction for the vector layer, we classified each patch according to EUNIS 

classification system (version 2021; https://eunis.eea.europa.eu/habitats.jsp) using the third level of 

classification resolution. Once the categorical map was obtained, we updated and validated the map 

through field inspections in the study area. 

 

Figure 2.3: Climogram obtained from the ARPAV Rosà station mesurements. The colums 

show the variation of the mean monthly rainfall, the line shows the variation of the mean 

monthly air temperature. 

Field Code Changed

Field Code Changed

Field Code Changed

https://www.arpa.veneto.it/dati-ambientali/open-data/file-e-allegati/trend_variabili_meteorologiche.zip
https://idt2.regione.veneto.it/
https://eunis.eea.europa.eu/habitats.jsp
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2.3 Mapping Land Surface Temperature of the study area 
 

Following Goldblatt et al. (2021), Land Surface Temperature (LST) was used as a proxy of air 

temperature, and thus, thermal comfort. According to Copernicus Global Land Service geoportal 

(https://land.copernicus.eu/global/products/LST), LST represents the radiative skin temperature of 

the land surface, as measured in the direction of the remote sensor. 

2.3.1 Landscape level LST: 30x30m LST images 
 

To investigate cooling effect at landscape level, Landsat 8 C1-Level 2 satellite images at 30 m of 

resolution were downloaded from U.S. Geological Survey (USGS) GloVis 

(https://glovis.usgs.gov/app). We considered data available for the last five years (from 2018 to 2022).  

To ensure proper quality of data, we only selected dates that met specific requirements. Particularly, 

we selected images acquired during the summer season (between 15th May and 15th September) which 

exhibited no clouds or cloud shadows over the study area, and no rainfall events (minimum 1mm/h) 

up to two days before the acquisition date. While clouds can directly alter image quality, rain can 

influence the LST through evaporations (Sun et al., 2016). Thus, a total of nine images were selected, 

i.e., 30th June 2018, 17th August 2018, 1st June 2019, 17th June 2019, 19th July 2019, 5th September 

2019, 22nd August 2020, 25th August 2020, and 10th September 2021. 

LST was calculated for each selected images according to Stathopoulou & Cartalis (2007) as 

summarized in Fig. 2.4. 

 

 
 

We first processed in GIS environment each Landsat 8 image to compute the Normalize Difference 

Vegetation Index (NDVI) through the following formula (Tucker, 1979): 

 

 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(2.1) 

where: 

Figure 2.4: Method to obtain LST maps at a resolution of 30x30m 

 

Field Code Changed

Field Code Changed

https://land.copernicus.eu/global/products/LST
https://glovis.usgs.gov/app
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• NDVI = Normalize Difference Vegetation Index; 

• NIR = TOA Reflectance of band 5 (watts m-2 srad-1 μm-1); 

• Red = TOA Reflectance of band 4 (watts m-2 srad-1 μm-1). 

 

Once created NDVI maps, we calculated the Proportion of Vegetation (Pv) using the following 

formula (Yu et al., 2014; Al-Shaar et al., 2022): 

 

 
𝑃𝑣 = (

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

 
(2.2) 

 

where: 

• NDVI = Normalize Difference Vegetation Index; 

• NDVImin = minimum Normalize Difference Vegetation Index; 

• NDVImax = maximum Normalize Difference Vegetation Index. 

 

Through Pv maps, we then calculated land surface Emissivity (ε). To compute Emissivity (ε), we 

followed the threshold method proposed by Sobrino et al. (2004). Specifically, the method suggests 

attributing a ε value of 0.97 for every pixel with a NDVI < 0.2 and a ε value of 0.99 for every pixel 

with a NDVI > 0.5. Instead, for pixels with a NDVI ≥ 0.2 and ≤ 0.5, the ε value must be computed 

using the following formula: 

 

 ε = 0.004 ∗ Pv + 0.986 (2.3) 

where: 

• ε = Emissivity; 

• Pv = Proportion of vegetation. 

 

Simultaneously, we computed the Brightness Temperature (BT). The computation of BT needed first 

the conversion of the Digital Numbers (DNs) to Top of Atmospheric (TOA) Reflectance for band 10 

of Landsat 8 images, using the following formula (Al-Shaar et al., 2022): 

 

 𝑇𝑂𝐴 (𝐿) =  𝑀𝐿 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝐿 (2.4) 

where: 

• TOA (L) = Top of Atmospheric Reflectance for band 10 (watts m-2 srad-1 μm-1). 
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• ML = band-specific multiplicative rescaling factor from the metadata for band 10 

(RADIANCE_MULT_BAND_10 = 0.000342); 

• Qcal = value of the band 10 satellite image; 

• AL = band-specific addicting rescaling factor from the metadata for band 10 

(RADIANCE_ADD_BAND_10). 

 

Thereafter, we computed the BT as follow (Kowe et al., 2021; Al-Shaar et al., 2022): 

 

 
𝐵𝑇 =  

𝐾2

ln [(
𝐾1
𝐿 ) + 1]

− 273.15 
(2.5) 

 

where: 

• BT = Brightness temperature (C°); 

• K2 = band-specific thermal conversion constant from the metadata for band 10 

(K2_COSTANT_BAND_10 = 1321.0789); 

• K1 = band-specific thermal conversion constant from the metadata for band 10 

(K1_COSTANT_BAND_10 = 774.8853); 

• L = TOA Reflectance for band 10 (watts m-2 srad-1 μm-1). 

 

The ε and the BT maps were then used to create the LST maps for the whole study area using the 

following formula (Al-Shaar et al., 2022): 

 

 
𝐿𝑆𝑇 = 𝐵𝑇/(1 + (0.00115 ∗

𝐵𝑇

1.4388
) ∗ ln(ε))) 

(2.6) 

where: 

• LST = Land Surface Temperature (°C); 

• BT = Brightness temperature (°C); 

• ε = emissivity. 

 

At the end of the process, we averaged the values of the nine LST raster images in GIS environment 

to define a unique summarizing LST image (30 meters of resolution) for summer temperatures. 

2.3.2 Patch level LST: 3x3m LST images 
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To investigate the cooling effect at patch level, we obtained LST maps at higher resolution (3m) by 

processing Landsat 8 images following Kowe et al. (2021), and combining PlanetScope satellite 

images, as summarized in Fig. 2.5. Particularly, we used PlanetScope satellite images to retrieve 

Emissivity (ε) at a finer scale and calculate LST as in formula (2.6). 

 

 
 

PlanetScope surface reflectance satellite images with thermal bands were downloaded for the each of 

the nine dates considered for the LST at 30m resolution (source: https://www.planet.com/). To correct 

the reflectance of the atmosphere, we considered coefficient indicated on metadata (Annex 2) and 

considered the proper bands useful to retrieve all data necessary to compute ε. To convert the Digital 

Numbers (DNs) to Top of Atmospheric (TOA), we selected reflectance for band 3 (Red) and 4 (NIR) 

for each downloaded images using the following formula in GIS environment: 

 

 𝑇𝑂𝐴 = 𝐷𝑁𝑠 ∗  𝑘 (2.7) 

 

Where: 

• TOA = Top of Atmospheric Reflectance (watts m-2 srad-1 μm-1); 

• DNs = Digital numbers; 

• k = Reflectance coefficient specific for the band considered and the condition of atmosphere 

at the time of the shooting (Annex 2). 

 

We then used the corrected bands to calculate NDVI as in Tucker (1979), that is: 

 

 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

(2.8) 

where: 

• NDVI = Normalize Difference Vegetation Index; 

• NIR = TOA Reflectance of band 4 (watts m-2 srad-1 μm-1); 

Figure 2.5: Used method to obtain LST maps at a resolution of 3x3m 

 

Field Code Changed

https://www.planet.com/
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• Red = TOA Reflectance of band 3 (watts m-2 srad-1 μm-1). 

 

Next, we created Pv and ε maps using the finer NDVI map values in the before mentioned formulas 

(i.e., 2.2, 2.3 respectively). As a result, we obtained nine emissivity maps at 3m resolution to be used 

in the LST calculation. 

To align the resolution of BT and ε, we performed the “cubic spline” interpolation for the sharpening 

of each of the previous nine 30x30 m BT maps according to Maeland (1988) and Aslam et al. (2016). 

As a result, we obtained 3m resolution BT maps and we computed LST at 3m resolution using the 

beforementioned formula (2.6) by considering both ε and BT performed at 3m of resolution. 

At the end of the process, we averaged the values of the nine LST raster images in GIS environment 

to define a unique summarizing LST image (3 meters of resolution) for summer temperatures. 

2.4 Data collection for cooling effect quantification 
 

Land surface temperature was used to address the influence of composition and configuration 

attributes on cooling effect at two different spatial scales. 

At landscape level, analyses aimed to: 

• ia) investigate the relationship between LST of built areas with no vegetation (non-vegetated 

patches; Tab 2.1) and landscape composition and configuration attributes of green areas (i.e., 

all vegetated patches in the study area; Tab. 2.1), namely number and total area of green 

patches. 

• ib) investigate the relationship between LST of non-vegetated patches and attributes of green 

areas divided into two subcategories, namely “herbaceous patches” and “woody patches”. 

Herbaceous patches included all landscape categories characterized by herbaceous 

communities, while woody patches included all landscape categories related to woody 

vegetation communities (Tab. 2.1). Thus, we considered composition and configuration 

attributes at landscape level, i.e., number and total area for both herbaceous and woody 

patches.   

• ic) investigate the relationship between LST of non-vegetated patches and the ratio between 

total woody area and total herbaceous area. 

At patch level, analyses aimed to: 

• iia) investigate which type of vegetated patches between highly managed herbaceous 

communities of suburban and industrial areas (urban green areas), seminatural grasslands and 

hedgerows (Tab. 2.2) provide the highest capacity for cooling effect. 
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• iib) investigate the relationship between LST of urban green areas, hedgerows, and grasslands 

patches, and patch configuration attributes as area, perimeter, and shape. 

2.4.1 Cooling effect at Landscape level 

 

To investigate cooling effect at landscape level, we grouped the EUNIS classes as in Tab. 2.1 to 

account for the effect of vegetated areas (Macro-category) and of green area types (Sub-category) on 

LST of non-vegetated areas. To this aim, a 300x300m grid was created within the Cartigliano 

Municipality (Fig. 2.6). Since QGIS operators did not work for partly empty cells, we only considered 

completely full cells (n= 55), avoiding cells along the municipal boundaries.  

 
 

Afterwards, we created a simplified categorical map, by assigning each polygon within a 300x300m 

cell to a macro-category as reported in Tab. 2.1. Moreover, within the “green areas” category we 

further identified two sub-categories, namely “herbaceous patches” and “woody patches” to account 

for the green area type, considering the complexity of the structure (number of different strata) of 

plant communities (Tab. 2.1). As a result, we associated two new attributes to each patch in the 

categorical map: one for the macro-category (value 0 = non-vegetated area, value 1 = green area), 

and the second to distinguish the sub-category (green area type) within green area (value 0 = non-

vegetated area, value 1 = herbaceous patch, value 2 = woody patch). 

 

Figure 2.6: Grid within Cartigliano municipality 
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Macro-

category 

Sub-

category 

EUNIS 

code 
Description 

B
u
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t 

ar
ea

s/
n

o
n
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eg
et

at
ed

 a
re

as
 

 

C36 
Unvegetated or sparsely vegetated shores with soft or 

mobile sediments 

J11 Residential buildings of city and town centres 

J12 Residential buildings of villages and urban peripheries 

J13 Urban and suburban public buildings 

J14 
Urban and suburban industrial and commercial sites still 

in active use 

J15 Disused constructions of cities, towns and villages 

J16 Urban and suburban construction and demolition sites 

J21 Scattered residential buildings 

J22 Rural public buildings 

J23 Rural industrial and commercial sites still in active use 

J24 Agricultural constructions 

J25 Constructed boundaries 

J26 Disused rural constructions 

J27 Rural construction and demolition sites 

J32 
Active opencast mineral extraction sites, including 

quarries 

J33 
Recently abandoned above-ground spaces of extractive 

industrial sites 

J41 
Disused road, rail and other constructed hard-surfaced 

areas 

J42 Road networks 

J46 Pavements and recreation areas 

J47 Constructed parts of cemeteries 

J61 Waste resulting from building construction or demolition 

J62 Household waste and landfill sites 

J64 Agricultural and horticultural waste 

J65 Industrial waste 

Table 2.1 EUNIS categories found in the study area, grouped into macro-categories and sub-categories. 
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G
re

en
 a

re
as
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er
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ac
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C32 
Water-fringing reedbeds and tall helophytes other than 

canes 

C35 
Periodically inundated shores with pioneer and ephemeral 

vegetation 

R1A Semi-dry perennial calcareous grassland (meadow steppe) 

R22 Low and medium altitude hay meadow 

V11 Intensive unmixed crops 

V12 Mixed crops of market gardens and horticulture 

V13 
Arable land with unmixed crops grown by low-intensity 

agricultural methods 

V15 Bare tilled, fallow or recently abandoned arable land 

V21 Large-scale ornamental garden areas 

V22 Small-scale ornamental and domestic garden areas 

V23 Recently abandoned garden areas 

V31 
Agriculturally-improved, re-seeded and heavily fertilised 

grassland, including sports fields and grass lawns 

V38 Dry perennial anthropogenic herbaceous vegetation 

X07 
Intensively-farmed crops interspersed with strips of 

natural and/or seminatural vegetation 

X22 Small city centre non-domestic gardens 

w
o
o
d
y
 

S91 Temperate riparian scrub 

T11 Temperate Salix and Populus riparian forest 

T13 Temperate hardwood riparian forest 

V41 Hedgerows of non-native species 

V42 Highly managed hedgerows of native species 

V43 Species-rich hedgerows of native species 

V44 Species-poor hedgerows of native species 

V54 Vineyards 

V61 Broadleaved fruit and nut tree orchards 

V62 Evergreen orchards and groves 

V63 Lines of planted trees 
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To evaluate the effects of green areas and green areas type on the temperatures of non-vegetated areas 

(i.e., non-vegetated areas), we first calculated the mean LST of non-vegetated areas (LSTART) through 

“zonal statistic” function to sample the LST image (30m resolution) in each of the 55 cells. Then, for 

each cell we computed landscape composition and configuration attributes for green areas, namely 

the total area (TAGREEN) and the number of patches (NPGREEN). After rasterizing the vectorial map 

based on binary values (i.e., 0 – non-vegetated and 1 – green) at 1m resolution, we extracted the 55 

rasterized cells of the grid using the “clip raster by mask layer” tool in QGIS and we uploaded them 

on Fragstats 4.2 (McGarigal et. Al, 1995) to perform a batch calculation of the selected attributes. 

To explore the cooling effects of the two defined green types (i.e., herbaceous or woody communities) 

on LST of non-vegetated areas (LSTART), we calculated the same attributes of the green areas for the 

two green types. In this case, we rasterized the vectorial map of the study area considering the sub-

categories: 0 (non-vegetated area), 1 (herbaceous patches), and 2 (woody patches).  

Then, we clipped the 55 rasterized cells of the grid using the “clip raster by mask layer” tool in QGIS 

and we uploaded them on Fragstats 4.2 (McGarigal et. al., 1995) to perform a batch calculation of the 

selected attributes for both sub-categories. Thus, we calculated the total area (TAHERB) and the 

number of patches (NPHERB) for herbaceous patches and the total area (TAARB) and the number of 

patches (NPARB) for woody patches for each cell. 

Finally, to evaluate the combined effect of the two considered green types on the LST of non-

vegetated areas (LSTART), we considered the ratio between woody and herbaceous total areas 

(TAARB/TAHERB) for each grid cell. 

2.4.2 Cooling effect at Patch level  
 

To investigate the cooling effect at the patch level, we randomly selected patches considering three 

different land cover classes, i.e., 100 urban green areas (URB), 100 hedgerows (HED), and 100 

seminatural grasslands (GRA; Tab. 2.2). Specifically, we conducted random selection of patches 

across the entire municipal territory in order to ensure proper variability in terms of patch 

configuration attributes (i.e., area, perimeter and shape) necessary to explore their contribution on 

cooling effect. 

 

 
 

Macro-category EUNIS code Description 

V21 Large-scale ornamental garden areas 

Table 2.2 EUNIS categories repartition to urban green areas, hedgerows and grasslands. 
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Urban green 

areas 
X22 Small city centre non-domestic gardens 

Hedgerows 

S91 Temperate riparian scrub 

T11 Temperate Salix and Populus riparian forest 

T13 Temperate hardwood riparian forest 

V41 Hedgerows of non-native species 

V42 Highly managed hedgerows of native species 

V43 Species-rich hedgerows of native species 

V44 Species-poor hedgerows of native species 

Grasslands 
V31 

Agriculturally-improved, re-seeded and heavily fertilised 

grassland, including sports fields and grass lawns 

V38 Dry perennial anthropogenic herbaceous vegetation 

 

To quantify the cooling effect, we figured out the mean LST for each patch of urban green areas 

(LSTURB), hedgerows (LSTHED), and grasslands (LSTGRA), through the application of “zonal statistic” 

tool in QGIS on the 3 meters of resolution LST images.  

In addition, for each selected patch we calculated the following configuration attributes using field 

calculator of QGIS: area, perimeter, and shape index. Namely, we calculated AREAURB, 

PERIMETERURB, and SHAPEURB for urban green area patches; AREAHED, PERIMETERHED, and 

SHAPEHED for hedgerows patches; AREAGRA, PERIMETERGRA, and SHAPEGRA for seminatural 

grasslands patches. While area and perimeter were directly computed by QGIS commands, we used 

the following formula to calculate the shape index (McGarigal et al., 1995): 

 

 
𝑆𝐻𝐴𝑃𝐸 =

𝑝𝑖𝑗

2 ∗ √π ∗ aij
 

 

(2.9) 

where: 

• pij = perimeter (m) of patch ij 

• aij = area (m2) of patch ij. 

 

A shape index = 1 indicates a circular (regular) patch shape, while a SHAPE index value > 1 indicates 

non-circular (irregular) patch shape. 

2.5 Data analysis  
 

All data were uploaded in R software (version 4.2.1) to conduct statistical analyses. 
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2.5.1 Landscape data analysis 
 

Before each analysis we constructed the Q-Q plot (Kovacevic, 2000) of the dependent variable to 

determine whether data were normally distributed and determine which statistical analysis to conduct. 

To perform analyses, we considered the LST of non-vegetated areas (LSTART) of each of the 55 cells 

of the grid. Since the response variable LSTART was found to be normally distributed (Fig. 2.7), we 

conducted parametric tests to investigate the first research question.  

 
 

Influence of green areas attributes on LSTART 

To assess the relationship between attributes of green areas and LSTART at landscape level, we 

performed a linear regression model, lm() function in R (Kowe et al., 2021). Specifically, we 

investigated the relationship between LSTART (response variable) and NPGREEN and TAGREEN 

(explanatory variables). Then, we defined the significance of the relationship and the variables that 

were significantly related to LSTART considering a significance level (α) of 5%. 

 

Influence of herbaceous and woody areas attributes on LSTART 

To investigate the relationship between attributes of green types, namely herbaceous and woody 

patches, and LSTART at landscape level, we performed two linear regression models, lm() function in 

R: one for herbaceous patches and one for woody patches. In this case, we assessed the relationship 

between LSTART (response variable) and NPHERB, TAHERB (explanatory variables) for herbaceous 

class, and the relationship between LSTART (response variable) and NPARB, TAARB (explanatory 

           Fig. 2.7 Q-Q plot of LSTART 
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variables) for woody class. Thereafter, we defined the significance of the relationship and the 

variables that were significatively related to LSTART by considering a significance level (α) of 5%. 

 

Influence of woody and herbaceous total area ratio on LSTART 

To assess the relationship between the ratio of the two green types, namely the ratio between woody 

and herbaceous total areas, and LSTART, we conducted a linear regression model, lm() function in R. 

Particularly, we considered the relationship between LSTART (response variable) and TAARB/TAHERB 

(explanatory variable). To define the significance of the relationship, we considered a significance 

level (α) of 5%. 

 

2.5.2 Patch data analysis 
 

As in the previous analysis, we first constructed the Q-Q plot (Kovacevic, 2000) of the dependent 

variables to determine whether data were normally distributed and determine which statistical 

analysis to conduct. Since the LST data showed to be normally distributed for each considered land 

cover class (Figs. 2.8, 2.9, 2.10), we conducted parametric tests for the analyses also to address the 

second research question. 

          Fig. 2.8 Q-Q plot of LSTURB 
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Urban green areas, hedgerows, and grassland mean LST 

To assess whether urban green areas, seminatural grasslands and hedgerows significantly differed in 

terms of cooling effect capacity (LSTURB, LSTHED, LSTGRA), we performed the analysis of variance, 

aov(), considering a significance level (α) of 5%. Since the ANOVA test does not specify differences 

among groups (Abdi & Williams, 2010), we conducted a post-hoc Tukey's Honest Significant 

Difference (TukeyHSD) to do all pair wise comparisons and gain further information about the 

differences (Nanda et al., 2021). 

 

                 Fig. 2.9 Q-Q plot of LSTHED 

                  Fig. 2.10 Q-Q plot of LSTGRA 
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Influence of urban green areas, hedgerows, and grasslands attributes to their LST 

To detect dependences of cooling effect on patch configuration attributes, we performed a regression 

model for each green area type, lm(). For each type, we considered the relationship between LST 

(response variable) and area, perimeter and shape index (explanatory variables). Through backward 

selection, we selected those variables that were significantly related to LST, considering a 

significance level (α) of 5%. 
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3 RESULTS 

3.1 EUNIS categorical map 
 

The high-resolution map (Fig. 3.1) showed a total of 52 EUNIS III level categories within the 

Cartigliano Municipality, for a total of 8,238 patches (Annex 3).   

 

3.2 Land Surface Temperature maps 
 

Figure 3.2 shows the LST map at 30 meters of resolution obtained by averaging the nine selected 

LST images corresponding to the selected dates. The mean LST across the entire municipality of 

Cartigliano results of 25.41 ± 1.32 °C. 

Figure 3.1: EUNIS categorical map of the study area. 
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Figure 3.3 shows the LST map at higher resolution (3m). Overall, the mean LST of Cartigliano results 

of 26.7 ± 1.45 °C. 

 

Figure 3.2: Map of LST at 30 meters of resolution. 

Figure 3.3: Map of LST at 3 meters of resolution. 
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3.3 Cooling effect at landscape level 
 

Within the 55 cells under investigation, the mean cover of green areas (TAGREEN) was 6.73 ± 1.8 ha 

while the mean number of green area patches (NPGREEN) was of 25 ± 22.65. The distribution of green 

areas across the municipal territory was uneven, as illustrated in Fig. 3.4. 

 

The distinction between herbaceous and woody vegetation communities within green areas of the 

municipal territory produced the maps shown in Fig. 3.5 and Fig. 3.6, respectively. The mean cover 

of herbaceous patches (TAHERB) was of 5.31 ± 1.97 ha while the mean number of herbaceous patches 

(NPHERB) was 27 ± 21.44; both the mean cover of woody patches (TAARB; 1.42 ± 0.8 ha) and their 

mean number (NPARB; 20 ± 20.95) were lower. 

The mean and standard deviation values of green area and green type attributes across the 55 

identified cells, confirmed the necessary variability we searched for the explanatory variables under 

analysis. 

Figure 3.4: Green areas within the study area and the grid cells.. 
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The mean LST of non-vegetated areas (LSTART) within the 55 cells defined within the municipal 

territory, resulted of 26.94 ± 1.13 °C.  

Figure 3.5: Herbaceus green areas within the study area and the grid cells. 

Figure 3.6: Woody green areas within the study area and the grid cells. 
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Influence of green area attributes on LSTART 

The regression model highlighted a significant relationship between LSTART and the predictors (P-

value: 1.663x10-12; Fig. 3.7). Particularly, we found a significant negative relationship between 

TAGREEN and LSTART (Tab. 3.1), meaning that lower values of LSTART were related to higher values 

of green cover at the landscape level. Moreover, we found a significant positive relationship when 

considering the combined effect of TAGREEN and NPGREEN on LSTART (Tab. 3.1). The last result 

suggests that there was a significant interaction between the two predictor variables influencing the 

response variable. Specifically, the significant positive estimate coefficient indicates that the two 

predictors affect LSTART by changing in the same way. This means that lower LSTART were reached 

for higher values of both TAGREEN and NPGREEN. 

 

Predictor Estimated 

coefficient 

Standard 

error 

t-

value 

p-value 

~ TAGREEN -0.559 0.102 -5.482 1.31x10-6 

~ NPGREEN -0.031 0.019 -1.641 0.107 

~ TAGREEN:NPGREEN 0.007 0.003 2.316 0.025 

 Limit of significance: p-value < 0.05 

 

 

Tab. 3.1: statistical parameters of regression model between LSTART and green area attributes.  

Figure 3.7: relathionship between LSTART and the predictor variable TAGREEN (identifiable throught the abscissas 

line), NPGREEN (identifiable throught the colour gradient of the points), and TAGREEN*NPGREEN (identifiable 

trought the confidence band of the interaction). 
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Influence of herbaceous and woody areas attributes on LSTART 

The regression model regarding the effect of herbaceous patches on LST of non-vegetated patches 

highlighted a significant relationship between LSTART and the predictors (P-value: 1.216x10-7, Fig. 

3.8). Particularly, we found a significant negative relationship between TAHERB and LSTART (Tab. 

3.2), meaning that lower LSTART values were reached for higher values of TAHERB, namely 

herbaceous patches cover within cells. 

 

 

Predictor Estimated 

coefficient 

Standard 

error 

t-

value 

p-value 

~TAHERB -0.359 0.102 -3.524 0.0009 

~NPHERB -0.0003 0.019 -0.017 0.987 

~TAHERB:NPHERB 0.004 0.004 1.020 0.312 

 Limit of significance: p-value < 0.05 

 

 

 

Tab. 3.2: statistical parameters of regression model between LSTART and herbaceus areas attributes. 

Figure 3.8: relathionship between LSTART and the predictor variable TAHERB (identifiable throught the 

abscissas line), NPHERB (identifiable throught the colour gradient of the points), and TAHERB*NPHERB 

(identifiable trought the confidence band of the interaction). 
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Similarly, the regression model testing the influence of woody patches on LST of non-vegetated 

patches highlighted a significant relationship between LSTART and the predictors (P-value: 1.529x10-

5; Fig. 3.9). Particularly, we found a significant positive relationship between NPARB and LSTART 

(Tab. 3.3), meaning that lower LSTART values were reached for lower values of NPARB, namely with 

decrease in woody patches number within the cells.  

 

 

Predictor Estimated 

coefficient 

Standard 

error 

t-

value 

p-value 

~TAARB -0.341 0.274 -1.245 0.219 

~NPARB 0.055 0.022 2.522 0.015 

~TAARB:NPARB 0.001 0.013 0.117 0.908 

 Limit of significance: p-value < 0.05 

 

 

 

Influence of woody and herbaceous total area ratio on LSTART 

Tab. 3.3: statistical parameters of regression model between LSTART and woody areas attributes. 

Figure 3.9: relathionship between LSTART and the predictor variable TAARB (identifiable throught the abscissas 

line), NPARB (identifiable throught the colour gradient of the points), and TAARB*NPARB(identifiable trought the 

confidence band of the interaction). 
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The regression model about the influence of cover ratio among woody and herbaceous patches 

(TAARB/TAHERB) on non-vegetated areas LST (LSTART) did not show a significant relationship with 

the predictor variable (P-value > 0.05).  

3.5 Cooling effect at patch level 
 

The random selection of patches of the three considered land cover categories showed a high 

variability when considering their spatial attributes, thereby guaranteeing the necessary variability in 

configuration attributes to be met to answer the second research question. 

At patch level, we found that urban green areas patches (i.e., highly managed herbaceous 

communities of suburban and industrial areas) had a mean patch area of 314.28 ± 949.1 m2 

(AREAURB), a mean patch perimeter of 97.25 ± 94.84 m (PERIMETERURB), and a mean shape index 

value of 1.91 ± 0.88 (SHAPEURB) (Fig. 3.10 and Tab. 3.4). 

Hedgerows patches had a mean patch area of 4646.25 ± 16838.54 m2 (AREAHED), a mean patch 

perimeter of 632.71 ± 1548.05 m (PERIMETERHED), and a mean shape index value of 2.53 ± 1.22 

(SHAPEHED) (Fig. 3.11 and Tab.3.4). Finally, regarding seminatural grasslands patches we found a 

mean area of 8872.97 ± 8312.21 m2 (AREAGRA), a mean perimeter of 546.37 ± 290.26 m 

(PERIMETERGRA), and a mean shape index value of 1.79 ± 0.53 (SHAPEGRA) (Fig. 3.12 and 

Tab.3.4). 

 

 

Patch type Mean area (m2) Mean perimeter 

(m) 

Mean shape 

index 

Urban green areas (i.e. highly 

managed herbaceous communities of 

suburban and industrial areas) 

314.28 ± 949.1 97.25 ± 94.84 1.91 ± 0.88 

Hedgerows 4646.25 ± 16838.54 632.71 ± 1548.05 2.53 ± 1.22 

Grasslands 8872.97 ± 8312.21 546.37 ± 290.26 1.79 ± 0.53 

 

Tab. 3.4: mean attributes of the three land cover category.  



35 

 

Figure 3.10: location of the chosen 100 urban green areas (i.e., highly managed herbaceous 

communities of suburban and industrial areas). Due to their limited surface, each patch has 

been enlarged through a 20m buffer to allow visualisation on the map. 

Figure 3.11: location of the chosen 100 hedgerows. 
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Urban green areas, hedgerows, and grassland mean LST 

The mean land surface temperature for urban green areas (LSTURB) resulted of 27.86 ± 1.20 °C, the 

mean LST for hedgerows (LSTHED) resulted of 26.18 ± 0.86 °C, and the mean land surface 

temperature for seminatural grasslands (LSTGRA) resulted 26.17 ± 1.02 °C.  

Analysis of variance (ANOVA) revealed a significant difference among the three different considered 

categories (P-value: <2e-16; Fig. 3.13). Particularly, the post-hoc Tukey’s HSD test highlighted 

significant LST differences between urban green areas and seminatural grasslands, and between urban 

green areas and hedgerows, with urban green areas exhibiting higher LST values in both cases (Tab. 

3.5). 

 

 

 

 

 

 

 

 

Figure 3.12: location of the chosen 100 grasslands. 
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Group comparison Difference Lower Upper Adjusted p-value 

LSTGRA-LSTHED -0.214 -0.367 0.324 0.988 

LSTURB-LSTHED 1.668 1.321 2.013 0 

LSTURB-LSTGRA 1.689 1.345 2.034 0 

   Limit of significance: p-value < 0.05 

 

 

 

 

LST of Urban green areas, hedgerows, and grasslands and the influence of their configurational 

attributes 

The backward selection reduced the number of predictors in each regression model, revealing those 

variables involved in a significant relationship with the patches LST.  

Specifically, backward selection in the linear regression model used to explain the relationships 

between LSTURB and predictors AREAURB, PERIMETERURB, and SHAPEURB, showed that the shape 

index was the only predictor significantly related to LSTURB (Tab. 3.6). The negative value of the 

estimated coefficient suggests that more complex the shapes of urban green patches assure lower LST 

(Fig. 3.14). 

Tab. 3.5: statistical parameters of the Tukey’s HSD test. 

Tab. 3.13: Box plot obtained from the ANOVA and Tukey’s test 
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The linear regression model used to assess the relationship between LSTHED and AREAHED, 

PERIMETERHED, and SHAPEHED highlighted that PERIMETERHED was the only predictor 

significantly related to patch LSTHED (Tab. 3.6). Particularly, the model revealed a negative value for 

the estimated coefficient for PERIMETERHED, pointing out that hedgerows patches with greater 

perimeter showed lower LST values (Fig. 3.15).  

Finally, backward selection applied to investigate the relationship between LSTGRA and AREAGRA, 

PERIMETERGRA, and SHAPEGRA revealed that AREAGRA was the only predictor significantly 

related to patch LSTGRA (Tab. 3.6). The negative value of estimated coefficient indicates that larger 

seminatural grasslands exhibited lower LST values (Fig. 3.16). 

 

 
 

Relationship Estimated 

coefficient 

Standard 

error 

t-

value 

p-value 

LSTURB~SHAPEURB -0.286 0.134 -2.13 0.036 

LSTHED~PERIMETERHED -1.119x10-4 5.366x10-5 -2.085 0.04 

LSTGRA~AREAGRA  -3.436x10-5 1.189x10-5 -2.889 0.005 

  Limit of significance: p-value < 0.05 

 

 

 

 

Tab. 3.6: statistical parameters of the regerssion models between LST of urban green areas, hedgerows, grasslands, and 

their configurational metrics. 

Figure 3.14: relathionship between LSTURB and SHAPEURB 
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Figure 3.15: relathionship between LSTHED and PERIMETERHED 

Figure 3.16: relathionship between LSTGRA and AREAGRA 
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4 DISCUSSION 
 

4.1 Landscape level highlights 
 

In accordance with what pointed out by Mohajerani et al. (2017) for metropolitan city centres, we 

detected that higher extent of non-vegetated areas experienced higher temperatures. 

Thanks to the high variability in vegetation cover analysed at landscape level, the results not only 

confirm the existence of a cooling effect provided by vegetation as indicated by Su et al. (2022) and 

Sugawara & Takamura (2014), but also prove that the supply of this ecosystem service is linearly 

linked to green area cover. This linear relationship can be traced back to the role of evapotranspiration 

in cooling effect, that can be considered an additive effect (Ma et al., 2019) that increases with 

increasing vegetation amount. Indeed, according to Su et al. (2022) a higher green cover would absorb 

a higher amount of local heat that would be loss as latent heat during evapotranspiration process. In 

this way, evapotranspiration affects local temperatures by making cooler those areas with more green 

area cover. 

In contrast with Ode & Miller (2011), our results did not show a significant relationship between the 

number of green patches and the Land Surface Temperature of non-vegetated areas. Our contrasting 

finding could possibly be due to the greater influence of cover with respect to the number of patches 

within the performed model. Indeed, when the number of patches was combined with the total cover 

of green areas, the combined influence of both variables revealed to be significant and concurrent, 

i.e., the two variables affected the cooling effect in the same way. This means that, at the landscape 

level, more and bigger green area patches provide a higher supply of this ecosystem service, 

confirming the additive effect. 

 

When considering green area types, namely “herbaceous patches” and “woody patches”, the results 

for the herbaceous areas followed the already discussed patterns found for the green areas sensu lato. 

Specifically, Land Surface Temperature of non-vegetated areas significantly decreased with 

increasing total area of herbaceous patches, while the number of patches resulted not significant. 

According to Zhang et al. (2009), this implies that a higher cover of herbaceous areas enhances the 

cooling effect supply. The opposite was revealed for woody areas, where the number of patches was 

the only significant variable related to Land Surface Temperature of non-vegetated areas that is, 

controversial to the observation for green areas, the cooling effect supply decrease with increased 

number of woody patches. Differently from previous studies (e.g., Zhang et al. 2009), we did not find 

any relationship between cooling effect and woody area cover. This is likely due to the linear shape 
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of most of woody patches in our study areas, that were mostly represented by hedgerows, rather than 

forests or other areal woody communities considered in previous studies. We hypothesise that due to 

their relatively narrow width, small and linear vegetation patches always have a longer perimeter 

compared to their internal surface; as such they are more likely subjected to the influence of 

neighbouring areas (a kind of edge effect) rather than influencing them. This hypothesis is in 

accordance with the observation of Zhang et al. (2009) for small green area patches in megacity 

contexts, where the Land Surface Temperature of non-vegetated areas decreased more slowly when 

the cover of vegetated patches became increasingly small. This effect can be also the cause for the 

absence of a significance when dealing with the woody and herbaceous total area ratio, where the 

role of woody cover might not have been appreciated in our study area. Moreover, due to the linear 

development of most of the woody patches, the considered ratio values might not be enough variable 

to fully comprehend the combined influence of herbaceous and woody green areas on cooling effect.  

In any case, as indicated by Masoudi et al. (2021) and Kowe et al. (2021), our results at landscape 

level highlight that fragmentation play a key role in reducing the supply for cooling effect, especially 

through cover reduction and increase in the number of small patches. 

4.2 Patch level highlights 
 

Our results highlighted a significant difference among the considered green area types. Particularly, 

urban green areas showed to be hotter than both hedgerows and seminatural grasslands, which in 

turns showed a similar Land Surface Temperature. The higher temperatures in urban green areas can 

be linked to both their mean surface and the context in which they are located. Although urban green 

areas and seminatural grasslands are both herbaceous communities, urban green areas usually have a 

limited surface compared to seminatural grasslands, making them prone to suffer from the effect of 

surrounding areas. Indeed, urban green areas are mostly located within the urban context, where the 

contrast with man-made elements is higher. Thus, the combined effect of a limited surface and the 

artificial context in which urban green areas are located can result in an intense edge effect, that in 

case of very limited surfaces can affect the whole patch, limiting their cooling capacity (Zhang et al., 

2009). Moreover, the influence of (surrounding) high temperatures can enhance the evaporation of 

water from the soil, leading to a lack of water resources for plant growth and photosynthesis, 

worsening the depauperating of cooling effect (Su et al., 2022). Thus, green area patches not only 

influence the surrounding environment, but would be also affected by nearby elements, especially 

when of a different nature. The importance of the context in which green areas are located is 

confirmed by the absence of differences in Land Surface Temperature between seminatural 

grasslands and hedgerows. Seminatural grasslands and hedgerows are for the most part located in 
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rural areas where the degree of land artificialisation is low and green areas are mainly in contact with 

other green areas, thus making edge effect occurring weakly compared to what happens in greyer 

context (i.e., for urban green areas). Thus, the influence of the edge effect on temperatures of 

hedgerows and grasslands is mitigated because of similar nature of sides (Zhang et al., 2009). 

Looking at patch configuration attributes, shape emerged to be the one significantly involved in 

explaining urban green areas temperatures. This result is in accordance with previous studies (e.g. LI 

et al., 2012), which suggested that urban green areas with a more complex shapes had a higher cooling 

capacity. However, there is still a lot of controversy surrounding this issue and different studies have 

produced diverging results and both compact and irregular shapes have been linked with better 

cooling. In our case, the major criticality regards the inconsistency with the results we found at 

landscape level for herbaceous areas, where results clearly indicated an additive effect of herbaceous 

patches, with LST values of artificial areas decreasing at increasing cover of herbaceous patches.  

This inconsistency suggests that the mechanisms operating at the two different scale (landscape vs. 

patch level) are possibly different or the cooling capacity is modulated by other factors such as the 

context in which the patches are located. In addition, we cannot exclude methodological factors, e.g., 

data source and resolution, or metric selection that possibly give a different representation of the 

association between patch attributes and patch cooling capacity and supply (Li et al., 2023). 

 

In line with the results about woody elements at landscape level, neither the surface nor the shape 

showed a significant influence on the Land Surface Temperature of hedgerows, being the perimeter 

the only patch attribute significantly involved in explaining their cooling capacity, namely, a longer 

perimeter determines a higher cooling capacity. Despite some previous studies pointed out an additive 

effect in the supply of this ecosystem service also for woody communities (Bihuňová et al., 2021), 

our results indicated that the area was not significant. These contrasting results might be attributed to 

the type of woody patches considered in the different studies. As stated above, woody patches of the 

study areas are mostly represented by hedgerows, with a typical linear development that might have 

overshadowed the role of the area in their cooling capacity. As the perimeter was the only attribute 

significantly related to Land Surface Temperature, the more elongated the shape, the greater the 

cooling capacity beside the possible edge effect that can be assumed equal among selected woody 

patches.  

 

According to what found at landscape level, the Land Surface Temperature of seminatural grasslands 

revealed to be significantly influenced by their area, as underlined by previous studies on herbaceous 

communities (Kowe et al., 2021; LI et al., 2012). This result confirms the additive effect on the supply 
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of the cooling effect, with bigger seminatural grassland patches demonstrating a greater cooling 

capacity. Conversely, perimeter and shape were not found to influence grassland temperature. 

Contrary to hedgerows, the areal development of grassland elements led the area to be the prevailing 

attributes, thus obscuring the effects of perimeter. Moreover, differently from urban green areas, the 

average greater surface of seminatural grasslands, combined with their location, might be the reason 

for which shape was not relevant in cooling effect supply. Indeed, we suppose that influence of 

surrounding elements, i.e., the edge effect, is limited due to the greater extent of this elements (Zhang 

et al., 2009). 

4.3 Cross scale evidence 
 

Our results demonstrated that a cross-scale investigation allows a more exhaustive comprehension of 

the supply of cooling effect based on composition and configuration attributes at both landscape and 

patch level. Particularly, we highlighted that information on the supply of the investigated ecosystem 

service at different scale are complementary.  

An interesting insight regards the herbaceous cover effect. At landscape level, we found that the LST 

of non-vegetated areas was significantly influenced by the total vegetation cover of herbaceous 

patches. This result could lead to believe that the effect of several small herbaceous patches is 

comparable to that of a lower number of larger patches, irrespective of each patch surface. However, 

the patch level analysis contributed to explain that the cooling capacity of each patch, and in turn its 

cooling effect, does depend on its surface; that is, larger patches have the capacity to maintain lower 

internal temperature; this in turn influences their cooling service supply. Interestingly, the cooling 

capacity of smaller patches of urban green areas revealed to be governed by patch shape rather than 

area, revealing more complex mechanism in the supply of this ecosystem service. 

Thus, in summary, there is an additive effect of herbaceous patches, but the final cooling effect is 

modulated by the actual surface of patches, i.e., being equal the total cover, we should expect that the 

cooling capacity of a few larger patches would be higher than that of several small patches. Indeed, 

when patches become smaller, like urban green areas in our study area, the cooling process becomes 

more complex, entailing other patch attributes such as the shape.  

Even woody elements revealed complementary insights while considering cooling effect at different 

scales. Particularly, a lower number of patches showed to improve the cooling effect at landscape 

level, while patch level analysis revealed that more elongated patches (i.e., higher perimeter values) 

have a greater cooling capacity. Indeed, hypothesizing a landscape where there is a unique long and 

continuous hedgerow, its cooling effect would be relatively hight because of its high perimeter, thus 

the Land Surface Temperature of surrounded non-vegetated areas would be relatively cold. In a same 
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landscape with numerous discontinued short hedgerows, its cooling effect capacity would be lower 

due to their shorter perimeter, thus the Land Surface Temperature of surrounded non-vegetated areas 

would be hotter.  

Finally, the context in which green area patches are located revealed to influence green area cooling 

capacity and in turn their cooling effect. The importance of the context turned out to be particularly 

relevant for urban green patches, likely due to their usually small surface. As the surface decreases, 

the influence from the surrounding elements, namely the edge effect, can become so high to hamper 

the cooling capacity.  

4.4 Useful insights 
 

Based on the results of the cross-scale analysis, we provided new insights on the necessary 

requirements to be met by GI elements to maximize the supply of cooling effect. Considering that the 

planning of efficient GI is influenced by numerous conflicts of interest, due to limited resources 

(especially economic and spatial), these results allow to focus on those characteristics useful to make 

GI interventions sustainable. 

The increase of temperature due to the reduction of green areas implies that GI elements should be 

primarily implemented in low vegetated areas as residential or industrial zones, where the cooling 

effect demand is higher. Green elements should be planned as to maximize their cover at landscape 

level, and minimising fragmentation of extant patches.  

The inclusion of small green patches unlikely has significant results in terms of temperature reduction, 

especially in urban contexts, where artificialisation is high and new green patches are mostly in 

contact with impervious areas.  

To assure GI efficacy, GI elements should be as large as possible to increase their cooling capacity 

and in turn the supply of the cooling effect. To overcome the issue regarding the limited space 

available for GI in urban context and solve the problem of the edge effect that can impair the supply 

of cooling effect, GI elements should be planned in combination to simulate the positive effect 

observed in rural areas. Our analysis suggest that cooling capacity can increase when herbaceous and 

woody elements are associated; in this regard, the efficacy of a small herbaceous area can be improved 

by adding an hedgerow bordering one or two sides of the patch. 
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