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Introduction

In this thesis, we investigate a growth model in which the capital stock represents
the quantity of "clean air", or more generally of an unpolluted resource, that di-
minishes over time as pollution occurs. The process of producing the consumption
goods that agents use to get their utility has the side effect of emitting polluting
gasses which lower the amount of “clean air” in the system.

Additionally, we assume that this capital stock, representing the clean resource,
is distributed across various locations, each with varying regeneration capacities.
These locations are interconnected, and thus, pollution can spread from one
location to the other ones with varying intensities due to the morphological
characteristics of the terrain.

A single decision maker has the goal to design which among these subregions
are the best to possibly localize such production/pollution, and to determine the
optimal intensity of consumption at every site in order to maximize the combined
utility of all locations from consumption.

The model structure is inspired by a recent paper authored by by Fabbri et al.
[8], in which they present a dynamic model involving multiple players engaged
in resource harvesting competition. This work represents a novel application
of similar techniques and enhances the analysis by contrasting the impacts of
competition with those arising from coordinated actions.

The first chapter will be dedicated to a brief enunciation of the main mathematical
tools used in the subsequent analysis, to have a clear picture of the background
theory employed.

On Chapter two instead, we will focus on an explanation of the base model both
in a more prosaic way and a more rigorous version. The last part of the chapter
will be allocated to a discussion on some crucial parameters of the model. (The
discussion of the most critical parts of the model will be left to the last chapter
where there will also be an attempt to propose a more advanced model as a
possible way for further development.)
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The main body of this work will be comprised by chapters three and four
which are entrusted to expose the calculation and the main results of framework
one, in the case of chapter three, and the exposition of the known results from
the original paper about framework two in chapter four. The second part of
chapter four is used to make a comparison between the results of the two different
frameworks for what attains utility of agents, and the optimal emission rate of
them.

The last chapter will be devoted to an examination of some parts of the
model that could be improved or reworked in order to get an advanced model
to make more complex simulation of the real behaviour of the agents. These
suggestions will be combined with some empirical facts and/or theoretical
intuitions to propose and advanced model, which could represent a plausible
further development of the original model.

6



Notation

Throughout the text we will make use of the following notation:

R set of real numbers

C set of complex numbers

Re(z) the real part of the complex number z

R+ = [0,+∞) set of nonnegative real numbers

⟨x, y⟩ = ∑n
i=1 xiyi the inner product of (column) vectors x, y ∈ Rn

ei ∈ Rn the i-th vector of the canonical base in Rn

A⊤ is the transposed of the matrix A

Moreover, we here summarize the notation used in the model to represent the
various parameters and variable quantities:

Xi(t) is the "clean" stock present at node i at time t

X(t) the column vector (X1(t), X2(t), ..., Xn(t))⊤

gij intensity of flow from node i to node j

Γi natural regeneration rate at node i

G the n × n adjacency matrix of the network, with entries gij

ri net regeneration rates (the regeneration factor Γi plus the net carbon
dioxide intake at node i flowing from the other nodes)

R diagonal matrix of with entries ri on the ii-th place

λ Perron-Frobenius eigenvalue of the matrices R + G⊤ and R + G

η > 0 dominant eigenvector of R + G, associated to the Perron-Frobenius
eigenvalue λ
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ζ > 0 dominant eigenvector of R + G⊤, associated to the Perron-Frobenius
eigenvalue λ

σ ∈ (0, 1] relative risk aversion parameter of the agents

ρ > 0 discount rate employed by the agents for discounting future utilities

θ1 = ρ−λ(1−σ)
σ cumulative rate of "impatienty" in framework (F1)

θ2 = ρ−λ(1−σ)
1−(1−σ) f cumulative rate of "impatienty" in framework (F2)

xi amount of the stock of "clean air" present at node i at time 0

x (column) vector (x1, x2, ..., xn)

⟨X(t), η⟩ := ∑n
i=1 Xi(t)ηi weighted total mass of "clean air" present in the

system at time t
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Chapter 1

Mathematical Tools

1.1. Optimal Control Problems

We here present the traits of a general optimal control problem in Rn, and in
continuous time consistent with problems treated in Chapter 3. We first introduce
a controlled system.
We assume that a system evolves continuously in time according to an ordinary
differential equation (briefly, ODE) in Rn, namely

Ẋ(t) = f (t, X(t), c(t)), t ≥ 0 (1.1)

where X(t) = (X1(t), X2(t), ..., Xn(t))⊤ ∈ Rn, is called the state of the system. The
function

f : [0,+∞)× Rn × Rm −→ Rn

is called the dynamic, and embodies all the features of the evolution that are
exogenously imposed on the system, while c(t) = (c1(t), c2(t), ..., c f m(t))⊤ ∈ Rm

is called the control or strategy, is chosen by a unique decision maker and represents
the channel through which they can intervene or interact with the system.

Mathematically speaking, a controlled system is a family of ordinary differ-
ential equations, parametrized by the control function: for every choice of the
control, one has a different evolution of the system.

Equation (1.1) is usually coupled with an initial condition of type

X(0) = x ∈ Rm (1.2)

The control may be required to attain values c(t) in a proper subset C of Rm, at
all times - such set C is called the control space, to be a measurable function and
to satisfy, jointly with the state, possible additional constraints. For the sake of
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the present thesis, we will consider only positivity constraints (quite frequent in
control theory applied to economic problems), i.e.

ci(t) ≥ 0, Xi(t) ≥ 0, ∀t ≥ 0. (1.3)

so that altogether, she set of admissible controls is chosen as

A = {c : [0, T] → C : c(·) measurable, c(t) ≥ 0, X(t; x, 0, c(·)) ≥ 0, ∀t ∈ [0, T]}

where by X(t; x, s, c(·)) we mean the trajectory at time t that starts at x at time s
and is driven by control c(·). The agent choosing the control function c(·) may act
according to different objectives. In optimal control problems such agent chooses the
control so to maximize (or minimize) a functional call the objective functional (or
pay-off ) of type

J(c(·), x) =
∫ T

0
ℓ(t, c(t), X(t))dt (1.4)

where ℓ : [0,+∞)× R f × Rn → R is called instantaneous objective function and it
needs to be at least measurable. When T < +∞ the problem is said to have a finite
time horizon, conversely, when T = +∞ the problem is said to have an infinite
time horizon. In the latter case, we will assume

ℓ(t, c, x) = e−ρtℓ0(c, x),

The constant ρ is often positive, and then called the discount rate. This particular
dependence of ℓ on time is meant to weigh differently the outcome ℓ0(X(t), c(t))
in time.

Definition 1 A control c ∈ A is said optimal for the problem described by (1.1)(1.2)
and (1.4) if

J(c∗(·), x) ≥ J(c(·), x), ∀c ∈ A.

The corresponding trajectory X(t; 0, x; c∗) is called an optimal trajectory and will be
denoted by X∗. The state-control couple(c∗, X∗) will be called an optimal couple.

The optimal control problem (P) is then:

Maximize J(c(·), x) over c ∈ A and subject to the contraints (1.1)(1.2).

Open-loop vs Closed-loop Control Strategies

An open-loop strategy predetermined time-dependent function c(t) lying in the set
of admissible controls A, chosen once and for all at the beginning of the time
span, regardless the value of the state X(t) in the process. In contrast, a closed-loop
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strategy is a responsive function that depends on the observed state X(t), i.e., it
takes the form:

c(t) = G(t, X(t))

where the function G : [0, T]×Rn → Rm is called a reaction, or feedback law. Closed-
loop controls, also known as feedback controls, are of particular interest because
they provide real-time responses to the system’s current state, allowing them to
adapt to unforeseen disturbances in the system.

When the feedback control is inserted into the state equation, it gives rise to a
so-called closed-loop equation, when the control falls out of the picture{

Ẋ(t) = f (t, X(t), G(t, X(t))), t > 0
X(0) = x,

(1.5)

If the control c(t) = G(t, X(t)) is optimal, then the feedback law G is called an
optimal feedback law.

The assumptions that are made on the data f , ℓ, ℓ0 or on A are usually meant to
ensure existence and uniqueness of the solution of (1.1)(1.2), that all quantities are
well defined, and finally that a suitable techniques of solution of the problem can
be put into action. For instance, the Lipschitz-continuity of the dynamic f in x,
uniformly in t and c, meaning the existence of a constant K > 0 such that

| f (t, x, c)− f (t, y, c)| ≤ K|x − y|, ∀t ≥ 0, ∀c ∈ C, ∀x, y ∈ Rn

ensures existence and uniqueness of the solution of (1.1)(1.2), while the other
data are generally required to be at least measurable or satisfy bound growth of
some kind. We do not go deep into this discussion as we will be considering
linear dynamics and differentiable measurable running objectives, and prove all
properties in detail at due time.

A few words about the techniques that are available for solving optimal control
problems. They are mainly

• Pontryagin’s Maximum Principle, an extension, say, of the Lagrange Theorem
for dynamic problems, developed by Lev Pontryagin in 1956;

• Bellman’s Dynamic Programming, developed by Richard Bellman in the
1950s.

One of the main differences between the outcomes of such techniques is that the
former characterizes open-loop optimal controls, while the second characterizes
the closed-loop controls in terms of the gradient of the so-called value function, that
we define in section 1.2. There, we proceed with a brief description of Dynamic
Programming method, in order to use it in the following chapters.
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1.2. Dynamic Programming

The Dynamic Programming method is based on the immersion of the original
problem (1.1)(1.2)(1.4) in a family of subproblems starting at an intermediate time
t ∈ [0, T], hence {

Ẋ(s) = f (s, X(s), c(s)) s ≥ t
X(t) = x

When necessary, we will refer to the solution of this system as X(s; t, x, c(·)) and
mean "the value at time s of the trajectory that started at x at time t and was driven
by the control function c(·)". The functional to be maximized is then

J(c(·); t, x) =
∫ T

t
ℓ(s, X(s), c(s))ds.

Then one takes the following steps:

• define the value function of the problem, that is the maximal (or supremal)
value of the payoff V : [0, T]X Rn −→ Rn

V(t, x) := sup
c(·)∈A(t,x)

J(c(·), t, x)

where A(t, x) is, in the case that we are interested in, defined as

A(t, x) = {c : [t, T] → C : c(·) measurable, c(ts) ≥ 0, X(s; x, t, c(·)) ≥ 0, ∀s ∈ [t, T]}

.

• show that the value function can be characterized as a solution (possibly
unique) of a partial differential equation called Hamilton-Jacobi-Bellman
(briefly, HJB) equation built from the data of the problem as follows. One
defines the current value Hamiltonian function as

h(t; c; x; p) = ℓ(t; x; c) + ⟨p, f (t; x; c)⟩

where p ∈ Rn is an adjoint variable, and the (maximal) Hamiltonian function
as

H(t; x; p) = max{h(t; c; x; p)}
then the HJB equation is

vt(t; x) = H(t; x;∇v(x)), t ≥ 0, x ∈ Rn

• find a solution v, if possible, of the Bellman equation and prove that such
solution coincides with the value function V.
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• find a relationship between the optimal strategy and the gradient of the value
function;

• characterize, via the so called closed-loop equation, both the optimal strategy
and trajectory in terms of the value function, finds a feedback optimal map
and.

1.2.1 Problems with Infinite Horizon

Dynamic Programming for a problem with an (ideally) infinite time horizon, where
the state equation is autonomous (i.e. the dynamic does not depend directly on
the time variable), takes a simplified form that we discuss in the sequel, expanding
the steps briefly described at the beginning of section 1.2. First of all we assume
that the state equation is of type{

Ẋ(s) = f (X(s), c(s)) s ≥ 0
X(0) = x

(1.6)

then we define a current value Hamiltonian function h0 by means of the following
position

h(t, x, c, p) = ℓ(t, x, c) + ⟨p, f (x, x)⟩
= e−ρtℓ0(x, c) + e−ρt 〈eρt p, f (x, x)

〉
= e−ρt{ℓ0(x, c) + ⟨q, f (x, x)⟩
≡ e−ρth0(x, c, q)

where
q = eρt p

is the new adjoint variable. Consistently one defines

H(t, x, p) = e−ρt sup
c

h0(x, c, p) ≡ H0(x, p).

The derivation of a suitable HJB equation requires an intermediate step called
dynamic programming principle, of which HJB equation represents an infinitesimal
version. Before the enunciation of the Dynamic Programming Principle, we need
to define some condition on the admissible control strategies and on the function
f , ℓ.
We require the family of admissible control strategies A(t, x) for varying t and x
to satisfy the following assumptions:
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(A1) For every 0 ≤ t ≤ τ ≤ T, x ∈ Rn,

c ∈ A(t, x) ⇒ c|[τ,T] ∈ A(τ, X(·, t, x, c))

(where c|[τ,T] is the restriction of the control function c to the interval [τ, T]),
meaning: the second part of an admissible strategy is itself admissible.

(A2) For every 0 ≤ t ≤ τ ≤ T, x ∈ Rn, c1 ∈ A(t, x), c2 ∈ A(τ, X(·, t, x, c1)), the
control c defined as

c(s) =

{
c1(s) if s ∈ [t, τ]

c2(s) if s ∈ [τ, T]
(1.7)

belongs to A(t, x), meaning: the juxtaposition of two admissible strategies is
admissible.

Lemma 1 (Dynamic Programming Principle, DPP) The value function
V(x) ≡ V(0, x) of the problem with initial time t = 0, initial state x, satisfies

(a) V(t, x) = e−ρtV(x), ∀t ≥ 0, ∀x ∈ Rn;

(b) (Dynamic Programming Principle)

V(x) = sup
c(·)∈A(0,x)

{∫ τ

0
e−ρsℓ0(X(s), c(s))ds + e−ρsV(X(τ; x, 0, c(·)))

}

Theorem 1.1 When differentiable, the value function V(x) of the described optimal
control problem satisfies the following HJB equation, for all x ∈ Rn

ρv(x) = H0(x,∇xv(x)).

We do not prove the statements above, for the full demonstration we remand to
the book by Bardi and Capuzzo-Dolcetta [2].

We present instead a heuristic derivation of HJB equation to appreciate where it
comes from. In the DPP, we move all terms to one side (anything not depending
on c can be taken inside the sup) and we multiply each side by 1

τ , with τ > 0,
obtaining

sup
c(·)

{
1
τ

∫ τ

0
e−ρsℓ0(x(s), c(s))ds +

e−ρtV(X(τ))− V(x)
τ

}
= 0 (1.8)
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Now note that, by means of chain-rule1 we have

lim
τ→0

e−ρtV(X(τ))− V(x)
τ

=

[
d

dτ
e−ρtV(X(τ))

]
τ=0

= −ρe−ρ0V(x) + e−ρ0 〈Vx(X(0, x, c(0)); Ẋ(0)
〉

= −ρV(x) +
〈
Vx(X(0, x, c(0)), Ẋ(0)

〉
= −ρV(x) + ⟨Vx(X(0, x, c(0)), f (x, c(0))⟩

and that
lim
τ→0

1
τ

∫ τ

0
e−ρsℓ0(x(s), c(s))ds =

[
e−ρsℓ0(X(s), c(s))

]
τ=0

= e−ρ0ℓ0(X(0), c(0))
= ℓ0(x, c(0))

so that (1.8) becomes

sup
c(0)

{ℓ0(x, c(0))− ρV(x) + ⟨Vx(x), f (x, c(0))⟩} = 0

Note that now the sup, originally taken over a set of control functions, depends
only on the initial value of such controls, the vector c(0) ∈ Rn. Then, after taking
anything not depending on c(0) out of the sup, we are left with

−ρV(x) + sup
c(0)

{ℓ0(x), c(0)) + ⟨∇xV(x), f (x, c(0))⟩} = 0

that is
−ρV(x) + H0(x,∇xV(x)) = 0

as in the statement of Theorem 1.1.

1.3. Differential Games

Optimal control theory typically deals with problems where a single decision
maker maximizes their payoff. We now want to consider a scenario in which
multiple agents are engaged in dynamic competition to maximize their individual
payoffs. Therefore, it is essential to integrate Dynamic Programming with Game

1We recall the chain rule in multiple dimension:

d
dτ

V(X(τ)) =
n

∑
i=1

∂V(X(τ))

∂xi
· ∂Xi(τ)

∂τ
= ⟨∇xV(X(τ)), X′(τ)⟩
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Theory by employing Differential Games.

Differential games are the natural extension of static games in a dynamic
framework with a continuous time setting. In our simplified exposition, we
consider an autonomous system of type (1.6) , that is{

Ẋ(s) = f (X(s), c(s)) s ≥ 0
X(0) = x

(1.9)

where ci(s) ∈ Rm are the controls implemented by the agents, and the set of their
choices c(t) is called a (complete) strategy profile. In a non-cooperative game, the
agents try to maximise their own objective function

Ji(ci; c∗−i, x) =
∫ +∞

0
e−ρtℓi(X(t), ci(t), c∗−i(t))dt, (1.10)

by choosing their control ci, and taking as given the control chosen by the other agents,
and denoted by c∗−i.

Definition 2 We call a complete strategy profile c∗ ∈ A a Nash Equilibrium when

J(ci; c∗−i, x) ≤ J(c∗i , c∗−i, x)

for every admissible strategy profiles (ci, c∗−i) ∈ A, and for every player i. That is, when
(already) playing c∗ it is inconvenient for any agent to change their strategy ci if the other
players are sticking to c∗−i.

To find Nash equilibrium solutions, we thus need to simultaneously solve m
optimal control problems, as many as the players; the optimal solution c∗−i of the
set of players different from the i-th enters as a parameter in the problem of the
i-th player.

Also in differential games there is a distinction between open-loop and closed-
loop strategy profiles:

• with an open-loop strategy profile agent i is unable to gather information on
the state of the system once the game has started, and/or on the strategy
implemented by other players; is forced to chose at the nbeginning their
strategies, once and for all. Hence open-loop strategy profile depend solely
on time.

• with Markovian Strategies we assume that every agent i, at each time t, knows
the state of the system, and/or on the strategy implemented by other players
until time t.
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Dynamic Programming helps devising Markovian equilibrium strategies, by the
definition of a value function Vi for every player, defined for a family of intermediate
problem, starting at a time t ∈ [0, T] at the state x, as

Vi(t, x) = sup
ci

J(ci(·); t, x, c∗−i)

with players solving simultaneously their own optimal control problem, having
each an associated HJB equation also to be solved simultaneously.
Nonetheless, a detailed explanation of Dynamic Programming for Differential
Games goes beyond the scope of this thesis.

1.4. The Perron–Frobenius Theorem

The Perron-Frobenius Theorem establishes properties of eigenvalues and eigen-
vectors of real square matrices which are positive or, in its extended versions,
nonnegative and irreducible, or primitive. We are in particular interested in the
version dealing with Metzler matrices.
We preliminarily recall the following definitions:

• a square matrix is called positive (respectively, nonegative) if it has all strictly
positive (resp., nonnegative) entries;

• a square matrix is called a Metzler matrix, if it has all nonnegative entries
except those on the principal diagonal.

• a square matrix A is called reducible if there exists a permutation matrix P
such that P−1AP is upper block-triangular matrix, that is

PAP−1 =


O A1 O ... O
O O A2 ... O
...

...
...

...
O O O ... Ah−1
Ah O O ... O


The matrix is called irreducible otherwise.

Theorem 1.2 [Perron-Frobenius Theorem for Metzler matrices] Assume A is an
irreducible n × n real Metzler matrix. Then A has a simple real eigenvalue λ whose real
part is greater than the real parts of all other eigenvalues. The associated eigenvector can be
chosen strictly positive (i.e., with all strictly positive entries) and it is the only eigenvector
with such property.
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Some remarks are here useful:

• the positive eigenvector cited in the Theorem is often called the dominant
eigenvector of A;

• clearly the statement holds also for the transpose A⊤ of A, that has the same
eigenvalues, but possibly different associated eigenvectors;

• the property stated in the theorem of having a simple real eigenvalue of
maximal real part and an associated positive eigenvector is often defined as
the strong Perron-Frobenius property;

• we will see in the next section that the adjacency matrix of a strongly con-
nected network is irreducible amnd nonnegative, so it enjoys the strong
Perron-Frobenius property.

Among the consequences of Perron-Frobenius Theorem more relevant to our
work there are those stated in the following Theorem, both associated to Metzler
matrices, when they represents the dynamics of linear ODEs. To this extent, we
consider the following Cauchy problem{

X(t) = AX(t), t ≥ 0
X(0) = x

(1.11)

Theorem 1.3 Consider the Cauchy problem (1.11), where A is a Metzler matrix.
Then:

(i) the trajectory of the system lies in the positive orthant Rn
+ for every initial datum x

chosen in the positive orthant; the viceversa also is true: if the latter property is true,
then A is a Metzler matrix.

(ii) The trajectory of the system converges towards the direction of the dominant positive
eigenvector of A.

A proof of the first statement can be found in the book by Farina and Rinaldi
[12], while the second descends from the well-known fact that trajectories of linear
systems converge towards the direction of the eigenvector of maximal real part
(when simple).

Hence, if A is not a Metzler matrix, one can show that there exist nonnegative
initial data x for which the associated trajectory leaves the positive orthant at least
for some time.
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1.5. Networks

A network, often referred to as a "graph," is a mathematical and graphical repre-
sentation of a set of interconnected elements. It consists of two main components:
nodes (vertices) and edges (links or connections).
Nodes are the fundamental units or entities within a network. They represent
individual elements, entities, or points in the network. In various applications,
nodes can represent a wide range of things, such as people in a social network,
routers in a computer network, cities in a transportation network, or any other
discrete objects relevant to the system being studied.

On the other hand, edges (or links, or connections) are the connections or
relationships between pairs of nodes in a network. They represent the interactions,
associations, or dependencies between the nodes they connect. Edges can be
directed (pointing from one node to another) or undirected (bidirectional or
symmetrical). In some contexts, edges may also have associated weights or
attributes that provide additional information about the relationships they
represent. In the sequel we will in fact define a weighted networks.

Networks are used to model and analyze a wide range of complex sys-
tems in various fields, including computer science, sociology, transportation,
biology, and more. They are a powerful tool for studying relationships and
patterns within interconnected data. Network systems are defined through the
use of the mathematical objects called Graphs, which have their own specialized
branch of mathematical theory called Graph Theory.

Definition 3 An directed and weighted graph (or network) is a triplet G =
{V, E, G}, is composed by the sets:

(i) V is the set of vertices (also called nodes) with elements {v1, v2, ..., vn} ̸= {∅};

(ii) E is the set of edges (also called links) defined as a subset

E ⊆ {(vi, vj)|vi, vj ∈ V and vi ̸= vj}

When (vi, vj) ∈ E that means that the node vi is linked (unidirectionally) to the
node vj;

(iii) A set of weights on such link, represented through a matrix G of entries gij repre-
senting the intensity of connection from vi to vj. Such matrix is called adjacency
matrix of the network.

A few remarks:
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• multiple edges connecting the same pair of unordered vertices (vi, vj) are not
allowed to exist;

• a network defined in this way does not contain any loops, which would
involve edges connecting a vertex vi to itself.

• The weights gij on the links, in the simplest instance of the adjacency matrix,
are set equal to 1 when there’s an edge connecting vi and vj and to zero
otherwise.

Definition 4 A network (V, E, G) is said totally connected or complete when all
nodes are linked with positive weights. It is said instead strongly connected when there
exists always a directed path between two different nodes.

In a strongly connected network there are no isolated nodes, and every node can
be reached from any other node through a sequence of directed edges.

In the figure (a) below we see an example of graph which is not strongly
connected. Indeed vertex v2 is unreachable from the other vertices and if we start
in vertex v1 we cannot go anywhere. In figure (b) instead, we see an example of a
strongly connected graph. In this case, we can reach a vertex starting from any
other vertex.

(a) A not strongly connected graph (b) A strongly connected graph

An important property of strongly connected networks, that we will need in the
next chapters, is the following.

Lemma 2 A matrix A is irreducible if and only if its associated graph (or network) is
strongly connected.

This fact will be used to state that the the adjacency matrix of a strongly connected
and weighted network, with nonnegative weights is irreducible and nonnegative,
and satisfies the assumptions of the Perron-Frobenius Theorem.
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Chapter 2

A Spatial Model for Pollution
Dynamics and Growth

2.1. Model Explanation

The primary objective of this work is to propose a model for the diffusion and, in
suitable extensions, containment of environmental pollution. For instance, we can
consider this pollution to be atmospheric pollution caused by CO2 (although the
model is applicable to other natural resources as well), with the characteristic of
being ’mobile’ and capable of spreading from one area to connected areas through
flows of pollutant. The various areas are to be regarded as internally homogeneous
in terms of pollutant production and containment, and distinct in this regard from
the surrounding areas. Hence, the decision to represent them as a network, where
each area constitutes a node, nodes in communication are denoted by the links
of the node, and the flow intensities are represented by the weights assigned to
these links, strictly positive if and only if a positive flow from the source node to
the destination node is possible.

2.1.1 Spatial Dynamics on Networks

Mathematically speaking, we describe our “world” through the use of a network
G, where each region is represented by a single node n. We denote the set of nodes
by N := {1, .., n}, and with gij ≥ 0, the weight upon the edge connecting a source
node i and a target node j, with gij representing the intensity of the outflow from i
to j. In the special case when gij = 0 and gji = 0, there are no direct connections
between the two nodes.
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Figure 2.1: Example of a network with three nodes

We assume that G is strongly connected, with gii = 0 for all i ∈ N, that is, there
exists in G a path connecting any two nodes with corresponding strictly positive
coefficients gij, effectively excluding the existence of isolated nodes. G has for
definition no loops.
The n × n matrix G with elements gij, and i, j ∈ N is the so-called adjacency matrix
of the network. For all i ∈ N, the quantity Xi(t) stands for the non polluted capital
stock present in the node i at time t, and X(t) for the vector with components
X1(t), ..., Xn(t). The evolution in time of the residual clean air Xi(t) on region i
depends on several factors:

(a) the composite regeneration factor ΓiXi(t) for the resource at time t at node i,
embodied by the (constant) natural growth rate Γi. This factor is essentially
replicating the compound effect of absorption of CO2 carried out by plants,
trees and water masses (primarily oceans), and natural degradation of the
CO2 molecules in the atmosphere. For renewable resources Γi > 0, while for
non-renewable resources Γi ≤ 0;

(b) the overall difference between outflow of the resource from region i to a
linked region j at time t, given by gijXi(t), and the inflow from the same
region given by gjiXj(t). Therefore the net inflow at location i from region j
is given by:(

n

∑
j=1

gjiXj(t)

)
−
(

n

∑
j=1

gijXi(t)

)
= ⟨Gei, X(t)⟩ −

(
n

∑
j=1

gij

)
Xi(t)

(c) the rate of pollution ci(t) emitted at time t from region i, which contributes
to decrease the capital stock of "clean air".
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As a whole, we then have for all i

Ẋi(t) =
(

Γi −
n

∑
j=1

gij

)
Xi(t) + ⟨Gei, X(t)⟩ − ci(t).

With additional specification we can rearrange this equation in a more compact
form, which will come handy in future calculations.

• We define R = (rij) as the diagonal matrix of the regeneration factors net of
the outflows from node i:{

rij = 0 if i ̸= j
rii ≡ ri = Γi −

(
∑

j=n
j=1 gij

)
,

• c(t) is the vector with components c1(t), ..., cn(t),

• x0 is the vector of all initial stocks of the unpolluted air capital stock at the
different nodes.

Then, the evolution of the system in vector form can be describes as:{
Ẋ(t) = (R + G⊤)X(t)− c(t), t > 0
X(0) = x0 ∈ Rn

+.
(2.1)

In addition, we require the following positivity constraints as conditions of exis-
tence for our model :

ci(t) ≥ 0, t ≥ 0, i ∈ N (2.2)

as well as
Xi(t) ≥ 0, t ≥ 0, i ∈ N. (2.3)

The constraints (2.3) and (2.2) are essential for establishing realistic boundaries
within which our model variables can evolve. While these constraints are self-
evident for time and the capital stock of ’clean air’, given that both time and the
quantity of a tangible entity like a gas cannot be negative, the same does not
necessarily hold for a variable like pollution emissions. Pollution emissions could
potentially be negative in cases where pollutant gases are captured more than they
are emitted at a particular node. However, we will not consider this possibility.

The dynamic just enunciated is the core of the model and represent the natural
diffusion process of the GHGs, or other types of pollutants, when introduced into
a closed system (the atmosphere). They tend to naturally spread from their initial
point of entry into all the system in order to achieve a uniform spread across all
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the part of the system itself, but such naturally tendency is modulated by natural
barriers or accelerators, represented by the weights gij.
Here the pollution’s behaviour emerges by difference with the stock of clean
resource, and the “imaginary” quantity of “clean air” mimics the behaviour of its
real counterpart (the concentration of GHGs).

2.1.2 Emissions Rules and Utility

The agents we have described earlier are in communication through the network.
We can consider them as acting separately in a non-cooperative game, where each
of them maximizes their own intertemporal utility, or coordinated by a single social
planner who makes decisions for the community by maximizing a cumulative
utility (the sum of individual agents’ utilities) while choosing consumption for
each.

We assume that some regions, among the n available, are not usable by agents
for several reasons: the regulator could have decided to designate some nodes as
natural reserves where production and consequent emission of pollution are not
allowed; some nodes can be occupied by dense forests, deserts or be mountainous
and or arctic areas, which all are characterized by a very sparsely or null density
of population, and as such we consider these nodes as unavailable for agents
occupation; other nodes instead are occupied by sea zones which cannot be
occupied by agents. Economic activities, and the consequent consumption and
pollution ci(t), is null in a subset O of N, while every other node i with i ∈ F :=
N \ O is exclusively assigned to agent i. The total number of agents present in the
network is f so that the elements of O will be n − f .
Every agent has an instantaneous utility from consumption described by

u(c) = ln(c) or u(c) =
c1−σ

1 − σ
, σ > 0, σ ̸= 1

(the case of a logarithmic u stands for the case σ = 1). Then the following two
frameworks are considered:

(F1) agents are coordinated by a unique social planner maximizing the payoff

J(c, x) =
∫ +∞

0
e−ρt

f

∑
i=1

u(ci(t))dt, i ∈ F (2.4)

with respect to c = (c1, c2, · · · , cn) (note that x is the initial stock of the
resource, and the notation J(c; x) points out that dependence in J) vary-
ing in a set of admissible controls encompassing positivity constraints on
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consumption and stocks, such as

A = {c ∈ L1,ρ
loc([0,+∞[; Rn

+) : X(t; x; c(·)) ≥ 0, ∀t ≥ 0}

where L1,ρ
loc indicates the set of locally integrable controls in [0,+∞[1 . While

(F2) agents strategically interact in a differential game where agent i maximizes
the payoff

Ji(ci, x) =
∫ +∞

0
e−ρtu(ci(t))dt, i ∈ F (2.5)

where, consistently, ci ∈ Ai with:

Ai = {ci ∈ L1,ρ
loc([0,+∞[; Rn

+) : X(t; x; c(·)) ≥ 0, ∀t ≥ 0}

In both ρ represents a discount factor weighing future utilities less than those closer
in time.
We will concentrate mostly on framework (F1) (Section 1,2 in Chapter 3), and the
parallel results on (F2) will be deduced (see Chapter 4) by the pioneering work
by Fabbriet al. [8] , as well as on the comparison between the results in the two
framework (Section 2,3 in Chapter 4)

2.1.3 Parameters and Primitives of the Network

As a consequence of the Perron-Frobenius Theorem 1.2, we observe that the square
matrix R + G (which is irreducible and non-negative) has one eigenvalue that is
simple, real, and strictly greater that the real parts of the other eigenvalues, with a
positive associated normalized eigenvector. We can order the eigenvalues of the
square matrix R + G as

λ > Re(λ2) ≥ Re(λ3) ≥ · · · ≥ Re(λn). (2.6)

and define η an eigenvector of R + G associated with λ, and ζ the respective
eigenvector of R + G⊤ associated to λ. Both have strictly positive coordinates.

Trajectories in the long run

When the agents decide to opt for strategies with no emissions (c ≡ 0) the
trajectories of the system converge to the direction of the eigenvector ζ associated
to the Perron-Frobenius eigenvalue λ. This fact is a well-known result in the theory
of linear ordinary differential equations (ODEs) in Rn (see for instance the book
by Hirsch et al. [11]). Additionaly, the trajectories that at the initial time are on the
positive ray through ζ, will forever remain on the positive ray through ζ.

1L1,ρ
loc(I, R)n

+ = { f : I ⊆ R → Rn
+ :

∫ b
a (e

−ρt∥ f (t)∥dt < +∞ : ∀ [a, b] ⊆ I, bounded}
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Weighted Total Mass

The total stock of "clean air" present in the system at every time is ∑n
i=1 Xi(t). We

will make use instead of a weighted total mass of the stock, where weights are the
components of the eigenvector η, that is

⟨X(t), η⟩ :=
n

∑
i=1

Xi(t)ηi.

which, basically, is the scalar product of X(t) and η.

Natural Growth Rate of the System

When there are no emissions in the system made by the agents (essentially a
"natural" state without agents), namely ci = 0; λ represents the total mass growth
rate of the system. In fact, if we multiply (2.1) for η we get the following equation

⟨Ẋ(t), η⟩ = λ⟨X(t), η⟩

which can be solved as an ordinary ODE, and its result shows us what is the
growth dynamics of the stock into our model, which is:

⟨X(t), η⟩ = eλt⟨x, η⟩.

Moreover, if we look at the expansion in rows of the equality (R + G)η = λη, we
see that it is equal to:

(λ − ri)ηi =
n

∑
j=1,j ̸=i

gijηj, (2.7)

From the description of the model, we note that the right hand side of the equation
must be strictly positive consequently to the hypothesis that the network is strongly
connected ( which implies that at least one of the gij is strictly positive. Thus the
following conditon must hold to respect this derivation of the strongly connected
hypothesis:

ri < λ, ∀i ∈ F. (2.8)

where ri are the net reproduction rates of the stock of "clean air".

Meaning of the eigenvector η

In our model there are three interpretations of the components ηi of eigenvector η.
They are derived directly from the interpretation studied in the original paper by
Fabbri et al. [8], thus we will enunciate them accordingly:
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1. The component ηi of η measures the long-term carbon intake capabilities of the
system at node i. One way to establish this is to consider an initial amount of
the stock of "clean air" starting with a unitary mass concentrated in the i-th
node, namely x = ei. Then, if we are in the case of null emissions, we would
get

⟨x, η⟩ = ηi,

which implies that the total mass, in the long run, is maximized when such
unitary mass is allocated in the node where ηi is maximal.

2. If every player choose its emission strategy proportionally to the (weighted)
total mass, that is, ci = Ii(t)⟨X(t), η⟩, with I(t) = (Ii(t))i denoting the
intensities of emission at time t, then the resulting evolution of the system is
going to be:

Ẋ(t) = (A + G⊤)X(t)− ⟨X(t), η⟩I(t)

which implies ⟨Ẋ(t), η⟩ = g⟨X(t), η⟩ with

g = λ − ⟨I(t), η⟩ = λ −
n

∑
i=1

Ii(t)ηi

Here g represent the new growth rate of the system after the new emission
strategy I(t) of the agents is implemented. In particular, the rate g is a
decreasing function of Ii with

∂g
∂Ii

= −ηi, (2.9)

This derivative thus suggest us that in order to lower the negative impact
to the growth rate of the stock of "clean air" agents should concentrate their
emissions in the node or nodes where ηi is minimal.

3. The ηi’s represents what network theory terms the eigencentrality of node i,
not of the original G but of a related network G ′ whose adjacency matrix is
A + G. Note that since (R + G)η = λη, and the matrix λI − R is diagonal
with all positive diagonal coefficients λ − ri, one can rewrite

(R + G)η = λη

Gη = (λI − R)η

(λI − R)−1Gη = η

(2.10)

Then η is the dominant eigenvector (of eigenvalue 1) also of the migration
network with adjacency matrix (λI − R)−1G, that is, where the coefficients of
the original adjacency matrix G are magnified by reproduction rates: the i-th
row of G is multiplied by 1/(λ − ri), and flows are magnified by such factor.
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Discount rate ρ

The discount rate has a crucial role in determining how the agents weigh their
present and future utilities. The model just described in the previous sections
has, as one of its features, an infinite time horizon, and the agent(s) decides their
emission strategy continuously in time. A way to differentiate between present
and future utilities is achieved through the use of the discount factor e−ρt (which
is the standard way to discount future values in the presence of continuous time).

When the discount factor is applied to financial products it is used to rep-
resent the opportunity cost of investing a given sum of money into possible
alternative investment products, usually these alternative investment products
are used to represent possible benchmarks (riskless, if using AAA bond of risk
free countries like USA for dollar denominated assets and Germany for euro
denominated assets, or with some part of risk, if using stock index like the
S&P500 etc. . . ) to which compare the performance of the chosen financial product.

Our case is a little-bit different from this standard case, in the sense that,
the agents of our model are not in a set up where they have alternative class
of assets from which to generate their utility to choose looking at the expected
returns. Instead, they are tasked to choose an emission strategy c∗i that allows
them to maximize their own payoff functions (or the cumulated payoffs of all
agents in the case of a single planner). Thus, the discount rate utilized in our
model takes the role of signalling the opportunity cost of choosing between
strategy with different temporal structures.

If the discount rate applied is positive and too large the contribution to
the overall payoff functions of the agents of future utilities tends to zero very
rapidly, therefore incentivizing them to adopt emission strategy heavily focused
on the short-term production of high amount of air pollution, completely ignoring
the “future” part of the infinite time horizon in which they are. Instead, if the
discount rate applied is negative, the discount factor turns into an amplifier factor
and thus, it would give the agents an incentive to continuously ramp up their
pollution emission the more the time frame goes on. From this analysis we can
clearly see that if we want the agents to decide their future behaviour in a more
realistically way, we need to restrict the possible values of the discount rate at least
into the interval ]0; 1[ with a possible further restriction to the interval ]0; 0, 05].
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Relative Risk Aversion (RRA) σ

For what attains the parameter (σ), which appears in the characterisation of the
utility function chosen for the model, it represent the relative risk aversion (RRA)
of the agents and, at the same time, the reciprocal of the elasticity of intertemporal
substitution (EIS). We are mainly interested on the effect of σ on the value of the
utility function (u(ci(t)) for the agents of the model.

Given the fact that we have used a characterisation of the utility function

u(ci) =
c1−σ

i
1 − σ

, for σ ̸= 1

And we have also assumed that the emission strategies of the agents in order to be
admissible have to be higher or equal to zero, then the sign of the utility functions
for the agents fall entirely upon the interval on which we decide to define the
parameter (σ).

If we decide to consider the condition σ ∈]0, 1[ then the object (1 − σ) is
positive and the resulting utilities functions are positive (higher or equal to zero).
Instead, if we decide to consider the condition σ ∈]1,+∞[, the object (1 − σ)
becomes negative and has to be interpreted as follows:

• If the consumption level chosen by agent i is equal to zero then the relative
utility function is −∞;

• if the consumption level chosen by agent i is higher than zero then the relative
utility function is negative, but nonetheless increasing, with limci→0+ u(ci) =
−∞, limci→+∞ u(ci) = 0− .

Given all these specific reasons we decide to restrict the choice of σ to the
interval ]0, 1[, when making use of the power function utilities. In the case σ = 1
the chosen utility remains logarithmic.
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Chapter 3

Single Planner Framework

In the following chapter we analyse the framework were a single planner make
choices for all agents, so to maximise J given by (2.4) subject to (2.1),(2.2),(2.3). In
particular, in the forthcoming Theorem 4.1 and the subsequent remarks, we are
going to establish the existence of an optimal policy of consumption/pollution,
computing an explicit formula for it, the welfare of players, and other relevant
quantities through the use of the dynamic programming. Specifically we will use
Bellman’s dynamic programming approach. In doing so, we will describe the
dynamic programming procedure, and calculations will follow.

Dynamic Programming

To apply the dynamic programming method described in Chapter 2.1.1, we will
proceed as follows:

(a) we define the value function V of the problem as

V(x) = max
c∈A

J(c; x)

(b) we associate the problem to the HJB equation

ρv(x) = H(x,∇v(x))

where the Hamiltonian function H is defined by

H(x, p) = max
c≥0

{
f

∑
i=1

u(ci)− ⟨p, (R + G⊤)x − c⟩
}

(3.1)

(c) we compute a solution of the HJB equation and show that it coincides with
the value function of the problem;
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(d) we simultaneously compute a feedback formula for the optimal control,
written in terms of the gradient of the value function, and of the optimal
trajectory.

The HJB Equation

Lemma 3 In (3.1), the Hamiltonian function can be rewritten as follows:

(i) when σ ̸= 1,

H(x, p) =
σ

1 − σ

f

∑
i=1

p1− 1
σ

i +
〈

p, (R + G⊤)x
〉

,

with maximum attained at c∗i = p−
1
σ

i

(ii) when the utility is logarithmic (σ = 1),

H(x, p) = −
f

∑
i=1

ln(pi)− f +
〈

p, (R + G⊤)x
〉

,

with maximum attained at c∗i = 1
pi

Proof. We want to find the maximiser for

φ(c) =
f

∑
i=1

u(ci)− ⟨p, (R + G⊤)x − c⟩

We note that φ is a concave function of c, so that stationary points are global
maximizers. To find them, we compute the solutions to

∂φ(c)
∂ci

= 0 ⇐⇒ u′(ci)− pi = 0

and since in both cases (of power function and logarithmic utility) u′ is invertible
on the positive real axis, the previous relationship is equivalent to

c∗i = (u′)−1 (pi) .

That implies:

(i) For u(c) = c1−σ

1−σ , one has c∗i = p−
1
σ

i so that
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H(x, p) = φ(c∗)

=
f

∑
i=1

 (p−
1
σ

i )1−σ

1 − σ
− pi(p−

1
σ

i )

+
〈

p, (R + G⊤)x
〉

=
σ

1 − σ

f

∑
i=1

p1− 1
σ

i +
〈

p, (R + G⊤)x
〉

(ii) For u(c) = ln(c), one has c∗i = p−1
i so that

H(x, p) = φ(c∗)

=
f

∑
i=1

[
ln
(

1
pi

)
− pi

1
pi

]
+
〈

p, (R + G⊤)x
〉

=
f

∑
i=1

[
ln
(

1
pi

)
− 1
]
+
〈

p, (R + G⊤)x
〉

= −
f

∑
i=1

ln(pi)− f +
〈

p, (R + G⊤)x
〉

Remark 1 Note that coupling c∗ = p−
1
σ

i ; c∗ = 1
pi

with (HJB), we establish the
relationship

u′(c∗i ) =
∂V
∂xi

(x)

between the candidate optimal control c∗ and the gradient of value function ∇V(x).
This has an interesting interpretation in economic terms: at optimum, the marginal
utility from the polluting emissions equals to the marginal cost of a diminishing
stock of clean air at node i at every moment.

Moreover the same relationship rewritten as

c∗i = (u′)−1
(

∂V
∂xi

(x)
)

(3.2)

becomes a candidate feedback-law for the optimal feedback control c∗i , once V is
known.

3.1. Optimal Policies for Power Function Utility

For the case of power utility, we have proven that the HJB equation is

ρv(x) =
σ

1 − σ

f

∑
i=1

(
∂v(x)

∂xi

)1− 1
σ

+
〈
∇v(x), (R + G⊤)x

〉
(3.3)
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with maximum of the current value Hamiltonian attained at

c∗i =

(
∂v
∂xi

(x)
)− 1

σ

We also define the constants θ1 and M that will be used in the sequel

θ1 :=
ρ − λ(1 − σ)

σ
; M =

f

∑
j=1

η
1− 1

σ
j (3.4)

We want to prove the following theorem.

Theorem 3.1 Assume u(c) = c1−σ

1−σ , with σ > 0, σ ̸= 1, θ1 > 0. Assume that the
feedback control defined by

c∗i (t) =
θ1

M
η
− 1

σ
i ⟨X(t), η⟩ , for all i ∈ F, c∗i (t) = 0, for all i ̸∈ F. (3.5)

are admissible at the initial state x, i.e., c∗ ∈ A(x). Then:

(i) c∗(t) is an optimal control strategy for the problem;

(ii) the cumulative welfare along such strategy is

V(x) =
θ−σ

1
1 − σ

Mσ ⟨x, η⟩1−σ ; (3.6)

(iii) ⟨X∗(t), η⟩ = egt⟨x, η⟩, with

g = λ − θ1 =
λ − ρ

σ
, (3.7)

Proof. Firstly, we show that a function of type

v(x) =
B

1 − σ
⟨x, η⟩1−σ

is a solution of the HJB equation, for a suitable choice of the constant B. We now
proceed with the calculation

∂v(x)
∂xi

= B ⟨x, η⟩−σ ηi, ∇v(x) = B ⟨x, η⟩−σ η
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We rewrite the HJB substituting v(x) and its derivatives

ρ
B

1 − σ
⟨x, η⟩1−σ =

σ

1 − σ

f

∑
i=1

(B ⟨x, η⟩−σ ηi)
1− 1

σ +
〈

B ⟨x, η⟩−σ η, (R + G⊤)x
〉

=
σ

1 − σ
B1− 1

σ ⟨x, η⟩1−σ
f

∑
i=1

η
1− 1

σ
i + B ⟨x, η⟩−σ ⟨(R + G)η, x⟩

=
σ

1 − σ
B1− 1

σ ⟨x, η⟩1−σ M + Bλ ⟨x, η⟩1−σ

we gather the ⟨x, η⟩1−σ that is in common on the L.H.S.

ρ
B

1 − σ
⟨x, η⟩1−σ =

[
σ

1 − σ
B1− 1

σ M + λB
]
⟨x, η⟩1−σ

This equality needs to be true for every value of x in order for the above to be an
identity. That happens if and only if

ρ
B

1 − σ
=

[
σ

1 − σ
B1− 1

σ M + λB
]

We bring all the elements on the R.H.S., and after we rearrange the equation by
grouping what we can

ρ
B

1 − σ
− σ

1 − σ
B1− 1

σ M − λB = 0

(
ρ

1 − σ
− λ)B − σ

1 − σ
B1− 1

σ M = 0

B
[

ρ

1 − σ
− λ − σ

1 − σ
B− 1

σ M
]
= 0

which is true in two cases: the first one when B = 0, which is not very interesting;
and when [· · · ] = 0, which is what we are going to analyse.

ρ

1 − σ
− λ − σ

1 − σ
B− 1

σ M = 0

B− 1
σ M = (

ρ

1 − σ
− λ)

1 − σ

σ

B =

[
ρ−λ(1−σ)

σ

M

]−σ

= θ−σ
1 Mσ

As a consequence the solution to the HJB equation is

v(x) =
B

1 − σ
⟨x, η⟩1−σ =

1
1 − σ

(
θ1

M

)−σ

⟨x, η⟩1−σ
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and the associated maximizer is

c∗(t) =
(

∂v(x)
∂xi

)− 1
σ

=
(

B ⟨x, η⟩−σ ηi

)− 1
σ
=

θ1

M
⟨x, η⟩ η

− 1
σ

i

To prove that actually v = V we need a standard verification theorem (see for
instance Fleming and Rishel [14]), the uniqueness of the optimal control follows
by the concavity of the problem (see Acemoglu, [1]). This proves (i) and (ii).

To prove (iii), we multiply both sides of the CLE by η and get

〈
Ẋ(t), η

〉
=
〈
(R + G⊤)X(t), η

〉
− θ1

⟨η, ξ⟩ ⟨X(t), η⟩ ⟨ξ, η⟩

= ⟨X(t), (R + G)η⟩ − θ1

⟨η, ξ⟩

〈
X(t), (ηξ)⊤η

〉
= λ ⟨X(t), η⟩ − θ1

⟨η, ξ⟩ ⟨η, ξ⟩ ⟨X(t), η⟩

= (λ − θ1) ⟨X(t), η⟩

By solving this linear ODE we find (iii).

Admissibility

Next we discuss admissibility of the optimal control described by (3.5). We
introduce some additional notation to rewrite the optimal feedback rule (3.5) and
write the associated closed-loop equation.
We can rewrite the optimal control

c∗(t) =
θ1

M
⟨X(t), η⟩

f

∑
i=1

η
− 1

σ
i ei

by setting

ξi :=

{
η
− 1

σ
i i ∈ F

0 i ̸∈ F
⇒ ξ =

f

∑
i=1

η
− 1

σ
i ei

and
E := ξη⊤

so that

⟨η, ξ⟩ = ηξ⊤ =
n

∑
i=1

ηiξi =
f

∑
i=1

η
1− 1

σ
i = M
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and
c∗(t) =

θ1

⟨η, ξ⟩EX(t).

Then the associated closed-loop equation is{
Ẋ(t) =

(
R + G⊤ − θ1

⟨η,ξ⟩E
)

X(t), t > 0

X(0) = x.
(3.8)

Then the closed-loop equation appears as a linear system ruled by a matrix that
correspond to R + G⊤ modified by the extraction. Such matrix, expanded, read as

r1 − θ1
⟨η,ξ⟩ξ1η1 g21 − θ1

⟨η,ξ⟩ξ1η2 ... gn1 − θ1
⟨η,ξ⟩ξ1ηn

g12 − θ1
⟨η,ξ⟩ξ2η1 r2 − θ1

⟨η,ξ⟩ξ2η2 ... gn2 − θ1
⟨η,ξ⟩ξ2ηn

...
...

...
g1n − θ1

⟨η,ξ⟩ξnη1 g2n − θ1
⟨η,ξ⟩ξ2ηn ... gnn − θ1

⟨η,ξ⟩ξnηn


Note that the above matrix is a Metzler matrix if an only if for every i and j, i ̸= j
one has

gji −
θ1

⟨η, ξ⟩ξiηj ≥ 0 ⇐⇒ θ1 ≤
gji⟨η, ξ⟩

ξiηj
= gji⟨η, ξ⟩η− 1

σ
i η−1

j (3.9)

That suggest a simple condition under which the optimal control described in
Theorem 3.1 is admissible.

Theorem 3.2 (Admissibility) If θ1 satisfies

θ1 ≤ gji⟨η, ξ⟩η− 1
σ

i η−1
j , ∀i ̸= j (3.10)

and the initial stock k belongs to the positive orthant Rn
+, then the entire trajectory X∗(t)

lies in the positive orthant and the control (3.5) is admissible and hence optimal for the
problem.

The statement is a simple consequence of Theorem 1.3.

Long-run Stocks

We here intend to briefly discuss whether the optimal trajectories of the system
converge towards a particular direction when time tends to infinity, namely, if they
enjoy some asymptotic stability property. Since the optimal trajectory is diverging
in general, one can introduce the detrended optimal trajectory, namely the optimal
trajectory net of the trend

Y(t) = e−(λ−θ1)X∗(t).

We will need also the following Lemma.
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Lemma 4 Consider the base {ζ, v2, ..., vn} of generalized eigenvectors of R + G⊤,
associated to the eigenvalues {λ, λ2, ..., λn} derived from the Perron-Frobenius Theorem, as
the one introduced after 2.6. Then, R + G⊤ − θ1

⟨η,ξ⟩E has eigenvalues {λ − θ1, λ2, ..., λn}
associated respectively with eigenvectors {ζ̂, v2, ..., vn}.

The proof of the above lemma can be found in Fabbri et al., Lemma 1. Note that it
states that the optimal consumption modifies only the direction of the dominant
eigenvector of the original matrix R + G⊤, changing it from ζ to ζ̂, and decreasing
its associated eigenvalue from λ to λ − θ1.

Theorem 3.3 In the assumptions of Theorem 3.5, and for

0 < θ1 < λ − Re λ2,

where λ2 is the eigenvalue with greatest real part among {λ2, ..., λn}, the optimal trajectory
X∗(t) converges towards the direction of ζ̂. Said differently

lim
t→+∞

Y(t) = αζ̂ (3.11)

for a suitable positive constant α

Proof. Since by assumption λ − θ1 < Re(λ2) and hence λ − θ1 is still the dominant
eigenvalue of the matrix of the system R + G⊤ − θ1

⟨ξ,η⟩E, associated to the dominant

eigenvector ζ̂, the trajectory of the system converges towards the direction of ζ̂ by
Theorem 1.3.

3.2. Optimal Policies for Logarithmic Utility

For the case of power utility, we have proven that the HJB equation is

ρv(x) = −
f

∑
i=1

ln
(

∂v(x)
∂xi

)
− f +

〈
∇v(x), (R + G⊤)x

〉
(3.12)

with maximum of the current value Hamiltonian attained at

c∗i =

(
∂v
∂xi

(x)
)−1

We want to prove the following theorem.
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Theorem 3.4 Assume u(c) = ln c, with σ = 1. Assume that the feedback control
defined by

c∗i (t) =
ρ

f ηi
⟨X(t), η⟩ , for all i ∈ F, c∗i (t) = 0, for all i ̸∈ F. (3.13)

are admissible at the initial state x, i.e., c∗ ∈ A(x). Then:

(i) c∗ is an optimal control strategy for the optimal control problem ()()();

(ii) the cumulative welfare of all agents i along such strategy is

V(x) =
f
ρ

ln ⟨x, η⟩+ 1
ρ

[
−

f

∑
i=1

ln ηi − f + f ln
ρ

f
+

λ f
ρ

]
; (3.14)

iii ⟨X∗(t), η⟩ = egt ⟨, η⟩, with
g = (λ − ρ), (3.15)

Proof. Firstly, we show that a function of type

v(x) = B ln(⟨x, η⟩) + A

is a solution of the HJB equation, for a suitable choice of the constant A,B. We now
proceed with the calculation

∂v(x)
∂xi

=
Bηi

⟨x, η⟩ , ∇v(x) =
Bη

⟨x, η⟩
We rewrite the HJB substituting v(x) and its derivatives

ρ(B ln(⟨x, η⟩) + A) =
f

∑
i=1

[
ln
(
⟨x, η⟩
Bηi

)]
− f +

〈
Bη

⟨x, η⟩ , (R + G⊤)x
〉

= (ln ⟨x, η⟩ − ln B)
f

∑
i=1

(1)−
f

∑
i=1

ln ηi − f +
B

⟨x, η⟩ ⟨(R + G)η, x ⟩

(3.16)
we rearrange the equation by bringing all the terms with ln ⟨x, η⟩ on the L.H.S and
all the other terms on the R.H.S da qui in poi i calcoli vanno sistemati

(ρB − f ) ln ⟨x, η⟩ = −
f

∑
i=1

ln ηi − f − f ln B − ρA + Bλ

In order to have such equation satisfied for all x in Rn
+, one has to annihilate the

coefficient of ln ⟨x, η⟩ and the constant on the RHS, so that{
ρB − f = 0

−∑
f
i=1 ln ηi − f − f ln B − ρA + Bλ = 0
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giving

B =
f
ρ

, A =
1
ρ

[
−

f

∑
i=1

ln ηi − f + f ln
(

ρ

f

)
+

f λ

ρ

]
As a consequence

v(x) = B ln ⟨x, η⟩+ A

=
f
ρ

ln ⟨x, η⟩+ 1
ρ

[
−

f

∑
i=1

ln ηi − f + f ln
(

ρ

f

)
+

f λ

ρ

]
(3.17)

The maximizer in the Hamiltonian function gives a formula for the candidate
feedback optimal control

c∗i (t) =
(

∂v(X(t))
∂xi

)−1

=

(
f
ρ

ηi

⟨X(t), η⟩

)−1

=
ρ

f ηi
⟨X(t), η⟩

To prove that actually v = V we need a standard verification theorem (see for
instance Fleming and Rishel [14]), the uniqueness of the optimal control follows
by the concavity of the problem (see Acemoglu, [1]). This proves (i) and (ii).

To prove (iii), we multiply both sides of the CLE by η and get〈
Ẋ(t), η

〉
=
〈
(R + G⊤)X(t), η

〉
− ρ

f
⟨X(t), η⟩ ⟨ξ, η⟩

= ⟨X(t), (R + G)η⟩ − ρ

f

〈
X(t), (ηξ)⊤η

〉
= λ ⟨X(t), η⟩ − ρ

f
f ⟨X(t), η⟩

= (λ − ρ) ⟨X(t), η⟩

(3.18)

By solving this linear ODE we find (iii).

Admissibility

Next we discuss admissibility of the optimal control described by (3.5). We
introduce some additional notation to rewrite the optimal feedback rule (3.5) and
write the associated closed-loop equation.
We can rewrite the optimal control

c∗(t) =
ρ

f
⟨X(t), η⟩ 1

ηi
ei
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by setting

ξi :=

{
η−1

i i ∈ F
0 i ̸∈ F

⇒ ξ =
f

∑
i=1

η−1
i ei

and
E := ξη⊤

so that

⟨η, ξ⟩ = ηξ⊤ =
n

∑
i=1

ηiξi =
f

∑
i=1

ηi
1
ηi

=
f

∑
i=1

1 = f

and
c∗(t) =

ρ

f
⟨η, ξ⟩EX(t).

Then the associated closed-loop equation is{
Ẋ(t) =

(
R + G⊤ − ρ

f E
)

X(t), t > 0

X(0) = x.
(3.19)

Then the closed-loop equation appears as a linear system ruled by a matrix that
correspond to R + G⊤ modified by the extraction. Such matrix, expanded, read as

r1 − ρ
f ξ1η1 g21 − ρ

f ξ1η2 ... gn1 − ρ
f ξ1ηn

g12 − ρ
f ξ2η1 r2 − ρ

f ξ2η2 ... gn2 − ρ
f ξ2ηn

...
...

...
g1n − ρ

f ξnη1 g2n − ρ
f ξ2ηn ... gnn − ρ

f ξnηn


Note that the above matrix is a Metzler matrix if an only if for every i and j, i ̸= j
one has

gji −
ρ

f
ξiηj ≥ 0 ⇐⇒ ρ ≤

gji f
ξiηj

= gji f η−1
i η−1

j (3.20)

That suggest a simple condition under which the optimal control described in
Theorem 3.1 is admissible.

Theorem 3.5 (Admissibility) If ρ satisfies

ρ ≤ gji f η−1
i η−1

j , ∀i ̸= j (3.21)

and the initial stock k belongs to the positive orthant Rn
+, then the entire trajectory X∗(t)

lies in the positive orthant and the control (3.5) is admissible and hence optimal for the
problem.

The statement is a simple consequence of Theorem 1.3.
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Long-run Stocks

We here intend to briefly discuss whether the optimal trajectories of the system
converge towards a particular direction when time tends to infinity, namely, if they
enjoy some asymptotic stability property. Since the optimal trajectory is diverging
in general, one can introduce the detrended optimal trajectory, namely the optimal
trajectory net of the trend

Y(t) = e−(λ−ρ)X∗(t).

We will need also the following Lemma.

Lemma 5 Consider the base {ζ, v2, ..., vn} of generalized eigenvectors of R + G⊤,
associated to the eigenvalues {λ, λ2, ..., λn} derived from the Perron-Frobenius Theorem,
as the one introduced after 2.6. Then, R + G⊤ − ρ

f E has eigenvalues {λ − ρ, λ2, ..., λn}
associated respectively with eigenvectors {ζ̂, v2, ..., vn}.

The proof of the above lemma can be found in Fabbri et al., Lemma 1. Note that it
states that the optimal consumption modifies only the direction of the dominant
eigenvector of the original matrix R + G⊤, changing it from ζ to ζ̂, and decreasing
its associated eigenvalue from λ to λ − ρ.

Theorem 3.6 In the assumptions of Theorem 3.5, and for

0 < ρ < λ − Re λ2,

where λ2 is the eigenvalue with greatest real part among {λ2, ..., λn}, the optimal trajectory
X∗(t) converges towards the direction of ζ̂. Said differently

lim
t→+∞

Y(t) = αζ̂ (3.22)

for a suitable positive constant α

Proof. Since by assumption λ − ρ < Re(λ2) and hence λ − ρ is still the dominant
eigenvalue of the matrix of the system R + G⊤ − ρ

f E, associated to the dominant

eigenvector ζ̂, the trajectory of the system converges towards the direction of ζ̂ by
Theorem 1.3.
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3.3. Eco-friendly Production Design

In settings where a network of flows connects the stock of clean air in different
sites, do different regeneration rates in the various sites and different intensities of
flow map into a specific hierarchy of the sites? Does this hierarchy affect how the
access of agents should be regulated and, in particular, in which regions pollution
should be avoided, when possible?

In the previous sections of this chapter we derived (case σ ̸= 1)

V(x) =
θ−σ

1
1 − σ

(
f

∑
j=1

η
− 1−σ

σ
j

)σ

⟨x, η⟩1−σ

We recall that by the sake of simplicity we assumed that the first f sites are
occupied by production, although it is sufficient to rename nodes to obtain a
different subset of f nodes over the n available. That said, note that under the
assumption σ ∈]0, 1[, we have

1 − σ

σ
> 0

so that V is maximal when
f

∑
j=1

η
− 1−σ

σ
j

is minimal, and that correspond to possibly select, among the available, the f
nodes corresponding to the minimal ηj’s.
Said differently, the production of the consumption good is best when placed in
the most "peripheral" nodes in the sense of eigencentrality η.
We recall also that eigencentralities ηj’s combine the two different effects of regen-
eration factors and diffusion flows.

Thus, the nodes with a lower "centrality" with respect to the rest of the network
(meaning a low regeneration rate and a low connection with the more "central
nodes") are the one were the emissions and the following exploitation of the stock
of "clean air" have the lowest impact on the overall system.
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Chapter 4

Cooperative vs Non-Cooperative
Frameworks

After having stated the results of the two separate frameworks, an important task
is to compare the results coming from the two cases both from a cumulative and
individual perspective. The reason behind this comparison is to determine if the
single planner is effectively able to coordinate the agents and thus achieving an
overall better exploitation of the "clean air" resource and higher utilities for the
agents with respect to the case where agents are totally free to compete for the
exploitation of the resource.

4.1. The Non-Cooperative Pollution Game

We take into consideration a network where players make independent decision
in order to maximize their own utility, thus we set the problem in the framework
that in Section 2.1.1 we named (F2). The results in this chapter are known and
extensively discussed in the paper by Fabbri et al.. A simplified version of some of
those results is reported here for comparison with the framework (F1).

The value function or wealth of player i is defined as

Wi(x) = max
ci∈Ai

Ji(ci; x), i ∈ F

where the intertemporal utility J and the set of admissible controls Ai are those
defined in Chapter 2. Then Wi represents the highest possible utility achieved
by agent i by choosing its optimal emission rate ci in response to the emission
decision of the other agents.

We set

θ2 :=
ρ + (σ − 1)λ
1 + (σ − 1) f

. (4.1)
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Theorem 4.1 Assume u(c) = c1−σ

1−σ , with σ > 0, σ ̸= 1, θ2 > 0. Assume also that

ĉi(t) =
θ2

ηi
⟨X(t), η⟩ , for all i ∈ F, ĉi(t) = 0, for all i ̸∈ F. (4.2)

is an admissible strategy profile, namely c∗i ∈ Ai. Then:

(i) c∗(t) is an optimal Markovian equilibrium for the game;

(ii) the welfare of agent i along such equilibrium is

Wi(x) =
θ−σ

2 ησ−1
i

1 − σ
⟨x, η⟩1−σ ; (4.3)

(iii) If X̂(t) is the trajectory at the equilibrium then〈
X̂(t), η

〉
= egt⟨x, η⟩ (4.4)

with
g = λ − θ2 f =

λ − f ρ

1 + (σ − 1) f
, (4.5)

Remark 2 (a) In the case of logarithmic utility, the Markovian equilibrium is
obtained by setting θ2 = ρ in (4.2) while the value function Wi is

Wi(x) =
1
ρ

[
ln
(

ρ

ηi
⟨x, η⟩

)
+ λ − f ρ

]
.

(b) The case deemed a "regular regime" in Fabbri et al. [8] is that in which θ2 is
positive with both positive numerator and denominator. This is necessarily
the case when we assume θ1 positive, as necessarily ρ − (1 − σ)λ > 0. As for
θ2, a set of conditions in which it is also positive is the following

0 < σ < 1, 1 ≤ f <
1

1 − σ
. (4.6)

As an alternative
σ ≥ 1, f ≥ 1.

We will always assume, in this chapter, that (4.6) is satisfied.

4.2. Comparison in emission/consumption

We expect that in the game agents tend to overpollute with respect to the case
when a unique decision maker is choosing their policies, and we intend to confirm
this hypothesis.
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Power Function Utility

We want to compare the effects of the feedback strategies in the two framewors,
namely

c∗i (t) =
θ1

M
η
− 1

σ
i ⟨X∗(t), η⟩ , ĉi(t) =

θ2

ηi

〈
X̂(t), η

〉
. (4.7)

To this extent, we start by showing that

θ2 ≥ θ1. (4.8)

Indeed, since by Remark 2 we have ρ − (1 − σ)λ > 0, then

θ2 ≥ θ1 ⇐⇒ ρ − λ(1 − σ)

1 − (1 − σ) f
≥ ρ − λ(1 − σ)

σ

⇐⇒ 1
1 − (1 − σ) f

≥ 1
σ

⇐⇒ σ ≥ 1 − (1 − σ) f
⇐⇒ ( f − 1)(1 − σ) ≥ 0

which is true under assumptions (4.6). Note that, as a consequence, the coefficients
multiplying the weighted total mass in (4.9) satisfy Thus, in the case of power
function utility, agents in the game overpollute if and only if

θ2

ηi
≥ θ1

M
η
− 1

σ
i ⇐⇒ θ2

ηi
≥ θ1

∑
f
j

(
η1−1/σ

j

)η−1/σ
i

⇐⇒ θ2

θ1
≥

η1−1/σ
i

∑
f
j

(
η1−1/σ

j

)
but this is true as the RHS is less than 1, while the LHS is greater than 1 by (4.8).
That can be interpreted as follows: proportionally to the weighted total mass
(which is different in time in the two frameworks), the agents in the game tend to
overpollute.

Now we compare open-loop formulas for the two controls under study, and
obtained by combining the closed-loop formulas with the evolution of the weighted
total mass expressed in (iii) respectively in Theorems 3.1 and 4.1, namely

c∗i (t) =
θ1

M
η
− 1

σ
i ⟨x, η⟩ e(λ−θ1)t, ĉi(t) =

θ2

ηi
⟨x, η⟩ e(λ−θ1)t. (4.9)
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At time 0, clearly ĉi(0) > c∗i (0), but as time goes by, since in the game the weighted
total mass is overexploited, the inequality reverses. In detail

c∗i (t) ≤ ĉi(t) ⇐⇒ θ1

M
η
− 1

σ
i ⟨x, η⟩ e(λ−θ1)t ≤ θ2

ηi
⟨x, η⟩ e(λ−θ1)t

⇐⇒ e(θ2−θ1)t ≤ θ2

θ1

∑j η
1− 1

σ
j

η
1− 1

σ
i

⇐⇒ t ≤ 1
θ2 − θ1

ln
(

θ2

θ1

)
+ ln

∑j η
1− 1

σ
j

η
1− 1

σ
i




(where all quantities in the square brackets are positive).

Logarithmic Utility

In this case the comparison is even simpler as

c∗i (t) =
ρ

f ηi
⟨X∗(t), η⟩ , ĉi(t) =

ρ

ηi

〈
X̂(t), η

〉
,

and clearly
ρ

ηi
≥ ρ

f ηi

for f ≥ 1, whereas the comparison of open-loop formulas

c∗i (t) =
ρ

f ηi
⟨x, η⟩ e(λ−ρ)t, ĉi(t) =

ρ

ηi
⟨x, η⟩ e(λ− f ρ)t,

leads to

c∗i (t) ≤ ĉi(t) ⇐⇒ ρ

f ηi
e(λ−ρ)t ≤ ρ

ηi
e(λ− f ρ)t

⇐⇒ e( f−1)ρt ≤ f

⇐⇒ t ≤ 1
( f − 1)ρ

ln( f ),

and the conclusion is the same.

4.3. Comparison of Welfares

For all choices of the functionj u(c), we define the cumulative utility function for the
game as

W(x) =
f

∑
i=1

Wi(x)
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Clearly

W(x) =
f

∑
i=1

Ji(x; ĉi(·)) =
f

∑
i=1

∫ ∞

0
e−ρtu(ĉi(t))dt (4.10)

=
∫ ∞

0
e−ρt

f

∑
i=1

u(ĉi(t))dt = J(x; ĉ(·)) (4.11)

≤ J(x; c∗(·)) = V(t, x) (4.12)

as c∗ was the optimal control for the problem with functional J. Hence, the total
utility with a single decision maker is greater than the sum of welfares Wi at
equilibrium in the game. Now we want to check if every single player is better
off with the choice of the decision maker c∗i in comparison to their choices in the
noncooperative game, that is if

Wi(x) ≤ Ji(x; c∗i (·)) =
∫ ∞

0
e−ρtu(c∗i (t))dt.

Power Function Utility

We start by computing an explicit formula for Ji(x; c∗i (·)):

Ji(x; c∗i (·)) =
∫ ∞

0
e−ρtu(c∗i (t))dt

=
∫ ∞

0
e−ρt 1

1 − σ

(
θ1

M
η
− 1

σ
i ⟨x, η⟩ e(λ−θ1)t

)1−σ

dt

=
1

1 − σ

(
θ1

M
η
− 1

σ
i ⟨x, η⟩

)1−σ ∫ ∞

0
e[−ρ+(λ−θ1)(1−σ)]tdt

Now note that

−ρ + (λ − θ1)(1 − σ) = −ρ + (λ − ρ − λ(1 − σ)

σ
)(1 − σ)

= −ρ + (
λσ − ρ + λ − λσ

σ
)(1 − σ)

=
−ρσ − ρ + ρσ + λ − λσ

σ

= −ρ − λ(1 − σ)

σ
= −θ1 ≤ 0
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thus we solve the integral as∫ +∞

0
e−θ1tdt = lim

T→+∞

∫ T

0
e−θ1xdx

= lim
T→+∞

− 1
θ1
[e−θ1T − e−θ10]

= − 1
θ1
[0 − 1]

=
1
θ1

so that

Ji(x; c∗i (·)) =
1

1 − σ

(
θ1

M
η
− 1

σ
i

)1−σ 1
θ1

⟨x, η⟩1−σ

Then

Wi(x) ≤ Ji(x; c∗i (·)) ⇐⇒
θ−σ

2 ησ−1
i

1 − σ
⟨x, η⟩1−σ ≤ 1

1 − σ
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This last line gives a necessary and sufficient condition on the single centrality
measure ηi to establish whether player i is better off in the game or under the
guidance of a unique planner: ηj needs to be under a certain common threshold.
Clearly, the inequality is more easily satisfied for low ηi’s, meaning that the agents
taking more advantage from a coordinated actions are those residing in the most
peripheral nodes.
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Chapter 5

Advanced model

The model explained and used in this thesis is, for what attains some of its
core hypothesis, a moderately simple model; focused on using low complexity
hypothesis in order to retain manageable computations and intuitively results.
Although these choices, the model has a discrete potential to be further “upgraded”
with several more advanced and complex hypothesis. We will proceed to give
an overview of the main possible future research paths that we would like to
implement in order to get a progressively more accurate and realistic model to
describe the real world.

5.1. Utility Function

The utility function used in the base model is characterized in a way such that
the utility of the agents depends only on their emission decision (which where a
proxy for the production and consumption decision of the agents seen the perfect
correlation between output gap[∆GDP] and the emission gap [∆CO2]. Therefore,
one of the things that we would like to introduce would be a more complex utility
function with the following form:

u(GDPi, CO2i) = α f (GDPi(t))− βg(CO2i(t))

This reworked utility function will positively depend on the level of GDP reached
by agent ß at time t and negatively impacted by the level of excess concentration of
CO2 reached at node i with respect to a fixed reference point (like the pre-industrial
era CO2 gas concentration in the atmosphere). The parameters α ∧ β will be used
to characterise the different weights that agents can assign to the two different
part of the utility function (e.g. a specific type of agents could value more the
gains deriving from an increase in their GDP with respect to the corresponding
potential damage due to an increase in the CO2 concentration caused by the
increase emissions linked to the increase in the GDP).
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5.1.1 Agents Characterization

Base model agents

Each agent of the model occupies one of the f inhabited nodes of the network,
they are used to symbolize all the people living in the territories represented by
the node. Effectively they represent individual countries or part of large and/or
highly populated countries which, for convenience, can be splinted into multiple
neighbouring nodes. We define the agents of the model as utility maximisers like
their real world counterparts.

Real world agents get their utility from the consumption of goods and
services of various nature. The production and the consumption processes of those
goods and services cause the emission of GHGs into the atmosphere through the
generation of the energy required to feed these same processes. Thus, we can say
that agents, in order to be able to satisfy their needs, decide to emit a certain
amount of polluting emission into the atmosphere. Now we want to expand on
the relationship describe above and thanks to the “Kaya identity” proposed by
Kaya,Keiichi(1997)[15], we are able to decompose the total production of CO2
emissions into its core components.

Figure 5.1: The Kaya identity[13]
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Applying this concept to our model we get that the total emissions in a given point
in time of an agent in its node i would be describe by:

ci(t) = Popi(t)×
GDPi(t)
Popi(t)

× Energyi(t)
GDPi(t)

× ci(t)
Energyi(t)

As a consequence of the model hypotheses, the value of the population in any node
of the system is capped at a maximum of one. Therefore the above relationship
will become equal to:

ci(t) = GDPi(t)× Eint i(t)× Cint i(t)

ci(t) = GDPi(t)× γi(t)

Where:

i Eint i(t) represent the energy intensity, that is the amount of energy used per
unit of wealth consumed in the node i at time t;

ii Cint i(t) represent the carbon intensity, that is the amount of CO2 (or any
other GHGs) emitted per unit of energy consumed in node i at time t;

iii γi(t) represent the technology employed in node i at time t and is described
as the product of carbon intensity and the energy intensity of the production
method employed in node i at time t.

Which means that the emission of agent i are equal to the amount of wealth
accumulated by the agent i until time t (GDPi(t)) and the technology he use to
produce and consume(γi(t)). For simplicity, we suppose that the technology used
by all the agents in the base model has a value equal to one, thus implying the
existence of a perfect correlation between the changes of the emission levels of
the agents and the changes of their accumulated wealth. This hypothesis will be
relaxed in the advanced model.

With this procedure we have found a way to express the relationship be-
tween the emissions produced by the agents and their GDP which represent the
total amount of goods and services produced in their node, which are instrumental
to the agents utilities.
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Advanced model agents

From the results of development economics, we know that even when confronted
with the same phenomenon agents will tend to respond and adapt to them in
different ways according to their previous particular conditions such as: their level
of education, their level of wealth, their risk aversion level, their life expectancy,
their expected value of life, their countries institutions, etc. . .

Thus, seen the different behaviour that we have witnessed looking at the
data of the changes occurred in the last thirty years at the GDP and the CO2
emission of the world countries, we would like to create differentiate the agents of
the advanced model into two subtypes: the high-income countries agents iHI and
the middle/low-income countries agents iLI . This differentiation will be made
through the use of the parameters α, β described above. The HI agents will be
characterized with an higher weight on the damage function while the LI agents
will overweight the gains attainable through a growth in their GDP with respect to
the potential adverse effects of the damage function. The resulting utility function
will then become:

uHI(GDPi, CO2 i) = αHI f (GDPi(t)− βHI g(CO2 i(t))

uLI(GDPi, CO2 i) = αLI f (GDPi(t)− βLI g(CO2 i(t))

5.2. Decoupling between Carbon emissions and Economic

growth

As previously said in section (2.2.2) the hypothesis of perfect correlation between
the output gap (∆GDP) and the emissions gap (∆CO2) is a simplification of reality
made to keep the base model as simple as possible. In the advanced version we
would like to introduce a more realistic relation between output gap and the
emission gap.
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Figure 5.2: Changes in CO2 emissions and GDP between 1990-2021[13]

Where:

• Production-based emissions are the emissions produced in a given nation or
region, excluding land-use change and the emissions embedded in traded
goods.

• Consumption-based emissions are national or regional emissions which have
been adjusted for trade (i.e. territorial/production emissions minus emissions
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embedded in exports, plus emissions embedded in imports). If a country’s
consumption-based emissions are higher than its production emissions it is a
net importer of carbon dioxide.

If we look at the data concerning the changes registered in the last thirty years to
the GDP and the CO2 emission of the countries across the world we can see some
interesting phenomenon. The amount of correlation between the growth rate of
GDPs and the relative emission levels varies across different countries and in some
cases we can even found examples of negative correlation among those quantities.
This imply that some countries were able to achieve a positive growth of their
GDP and at the same time decrease their annual emission of polluting gasses. A
possible way to characterize the emission made by the agents in response to this
could be:

GHGi(t) = GHGi(t0) + γi(t)∆GDPi

With this functional form, even with a negative γi(t) (which is the factor trying
to capture the technology factor which bonds the emission and the economic
activities of the agents) which would capture the action of a possible decarboni-
sation of the economy, the total emission of the economy would not turn to zero
immediately. The γi(t) could also be further developed into a function of the
fraction of investment directed at the improvement of the carbon efficiency of the
plants and equipment responsible for the production and consumption of goods
and services for the agents in order to capture a possible dynamical technological
factor.

5.3. Growth model

In the base model the system is characterised by one dynamics that explain the
evolution over time of the stock of “clean air” given the “regeneration” rate Γ
and the emission produced by the agents. A possible option to expand the model
would be to add one other dynamics into it to describe the economic growth
experienced by the agents. One of the possible ways to make this addition could
be to use a sort of Solow growth model. With this dynamics we could link the
function γ (the technology employed by the agents) to a fraction of the investment,
causing it to enter into the capital dynamics equation. Thus, we could model
the fact that improving the energy intensity (energy consume per $) and the
carbon intensity (CO2 emitted per unity of energy consumed) to decarbonise the
production and consumption processes is a costly process that bring benefit to
the agents through a reduction of their damage function (which depends on the
carbon dioxide concentration in the atmosphere) at the cost of a decrease of the
funds available to fuel a growth of the overall capital (GDP). Thus the decision
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of the agents would turn from an optimal emission level (the base model) to a
decision of how much resource assign to the general growth and how much on
the reduction of emissions (the advanced model).

5.4. Climate Carbon Cycle Model

The “regeneration” parameter Γ of the base model was used to model the natural
intake/uptake of atmospheric CO2 carried out by the oceans and the land ([5],[9])
is such that the evolution of the stock of “clean air” evolves following a logistic
function. But, as we can see from the measurements shown in the IPCC reports,
these natural processes are unable to keep up with the amount of GHGs emitted by
human activities forcefully leading to a progressive increase of the concentration
of the GHGs concentration in the atmosphere and the consequent increase of the
greenhouse effect.

Figure 5.3: Temperature of the world in the last 800 000 years [4]

Figure 5.4: Carbon dioxide concentration in the atmosphere in the last 800 000
years [4]
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Thus, to render the evolution of the stock of “clean air” in the model more
realistic we would need to implement a Climate- Carbon Cycle model, in order
to fully characterise the mechanism of intake/uptake of carbon dioxide of the
oceans and land masses. A model such that could be like the one proposed by
Gommem,Hajj,Puri (2012)[7], where the capacity of carbon intake of the natural
sequestration reservoirs like oceans and land masses is influenced not only by the
concentration of carbon dioxide in the atmosphere but also by the temperature
of the planet itself; or the one proposed by Zickfeld,Azevedo,Mathesius and
Matthews (2021)[16] which is more focused on the effect of the concentration
of carbon dioxide on the intake/uptake capability of the natural sequestration
reservoirs.
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