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Introduction

Financial markets are virtual places where both retail and institutional investors

seek to grow their capital. Among the various markets available, one stands out:

the Foreign Exchange (Forex) market, the world’s largest. It’s where currencies

are traded and participants include commercial banks, hedge funds, central banks,

businesses, and retail traders who operate daily. Indeed, what’s intriguing about

Forex is that anyone can participate, from individuals exchanging money while

traveling to companies involved in international trade or central banks adjusting

interest rates. However, many investors choose to trade Forex with the goal of

making a profit over time. This leads to the question: Is it really possible to

be profitable in financial markets? Economists have attempted to answer this

question over the years and among the most prominent theories are the Efficient

Market Hypothesis (EMH) and the Adaptive Market Hypothesis (AMH) developed

by Eugene Fama and Andrew Lo, respectively. These theories offer contrasting

ideas. EMH posits that the market is perfectly efficient, and investors always behave

rationally, implying that all available information is already reflected, making it

challenging for traders to be consistently profitable. In contrast, AMH supporters

believe that participants do not always act rationally, especially during financial

crises when emotions can lead to mistakes. Assuming AMH holds some truth,

this research aims to leverage advancements in the field of AI by developing an

intelligent artificial agent for trading in the Forex market. Specifically, this study

focuses on a machine learning model belonging to the Reinforcement Learning

(RL) family. The fundamental concept behind RL is that an agent learns from

experience in an environment using a reward-punishment system, which makes

the model completely different with respect to the supervised learning framework.

iii



iv INTRODUCTION

The agent studied and implemented in this research is the Deep-Q-Network (DQN)

and its improvement, the Double-Deep-Q-Network (DDQN), which both gained

fame for achieving human-expert-level performance in Atari games. The agents

are tested over a four-year period, spanning from January 2019 to December 2022,

using 30-minute timeframes, yielding positive results and highlighting the potential

of this technology.

The structure of this work is divided into three sections: the first section

introduces the Forex market and its terminology, followed by an explanation of

EMH and AMH, and concludes with an overview of the artificial intelligence field.

The second section provides a theoretical explanation of the Reinforcement Learning

framework, covering terminology and various solutions to the RL problem, including

dynamic programming, Monte Carlo methods, and temporal difference learning.

It concludes with a description of the DQN agent and its improvements. The

final section serves as the bridge between the previous chapters, presenting the

implemented model’s structure, the conducted experiments, and their associated

results.



Chapter 1

Background

1.1 The Forex Market

The Forex market is where currencies are traded, and it holds the title of being

the largest market in the world, with a daily trading volume exceeding $7.5 trillion

in April 2022 [27]. This immense size is due to the crucial role of currency exchange

in activities like travel, investments, and business operations. Participants in the

Forex market include commercial banks, hedge funds, central banks, investment

firms, businesses, investors, and retail traders. What sets the Forex market apart

from the stock market is that it doesn’t have a central exchange for order-taking

and transaction execution. Instead, it works as an over-the-counter (OTC) market,

enabling direct trading between two parties without a controlling authority. This

is made possible by a vast network of computers, allowing traders from anywhere

in the world to trade whenever and wherever they choose. As a result, the Forex

market operates 24 hours a day, excluding weekends, with four main trading sessions

in New York, London, Sydney, and Tokyo.

1.1.1 History

The Forex market has undergone significant transformations over time, resulting

in its current structure and functioning. The origins of the Forex market can be

traced back to the barter system practiced as early as 6000 BC. In this system, people

exchanged goods and services directly, without the use of a standardized medium

1



2 CHAPTER 1. BACKGROUND

of exchange. As civilizations developed and expanded their trading networks, the

need for a more efficient means of exchange arose. This led to the emergence

of commodity money, such as seashells, beads, and livestock, which were widely

accepted as a form of payment.

Over time, the concept of currency evolved, with the introduction of metallic

coins in ancient Greece and Rome. These coins, made from precious metals like

gold and silver, became widely accepted and facilitated trade across borders. As

civilizations interacted through trade routes, the need for foreign currency exchange

emerged. Money changers and merchants began offering exchange services, allowing

individuals to convert one currency into another.

In 1875, the gold standard monetary system was established, which further

influenced the development of the Forex market. Under the gold standard, the value

of a country’s currency was directly linked to a fixed amount of gold ensuring that

each currency had a tangible and universally accepted value. Currencies were freely

convertible into gold at a fixed rate, promoting stability in exchange rates. The gold

standard facilitated international trade and investment, as it provided a reliable

benchmark for currency valuations. However, maintaining the gold standard became

increasingly challenging, particularly during periods of economic crisis or war when

countries required flexibility in monetary policy. These challenges eventually led to

the abandonment of the gold standard and the emergence of alternative exchange

rate regimes.

The Forex market as we know it today took shape in the post-World War II

era. In 1944, representatives from 44 countries convened in Bretton Woods, New

Hampshire, to establish a new international monetary system. The Bretton Woods

agreement resulted in fixed exchange rates pegged to the U.S. dollar, with the

dollar itself linked to gold. However, the Bretton Woods system faced challenges in

the 1960s, as economic imbalances and inflationary pressures increased. In 1971,

President Richard Nixon suspended the convertibility of the U.S. dollar into gold,

effectively ending the Bretton Woods system. This move led to the era of floating

exchange rates, where currencies were allowed to fluctuate based on supply and

demand in the foreign exchange market.



1.1. THE FOREX MARKET 3

Technological advancements played a pivotal role in the transformation of the

Forex market. The development of electronic trading platforms and the Internet in

the 1990s revolutionized currency trading. These innovations enabled traders to

access real-time market data, execute trades electronically, and participate in the

global Forex market from anywhere in the world. As a result, the market witnessed

a significant increase in trading volumes, with a wide range of participants, including

commercial banks, investment firms, hedge funds, businesses, investors, and retail

traders.

The Forex market witnessed another significant milestone with the introduction

of the euro in 1999. The euro, the single currency of the European Union (EU), was

launched electronically and became the official currency of 11 EU member states.

This historic event aimed to promote economic integration and facilitate trade

among European nations. The introduction of the euro had a profound impact on

the Forex market since it eliminated exchange rate fluctuations and exchange costs

between the participating countries, making cross-border trade more efficient. The

euro also increased the liquidity and depth of the Forex market, as it became one

of the most widely traded currencies globally. Moreover, the euro’s establishment

encouraged further financial integration within the European Union, leading to the

creation of a single monetary policy under the European Central Bank (ECB).

1.1.2 Some Terminology

The Forex market, as previously mentioned, centers around the trading of

currencies. Unlike other types of securities, currencies inherently possess their own

value and cannot be traded individually. Consequently, the Forex market employs

the concept of currency pairs to make trading possible. This involves comparing

the value of one currency to another so as to determine the foreign exchange rate

between them. The most widely traded currency pair is EUR/USD, which compares

the euro and the US dollar (represented by their respective symbols). The currency

on the left (euro) is known as the base currency, while the currency on the right

(US dollar) is referred to as the quote currency. The exchange rate reflects the

amount of the quote currency needed to purchase one unit of the base currency.
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Essentially, when buying the EUR/USD currency pair (going long), one is acquiring

euros and simultaneously selling US dollars. On the other hand, when selling the

EUR/USD currency pair (going short), one is selling euros and simultaneously

buying US dollars. Since the exchange rate can be seen as the price of the base

currency in terms of the quote currency, from now on I will use the term price to

refer to the exchange rate.

Actually, once the trader has chosen the currency pair to trade on, online

brokers show two different prices: the ask price and the bid price. The former is

the price the trader has to pay whenever he goes long, while the latter is the price

at which the trader goes short. The ask price is always higher than the bid price

and the difference is known as spread. This concept is fundamental in the Forex

market because ignoring it could affect the trading performance, especially for

high-frequency trading strategies. Indeed the spread is the inherent commission a

trader pays whenever he enters a trade. To illustrate why the spread is considered a

commission, let’s consider a scenario where a trader decides to go long on EUR/USD

and purchases it at the current ask price of 1,08896. However, the trader changes

his/her mind immediately and decides to close the position by going short on

EUR/USD at the bid price of 1,08886. As a result, the trader incurs a loss equal

to 0,0001, the difference between the bid and ask prices, referred to as the spread.

Online brokers provide a service by executing these buy and sell orders on behalf of

the trader, and it is reasonable for them to be compensated, in fact, the spread

serves as a means of payment to brokers. Depending on the broker, the spread

can either be fixed, remaining constant over time, or variable, fluctuating in value.

Traders generally prefer trading with lower spreads to minimize their costs. It is

worth noting that the most frequently traded currency pairs, such as EUR/USD,

typically have the lowest spreads.

Currency pairs exhibit small price movements, typically measured in decimals.

To address this characteristic, a unit of measurement known as a pip (percentage

in point) has been introduced. The pip is the standard measure to indicate price

changes in currency pairs, specifically referring to the fourth decimal digit, except

for currency pairs involving the Japanese yen (JPY), where the pip represents the
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second decimal place. For even finer granularity, the pipette is used, corresponding

to the movement of the fifth decimal digit (or the third decimal digit in JPY pairs).

The pipette essentially represents a fraction of a pip.

In order to account for small price changes in trading, fixed contract sizes called

lots are used. A lot represents a specific number of units of the base currency. The

standard lot consists of 100.000 units, the mini lot consists of 10.000 units and the

micro lot consists of 1.000 units. It is important to note that a trader cannot open

a position with a different lot size. Lots are essential for calculating the value of 1

pip and, consequently, determining the overall profit or loss of a trade. For example,

if a trader’s account is denominated in US dollars and he/she opens a position with

the standard lot on the EUR/USD currency pair, each pip corresponds to a value

of $1. This value is derived by multiplying the standard lot size (100.000) by the

pip value (0.0001). By understanding this, the trader can easily calculate the final

profit or loss once the position is closed.

The size of trading lots in the forex market directly influences the amount of

money required to start trading. Fortunately, online brokers offer the leverage,

which allows traders to open positions with more money than they actually have.

Leverage increases trading power and enables larger positions. However, leveraging

can multiply both profits and losses, making it a risky strategy. The maximum

leverage offered by online brokers is typically 30. To open a leveraged position,

traders must provide a certain amount of money known as margin. If the trader’s

equity falls below a specific margin level, the broker issues a margin call. This

notifies the trader to add more funds to the trading account or close some open

positions. If the trader ignores the margin call and continues to experience losses,

the broker will automatically close all open positions. To illustrate this concept,

let’s consider an example. Imagine a trader with $1000 in their account who

decides to use margin trading with a broker that requires a 100% margin level to

activate a margin call. The trader chooses to open a position with a mini lot size

of $10.000 and a leverage of 20. In this case, the required margin would be $500

(calculated by dividing the contract size by the leverage used). Initially, the trader’s

equity would be $10.000, consisting of $500 in margin and $9.500 in free margin.
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Unfortunately, the trade goes poorly, resulting in a loss of $9.500. Consequently,

the equity decreases to $500, and the margin level reaches 100% (since equity and

margin are now equal), triggering a margin call from the broker. Once a margin

call is issued, the trader cannot open any new positions until the equity exceeds

the margin. The trader’s options at this point are to deposit more funds, close the

position, or hope that the open position reverses in their favor. If the trader ignores

the margin call and the open position fails to reverse, the equity will continue to

decrease. When it reaches another predetermined level known as the stop-out level,

determined by the broker, the broker will immediately close the position.

1.2 Trading Strategies

Generally, the primary objective of a trader is to generate profits over an extended

period of time. However, it is anything but easy, there are plenty of variables

influencing the financial market, especially Forex, and the competition is fierce.

Consequently, engaging in trading can be regarded as a profession necessitating

prior education and preparation. Professional traders employ various techniques to

assist them in making informed decisions and enhance the likelihood of predicting

market trends. Essentially, there are two primary approaches. Some traders rely

on studying the factors that can impact the market and make decisions based on

that analysis, a method known as fundamental analysis. Conversely, other traders

prefer analyzing price charts using statistical tools to forecast market movements,

known as technical analysis.

More specifically, fundamental analysis involves examining the factors that could

potentially impact a specific security. For instance, in the stock market, it can

be beneficial to study a company’s balance sheet, financial statements, cash flow,

and management, as well as macroeconomic factors such as the overall economic

situation and industry-specific conditions related to the traded security. The main

idea is to evaluate companies (e.g. discounting future cash flows to the present)

and find out if the company evaluation reflects the current price of the share. If

the intrinsic value is lower than the current price, indicating overvaluation, it may
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be wise to take a short position. Conversely, if the intrinsic value is higher than

the current price, indicating undervaluation, it may be beneficial to buy shares.

Indeed fundamental analysis assumes that in the short term, a company’s value

may not align with its actual price, but over the long run, price and value are

expected to converge, creating opportunities for profit. Due to the time required

for data publication (monthly, quarterly, yearly) and the slower pace of change for

companies, fundamental analysis is considered more of an investment activity than

trading, as it requires a longer-term perspective.

A clear distinction should be made between fundamental analysis in the stock

market and the Forex market. While the previous examples were applicable to the

stock market, the Forex market involves currencies rather than businesses, resulting

in different variables influencing market dynamics. These variables are related

to the macroeconomic field, politics, and import-export activities. In the Forex

market, inflation plays a crucial role in determining the value of a country’s currency

compared to foreign currencies. When a country experiences higher inflation, its

national currency tends to lose value relative to foreign currencies. Another closely

connected variable is the interest rate. Central banks adjust interest rates to

manage inflation. If inflation is too high, they may increase the interest rate,

and if inflation is too low, they may decrease it. Raising the interest rate can

strengthen the currency because it attracts more foreign investments, resulting

in an increase in its value. Conversely, lowering the interest rate can have the

opposite effect. It is important to note that these variables should be analyzed in a

comparative manner between countries, rather than considering them in an absolute

term. Another significant variable is the balance of trade, which reflects import and

export activities between countries. Businesses impact the balance of trade, as an

increase in exports raises the balance of trade, and vice versa. When the balance of

trade is positive, indicating higher exports, the currency’s value tends to rise due

to increased demand for the national currency from foreign companies. Conversely,

a negative balance of trade indicates higher imports, resulting in the national

currency’s devaluation compared to foreign currencies. Politics and government

debt also have an impact on the Forex market. However, the most crucial variable is
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investor expectations because market movements are driven by supply and demand.

Economic news, for example, can be interpreted negatively, leading to a decline

in prices. It is worth noting that expectations are closely tied to future events.

Therefore, even if current inflation is rising, if investors anticipate a decrease in the

near future, market trends may not align with the current situation.

In contrast, technical analysis involves examining price charts using statistical

tools to predict market trends. The most widely used chart is the candlestick chart,

which consists of candles representing specific time intervals determined by the

trader. These candles display the opening and closing prices through their bodies,

while lines extending from the bodies indicate the highest and lowest prices observed

during that timeframe. Technical analysis differs significantly from fundamental

analysis because its main objective is forecasting price movements rather than

determining intrinsic value. Technical traders rely on technical indicators as their

primary tools. These indicators involve transforming historical price data into a

different format, allowing traders to identify potential trading signals. The main

categories of technical indicators are trend indicators, oscillators, and volatility

indicators. Trend indicators help determine the direction and strength of a trend

(such as moving averages), oscillators assist in identifying trend reversals (like the

RSI), and volatility indicators measure the extent of price fluctuations (such as

Bollinger Bands). These indicators are often accompanied by trading rules that

trigger entry and exit points. Trading rules are based on specific values or conditions

of technical indicators, which indicate when to initiate or exit a trade. Basically,

technical indicators and trading rules work together to identify optimal entry and

exit points in trading. Unlike fundamental analysis, technical analysis focuses

more on short-term market movements rather than long-term trends, in fact, the

timeframe for analysis can vary from days to hours or even minutes. Technical

analysis operates on three main assumptions: price movements follow trends, and

identifying them early can be highly profitable; historical patterns tend to repeat

themselves, making past data analysis useful in predicting future price behavior;

price reflects all relevant information, making the analysis of variables other than

price (such as fundamental factors) unnecessary.
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1.3 Market Hypothesis

For decades, researchers have debated the profitability of trading in financial

markets. Two main theories, the efficient market hypothesis (EMH) and the adaptive

market hypothesis (AMH), aim to address this question. The EMH, developed by

Eugene Fama in his 1970 book "Efficient Capital Markets: A Review of Theory and

Empirical Work" suggests that prices already incorporate all available information

due to market efficiency (the efficiency of the market tends to increase as the number

of participants in the market grows). As a result, consistently making risk-adjusted

excess returns is deemed impossible. According to the EMH, securities are traded at

their fair value, making both technical analysis and fundamental analysis ineffective.

While there have been traders who have made profits from financial markets, the

EMH attributes their success to luck rather than skill. The EMH recommends

investing in passive portfolios, which are commonly used as benchmarks, instead

of attempting to outperform the market. The EMH encompasses three forms:

weak, semi-strong, and strong. The weak form suggests that current prices only

reflect past prices, making technical analysis useless. In this case, fundamental

analysis becomes the sole means of potential profitability. The semi-strong form

proposes that current prices incorporate all publicly available information, making

both technical and fundamental analysis ineffective. Only private information can

potentially lead to profits. The strong form asserts that current prices reflect all

possible information, including both public and private data. Consequently, no

information can be used to generate profits, and investing in passive portfolios that

track the overall market is considered the only viable approach.

Andrew Lo, an MIT professor, introduced the adaptive market hypothesis in

2004. It is a combination between EMH and behavioral finance. Different from

Eugene Fama’s theory, AMH takes inspiration from the principles of evolution

(competition, adaptation, and natural selection). The main point behind this theory

is that participants are not completely rational but during specific conditions like

crises or financial bubbles, they make irrational decisions. This is due to cognitive

bias such as overreaction or loss aversion. According to AMH, investors adopt a

heuristic approach to the market, they aim at satisficing behavior not maximizing it
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(not perfectly rational). The theory is characterized by three assumptions: people

are motivated by self-interest; people naturally make mistakes; people learn from

mistakes. Investors, guided by their experience, employ a trial-and-error approach,

adopting strategies that have proven successful in the past and modifying them

when they no longer yield desired results. Basically, according to the adaptive

market hypothesis, implementing effective trading strategies is feasible, because

investors are not completely rational.

1.4 Automated Trading Systems and A.I.

Technical analysis-based trading, as introduced in the previous section, means

taking into account specific technical indicators and finding a particular trading

rule based on them. More specifically, this means setting some parameters, both for

technical indicators and the trading rule. Once the parameters have been chosen,

the trading activity can be automated so that a computer can open and close

positions according to the specified trading rule. According to the Federal Reserve,

more than two-thirds of trades come from automated trading systems in the Forex

market. Most of the automated trading systems in circulation rely on technical

analysis, however, there are more sophisticated trading systems based on artificial

intelligence. Broker platforms have their programming language to create trading

strategies inside their platform. The only limit is that these strategies can be only

based on technical analysis. An artificial intelligence-based trading system is more

difficult to implement since it would require the strategy to be implemented with

a programming language external to the broker platform (e.g. C, Java, Python,

etc.). Furthermore, to open a position with this kind of system, the programming

language should interact with the broker platform through an API (application

programming interface). The AI-based trading system, despite being more complex

to implement, is more flexible and potentially more profitable than the standard

technical analysis trading system.

Generally, automated trading systems have some advantages over traditional

ones. For instance, emotions play a relevant role in trading activity. Indeed,
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emotional feelings (fear, hesitation, over-optimism) may prevent the trader to stick

to the plan. Another strength point is the possibility of backtesting, which means

testing the trading strategy on historical data to evaluate it and find out the return

expectations. Other advantages are the execution speed, which is higher than

traditional trading, and the decrease in errors. On the other hand, a potential

drawback may be a technology failure such as a connection loss.

Artificial intelligence-based trading systems usually overperform the ones relying

on simple technical analysis. But what is artificial intelligence? Alan Turing, one of

the greatest AI pioneers, questioned whether a machine can think and he introduced

the so-called Turing test, also known as the imitation game, in his 1950 paper

"Computer Machinery and Intelligence" to answer this question. This game consists

of a human evaluator who judges a conversation between a person and a machine

(all the participants are separated from one another). If the evaluator is not able to

distinguish the machine from the person, the machine would pass the test. The

term artificial intelligence was coined for the first time by John McCarthy, who is

considered the father of AI, in a 1956 summer program hosted by Marvin Minsky

and John McCarty himself at Dartmouth College. Marvin Minsky’s definition of

AI is "the science of making machines do things that would require intelligence if

done by men."

Artificial intelligence systems can be divided into three categories based on

their ability to imitate human behavior. The first is Artificial Narrow Intelligence

(ANI), or weak AI, which is the only available system nowadays. It’s programmed

to perform a specific task without the ability to go outside the task it is designed

to perform. This kind of system, unlike humans, lacks consciousness. The other

kind of AI system is Artificial General Intelligence (AGI), or strong AI, which is

currently unavailable in the real world. It has been used in many science fiction

movies where humans interact with self-conscious machines. AGI systems would be

able to perform different and general tasks so that it would prevent distinguishing

humans from machines (for instance AGI machines would pass the Turing test). The

third category is Artificial Super Intelligence (ASI) which is a hypothetical system

capable of surpassing human intelligence. ASI machines would be far superior to
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humans so they may be responsible for humans’ extinction from the planet.

The artificial intelligence aim of obtaining human capabilities could not be

achieved without machine learning which is considered an AI subfield. Machine

learning is based on statistical tools and algorithms that are applied to large data sets

so as to make a machine capable of performing a specific task. The machine learning

field can be divided into three main categories: supervised learning, unsupervised

learning, and reinforcement learning. The former deals with a data set composed

of input-output pairs. The goal is to find a function that maps input features to

the output variable. It is called supervised learning because human intervention is

needed to write the label associated with the corresponding inputs. On the other

hand, the unsupervised learning framework consists of a data set without labels

with the goal of finding an underlying structure in the data. One of the most used

unsupervised learning techniques is clustering which tries to find clusters in the

data, useful for several fields like marketing, biology, information retrieval, etc. It is

called unsupervised because the output labels are not present. The third category is

reinforcement learning which differs completely from the previous two. Indeed, the

idea is that an agent interacts with an environment in order to maximize a reward

function (a learning-through-experience approach). So, if artificial intelligence has

the goal of mimicking human cognitive capabilities, machine learning is more like a

tool to achieve that goal.

Another AI subfield is deep learning, which is considered a machine learning

subfield as well. It differs from the latter for the kind of algorithms employed,

in fact, deep learning takes inspiration from the human brain, more specifically

from neurons. Indeed, artificial neural networks are the most relevant model in

this subfield which revolutionized the whole artificial intelligence industry. Their

importance is due to the wide range of applications such as computer vision, natural

language processing, time series forecasting, etc. Neural networks are very flexible

thanks to their architecture composed of layers of neurons connected together.

They can be divided into three main categories: artificial neural network (ANN) is

the standard model, convolutional neural network (CNN) is designed to perform

computer vision tasks like image recognition and object detection, recurrent neural
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network (RNN) is used when the data follow a specific order such as language

translation in which the order of words matters, stocks prediction where the data

is chronologically ordered. Actually, a simple neural network with only one hidden

layer falls into the machine learning field, in particular in the supervised learning

class. It’s only when the architecture becomes huge that neural networks fall into

the deep learning field, for instance when the number of hidden layers is greater

than two. Generally, the choice of developing a machine learning model or a deep

learning one depends on the problem to solve and the amount of data at disposal.

Indeed, neural networks need a very large amount of data to be trained on.

Figure 1.1 perfectly describes how artificial intelligence, machine learning, and

deep learning are related to each other.

Figure 1.1: Artificial intelligence vs machine learning vs deep learning. Source: Roy

Rupali, Towards Data Science, AI, ML, and DL: How not to get them mixed!





Chapter 2

Reinforcement Learning and

Deep-Q-Network Algorithm

Computer scientists have been working on mimicking human intelligence, or

even overcoming it, through computers. The most known forms of machine learning

techniques to be developed for succeeding in this purpose are the supervised and

unsupervised ones. These two frameworks are used to solve several tasks such as

image recognition, recommender systems, object detection, language translation,

and many others. By looking at the vast amount of things a machine is able to deal

with, the goal of building an intelligent computer seems to be realized. However, if

we consider the way by which humans learn, the goal of reproducing a machine with

human-like capabilities using supervised or unsupervised learning is far from being

achieved. Indeed the supervised learning field requires a data set of observations

followed by the true outcomes, the so-called labels, so as to allow the machine to

learn from examples. The difference is that superior living beings learn over time

through experience, not by examples. Moreover, unsupervised learning’s objective

is to find the hidden pattern in the data (a hidden structure) which is even further

from the concept of human learning.

Reinforcement learning is the third kind of machine learning which is based

on this idea: an agent that interacts with an environment in order to reach a

certain goal. This approach is the closest to the kind of learning superior living

beings experience and it is inspired by biological learning. Two important factors

15



16CHAPTER 2. REINFORCEMENT LEARNING AND DEEP-Q-NETWORK ALGORITHM

to consider about the reinforcement learning paradigm are the absence of any

instructions and the fact that the actions may affect the near future as well as

long-term situations. The former reiterates again the difference from supervised

learning, but it also gives us an idea of how powerful this technique can be, just

think of all those activities that can not be explained by examples because of the

infinite amount of possibilities involved (driving a car, playing chess etc.); without

reinforcement learning, they could not be automized in any way. The latter focuses

the attention on actions consequences, they not only influence the immediate future

but can have an impact in the long run (an investment in the present time may be

profitable ten years later). Given its similarity with human behavior, reinforcement

learning is applied in several fields such as gaming, robotics, and autonomous cars.

The following sections are dedicated to explaining the theoretical ideas behind

this machine learning system as well as the mathematical formulas necessary to

develop such a model. All the information is taken from the most relevant book

in the reinforcement learning field: "Reinforcement Learning: An Introduction"

second edition by Sutton and Barto.

2.1 The Reinforcement Learning Framework

As anticipated in the introduction, there is a decision-maker, the agent, which

interacts with the environment, it includes whatever is outside the agent. The

interaction is made up of actions computed by the agent and the responses given

by the environment; this relationship happens repeatedly. More specifically the

procedure is the following: the agent and the environment interacts at each discrete

time step t = 0, 1, 2, 3, · · · At each time step a specific state St ∈ S, where S is the

set of possible states, describes the environment and based on the state the agent

selects an action At ∈ A (St), where A (St) is the set of actions available in state

St. In the next time step, the agent receives a reward Rt+1 ⊆ R as a consequence

of its previous action, as well as a new environment representation, St+1. Figure

2.1 explains the whole process. The action is selected on the basis of a policy πt, a

mapping from states to actions, given a state it returns the probability of selecting
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each available action in state St. Reinforcement learning algorithms change the

agent policy over time through experience in order to maximize the cumulative

future reward.

Figure 2.1: The interaction between the agent and environment in the RL framework.

Source: Sutton and Barto, Reinforcement Learning: An Introduction

2.1.1 Reward Signal

The agent at each time step performs an action and in the following time step,

the environment sends back a reward, which is a scalar number. The reward signal

informs the agent of the results obtained from the previous action. The purpose is

to understand the best-performing actions over time. The agent’s main goal is not

getting the maximum reward every time but it’s to maximize the future cumulative

reward. This means that is more desirable to select an action that collects a lower

reward in the next time step if it brings the agent into a situation in which the

rewards will be higher in the long run. It’s worth noting the key importance of

the reward signal: through it, the agent will adjust its behavior (its policy). For

this reason, it should be set carefully in terms of what we want to achieve, not how

we want to achieve the final goal. This distinction is crucial when designing our

reinforcement learning framework. For instance, a chess-playing agent should be

rewarded only for winning the game and not for taking the opponent’s pieces. This

mistake will ruin the agent’s performance since it will try to take the opponent’s

pieces at every cost, even at losing the game. The reward is one of the distinctive
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elements in RL and its flexibility allows the application of this algorithm in a wide

range of domains.

More formally in time step t the future reward is a sequence of rewards after

time t denoted as Rt+1, Rt+2, Rt+3, · · · The agent’s goal is to maximize the expected

return, where the return is a specific function of the reward sequence. The most

simple case is the sum of the future rewards:

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT , (2.1)

where T is the last time step. Obviously, (2.1) makes sense for those applications in

which there is effectively the final time step, this is the case for the episodic tasks

(the games usually fall within this family). The problem with this expression arises

when the time steps are not in a finite range, this is the case in continuing tasks,

for instance, an agent which simulates a robot with a long life span. Indeed the

cumulative reward can easily take an infinite value. In order to avoid this issue, the

previous formula is modified with:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, (2.2)

where γ, 0 ≤ γ ≤ 1, is the so called discount factor. Basically, it is the present

value of future rewards. It’s very common in economics for comparing different

investments (each of them will return some money in the future and, in order to

put them in the same time horizon, they are discounted to the present time; the

investment with the highest discounted value is the most convenient). With this

mathematical trick, the sum of future rewards converges to a finite number, if γ < 1.

If γ = 0, the agent is myopic, in the sense that it tries to maximize the next future

reward, without caring about the long-term rewards. This choice is not good since

maximizing the next reward could prevent the agent from obtaining even higher

rewards in the long run. On the other hand, γ = 1 makes the agent farsighted: it

takes into account the future rewards more strongly.

2.1.2 State Signal and Markov Property

The agent-environment interaction could not be possible without the agent’s

perception of the environment. At each time step the environment sends to the
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agent the state signal which is a description of the environment itself. When

the agent receives the state signal it chooses an action based on that. Since the

state description is responsible for the agent’s choice of each action, it should be

designed in a proper way. Ideally, it should contain both the current information

and past sensations in order to give a complete description of the environment.

Past information does not mean including all the environment dynamics that lead

to the current time step but a processed measure that takes into account the past

sensations of the environment in a compact way. If the state signal retains all the

relevant information is said to have the Markov property. For instance in a chess

game, if the state signal describes the environment with the position of all the

pieces in the table, it is a Markovian state since this information is all that matters

to choosing the next move in the game, without knowing all the moves that led to

the current configuration.

More formally, the probability of obtaining a reward r and a new state s′ depends

on the whole past history dynamics:

Pr {Rt+1 = r, St+1 = s′ | S0, A0, R1, . . . , St−1, At−1, Rt, St, At} . (2.3)

However, if the environment is Markov, the one-step dynamics depends only on the

current state and action:

p (s′, r | s, a) = Pr {Rt+1 = r, St+1 = s′ | St, At} . (2.4)

If and only if (2.3) and (2.4) are equal the environment is said to be Markov. This

property is essential in the reinforcement learning domain since it is possible to

predict the next rewards by only a function of the current state which is exactly

the RL objective. Obviously, not all the applications can be designed in such a way

that stick to the Markov property, but starting from this idea it helps to understand

even the non-Markov environments.

2.1.3 Policy and Value Functions

Reinforcement learning algorithms are mainly divided into two families based on

the approach used to learn an optimal policy: policy-based and value-based methods.
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The latter learns a value function that estimates the expected long-term return of

being in a particular state and taking a particular action, and from these values,

a policy is obtained. Policy-based methods, on the other hand, directly learn the

policy that can be used to select actions, rather than estimating the value functions.

From now on we will focus on the value-based methods, so it is important to deepen

the concept of value functions.

First of all, before explaining the meaning behind value functions, may be useful

to revise what a policy is. The policy is the mapping from state to actions, basically,

when the agent at time step t receives the state signal from the environment, it

selects an action through the policy πt. There are mainly two kinds of policies in

the reinforcement learning field: deterministic policy and stochastic policy. The

former, given the state signal, select an action. The latter, instead of selecting a

single action for each state, assigns probabilities to different actions. The agent

then samples from this distribution to select one of them. The selected action may

vary for the same state due to the inherent randomness introduced by the policy.

Coming back to the value functions, they are functions of a state (or state-action

pair) and try to estimate how good it is to start from that state (or from that state

and take a specific action). The goodness is expressed in terms of the expected

return, so the value functions estimate the expected return starting from the state

s (or starting from state s and selecting action a) and following policy π. In fact,

the concept of value functions is strictly connected to the concept of policy: value

functions are defined with respect to particular policies.

More formally, the value function vπ of state s under policy π is the following:

vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S. (2.5)

More specifically, vπ is called state value function for policy π and it’s important to

note that the state value function of a terminal state, if any, is always equal to zero.

In the same manner, we can describe the value of performing action a in state s

under a policy π as follows:

qπ(s, a)
.
= Eπ [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s, At = a

]
(2.6)
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The function qπ is referred to as the action-value function for policy π.

Value functions have a very important recursive property that allows the current

value function to be expressed in terms of the next time step value function:

vπ(s) =
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s
′)] . (2.7)

(2.7) is the Bellman equation for vπ. Basically, it is an expected value; it looks ahead

from one state to its possible successor states, averages over all the possibilities,

weighting each by its probability of occurring.

The value functions are useful for their role of ordering the policies in order to

find the optimal one. From Sutton and Barto’s book:

«A policy π is defined to be better than or equal to a policy π′ if its expected

return is greater than or equal to that of π′ for all states. In other words, π ≥ π′ if

and only if vπ(s) ≥ v′π(s) for all s ∈ S. There is always at least one policy that is

better than or equal to all other policies. This is an optimal policy. Although there

may be more than one, we denote all the optimal policies by π∗. They share the

same state-value function, called the optimal state-value function, denoted v∗, and

defined as

v∗(s) = max
π

vπ(s), (2.8)

for all s ∈ S. Optimal policies also share the same optimal action-value function,

denoted q∗, and defined as

q∗(s, a) = max
π

qπ(s, a), (2.9)

for all s ∈ S and a ∈ A(s).»

The value function v∗, being the optimal value function, must satisfy (2.7).

However, the consistency condition of v∗ can be expressed in a different manner,

detached from any particular policy:

v∗(s) = max
a∈A(s)

∑
s′,r

p (s′, r | s, a) [r + γv∗ (s
′)] . (2.10)

(2.10) is the Bellman optimality equation and expresses the relationship between

the value of a state and the expected return of the best action from that state,

under an optimal policy.
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The same reasoning can be applied to the state-action value function and its

Bellman optimality equation is given by:

q∗(s, a) =
∑
s′,r

p (s′, r | s, a)
[
r + γmax

a′
q∗ (s

′, a′)
]
. (2.11)

The Bellman optimality equation has a unique solution that can be achieved

with a number of equations equal to the number of states in the environment. Once

the optimal value function has been obtained, solving the reinforcement learning

problem is straightforward. In fact, the resulting optimal policy would be selecting,

in each state, the action that will lead to the next state having the highest value

function, the so-called greedy policy. A greedy policy refers to a decision-making

strategy where an agent always chooses the action that appears to be the most

immediately rewarding or promising based on its current estimates. The agent

simply selects the action that maximizes its expected immediate reward without

considering the potential long-term consequences or exploration of other options

Basically, the greedy policy looks one step ahead to compare all the possible actions

an agent can perform in a given state, and, on the basis of that, an action is selected.

At first, seems like the long-term consequences are not taken into account because

the agent chooses the action only by looking at the following time step while the

distant future is not considered, but this is not true. The fascinating role of the

value function is to give a state its goodness estimate where the goodness is the

expected future return starting from that state. This means that inherently the

value function takes into account the long-term rewards, it makes the distant future

available in the present time. As a consequence, looking at the next time step in

order to choose the proper action, means considering the long term as well.

Trying to solve the reinforcement learning problem in this way, with a system

of equations, is nearly impossible for real-world tasks. First, a model of the

environment’s dynamics is needed, which means specifying the probability of

obtaining a reward r and a new state s′, and it’s usually not possible. Second,

most of the time the computational resources are insufficient to solve the equations.

Lastly, the state signal should have the Markov property which is not always the

case. In real-world applications, the reinforcement learning problem is solved using

a heuristic approach: instead of finding the optimal policy, a sub-optimal policy is
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learned. In the following sections, some of the most famous methods for solving

the RL problem are presented.

2.2 Dynamic Programming

As anticipated in the previous paragraph there are multiple ways to solve a

reinforcement learning kind of problem. Dynamic programming (DP) is one of them.

It is a combination of algorithms that try to find the best policy through the value

functions estimate. In the real world dynamic programming solution is not used

because a full model of the environment is needed. The model allows us to predict

the one-step dynamics such as the probability of getting a reward r and a new state

s′. Another limitation is the high computational expense which prevents DP to

be used in real-world applications. However dynamic programming is necessary

because all the other solutions’ goal is to solve the reinforcement learning problem

with the same effect as DP, without the model and with less computation. The

last limitation is the fact that DP is proven to find the best policy for a finite

Markov decision process (MDP), but if the state space or action space is continuous,

the convergence to an optimal policy can not be proved, indeed a finite MDP

environment is assumed.

Dynamic programming makes use of value functions in order to find the optimal

policy. The policy evaluation algorithm is an iterative process, through which,

a value function for a given policy is estimated. Indeed, as we said earlier, the

value functions need necessarily a policy to be computed. So the policy evaluation

algorithm starts with a random policy π. Each state is assigned a random value

function (except for the terminal states which are always assigned a value of 0).

Successively the Bellman equation for vπ (2.7) is used to update the value function

for each state:

vk+1(s) =
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvk (s
′)] . (2.12)

In particular, vk+1 is computed using the next expected reward and the past value

function of the next state. It can be proved that as k tends to infinity the estimated
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value function tends to the policy value function. We can see how the estimated

value functions depend on the estimate of the next state value functions, in other

words, the estimate is based on another estimate and this concept is known as

bootstrapping.

The purpose of computing the value functions for an arbitrary policy is to find

better policies. The policy improvement algorithm is an iterative process that tries

to improve the current policy. Suppose the value function of a given policy has

been computed with the policy evaluation algorithm. Now the objective is to find

out whether there is a better policy than the starting one. It can be proved that by

making a policy greedy with respect to the current value function, the new policy

is better than, or as good as, the first one:

π′(s) = argmax
a

∑
s′,r

p (s′, r | s, a) [r + γvk (s
′)] . (2.13)

If the new greedy policy is as good as the previous one, it can be proved that both

two policies must be optimal, so the policy improvement algorithm enhances a

policy except when it is already optimal.

Until now we have seen how policy evaluation and policy improvement work

for just one iteration but it is not enough to find the optimal policy. The policy

iteration algorithm applies both policy evaluation and policy improvement until

optimal policy convergence. The iterative process is the following:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ v∗,

where E−→ denotes a policy evaluation and I−→ denotes a policy improvement.

Basically, the two processes interact with each other until the policy can not be

improved, meaning that an optimal policy has been found. The policy iteration

algorithm supposes that each process starts only if the other has ended. The

problem is that the policy evaluation algorithm converges to vπ only in the limit

implying too much computational time. Fortunately, there are variations of such

approaches that allow the policy evaluation process not to be ended until the policy

improvement starts. For instance, the value iteration algorithm provides a single

iteration of policy evaluation between each policy improvement.
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In general, the term generalized policy iteration (GPI) is used to refer to this

interaction process between policy evaluation and policy improvement independent

of the granularity of the two processes. Figure 2.2 explains the whole procedure.

Each of the two lines represents a solution for one of the two processes. Starting

from an arbitrary policy the policy evaluation algorithm solves the evaluation

problem driving the value function to the upper line, while the policy improvement

algorithm solves the problem of improving the policy driving the policy to the

bottom line. These two processes compete with each other because the policy

improvement makes the value function inconsistent and the policy evaluation makes

the policy no more greedy. This competition can be seen in Figure 2.2 since each

process drives toward its own line representing its solution and at the same time

leaves the other line. On the other hand, the two processes cooperate because each

one drives towards the optimal solution where the two lines converge, the point

in which the optimal value function is consistent with the optimal policy and the

optimal policy is greedy with respect to the optimal value function.

Figure 2.2: The GPI methodology. Source: Sutton and Barto, Reinforcement

Learning: An Introduction
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2.3 Monte Carlo Methods

Dynamic programming is a solution to the reinforcement learning problem but

there are some drawdowns that prevent DP to be widely used, especially in real-

world cases. Indeed it is not always possible to define a model of the environment’s

dynamics, furthermore, the computational time and memory can become really

huge. Monte Carlo methods aim to overcome these issues. The Monte Carlo

approach provides a kind of learning by experience, without making explicit a

model of the environment (model-free solution). Unlike dynamic programming

which seems more like planning, Monte Carlo methods are more similar to superior

living beings learning, using experience as the main driver to improvement. On

the other hand, they have an important limitation: their application is limited to

episodic tasks. This is due to the main idea behind Monte Carlo methods which is

estimating value functions by averaging returns. Since the latter is only available

at the end of each episode, value functions need an episode to end in order to be

updated. As a consequence continuous tasks, given the lack of a final time step and

the resulting return, can not be solved with this technique. Another drawdown,

linked to the previous limitation, is that the agent learns episode by episode and

not in an online fashion.

The Monte Carlo method aims to find the optimal policy by estimating value

functions. The approach is the same as dynamic programming and indeed the GPI

methodology is used: value function estimation and policy improvement interact

with each other until the convergence to an optimal policy is met. The value

function estimation algorithm differs from the DP one. Supposing we want to

approximate a state value function for an arbitrary policy π, given a set of episodes

and passing through s: in an episode, each time a state s is encountered, it is

called a visit to s. This state can be visited multiple times within the same episode.

The initial visit to it within an episode is referred to as the first visit to s. The

first-visit Monte Carlo method estimates the value of s by calculating the average

of the returns following the first visit to it. On the other hand, the every-visit

Monte Carlo method calculates the average of the returns following all visits to

s. It can be proved that both algorithms converge to vπ if the number of visits to
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the state s approaches infinity. However an adjustment needs to be done: since

the lack of a model of the environment’s dynamics, state value functions are not

sufficient to solve the reinforcement learning problem. Indeed, as we have seen in

dynamic programming, having the model allows the agent to look one step ahead

and choose the action which leads to the best state value function. This can not

be done without knowing the probability of obtaining a specific reward and new

state, so the state-action value function must be estimated instead. Fortunately,

it’s the same process as state value functions: in an episode, a state-action pair

(s, a) is considered visited if the state s is encountered and the action a is taken.

The every-visit Monte Carlo method estimates the value of a state-action pair

by calculating the average of the returns following all visits to that pair. The

first-visit Monte Carlo method, on the other hand, calculates the average of the

returns following the first occurrence of the state-action pair in each episode. Both

methods converge to vπ as the number of visits to each state-action pair approaches

infinity. This assumption can be a problem because some state-action pairs are

never visited in the case of deterministic policies, indeed for each state, the same

action is always selected. In order to overcome this issue the adoption of stochastic

policies is a possible solution, so that every action has a non-zero probability to

be selected. Another idea is the implementation of exploring starts which means

starting each episode in a random state-action pair even if can be problematic for

several real-world applications and so the first solution seems the best one.

After having estimated the state-action value function for an arbitrary policy,

it’s time to improve it using the policy improvement procedure. It works, like DP,

by making the new policy greedy with respect to the estimated value function. This

time, since we are dealing with state-action value functions, a greedy policy means

selecting the action that presents the highest value function:

π(s) = argmax
a

q(s, a) (2.14)
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2.4 Temporal-Difference Learning

Both dynamic programming and Monte Carlo methods are able to solve the

reinforcement learning problem for a finite Markov decision process. DP solution

is based on estimating state value functions (or state-action value functions) and

finding an optimal policy. The estimate relies upon another estimate, the next state

value (or next state-action pair value), the so-called bootstrapping. DP’s main

limitation is the need for a model of the environment’s dynamics. Monte Carlo

methods can be seen as an improvement over dynamic programming since the model

is no more needed, indeed this approach enables the agent to learn from experience.

Monte Carlo’s main drawback is the limited application capability because it’s only

effective for episodic tasks. Temporal-difference learning (TD) is one of the most

important improvements in the reinforcement learning field and it’s widely used in

real-world applications. TD is a combination of dynamic programming and Monte

Carlo methods, in fact like DP it estimates value functions using another estimate

(it bootstraps), and like Monte Carlo learns from experience without a model of

the environment. The resulting algorithm converges to an optimal policy without

the drawbacks which characterize the other two approaches.

Temporal-difference learning can be split into prediction and control problems.

The former deals with estimating value functions given an arbitrary policy, and

the latter improves the policy making it greedy with respect to the current value

function. Starting from the prediction problem, it is very similar to the Monte

Carlo one but it differs from it because of the target value. If Monte Carlo updates

the value functions using the actual return Gt as a target, TD uses the next state

(or state-action pair) value and the reward along the way as a target:

V (St)←− V (St) + α[Rt+1 + γV (St+1)− V (St)]. (2.15)

The target in Monte Carlo methods is considered an estimate because the expected

value is not known. Instead, a sample return is used as a substitute for the true

expected return. On the other hand, in DP methods, the target is estimated not

because of the expected values themselves, which are assumed to be provided by a
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model of the environment, but because the value of vπ(St+1) is unknown. Hence,

the current estimate V (St+1) is used in its place. In TD methods, the target is an

estimate for both reasons: it samples the expected return and relies on the current

estimate V rather than the actual vπ. As a result, TD methods effectively combine

the sampling approach of Monte Carlo with the bootstrapping technique of DP. TD

and Monte Carlo are called sample backups because their estimates are based on a

sample successor state (or state-action pair) differently from DP which needs the

complete distribution of all possible successors. This makes both TD and Monte

Carlo efficient in terms of memory and computational time.

As anticipated earlier, the TD algorithm is made of two distinct parts interacting

with each other: prediction (estimation of the value function for a given policy)

and control (policy improvement) problems, as stated in the GPI procedure. The

former has two main approaches: on-policy and off-policy. Both of them rely upon

state-action value functions rather than state-value functions because, like Monte

Carlo methods, TD is model free. More specifically the on-policy TD updates the

state-action value functions using:

Q(St, at)←− Q(St, at) + α[Rt+1 + γQ(St+1, at+1)−Q(St, at)], (2.16)

which is very similar to (2.15). After each transition from a nonterminal state St,

this update is performed. If the subsequent state St+1 is a terminal state, then

Q(St+1;At+1) is set to zero. (2.16) incorporates all five elements of a transition

(the current state St, the action taken At, the reward received Rt+1, the next state

St+1, and the next action At+1). The combination of these five elements gives the

algorithm its name, Sarsa. The control problem for the Sarsa algorithm is just

making the policy greedy with respect to the current state-action value function.

These two processes keep interacting until an optimal policy is found: it can be

proved that Sarsa converges to an optimal policy if all state-action pairs are visited

an infinite number of times and the policy converges in the limit to the greedy

policy.

The off-policy TD, also known as Q-learning (Watkins, 1989) differs from the

previous one since, in the prediction problem, it implements the following expression:
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Figure 2.3: Q-learning algorithm. Source: Sutton and Barto, Reinforcement

Learning: An Introduction

Q(St, at)←− Q(St, at) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, at)]. (2.17)

(2.17) directly approximates the optimal state-action value function, regardless

of the policy being followed. The policy still plays a role as it determines which

state-action pairs are visited and updated. If all state-action pairs keep on updating,

the state-action value function has been shown to converge.

2.5 Function Approximation

Until now we have assumed finite Markov decision processes, which means

environments with a discrete set of states, actions, and rewards. This kind of setup

allows value function approximation to be in a tabular form, where each entry

corresponds to a state or state-action pair. The issue arises when an environment

can’t be modeled in such a way but its description consists of an infinite set of

states, in this case, it’s not possible to approximate value functions in a tabular

form. The same reasoning is applied to an infinite set of actions an agent can

perform. Even if these sets of states/actions are not continuous but still huge, the

computational time, the memory, and the data needed would be a problem to take

into consideration. Ideally, an agent should generalize: from experiencing a subset

of states it should be able to approximate over a much larger subset; indeed in
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several real-world tasks, the majority of encountered situations will be entirely novel

and have no previous identical experiences. Fortunately, generalization capability

can be obtained from the most known kind of machine learning: supervised learning.

In the RL field, the term function approximation is used to indicate the supervised

learning task of learning from examples, taken from a desired function (e.g., value

function), in order to approximate the entire function.

As usual, the GPI procedure is adopted so as to find better policies and it is

composed of prediction and control problems. The former starts from an arbitrary

policy π and estimates the value function vπ for that specific policy. With function

approximation, the value function can’t be in a tabular form but it’s a parametrized

function with parameter vector w ∈ Rn, so v̂(s,w) is the approximation of state

s given the weight vector w. For instance, v̂ could be a neural network, and the

weight vector w all the connections weights between neurons. The training data

for supervised learning tasks consists of observations with the respective label (the

true value). In RL the training data is made of backup examples, more specifically

a backup can be represented by the notation s −→ v where s is the state-backed

up and v is the backed-up value or target. This procedure allows applying all the

supervised learning algorithms (linear regression, decision tree, neural network, etc.)

as function approximators. However, there are some problems with RL that make

some algorithms less suitable. For instance, in the supervised learning framework,

a static training set is used to train the model over which multiple passes are made,

whereas in RL the training data constantly changes due to the online learning of

the agent. Another issue is the non-stationarity of target functions in GPI control

methods, where the objective often involves learning qπ while the policy π changes.

Remarkably, even if the policy remains unchanged, the target values of training

examples exhibit nonstationarity when generated through bootstrapping methods

such as DP and TD.

The value function approximator must be evaluated, as we do in supervised

learning problems, with a metric, for instance, the root-mean-squared error (RMSE):

RMSE(w) =

√∑
s∈S

d(s)[vπ(s)− v̂(s,w)]2 (2.18)
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where d is a distribution over states and its role is to weight errors based on the

importance of each state. In fact, the number of components of w is smaller than

the number of the states, this means that improving approximation for a subset of

states results in worse approximation for another subset. The distribution d tries to

balance this trade-off. An interesting distribution is an on-policy distribution that

characterizes how frequently states are encountered when an agent interacts with

the environment and selects actions based on a specific policy π. It is called the

on-policy distribution because it represents the distribution of backups in on-policy

control methods. By minimizing the error over the on-policy distribution, we can

allocate the resources for function approximation towards the states that actually

occur while following the policy, disregarding those that never happen.

The objective is to find a parameter vector w for which the RMSE is lower

than the RMSE of any other possible parameter vector (global minima). This

achievement is occasionally feasible for simple function approximators like linear

models but impractical for more complex approximators like neural networks; the

latter can only aspire to find local minima.

One of the most used learning methods to approximate the value function is the

so-called gradient descent. From Sutton and Barto’s book: «In gradient-descent

methods, the parameter vector is a column vector with a fixed number of real-valued

components, w = (w1, w2, · · · , wn) and the approximate value function v̂(s,w) is a

smooth differentiable function of w for all s ∈ S. We will be updating w at each of

a series of discrete time steps, t = 1, 2, 3, · · · , so we will need a notation wt for the

weight vector at each step.» Assuming that in each training backup example, the

true value function vπ(St) is given and that the states follow the same distribution

over which the RMSE is being minimized, the procedure is to reduce the error from

the examples. Gradient-descent methods achieve this by making small adjustments

to the parameter vector after each example, in a direction that would result in the

greatest reduction of the error:

wt+1 = wt + α [vπ (St)− v̂ (St,wt)]∇v̂ (St,wt) , (2.19)

where α is a positive step-size parameter, and ∇f(wt) represents the vector of
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partial derivatives with respect to the components of the weight vector:(
∂f(wt)
∂wt,1

, ∂f(wt)
∂wt,2

, . . . , ∂f(wt)
∂wt,n

)
.

This vector is the gradient of f with respect to wt. The weight vector is adjusted

in such a way that is proportional to the negative gradient because it refers to the

direction in which the error decreases most rapidly.

Unfortunately, the true value vπ(St) for each training example is not known so

(2.19) should be modified with the following expression:

wt+1 = wt + α[Vt − v̂(St,wt)]∇v̂(St,wt), (2.20)

where Vt is an approximation of the true value vπ(St) (e.g., Vt = Gt in Monte Carlo

methods). The parameter vector vπ(St) converges if, and only if, the approximator

Vt is an unbiased estimate, which is the case for Monte Carlo methods. On the

other hand, TD learning estimates are biased so the convergence proof is not met.

It’s important to recognize that selecting w means choosing a specific value

function and, as a consequence, any change to the weight vector w will inevitably

change the value function. Since each update will change w this means that any

update to w will inevitably change the value estimates for many states contrary

to the other methods we have seen earlier where updating one state value never

impacted the another.

2.6 Neural Networks

Throughout their history, humans have tried to mimic other living beings in

order to improve certain activities or even discover new aspects from scratch. There

is even a specific word that explains this human behavior of mimicking natural

patterns: biomimicry. This is the case, for instance, of planes that take inspiration

from birds and bats, in fact, aviation pioneers studied the animal world so as to

emulate aerodynamics. Intelligence is another example, indeed neuroscientists’

studies of the human brain are applied by engineers to build intelligent machines.

Before introducing the advancements in the artificial intelligence field, may be

useful to explain how the human brain works from a high-level perspective.
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Our brain is one of the most complex biological structures. It can be seen as

an information processing device composed of nervous cells, the so-called neurons.

Each neuron can differ in size but the components, shown in Figure 2.4, are the same.

The dendrites, which resemble tree branches, have the role of receiving electrical

signals from other neurons in the form of chemicals called neurotransmitters. The

body cell, also known as Soma, is the area in which the nucleus containing the DNA

resides. The body cell is responsible for processing the electrical signals received.

The processing involves a weighted aggregation and, if the processed electrical signal

is strong enough, it is sent to the next component of the neuron, the Axon. This

area is covered with a material called Myolin which prevents the signal from being

degraded. It transports the new signal to the terminal part of the Axon, where

Synapses have the important role of releasing the electrical signals to other neurons’

dendrites so that the whole process is repeated.

Figure 2.4: Sketch of a human neuron

The human brain is composed of 1011 neurons each of which is connected to

other 104 neurons. The large dimension of the neural network is what makes the

brain so powerful, in fact, each neuron is only able to perform simple tasks. More

specifically, each neuron works in a binary way, whether it fires or not based on

the processed electrical signals. This concept of explaining intellectual abilities
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through a large neural network is known as connectionism: «Connectionism [· · · ]

hopes to explain intellectual abilities using [· · · ] models of the brain composed of

large numbers of units [· · · ] together with weights that measure the strength of

connections between the units. These weights model the effects of the synapses

that link one neuron to another.» [20] The large dimension of the neural network

in the human brain could raise doubt about the computational speed, suggesting a

low execution speed. This is far from true, indeed neurons work in parallel, making

the processing very fast.

2.6.1 Artificial Neuron and Perceptron

Starting from the concepts of the human brain, two researchers, Warren Mc

Culloch (neuroscientist) and Walter Pitt (logician) developed the so-called Artificial

Neuron in their 1943 paper, "A Logical Calculus of Ideas Immanent in Nervous

Activity" which is the first tentative to mimic the biological neuron in order to

build intelligent machines. Figure 2.5 describes the Artificial Neuron structure.

Basically, it can be considered as a two-part structure in which the first one, g in

Figure 2.5, receives the input data and performs an aggregation while the second

structure, f , makes the decision based on the previous computation. The model

accepts only boolean input and also the output must be boolean. The inputs

can either be excitatory or inhibitory. The latter means that the input itself is

responsible for firing the Artificial Neuron without considering the other inputs.

Whereas the former has not had this maximum effect on the neuron so the firing

is due to the combination with other inputs. More formally, the aggregation is a

simple summation of the inputs:

g(x1, x2, x3, · · · , xn) = g(x) =
n∑

i=1

xi, (2.21)

and then the final decision is based on the aggregated value:

y = f(g(x)) =

 1 if g(x) ≥ θ

0 if g(x) < θ
(2.22)

where θ is a threshold parameter that must be manually set depending on the

specific task. The Artificial Neuron has some visible drawbacks that prevent its
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application nowadays. For instance, the inputs are given the same importance and

they must be boolean, this means that real numbers can not be fed into the neuron.

Another relevant disadvantage is due to the fact that the threshold parameter

should be manually set and the model is unable to learn it by itself. The last

downside is the inability to learn non-linear functions, for instance, the boolean

function XOR (exclusive or).

Figure 2.5: McCulloch and Pitt’s Artificial Neuron. Source: Akshay L Chandra,

Towards Data Science, McCulloch-Pitts Neuron - Mankind’s First Mathematical

Model Of A Biological Neuron

Donald Hebb in his 1949 book "The Organization of Behavior. A Neuropsy-

chological Theory" introduced the concept of synaptic plasticity. He describes

how neural activities influence the connection between neurons, in particular when

two neurons fire together, the connection between them is strengthened. This

idea was fundamental in the future developments of artificial intelligence, indeed

Frank Rosenblatt, an American psychologist, in his 1958 book “The Perceptron:

A Probabilistic Model for Information Storage and Organization in the Brain”,

took inspiration both from McCulloch and Pitt’s Artificial Neuron and Hebb’rule

introducing a new mathematical model: the Perceptron. Figure 2.6 shows the

Perceptron architecture and it can be seen how it is similar to the MP Artificial

Neuron even if the Perceptron is an improvement over it. Such as McCulloch and
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Pitt’s model, Rosenblatt’s Perceptron receives some inputs, but in this case, they

may not be boolean inputs, whereas they can take real values. Each input comes

with its own weight associated with it, differently from the Artificial Neuron which

assumed equal connection strength, as a consequence, the Perceptron performs

a weighted aggregation of inputs. On top of the inputs, there is always another

input equal to one, and its associated weight is called the bias. The final output is

the result of a transformation function, a step function, applied to the weighted

aggregation. More formally, each input xi ⊆ R, with i = 0, · · · , n is associated

with a connection weight wi with i = 0, · · · , n. Notice that x0 = 1 and w0 is the

bias. The weighted aggregation is the following:
n∑

i=0

wixi = w0x0 + · · ·+ wnxn. (2.23)

The final output is given by the transformation function (step function, which is

neither continuous nor differentiable) applied to the weighted aggregation:

y = f(g(x)) =

 +1 if
∑n

i=0wixi ≥ 0

−1 or 0 if
∑n

i=0wixi ≤ 0
(2.24)

The Perceptron, like the Artificial Neuron, is a linear classifier which means that

it’s only able to work when two classes are linearly separable. However, the most

relevant improvement over MP Artificial Neuron is the ability to learn by itself.

With the word learning we mean that the Perceptron adjusts weights so as to make

better classifications. This is possible with an algorithm called Delta Rule which

has the following form:

Update = LearningFactor · (DesiredOutput− ActualOutput) · Input (2.25)

The magnitude of the weights update depends on the difference between the desired

output and the actual output. When the actual output is equal to the desired

output, there is no update. If the actual output is lower than the desired output,

the update is positive if the input is positive or negative if the input is negative.

If the actual output is greater than the desired output, the update is negative if

the input is positive or positive if the input is negative. Indeed, the goal is to

reduce the difference between the actual output and the desired output. The input



38CHAPTER 2. REINFORCEMENT LEARNING AND DEEP-Q-NETWORK ALGORITHM

influences the magnitude of the update, in fact, the smaller the input, the smaller

the magnitude of the update, conversely, a great input has a bigger effect on weights

update. Even the learning rate has an effect on the magnitude of the update: a

small learning rate takes many steps in order to converge, while a large learning

rate makes the updates more dependent on recent instances. It can be proved that,

if the inputs are linearly separable, the Delta Rule terminates the updating of the

weights after a finite number of iterations.

The Perceptron is not able to learn the XOR function given its non-linear

property. Minsky and Paper in their 1969 book "Perceptrons: An Introduction to

Computational Geometry” critique the Perceptron underlying the fact that it is not

able to learn non-linear functions. Furthermore, in 1973, the UK Science Research

Council commissioned the Lighthill Report which was a criticism of the artificial

intelligence field for not achieving big results as promised. As a consequence, these

critiques led to decreasing funds for artificial intelligence research. This period is

known as AI winter (70’-80’) which denotes the crisis of the AI field due to the

high hype and overinflated promises that were not respected.

Figure 2.6: Rosenblatt’s Perceptron. Source: Mario Emmanuel, Towards Data

Science, The 1958 Perceptron as a tumour classifier
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2.6.2 Multi Layer Perceptron

The Perceptron can be improved by either using a different transformation

function or using a different architectural structure of the network. One of the most

relevant activation functions is the sigmoid which is continuous and differentiable

in all its domains. The sigmoid is also bounded between 0 and 1, but the differ-

entiability property is the crucial one since the algorithm from which the network

learns is based on partial derivatives. The architectural structure of the network

is how neurons can be interconnected to form such a network. One of the most

common architectures is the multi-layer perceptron feedforward artificial neural

network, which is characterized by an input layer composed of neurons responsible

for receiving inputs from the external environment. An output layer has the task of

releasing the outputs, which are constituted by several neurons equal to the number

of outputs. Between the input layer and the output layer, there is a certain number

of hidden layers (both the number of hidden layers and the number of neurons for

each layer must be set by the user). Generally, each hidden neuron is characterized

by an activation function (e.g. sigmoid), while each output neuron is characterized

by a linear transformation. All these layers are interconnected with each other and

the flow of information is feedforward, from the input layer to the output layer.

Each connection has an associated weight which explains the importance of the

connection itself. Figure 2.7 depicts an example of multi-layer perceptron artificial

neural network architecture.

More formally, an input layer is constituted by n+ 1 number of neurons, with

n ≥ 1, that is as many as the inputs plus 1 for the bias. One or more hidden layers,

each composed by hl ∈ N+ of neurons, with l = 1, · · · , H, where H is the number

of hidden layers. The number of neurons for each hidden layer is hl + 1 because

of the bias term. Supposing that the number of hidden layers H = 1, w0;i,j is the

weight associated with the arc from the i− th node of the 0− th layer to the j − th

node of the next layer and the output layer is constituted by 1 neuron, the final

output of the MLP is the following:

y = a ·
h1+1∑
j=0

w1;j,y ·
1

1 + exp
{
−
∑n+1

i=0 w0;i,j · xi

} , (2.26)
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where a is the linear transformation and 1

1+exp{−∑n+1
i=0 w0;i,j ·xi} is the output of the

hidden neurons which are the result of the weighted aggregation fed into the

activation function, in this case, a sigmoid function.

Figure 2.7: Multi Layer Perceptron. Source: Computer Science Wiki, Multi-layer

perceptron (MLP)

The MLP feedforward ANN is considered a universal function approximator

as proved by Cybenko in his 1989 paper "Approximation by superpositions of a

sigmoidal function": «[The] networks with one internal layer and an arbitrary con-

tinuous sigmoidal function can approximate the continuous function with arbitrary

precision providing that no constraints are placed on the number of nodes or the size

of the weights.». In the same year the Defense Advanced Research Projects Agency

(DARPA) published the "DARPA neural network study final report" in which

highlights the importance of the number of hidden layers for learning non-linear

functions. Cybenko focuses on the importance of the sigmoid activation function,

while DARPA highlights the importance of the number of hidden layers.

The neural network changes its weights according to the so-called backpropagation

algorithm, popularized by Rumelhart D.E., Hinton G.E., and Williams R.J. in their

1989 paper "Learning internal representations by error propagation" who took

inspiration from the Rosenblatt’s Delta Rule. The algorithm, explained in Figure
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2.8, is an iterative numerical optimization based on the gradient descent method

(2.19).

Figure 2.8: Backpropagation algorithm

In the backpropagation algorithm, the error term is computed by comparing

the predicted output with the actual label, but it is only applied to a portion

of the entire data set. To do this, the data set D is split into three parts, the

training set TRAIN, the validation set VALID, and the testing set TEST, such that

TRAIN ∪ V ALID ∪ TEST = D, TRAIN ∩ V ALID = ∅, TRAIN ∩ TEST = ∅,

V ALID ∩ TEST = ∅, TRAIN ∩ V ALID ∩ TEST = ∅. The neural network is

only trained with the backpropagation algorithm on the training set. The number

of iterations of the backpropagation algorithm influences the neural network’s

performance. Indeed, if the number of iterations is too large, the neural network

memorizes the input-output pairs without learning the relationship between them,

a problem known as overfitting. On the other hand, if the number of iterations

is too small, the neural network does not memorize the input-output pairs, but

it does not learn their relationship as well, a problem known as underfitting. The

goal of a neural network is to learn the relationship between input-output pairs

so that it has the capability of predicting the unseen data (the data not used for

training the network): «[T]he goal of network training is not to learn an exact

representation of the training data itself, but rather to build a [· · · ] model of the

process which generates the data. This is important if the network is to exhibit

good generalization, that is, to make good predictions for new inputs.» [0] One

way to deal with this problem and find the correct number of iterations is using
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the so-called early stopping approach. It works by iterating the backpropagation

algorithm in the training set and each iteration computes the error in the validation

set. The correct number of iterations is the one that minimizes the error in the

validation set (as explained in Figure 2.9).

Figure 2.9: Early stopping approach. Source: Mohammad Yawar, Coding Ninjas,

Early Stopping In Deep Learning

Finally, after setting the weights of the neural network, the performance of the

network is evaluated using the testing dataset. This evaluation provides the most

reliable result because the network has not encountered the testing data during

training. The performance on the training dataset is not informative since the

network has already been exposed to that data during training. Similarly, the

performance of the validation dataset is not directly comparable to the testing

dataset, as the validation dataset is primarily used to optimize the selection of the

best set of weights. Therefore, the performance on the validation dataset may be

biased and not indicative of the network’s true performance on unseen data.

Let wj, with j = 1, · · · ,W , be a weight of the neural network and suppose

ŵj(x0, · · · , xn) be the estimator of wj . The error to manage is E[ŵj(x0, · · · , xn)−wj ]
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and it can be rewritten in the following way:

E[ŵj(x0, · · · , xn)− wj] =

E2 [ŵj (x0, . . . , xn)]− 2E [ŵj (x0, . . . , xn)] · wj + w2
j+

+E
[
ŵ2

j (x0, . . . , xn)
]
− E2 [ŵj (x0, . . . , xn)] =

(E[ŵj(x0, · · · , xn)]− wj)
2 + E

[
ŵ2

j (x0, . . . , xn)
]
− E2 [ŵj (x0, . . . , xn)] =

Bias2([ŵj(x0, · · · , xn)], wj) + V ar(ŵj(x0, · · · , xn)).

(2.27)

Figure 2.10: Bias-variance trade-off. Source: Gungor Osman Erman and Al-Qadi

Imad, Developing Machine-Learning Models to Predict Airfield Pavement Responses

The bias error of an estimator is attributed to the inherent limitations of its

functional form, while the variance error quantifies the inaccuracies in estimating

the weight value. The concept of bias-variance tradeoff can be illustrated in Figure

2.10, which depicts a two-axis chart with model complexity on the x-axis and total

error on the y-axis. As model complexity increases, the bias decreases because the

model’s architecture becomes more capable of capturing the relationship between

input-output pairs. However, this leads to an increase in variance since the complex

model tends to overly rely on the specific patterns present in the training data,

resulting in overfitting. Conversely, reducing model complexity raises the bias

because the model becomes less capable of capturing the input-output relationship,
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but it reduces the variance since a simpler model generalizes better by avoiding

overfitting.

2.7 Deep-Q-Network Algorithm

Mnih et al. in their 2015 paper "Human-level control through deep reinforcement

learning" introduced a new reinforcement learning algorithm capable of performing

at a human level in the Atari 2600 games environment. More specifically, the

agent reaches a level similar to a professional human games tester across 49 games

receiving as inputs only the pixels and the game score. This is made possible by

using a convolutional neural network as a function approximator for the optimal

action-value function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . . | st = s, at = a, π

]
. (2.28)

Due to its non-linearity, using a neural network as a function approximator improves

flexibility and generalizes the relationship between state-action pairs and their

associated values. On the other hand, it may be unstable and even diverge from the

actual function. This is mainly due to three reasons: the sequence of observation is

highly correlated; small changes to the action value function may have an impact

on the policy, hence changing the data distribution; the high correlation between

the action values and the target values. All these instabilities are solved or reduced

by implementing two ideas. First, a biological-inspired mechanism to randomize the

sequence of observations and prevent a change in the data distribution is known as

experience replay. The second idea is to use an additional function approximation,

the so-called target network, to approximate the target values with the same weights

as the other Q-function approximator, the online network, but updated periodically,

resulting in a decrease in correlation between action values and the target values.

More formally, Q(s, a; θi) is the parametrized form of the action value function

using a CNN, where θi are the weights of the network at iteration i. At each time

step t, the agent experiences et = (s, a, s′, r, T ), which is a tuple containing the initial

state s, the action a taken by the agent, the new state s′, the reward r obtained,

and a boolean value T indicating whether the new state is a terminal state or not.
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Each experience is stored in the data set Dt = {e1, · · · , et} and the CNN is trained

on uniformly drawn random samples from the data set: (s, a, r, s′, T ) ∼ U(D). The

following loss function is used to update the network:

Li (θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)2
]

(2.29)

where γ is the discount factor, θi are the parameters of the action value function at

iteration i, and θ−i are the parameters of the network used to update the target

values at iteration i. The target network parameters θ−i are updated every C

number of steps and set equal to the online network. Figure 2.11 explains the

whole algorithm in detail. The DQN implementation differs from the algorithm in

Figure 2.11, in which the Q-network updates its parameters θ at each environment

step. Indeed, in the original algorithm, the Q-network takes a gradient descent step

every 4 environment steps. In this way, the training time decreases significantly,

since learning steps are computationally expensive compared to forward passes.

Another advantage is that, by waiting for a longer time between learning steps, more

transitions are stored in the experience replay memory, resulting in a distribution

closer to the current policy and preventing the network from overfitting.

Figure 2.11: Deep-Q-Network algorithm. Source: Van Hasselt et al. Deep reinforce-

ment learning with double q-learning

It is common thought that the more training time, the better the performance,

but this is not true. Unlike neural networks and Q-learning in the tabular setting
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(which improve their performance by increasing the data, resulting in average

learning curves that improve stably), the DQN agent can drop its performance after

a period of learning. This is known as catastrophic forgetting and the introduction

of the experience replay and the target network aims at reducing its effect. However,

these two elements are not enough to prevent catastrophic forgetting from happening,

because one of its causes is inherently contained in the value-based RL methods.

Indeed, value-based methods learn a proxy of the policy rather than approximating

the policy itself. As a consequence, learning updates may improve the accuracy

of the approximator while decreasing the performance of the policy. For instance,

suppose that the true Q-values for state s and actions a1, a2 is Q∗(s, a1) = 2

and Q∗(s, a2) = 3, so the optimal action would be to select a2. The function

approximator, using parameters θ, estimates Q∗(s, a1; θ) = 0 and Q∗(s, a1; θ) = 1,

resulting again in choosing a2. After some updates to the parameters, the function

approximator estimates Q∗(s, a1; θ) = 2 and Q∗(s, a1; θ) = 1, which are closer to

the true Q-values but now the action chosen from the policy is a1, the non-optimal

one.

Mnih et al. tested the algorithm in the Atari 2600 games environment, across

49 games, using the same architecture, hyperparameters, and learning procedure.

The results were very promising since the game scores were similar to a human

professional game tester. Furthermore, they demonstrated the relevance of each

component of the algorithm: the replay memory, the target network, and the deep

convolutional neural network. In fact, by disabling them, the agent performance

decreased significantly.

2.7.1 Double DQN

Q-learning is one of the most famous reinforcement learning algorithms. Still, it

has the problem of overestimating the action values due to the maximum operator

in the function used to make updates. These overestimations may be very common

in practice and may lead to worse agent performance. The latter aspect may not

verify if the overestimations are uniform over the actions (in this way, the choice of

the best action is not affected by overestimations), but if they are not uniformly
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distributed, the agent performance would get worse. Double-Q-learning (Hado

Van Hasselt, 2010) is an improvement over Q-learning since it tries to prevent the

overestimations of the action values. Van Hasselt et. al. in their 2015 paper "Deep

Reinforcement Learning with Double Q-Learning" extended the Double Q-learning,

first developed in the tabular case, to the function approximation setting, allowing

the application of Double-Q-learning to the DQN algorithm.

Q-learning uses the max operator both to evaluate and select the action, as a

result, it’s very likely that the action estimate is overestimated. Indeed, the target

values in Q-learning are given by the following formula:

Y DQN
t = r + γmax

a′
Q
(
s′, a′; θ−i

)
(2.30)

The main idea behind Double-Q-learning is to decouple the selection of the best

action, the one having the highest action value, from its evaluation. To implement

this idea, two different function approximators are used, one to select the action

and the other to evaluate it. In the DQN algorithm, since there are already two

function approximators (the online network and the target network), seems natural

to use the online network to evaluate the greedy policy by choosing the best action,

while the target network to estimate its value. As a consequence, 2.30 becomes:

Y DoubleDQN
t = r + γQ

(
s′, argmax

a
Q (s′, a′;θi) ;θ

−
t

)
(2.31)

The Double DQN algorithm was tested in the Atari 2600 games setting and was

able to achieve higher scores on several games compared to the standard DQN,

furthermore, the accuracy of action value estimates increased, proving that DQN

overestimations lead to poorer policies.

2.7.2 Prioritized Experience Replay

Experience replay allows the agent to store the environment transitions to learn

from them, through past experiences. It also helps reduce correlations between

transitions and, as a consequence, learning more stably, without overfitting. The

agent uniformly samples the transitions, regardless of their significance, currently

present in the experience replay and learns from them by adjusting the weights of the
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neural network which is used as a function approximator. But what if there are some

transitions more useful than others? Schaul et al. in their 2016 paper "Prioritized

Experience Replay" studied different ways of sampling from the experience replay,

prioritizing some transitions, to speed up learning. More specifically, they prioritize

transitions with higher expected learning which is measured by the magnitude of

the temporal-difference (TD) error. The idea is that the greater the TD error, the

more surprising the transition is.

The algorithm stores the TD errors in the experience replay along with their

associated transitions. Then the transitions with the largest TD error are sampled

from the replay memory and used to adjust the weights of the function approximator

through a Q-learning update. When the transitions are stored for the first time in

the replay memory, they don’t have a TD error (since the error is only computed

when the transitions are sampled), hence they are given the maximum priority in

order to guarantee that all transitions are seen at least once.

This algorithm has some issues. First, the TD error updates are only applied to

the sampled transitions, as a consequence, the transitions which have a low error

when first visited, may be not updated anymore, since the highest priority is given

to those with higher error. Another issue, closely connected to the previous one, is

that reducing the TD error may take a long time, meaning that always the same

transitions are sampled, leading to overfitting. Lastly, this algorithm suffers noisy

rewards.

To overcome these issues, the researchers implement a stochastic sampling

method balancing between greedy priority sampling and uniform random sampling.

Following this idea, the probability of sampling transition i is:

P (i) =
pαi∑
k p

α
k

, (2.32)

where pi > 0 is the priority of transition i and α measures the strenght of prioriti-

zation (α = 0 is the uniform random sampling case).

The researchers introduce two variants, both with sampling probability mono-

tonic to the absolute magnitude of the TD error |δ|. The first one is the direct

prioritization in which pi = |δi|+ ϵ, where ϵ is a small positive constant that allows

transitions with |δ| = 0 to be sampled. The second variant is the indirect rank-based
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prioritization in which pi =
1

rank(i)
, where rank(i) is the rank of the transition i

once the replay memory is sorted according to |δi|. This last version may be more

robust compared to the first one since it’s insensitive to outliers.

Figure 2.12: Prioritized experience replay algorithm. Source: Schaul et al. Priori-

tized experience replay

The estimation of expected values using uniform random sampling updates relies

on these updates being generated from the same distribution as their expected

values. However, prioritized replay introduces bias because it alters this distribution

leading to a change in the converged solution of the estimates. To address this bias,

we can employ weighted importance sampling:

wi = (
1

N
· 1

P (i)
)β, (2.33)

which fully compensate for the non-uniform probabilities if β = 1. By incorporating

these weights into the Q-learning updates, using weighted importance sampling

instead of ordinary importance sampling, the biased distribution can be corrected.

For stability purposes, the weights are normalized.

In typical reinforcement learning scenarios, unbiased updates become more

critical towards the end of training when the process is highly non-stationary due

to changing policies, state distributions, and bootstrap targets. For this reason, the
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coefficient β is corrected over time by defining a schedule that gradually increases

the exponent parameter. Specifically, β is linearly increased from its initial value to

1. It is important to note that the choice of this hyperparameter interacts with the

prioritization exponent α: increasing both parameters prioritizes more aggressive

sampling while simultaneously providing stronger correction for it. The whole

stochastic prioritized sampling algorithm is described in Figure 2.12.

The Double DQN agent, trained using the prioritized experience replay memory,

overperforms the standard DQN agent on 41 out of 49 Atari games.



Chapter 3

Reinforcement Learning Applied to

Forex Trading

So far we have explored the Forex market, its functioning, and the theoretical

foundation of reinforcement learning. This section serves as the bridge between

these two concepts, aiming to evaluate a reinforcement learning agent’s performance

in Forex trading. Moreover, this section aims to outline the process of creating

the model, highlight the challenges encountered during its development, present

the outcomes of the experiments conducted, and conclude with some ultimate

reflections and potential areas for enhancement.

3.1 Literature Review

Before starting the explanation of the model, a brief overview of the literature

on applying reinforcement learning to the Forex market is provided. While research

on this technique is more prevalent in stock trading, I will present the relevant

studies I have reviewed and drawn inspiration from.

Carapuco et al. [1] conducted experiments with a Q-learning algorithm, specifi-

cally using a Deep Q-Network (DQN) agent, focusing on the EUR/USD currency

pair. Their approach involved a unique method of describing the market state

using tick data, and they introduced a modified version of the Sortino ratio as

a reward signal. Notably, their algorithm is designed as a supervised learning

51
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framework, where the agent undergoes training on a dataset before being tested on

an out-of-sample dataset. In the EUR/USD market spanning from 2010 to 2017,

Carapuco et al. observed consistent results across 10 tests with varying initial

conditions. The algorithm achieved an annual average profit of 16.3 ± 2.8%.

Dempster and Lemans [5] introduced an innovative approach termed adaptive

reinforcement learning, comprising three key components: a decision-making model,

a risk management layer, and an optimization layer. This architecture is structured

in layers, with the model layer employing a direct reinforcement method that

optimizes the policy directly, more specifically Recurrent Reinforcement Learning

(RRL), originally introduced by Moody and Saffel in 2001. The second layer enables

the customization of risk management by tailoring it to individual preferences,

capable of autonomously closing positions even when the model in the first layer

suggests otherwise. The third layer, the adaptive component, earns its name by

dynamically optimizing the parameters of the risk management layer in real-time.

In their experimentation, Dempster-Lemans achieved a notable 26% annual return

on the EUR/USD currency pair. This achievement was realized over a two-year

span (2000-2001) and using a 1-minute timeframe.

Huang and Chien-Yi [8] adopted an online Q-learning strategy, specifically calling

it Deep-Recurrent-Q-Network (DRQN). This approach involves the integration of an

LSTM network as a function approximator within the conventional DQN algorithm.

A notable advancement they introduced includes using a compact replay memory

with an extended sampled sequence for the training process. They also came up

with an innovative action augmentation technique, which reduces the necessity for

random exploration within the context of financial trading. They achieved positive

returns across 12 different currency pairs, encompassing both major and cross

pairs, even after accounting for transaction costs. Operating within a 15-minute

timeframe, their study spanned from 2013 to the conclusion of 2017.

Shavandi and Khedmati [13] proposed an innovative approach to trading, distinct

from conventional methods. They drew inspiration from the fractal market hypoth-

esis, which states that market behavior is influenced by the collective psychology

of investors with varying trading horizons and interpretations of information. To
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implement this, they developed a framework using multiagent deep reinforcement

learning. This system capitalizes on the combined expertise of multiple agents, each

specialized in trading within specific timeframes. Notably, the shortest timeframe

agent triggers the actual trading decisions, with input from agents specialized in

longer timeframes to help in decision-making. The proposed approach was empir-

ically tested across twenty independent experiments spanning from mid-2012 to

mid-2021, using a 5-minute timeframe. The results demonstrated an average annual

return of 5.1%.

Tsantekidis et al. [14] introduced an advanced deep reinforcement learning

model and an innovative reward-shaping technique centered around price trailing.

This approach led to substantial performance enhancements, notably boosting the

Sharpe ratio and curtailing maximum drawdown. The researchers evaluated this

strategy using an extensive data set encompassing 28 distinct currency pairs from

2017 to mid-2018. Preceding this, a training phase employed data from 2009 to 2016.

The outcome of their experiment showcased an annual return of 4.1%, achieved

through the use of a DQN (Deep Q-Network) agent.

3.2 Workflow Organization

This part is dedicated to explaining how the project has been implemented from

a software point of view. The whole implementation is written in Python code,

the most common programming language in the machine learning field, both in

industry and in academic research. More specifically, I have preferred to use an

object-oriented programming (OOP) workflow, this choice has been driven by the

great amount of code needed and the high number of entities interacting with each

other. Indeed, such a big project should be written in a clear and understandable

manner so as to avoid incurring errors. The whole program has been structured in

such a way that 8 classes interact with each other so as to simulate an RL agent

trading in the Forex market, as provided in Figure 3.1.

The first one is the Preprocessor which is responsible for taking as input the

raw EUR/USD data (30-minute timeframe open, high, low, close candles data)
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Figure 3.1: Workflow organization flowchart.

and preprocessing it, which means transforming the raw data through feature

engineering techniques with the goal of obtaining the state description observable

by the agent. Alongside the agent observations, the closing EUR/USD exchange

rates are kept in order to compute profit and loss during the simulation.

The second class is the Agent which receives as inputs the other two classes:

the Replay Memory and the Neural Network. The former, as introduced in the

previous chapter, is the agent’s memory in which a certain number of environment

transitions are stored. The latter is the Q-function approximator which evaluates

the value of each action, for each encountered state.

The fifth class is the Environment in which the agent has to operate. Inside

this class, the two main functions are the step and the reward functions (note

that I used the term function, indeed they are not classes but functions inside the

Environment class). The step function takes as input the agent action and returns

the next state along with the reward obtained by the agent. As a consequence,
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inside the step function, the reward function is called, which is the most important

function in the whole project, indeed the agent learns from it.

The sixth class is the Simulator, which is responsible for running the simulations,

taking as inputs both the environment and the agent. The simulation starts with

the environment in its initial state and runs all over the states, with the agent

choosing the actions, until the last observation, the moment in which the simulation

stops. The Simulator outputs are a series of lists such as the balance over time, the

actions performed by the agent and the reward obtained from each step.

All these lists are taken as inputs by the last two classes: the Calculator and

the Plotter. The former has the task of computing all the statistics related to

the simulation, for instance, the annual return on investment, the win ratio, the

maximum drawdown, etc. The latter is responsible for the visualization part, which

includes the balance over time chart, the agent’s actions, from which it can be

observed how the agent behaved in the simulation, and the reward at each step.

This whole project structure helps in the understanding of each component and

how they relate to each other, furthermore it is essential in improving readability

and preventing programming mistakes.

3.3 Model Structure

The following section aims to explain in detail all the model components

necessary to develop a reinforcement learning agent specifically designed for Forex

trading. As introduced previously, the agent will learn to trade using 30-minute

timeframe OHLC data, as a consequence, the environment will inform the agent

through the state signal every 30 minutes. The same timeframe dictates the time

at which the agent is allowed to perform an action.

3.3.1 Environment Components

Let’s start by introducing the state signal, which describes the current state

of the environment. As explained in the previous chapter, the state signal should

be able to represent also the past states, as declared in the Markov hypothesis.
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By using the raw OHLC data as a state descriptor is not advisable, since they

do not provide valuable information for the agent and could favor an unwanted

price correlation problem [14]. More specifically, whenever the agent encounters the

lowest price in the data set it will always buy the asset, but this behavior is not

correct since the price could further decrease. Instead, starting from the raw OHLC

data, a preprocessing phase is necessary to create new features. I have decided to

implement the same features as [14]:

1) xt,1 =
pc(t)− pc(t− 1)

pc(t− 1)
,

2) xt,2 =
ph(t)− ph(t− 1)

ph(t− 1)
,

3) xt,3 =
pl(t)− pl(t− 1)

pl(t− 1)
,

4) xt,4 =
ph(t)− pc(t)

pc(t)
,

5) xt,5 =
pc(t)− pl(t)

pc(t)
.

The first three features are the percentage change of the closing price, the

highest price and the lowest price in the 30-minute timeframe respectively. The

last two features are a measure of volatility. Due to the non-stationarity of the

financial data, these features are useful because of their normalizing nature, helping

the agent in its learning process. The result of this feature engineering work is that

the agent at each time step t will receive from the environment the following vector:

s
(n)
t = [Xt, Xt−1, Xt−2, . . . , Xt−n+1],

where Xt is the feature vector at time t, Xt−1 is the feature vector at time t− 1,

and so on:

Xt = [xt,1, xt,2, xt,3, xt,4, xt,5]

Xt−1 = [xt−1,1, xt−1,2, xt−1,3, xt−1,4, xt−1,5]

Xt−2 = [xt−2,1, xt−2,2, xt−2,3, xt−2,4, xt−2,5]

...

Xt−n+1 = [xt−n+1,1, xt−n+1,2, xt−n+1,3, xt−n+1,4, xt−n+1,5].
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The parameter n controls the number of the last feature vectors to include in the

state signal st. In the experiments, I have tried different values so as to study the

impact of the n parameter on the agent’s performance. Notably, I have chosen 1, 4,

8 and 16 as values for the n parameter.

When the agent processes the state signal, an action is performed. In the

academic literature, the typical action space used is discrete: A(St) = {−1, 0, 1},

where -1 represents a short position, 0 indicates staying out of the market, and

1 means a long position. I have decided to stick with this action space since it

is simple to implement and proven to work with different reinforcement learning

models. The only limit with this kind of action space is that the agent will always

trade using the entire capital at its disposal, which is not realistic. Regarding

the agent’s actions is important to specify that I’ve chosen to force the agent to

stay out of the market as its last action. This decision was made to facilitate the

computation of all relevant statistics without the agent actively involved in the

market.

The agent’s evaluation of each action is given by its associated Q-value and,

generally, the agent selects the action with the highest value. However, the Q-value

depends on the reward function defined by the user. Consequently, the reward is,

by far, the most important component of the model and unfortunately is the most

difficult to define as well. In the academic literature, most of the implemented

reward functions are risk-adjusted measures like Sharpe, Sortino and Calmar ratios,

which theoretically allow the agent to find a profitable policy and contemporary

limiting the risk. I have decided not to implement one single reward function, but

to experiment with employing three different rewards so as to find out which reward

best suits the Forex trading environment. The first one is taken from [8] and it is

defined as the balance log returns:

rt+1 = log(
vt+1

vt
) (3.1)

where vt is the balance at time t which comprises both the account safe capital

and the unrealized profit. The starting balance v0 = 100.000$. The balance value

satisfies the following recursive relation:

vt+1 = vt · [1 + at · (ct+1 − ct)− |at − at−1| · δ] (3.2)
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where at is the action selected by the agent at time t, ct+1 and ct are respectively

the price at time t+ 1 and time t. The commissions δ correspond to the bid-ask

spread, however, since I’ve downloaded data in bid price format, I’ve exclusively

applied them when the agent opts for a buying action at time t. It’s worth noting

that the bid price corresponds to short positions, and because the data is in bid

price format, the price matches precisely when the agent goes short. Conversely,

when the agent chooses a long position, the bid-format data doesn’t accurately

represent the actual entry or exit price. In this scenario, the actual price is the

asking price, which results from adding the spread to the bid price. Consequently,

I’ve made the decision to apply commissions uniquely when a buy action is taken

(a buy action is not only described with at = 1, but even at = 0 means buy if

at−1 = −1). The spread parameter, denoted as δ, is subject to variation depending

on the specific broker. Fortunately, Dukascopy Bank, the broker from which I

source my data, offers statistics regarding the average spread for each currency pair

[26]. Consequently, I have chosen to set δ = 0.3 bp1, relying on the information

provided by Dukascopy Bank.

The other two reward functions start from the previous one and add new

components to it, in this sense they should be an improvement over the portfolio log

returns reward function. However, designing a more sophisticated reward function

does not mean it works better than the simple one, indeed the goal is to find out

which one of the three rewards best suits the Forex trading environment. One of

these two new rewards is the well-known Sharpe ratio, the most studied reward

function in the academic literature, defined as:

SRt+1 =
EL (rt+1)√
VarL (rt+1)

(3.3)

where rt+1 is the same as 3.1, E and Var are the mean and the variance of the last

L returns respectively. This ratio tells the amount of expected return for a unit of

risk. I have set L = 4, so the reward is computed taking into account the last four

returns which, in terms of time, cover a two-hour window.

1bp (basis point) in Forex corresponds to the pip. For the majority of currency pairs, a pip is

equivalent to 0.0001, except in the case of the Japanese Yen (JPY), where it amounts to 0.01.
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The last reward function is an innovative one since I have not found it in the

literature. It is defined with the following expression:

rt+1 = (1− β) · log(vt+1

vt
) + β · log(vc

vo
), (3.4)

where vo represents the account balance at the moment a trade is initiated, vc

denotes the account balance at the point when the trade is concluded and β is the

weighting factor between the two logarithmic returns. Essentially it is a weighted

summation between 3.1 and the logarithmic return of the last closed trade. The

parameter β controls the weight of the last closed trade logarithmic return. The

idea behind this reward function is that, differently from the previous two, it tells

the agent that is important to win the trades. It seems an obvious aspect but

actually, the other reward functions do not take into consideration it. Indeed, those

rewards are computed based only on one-step logarithmic returns, without taking

into account the actual logarithmic return of a trade, once it has been closed. From

a metaphorical perspective, it’s analogous to a sports manager who prioritizes team

training over the actual matches. I have decided to set β = 0.7 so that the agent

gives more importance to winning the trades rather than focusing on one-step

logarithmic returns with the risk of losing the trades. Table 3.1 summarizes all the

aforementioned environment parameters.

Parameter Value

v0 100.000

n 1, 4, 8, 16

δ 0.3 bp

L 4

β 0.7

Table 3.1: Environment parameters employed in the model.

3.3.2 Agent Components

Until now, I have discussed the environment settings of the model. It’s time

to describe the agent components with all the parameters involved, starting from
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the agent’s policy. The agent will choose a specific action after evaluating each of

them: the action with the highest Q-value is selected. However, always selecting the

best action is not a good choice, indeed a bit of exploration is needed to find new

scenarios that could potentially lead to more rewards in the long run (the so-called

exploration-exploitation tradeoff ). In this sense, the literature seems aligned with

the so-called ε-greedy policy which works as follows:

a =

argmaxa Q (st, at,θt) with probability 1− ε

at with probability ε

(3.5)

where ε is a parameter that controls the likelihood of choosing the best action or

a random action. Basically, ε is the probability of selecting a random action and

1 − ε is the probability of going greedy. The random action is sampled using a

uniform distribution. At the beginning ε = 1, and as a result, the agent is obliged

to select actions randomly. This choice is due to the fact that, at the beginning,

the agent knows nothing about the environment and it has to explore it properly

to understand its dynamics. As time passes, ε decreases linearly until it reaches a

minimum value of 0.1, meaning that the agent will still explore sometimes. The

initial and the final ε values (εmax and εmin respectively) have been chosen based

on the literature. Conversely, the linear reduction of ε is strongly influenced by the

length of the data set, making this parameter specific to the user’s preferences and

needs. I decided to decrease ε in such a way that the minimum value is reached after,

more or less, six months. In my opinion, this is a reasonable time window since it

allows the agent to explore more heavily for enough time without impacting too

much in the long run since random action in financial trading could be catastrophic.

The agent estimates the Q-value for each action before selecting one of them.

The Q-value estimation is a critical component in a reinforcement learning model.

In this research, a feedforward neural network is employed as the Q-function

approximator, with the input layer containing neurons equal to the state signal’s

dimension and the output layer having three neurons corresponding to the available

actions. Typically, there exists an unspecified number of hidden layers h between

the input and output layers, and these layers need to be determined beforehand

by the user. The same rationale applies to the number of neurons x within each
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hidden layer. In this particular study, two variations of the network are created,

one with a single hidden layer and the other with two hidden layers. This is done to

investigate whether adding an extra hidden layer could enhance the agent’s action

estimations and subsequently improve its learning process. Regarding the number of

neurons in both cases, with either one or two hidden layers, it is k = 10. To explain

this choice, it’s necessary to revisit the state signal. As previously mentioned,

the study involves experimenting with different state signals by adjusting the n

parameter, which controls the number of time steps. For instance, when n = 1,

the state signal becomes a five-element vector, resulting in the neural network’s

input layer consisting of 5 neurons. Given that the input layer has 5 neurons,

following Kolmogorov’s representation theorem, the number of neurons in the

subsequent layer should be a maximum of 10. I have maintained this configuration

of 10 neurons when using different state signals because I aimed to observe how

altering the n parameter would influence the agent’s learning process. The network

weights are initialized according to the guidelines outlined in [8]. Specifically, the

weights of the hidden layers follow the initialization scheme proposed by He et al.,

while the weight matrix of the output layer is initialized with values drawn from a

normal distribution with a mean of 0 and a standard deviation of 0.001. Biases are

uniformly set to zero.

As detailed in the previous chapter, the agent employs a replay memory buffer to

store N = 480 environment transitions. Periodically, for every C = 4 environment

step, the agent randomly samples batch_size = 96 transitions from this buffer to

train its neural network. Essentially, it learns from past environmental experiences.

It’s crucial to remember the existence of a second neural network known as the

target network, which is responsible for estimating the Q-values of the next state.

These estimated values are used to compute target values, against which the agent

evaluates its prediction errors. The target network shares the same structure as

the online network and is initialized in the same manner. However, it remains

static throughout training and does not undergo weight updates through the

backpropagation algorithm. The occasion on which the target network’s weights

are modified occurs in every W = 96 environment step. At this point, the weights



62CHAPTER 3. REINFORCEMENT LEARNING APPLIED TO FOREX TRADING

of the online network are copied and updated in the target network.

Many reinforcement learning models employed in financial trading tend to treat

reinforcement learning as if it were a supervised problem. Instead of executing the

agent in a continuous online manner, they opt for a sliding train-test set approach. In

this approach, they initially train the agent using the training set and then evaluate

its performance on the testing set. Subsequently, the testing set becomes the new

training set, and this cycle repeats dynamically. This approach proves effective,

furthermore, it provides a way for configuring various model hyperparameters. On

the other hand, I have chosen to adopt the online learning methodology because it

aligns better with the inherent nature of reinforcement learning, where an agent

learns autonomously by interacting with its environment. Another motivating factor

behind this choice is the considerable computational time that the sliding train-test

set method would require. Given that I have not employed reinforcement learning

in a supervised learning fashion, I lack the option to optimize the hyperparameters.

Consequently, I have decided to establish all the previously explained parameters,

along with certain other parameters of the neural network such as the learning

rate and optimizer, by drawing inspiration from the existing academic literature.

Specifically, I have taken hints from [8], as it closely resembles the configuration I

am working with. Table 3.2 summarizes all the aforementioned agent’s parameters.
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Parameter Value

εmax 1

εmin 0.1

εdecr 1.5625× 10−4

x 10

h 1, 2

learning_rate 1× 10−3

optimizer RMSprop

N 480

batch_size 96

C 4

W 96

Table 3.2: Agent’s parameters employed in the model.

3.3.3 Operative Signal

As previously discussed, at each time step t, the agent selects an action denoted

as at ∈ A. Consequently, after the simulation concludes, a list of actions chosen by

the agent is generated. However, it is important to note that running the simulation

multiple times yields different lists of actions. This variability arises from the

initial state of the agent, where the weights of its neural network are randomly

initialized. Since the agent’s action selection relies on the estimates produced by

the neural network, these initial randomizations significantly influence the agent’s

decision-making process. To mitigate this variability and ensure robust evaluation,

the simulation is repeated K = 50 times for each set of parameters. As a result of

this process, at each time step t there are precisely K actions available, as if multiple

simulations were running simultaneously. Consequently, to arrive at a single action

choice for each time step, it becomes necessary to employ an aggregation method.

[3] proposes the following approach:

at =

∑K
k=1 at,k
K

. (3.6)

In this equation, at,k represents the k-th action at time step t, K denotes the total

number of simulations conducted, and at is the average action selected at time step
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t based on all K actions. Given that the agent’s action space A consists of the

values {−1, 0, 1}, it is necessary to map the average action at to one of the three

values within the agent’s action space. Consequently, the next step involves the

following decision-making process:

at =


−1 if at ∈ [−1,−1/3]

0 if at ∈ [−1/3, 1/3]

1 if at ∈ [1/3, 1]

(3.7)

In this equation, at represents the final action choice at time step t and it is

determined based on the value of at ensuring that it falls within the predefined

intervals.

3.4 Experiments

Now that the model structure has been defined, the experimental methodology

is outlined. Initially, I downloaded the 30-minute EUR/USD data from Dukascopy

Bank, a Swiss online financial institution. This data set covers the period from

January 2019 to December 2022, encompassing four years of testing. This timeframe

is chosen for its suitability in representing different economic scenarios. The year

2019 exhibits relative stability, while the onset of 2020 marks the emergence of the

COVID-19 pandemic, introducing substantial uncertainty, especially in the Forex

market. Figure 3.2 shows, in the upper plot, the EUR/USD exchange rate in the

aforementioned period, while in the lower chart, the 30-minute returns are plotted.

Looking at the exchange rate over time, it’s very balanced since the first part is

characterized by a horizontal movement without a clear trend (perhaps a small

allusion to a bearish trend). The agent could find itself having difficulty making

a profit in this period, both because of the lack of a strong trend and especially

because of the agent’s initial exploration. Following this bearish-horizontal period,

the exchange rate starts a bullish trend where the agent ideally should go long.

Finally, a strong bearish trend begins in May 2021, in which the agent should go

short on EUR/USD, eventually followed by a trend reversal. As mentioned earlier,
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these four years encompass a variety of situations that the agent must navigate.

Therefore, if the agent can generate substantial profit during this period, it would

serve as strong evidence of the model’s efficacy.

Figure 3.2: The upper chart reproduces the 30-minute timeframe EUR/USD data.

The lower chart depicts the one-step returns.

At the end of the simulation, the Calculator class will print out the following

statistics:

1. Annualized return (%)

2. > v0 (%)

3. Maximum drawdown (%)

4. Annual trades (#)

5. On position (%)

6. Long trades (%)

7. Gross win ratio (%)

8. Net win ratio (%)

The primary metric of importance is the initial one, as it determines whether

the agent managed to generate a profit. Furthermore, it’s not only essential to

ascertain whether the annualized return is positive or negative, but the magnitude

of this value also holds significance. Given the complexity of this model, both in
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terms of its implementation and computational requirements, one would expect a

notably superior performance compared to standard trading strategies.

Assessing the agent’s performance solely based on whether it generated a profit

at the conclusion of the testing period is an incomplete measure. Notably, if the

agent sustained losses for the majority of the period and only managed to reverse

its performance towards profitability at the very end, such an outcome would be

considered suboptimal. The second statistical metric, however, provides valuable

insights in this context. Specifically, it quantifies the percentage of instances where

the agent’s balance exceeded its initial value. This metric proves particularly useful

for dynamic analysis of the agent’s performance over the entire duration of the

testing period, offering a more comprehensive perspective beyond just the starting

and final balance.

The third metric is a widely employed risk assessment measure within the realm

of finance, commonly referred to as the maximum drawdown. It is a crucial risk

metric in finance that measures the largest peak-to-trough decline in an investment’s

value or portfolio over a specified period. In other words, it quantifies the maximum

loss an investment or trading strategy has incurred from its previous peak value to

its lowest point within the chosen time.

The fourth metric pertains to the yearly count of trades initiated by the agent.

It’s important to note that the agent makes decisions every 30 minutes, potentially

resulting in a substantial number of trades. This can pose an issue due to the

associated costs, the spread, incurred with each trade. Hence, the ideal scenario

involves the agent learning a profitable policy and avoiding opening a high number

of trades.

The subsequent metric represents the proportion of time the agent spends in

active positions, providing insights into the agent’s market engagement.

The sixth metric examines the percentage of long trades carried out by the

agent, understanding the agent’s trading preferences, whether it favors long or short

trades. This metric provides insights into the agent’s overall trading behavior.

The last two statistics measure the gross win rate and net win rate. The

gross win rate is determined by dividing the number of successful trades, without
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accounting for the spread, by the total number of trades. Conversely, the net win

rate is calculated in a similar manner, but it considers the impact of the spread

when evaluating trade success.

All of the statistics mentioned earlier are typically associated with the operational

signal. Nevertheless, I have opted to maintain records of these metrics for each

individual simulation conducted. Specifically, for each of the aforementioned metrics,

I have computed a 95% confidence interval using bootstrapping. This approach

offers insights into the K simulations that were conducted, treating each simulation

as if it were the definitive operational signal.

3.5 Benchmark

In order to validate our reinforcement learning model, it should be compared

with some sort of benchmark. Commonly, a benchmark is a baseline trading system,

possibly one of the most employed ones, so as to compare the results of a newly

developed trading system to the standard approach. The rationale behind this

procedure is that the baseline trading system is usually very simple to develop

rather than the new potential model. Consequently, if the profits are more or less

similar, priority is given to the simpler one. This is the case for our reinforcement

learning model, indeed it can be considered as a very sophisticated automated

trading system. In the literature, the most common benchmarks are the buy and

hold (B&H) or the sell and hold (S&H) strategies. As the names suggest, the former

buys the asset and holds it until the end of the period, while the latter is the same

approach but it shorts the asset instead of buying it. In this work, I have decided

to create a benchmark in a different way: I will test six different trading strategies,

the most common ones, and take the most profitable as the final benchmark.

The first trading rule is based on a technical indicator, the Relative Strength

Index (RSI), developed by J. Welles Wilder Jr. and introduced in his 1978 book,

New Concepts in Technical Trading Systems. It is computed using the following
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formula:

RSI = 100− 100

1 +RS

RS =
Average Gain
Average Loss

where RS, the so-called relative strength, is a ratio between average gains and

average losses over a specified period (gains are positive price changes while losses

are negative price changes). The RSI is a momentum indicator that, like all the

other momentum indicators, has the role of finding a trend reversal. From a

mathematical point of view, it is a time series with values ranging from 0 to 100.

In order to define the RSI indicator, three parameters should be set: the window

length, the overbought and oversold levels. The window length is necessary to

compute the RSI itself, more specifically it is used inside the RS formula. It is

usually set to 14 time periods. The overbought level is the RSI value at which the

asset is said to be overbought which means too many people are buying it and it

could potentially start reversing its trend. Consequently, when the RSI reaches this

level, a short position could be a reasonable trade. On the other hand, the oversold

level is the RSI value at which the asset is said to be oversold and it is usually a

buy signal. I have set the overbought and oversold levels to 80 and 20 respectively.

The trading rule that will trigger a long or short position is the following:

1. If RSI(t) > OB AND RSI(t− 1) ≤ OB :

SignalRSI(t) = SHORT

2. elif RSI(t) < OS AND RSI(t− 1) ≥ OS :

SignalRSI(t) = LONG

3. else: SignalRSI(t) = SignalRSI(t− 1)

The second trading system relies again on a technical indicator known as

Bollinger Bands (BB), developed by John Bollinger in the 1980s. This indicator

belongs to the volatility indicators family it has three main components: the middle,

the lower, and the upper bands. The middle band is a simple moving average of
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Figure 3.3: RSI on 30-minute timeframe EUR/USD data (January 2019 - December

2022).

the asset price for a given lookback period. The upper and the lower bands are

calculated respectively by adding and subtracting a certain number of standard

deviations from the middle band. The BB indicator. The trading rule which triggers

a long or short position is the following:

1. If Price(t) > BolliL(t) AND Price (t− 1) ≤ BolliL(t− 1) :

SignalBoll (t) = LONG

2. elif Price(t) < BolliU(t) AND Price (t− 1) ≥ BolliU(t− 1) :

SignalBoll (t) = SHORT

3. else: SignalBoll(t) = SignalBoll(t− 1)

Basically, when the asset price touches the upper band, the asset is said to be

overbought and a short position is triggered. Conversely, when the asset price

touches the lower band, the asset is said to be oversold, and a long position is

triggered. Even the BB indicator needs some parameters to be set a priori, in

particular, the lookback period for the simple moving average and the number
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of standard deviations to find the upper and lower bands. The standard values

of these two parameters are 20 for the lookback period and 2 for the number of

standard deviations. In Figure 2 the BB indicator has a lookback period of 960

because by using the standard value of 20 the chart did not make sense. The value

960 has been chosen because the 30-minute timeframe corresponds exactly to 20

days.

Figure 3.4: Bollinger Bands on 30-minute timeframe EUR/USD data (January

2019 - December 2022).

The third trading system, again employing a technical indicator, is based on the

so-called Moving Average Converge Divergence (MACD) indicator, developed by

Gerald Appel in the late 1970s. The MACD indicator is one of the trend-following

indicators that have the goal of making a profit by following a trend rather than

entering in reverse points. This indicator has two components, the MACD line and

the signal line. The former is computed by subtracting a long exponential moving

average (EMA) from a short EMA (long and short mean the length of the lookback

time window). The latter is an EMA of the MACD line. The trading rule from

which trading signals are triggered is given by the following:

1. If MACD1(t) > Bench(t) AND MACD1(t− 1) ≤ Bench(t− 1) :
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SignalMACD (t) = LONG

2. elif MACD1(t) < Bench(t) AND MACD2(t− 1) ≥ Bench(t− 1) :

SignalMACD (t) = SHORT

3. else: SignalMACD(t) = SignalMACD(t− 1)

As the trading rule suggests, traders typically look for two main types of signals

when using the MACD: a bullish signal, when the MACD line crosses above the

signal line, suggesting a potential buy signal; a bearish signal when the MACD line

crosses below the signal line, indicating a potential sell signal. The MACD chart is

depicted in Figure 3. The parameters to define are three lookback periods: two for

the fast and slow EMAs computation and one for the signal line. The standard

values are 12 and 26 for the fast EMA and slow EMA respectively, while 9 is the

default value for the signal line lookback period. As in the BB case, the standard

parameter values did not suit the 30-minute EUR/USD data. Consequently, I have

made the same adjustment of the BB indicator: instead of the standard values 12,

26 and 9, I have employed 576, 1248 and 432 respectively.

The fourth trading system takes inspiration from John Bollinger’s suggestion of

using the BB indicator in conjunction with two or three non-correlated indicators

such as RSI and MACD. As a result, I have decided to combine all these three

indicators with their respective trading rules. The combination criteria is simple

and intuitive, basically, it is a majority voting: starting from the three action

signals, one for each trading rule, the final combined signal is given by a majority

voting approach at each time step.

The last two trading systems are the most standard trading approaches, buy

and hold and sell and hold strategies, explained at the beginning of this section.

All these six trading systems are said to be always in the market, since, once the

first trade is opened, the action could be long or short, without the possibility of

going out of the market.

Table 3.3 presents the results derived from the aforementioned six distinct trading

systems during a four-year testing period. Most of these systems yielded negative

returns, except for the Bollinger and S&H trading strategies. Notably, the Bollinger
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Figure 3.5: MACD on 30-minute timeframe EUR/USD data (January 2019 -

December 2022).

strategy outperformed the others with an annual return of 3.78%, maintaining

a balance higher than the initial one for 99.61% of the time. Consequently, this

performance has been established as the benchmark level, set at a 3.78% annual

return. Nevertheless, because the implemented strategy is considerably simpler in

comparison to the DQN agent, I have opted to increase the benchmark to a 4%

annual return. This adjustment is motivated by the expectation that the agent

should not merely achieve a marginally superior performance.

Trading

Strategy

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RSI −2.92 43.53 23.55 19.25 100.0 49.35 41.56 41.56

BOLL 3.78 99.61 11.58 9.75 100.0 48.72 41.03 41.03

MACD −4.96 0.37 28.02 13.75 100.0 50.91 43.64 43.64

RSI-BOLL-MACD −3.28 39.11 26.03 26.25 100.0 49.52 42.86 42.86

B&H −2.17 32.98 24.97 0.25 100.0 100.0 0.0 0.0

S&H 1.58 65.25 15.95 0.25 100.0 0.0 100.0 100.0

Table 3.3: Comparison between benchmark trading rules outcomes.
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Figure 3.6: Balance over time between the benchmark trading rules.

3.6 Results

In the following section, the results obtained from the conducted experiments

are described. As introduced previously, various parameters were adjusted to assess

their impact on the agent’s performance. Consequently, simulations were conducted

for each parameter combination.

Before running the actual simulations, an initial test involved setting δ = 0

(without the spread). The rationale behind this choice was to isolate and test the

agent’s learning capability by removing the spread. Indeed, if the agent couldn’t

operate profitably in an environment without spread, it would likely struggle with

the addition of costs. In this no-commissions setting, simulations were not carried

out for all possible combinations of parameters due to the extensive computational

time required. Specifically, for each reward function, only a one-time step feature

vector and one hidden layer were tested (n = 1 and h = 1 respectively). The results

are presented in Table 3.4.

Examining the results, it is evident that all three configurations managed to

generate a profit at the end of the four-year testing period. The Log Return and
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Reward

Function

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

Log

Return
[6.19, 9.1] [60.46, 75.71] [9.24, 11.21] [4371, 4450] [66.51, 67.3] [49.44, 50.07] [49.74, 49.97] [49.74, 49.97]

Sharpe

Ratio
[0.36, 1.71] [44.56, 60.69] [10.96, 13.03] [1524, 1555] [63.69, 69.31] [49.92, 51.2] [49.62, 49.92] [49.62, 49.92]

Modified

Log Return
[16.83, 19.28] [90.02, 93.83] [9.05, 10.48] [5027, 5089] [87.17, 87.78] [49.85, 50.5] [49.54, 49.85] [49.54, 49.85]

RESULTS OF THE OPERATIVE SIGNAL

Log

Return
14.47 84.17 3.21 1923 25.69 49.05 50.1 50.1

Sharpe

Ratio
1.12 64.8 10.42 477 55.53 40.4 50.94 50.94

Modified

Log Return
23.07 92.32 8.51 4302 68.54 49.92 49.29 49.29

Table 3.4: Outcomes of the simulations conducted without the spread and employing

parameters n = 1 and h = 1. Both the 95% bootstrapped confidence intervals and

the operative signal metrics are shown.

Modified Log Return reward functions achieved significant results with annual

returns of 14.47% and 23.07%, respectively. The Sharpe Ratio reward obtained

a 1.12% annual return, which, while positive, did not meet the high expectations.

An interesting observation is that the operational signal performance improved

significantly compared to the performance of individual agents (except for the

Sharpe Ratio, which performed similarly to single agents). Overall, these results

highlight the high potential of the DQN agent and suggest that the agent’s learning

capability is effective.
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Figure 3.7: Operative signal using Log Return reward function and without spread.

Figure 3.8: Operative signal using Sharpe Ratio reward function and without

spread.
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Figure 3.9: Operative signal using the Modified Log Return reward function and

without spread.
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3.6.1 DQN Results

Now that a profitable policy has been demonstrated in a zero-spread environment,

it is time to test the agent in a real-world scenario, where each trade comes with a

cost in the form of the bid-ask spread (δ = 0.3 bp).

Log Return Reward Function

Table 3.5 summarizes the experiments performed with the DQN agent and the

Log Return reward function for each combination of parameters.

REWARD: LOG RETURN, AGENT: DQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−6.76,−5.18] [0.51, 4.51] [28.51, 32.63] [4229, 4294] [66.16, 67.23] [45.28, 45.75] [49.42, 49.66] [47.17, 47.4]

4 1 [−9.02,−7.6] [0.79, 1.91] [35.13, 39.36] [4147, 4210] [64.79, 65.99] [45.3, 45.96] [49.51, 49.73] [47.25, 47.48]

8 1 [−9.12,−7.79] [0.94, 2.22] [35.17, 39.44] [4132, 4203] [64.74, 65.79] [45.24, 45.85] [49.46, 49.67] [47.2, 47.42]

16 1 [−10.01,−8.74] [1.32, 2.99] [38.51, 42.68] [4101, 4149] [64.19, 65.18] [45.2, 45.91] [49.5, 49.68] [47.2, 47.38]

1 2 [−7.43,−6.3] [0.76, 1.54] [30.79, 34.25] [4231, 4309] [66.92, 67.72] [45.32, 45.79] [49.58, 49.75] [47.33, 47.5]

4 2 [−9.78,−8.63] [0.66, 1.54] [37.83, 41.49] [4113, 4188] [65.53, 66.4] [45.45, 45.98] [49.65, 49.85] [47.38, 47.56]

8 2 [−9.78,−8.56] [0.64, 1.66] [37.25, 41.36] [4107, 4178] [65.15, 66.29] [45.66, 46.19] [49.6, 49.77] [47.36, 47.52]

16 2 [−9.88,−8.72] [0.63, 1.56] [37.68, 41.72] [4070, 4134] [65.49, 66.49] [45.13, 45.54] [49.58, 49.76] [47.3, 47.47]

RESULTS OF THE OPERATIVE SIGNAL

1 1 2.05 14.65 10.45 1744 28.25 29.43 46.02% 44.3

4 1 −1.01 0.0 12.94 1276 23.44 24.75 48.12 45.96

8 1 −1.12 0.69 9.7 1099 22.09 25.28 49.49 47.37

16 1 −3.61 0.0 14.89 994 21.75 23.66 48.43 46.37

1 2 5.53 39.56 6.19 1512 25.93 27.08 45.95 44.0

4 2 −2.64 6.18 14.76 1063 22.36 23.81 47.49 45.64

8 2 −1.8 3.56 11.54 948 20.85 22.92 47.84 45.52

16 2 −2.0 2.8 10.71 914 22.32 21.4 48.37 46.4

Table 3.5: Outcomes of the simulations conducted employing the DQN agent with

the Log Return reward function for each combination of parameters. Both the 95%

bootstrapped confidence intervals and the operative signal metrics are shown.

Examining the annualized returns reveals that the majority of the combinations

yielded negative results. Positive outcomes were observed only when the state signal

was described with n = 1, resulting in notable returns of 2.05% and 5.53% with one

and two hidden layers, respectively. However, it’s important to note that, overall,
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the results are predominantly negative.

The addition of the second hidden layer improved the agent’s annual return for

cases with n = 1 and n = 16, while it had a detrimental effect in the other two

scenarios.

Maintaining a balance higher than the initial one proved challenging for the agent,

as three out of eight combinations had this value near or exactly at 0%. Even the

two combinations with positive annual returns achieved relatively low percentages

(39.56% and 14.55% for the best and second-best combinations, respectively).

Despite the negative performance in terms of annual returns, the maximum

drawdown percentage remained relatively moderate, with the worst statistics at

14.89%. This suggests that, although the agent struggled to increase the initial

balance, it didn’t incur significant losses most of the time.

One positive aspect is the improvement in performance brought by the operative

signal compared to the achievements of individual agents. This may be attributed to

the operative agent’s fewer trades, resulting in reduced total commissions. However,

since the operative signal improved the performance also with δ = 0, another

explanation may be that, by averaging and aggregating all the actions for each time

step, the non-zero actions in the operative agent tend to be the significant ones,

and consequently it’s more likely to perform profitable trades.

Another noteworthy observation is the balance between long and short positions.

In the behavior of individual agents, there’s a balanced distribution with 45% in

long positions and, consequently, 55% in short positions. However, the operative

signal comprises approximately only 25% long trades, indicating that many long

trades were not significant. Surprisingly, although the operative signal improved

performance in terms of annual return and maximum drawdown, it decreased the

win ratio.

In general, the results are unsatisfactory, with only two combinations yielding

positive returns, one of which surpasses 4%, making it superior to the benchmark.
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Sharpe Ratio Reward Function

Now it’s time to evaluate the performance of the DQN agent with the Sharpe

Ratio reward function. Table 3.6 summarizes the experiments for each combination

of parameters.

REWARD: SHARPE RATIO, AGENT: DQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−2.63,−1.5] [4.89, 11.04] [16.82, 19.43] [1647, 1669] [87.29, 89.37] [46.17, 47.22] [49.71, 50.02] [47.55, 47.85]

4 1 [−2.85,−1.49] [5.39, 13.46] [17.5, 20.33] [1658, 1683] [88.16, 90.05] [46.58, 47.64] [49.77, 50.0] [47.68, 47.93]

8 1 [−3.78,−2.28] [4.45, 11.22] [18.57, 21.72] [1667, 1689] [88.06, 89.94] [46.42, 47.44] [49.81, 50.06] [47.67, 47.92]

16 1 [−2.91,−1.47] [6.33, 14.93] [17.29, 20.43] [1657, 1680] [87.5, 89.81] [46.43, 47.51] [49.78, 50.01] [47.65, 47.9]

1 2 [−3.66,−2.22] [3.48, 11.66] [18.67, 21.43] [1632, 1663] [81.4, 84.52] [46.68, 47.65] [49.68, 49.9] [47.5, 47.7]

4 2 [−3.67,−2.27] [5.5, 14.44] [17.84, 21.46] [1660, 1691] [84.0, 86.5] [46.8, 48.18] [49.77, 50.04] [47.67, 47.93]

8 2 [−4.28,−2.48] [3.66, 12.15] [19.89, 24.15] [1653, 1686] [83.08, 86.42] [46.3, 47.56] [49.72, 50.0] [47.58, 47.84]

16 2 [−3.18,−1.9] [3.83, 9.89] [17.28, 20.15] [1672, 1711] [84.74, 87.68] [46.05, 47.29] [49.81, 50.09] [47.71, 47.99]

RESULTS OF THE OPERATIVE SIGNAL

1 1 4.44 75.91 9.91 172 78.69 23.03 50.44 48.4

4 1 3.78 87.93 9.01 182 74.86 24.62 49.24 46.49

8 1 3.56 64.55 9.81 240 73.51 13.65 50.52 46.98

16 1 4.44 94.45 8.67 216 76.35 24.07 48.26 46.53

1 2 0.29 28.04 14.26 401 72.19 30.67 51.31 48.88

4 2 1.34 40.15 12.41 367 71.28 31.54 50.68 48.5

8 2 1.06 32.47 12.31 434 72.08 19.56 50.51 48.47

16 2 2.37 34.07 11.32 326 73.61 22.27 51.92 50.23

Table 3.6: Outcomes of the simulations conducted employing the DQN agent with

the Sharpe Ratio reward function for each combination of parameters. Both the

95% bootstrapped confidence intervals and the operative signal metrics are shown.

This time, all operative agents ended up with positive returns at the conclusion

of the four-year testing period.

Interestingly, the addition of the second layer had a significantly adverse impact

on performance across all metrics, including the annual return, the percentage

of times the balance exceeded the initial value and the maximum drawdown.

Conversely, when employing only one hidden layer, performance remained consistent

across various state signals, maintaining stable annual returns and maximum

drawdowns.
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Once again, the combined operative agent greatly outperformed the perfor-

mance of individual agents. This is evident when examining the 95% bootstrapped

confidence intervals describing the annual return of individual agents, which were

consistently negative, meaning significant negative behavior. In contrast, all opera-

tive signals managed to achieve a positive annual return. Averaging and aggregating

the actions of individual agents resulted in a reduced number of total trades and a

lower percentage of long trades.

The standout combination of parameters is undoubtedly the one with n = 16

and h = 1, which achieved a 4.44% annual return, accompanied by an 8.67%

maximum drawdown. Furthermore, this combination maintained a balance higher

than the initial one for an impressive 94.45% of the time.

In summary, the results are positive; however, when compared to the benchmark,

only two out of the eight combinations yielded an annual return greater than 4%.

Modified Log Return Reward Function

The remaining DQN agent to evaluate is the one employing the Modified Log

Return reward function. Table 3.7 summarizes the experiments performed with it

for each combination of parameters.

The annual return is positive for each combination of parameters. Only one of

them (n = 1 and h = 1) presents a marginal annual return of 0.74%, just slightly

higher than zero.

The parameter n appears to have a significant impact on the agent’s performance.

Higher values of n yielded improved results, with n = 8 and n = 16 outperforming

n = 1 and n = 4.

The best combinations are those with n = 8, which achieved impressive annual

returns of 11.69% and 11.66% with one and two hidden layers, respectively.

The addition of the second layer significantly improved performance only when

n = 1, while in other cases, it either decreased performance (n = 4 and n = 8) or

showed non-significant improvement (n = 16).

Once again, the operative signal demonstrated a remarkable improvement

compared to the behavior of individual agents, particularly in terms of annual return
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REWARD: MODIFIED LOG RETURN, AGENT: DQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−3.62,−2.2] [12.48, 24.64] [20.66, 24.33] [4939, 5006] [87.29, 87.87] [51.35, 51.85] [50.24, 50.48] [48.01, 48.25]

4 1 [−2.94,−1.47] [6.32, 15.68] [19.46, 22.31] [4008, 4051] [88.76, 89.34] [50.57, 50.88] [50.09, 50.27] [47.95, 48.13]

8 1 [0.46, 2.17] [19.25, 32.04] [16.22, 18.64] [3692, 3731] [89.54, 90.1] [50.47, 50.7] [49.96, 50.15] [47.81, 47.99]

16 1 [−0.19, 1.38] [12.49, 22.92] [17.46, 20.08] [3578, 3607] [90.1, 90.62] [50.49, 50.66] [49.84, 49.99] [47.64, 47.8]

1 2 [−3.29,−2.04] [10.58, 22.1] [20.04, 23.01] [5046, 5117] [87.56, 88.17] [51.35, 51.81] [50.32, 50.54] [48.09, 48.3]

4 2 [−2.23,−0.65] [9.46, 19.23] [17.83, 21.01] [4115, 4161] [88.71, 89.32] [50.51, 50.79] [50.02, 50.21] [47.86, 48.05]

8 2 [−0.08, 1.54] [12.71, 22.69] [17.31, 19.75] [3821, 3868] [89.01, 89.69] [50.47, 50.75] [49.89, 50.07] [47.71, 47.89]

16 2 [−1.19, 0.32] [9.3, 20.69] [17.92, 20.75] [3672, 3715] [89.11, 90.08] [50.53, 50.81] [49.99, 50.18] [47.74, 47.92]

RESULTS OF THE OPERATIVE SIGNAL

1 1 0.74 79.4 20.79 4145 69.11 54.3 51.76 49.49

4 1 4.64 91.52 12.04 2702 70.68 52.14 51.71 50.0

8 1 11.69 99.58 7.01 2252 71.26 52.24 50.78 49.01

16 1 8.68 76.24 13.62 1970 71.02 52.88 51.78 50.01

1 2 2.8 81.62 16.79 4127 66.94 55.21 51.87 49.7

4 2 4.4 86.7 10.94 2669 69.29 52.24 51.42 49.72

8 2 11.66 83.61 7.04 2242 69.68 51.99 50.74 49.04

16 2 8.8 64.87 11.62 1979 69.6 52.24 50.51 48.96

Table 3.7: Outcomes of the simulations conducted employing the DQN agent with

the Modified Log Return reward function for each combination of parameters. Both

the 95% bootstrapped confidence intervals and the operative signal metrics are

shown.

and the percentage of times the balance exceeded the initial value. Furthermore,

this improvement was accompanied by a reduced number of trades and an increase

in market inactivity (approximately +19%).

The choice between long and short trades remained well-balanced in both single

agents and the operative agent, while gross and net win ratios were both enhanced

with the operative signal.

Overall, the results are positive, with the best combination achieving an 11.69%

annual return and a 7.01% maximum drawdown. Moreover, this top-performing

combination maintained a balance higher than the initial one for an impressive

99.58% of the time. In comparison to the benchmark, six out of eight operative

agents achieved an annual return greater than 4%, with four of these six doubling

the 4% benchmark or even surpassing it.
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Comparison between Rewards Function

The DQN agent’s learning capability has demonstrated effectiveness even in a

real-world scenario with the inclusion of the spread. However, it’s worth noting

that the Log Return reward function yielded poor results. This reward function

underperformed in comparison to the other two rewards across all combinations of

parameters, except for n = 1, h = 2, where it outperformed the other two.

The agent using the Modified Log Return reward, which proved to be the best

one, consistently outperformed the Sharpe Ratio agent in most combinations of

parameters, except for n = 1, h = 1.

In terms of operative behavior, the Sharpe Ratio agent had a lower number of

trades compared to the other two. On average, the Sharpe Ratio agent executed

292 annual trades, while the Log Return and Modified Log Return agents 1194 and

2761 trades, on average, respectively.

A surprising observation regarding the Sharpe Ratio agent is that it improved its

performance when transitioning from the no-commission setting to the commissions

setting, unlike the other agents. When comparing the n = 1, h = 1 setting (the

unique combination of parameters tested both with and without spread for each

reward function) with and without spread, it’s evident that the number of annual

trades decreased from 477 to 172 (-64%) for the Sharpe Ratio agent, while the Log

Return and Modified Log Return agents experienced a more modest decrease of

9.3% and 3.6%, respectively. As a result, the Sharpe Ratio agent not only incurred

substantially lower total commissions compared to the other two agents but also

managed to significantly reduce the number of trades when transitioning from a

commission-free environment to one with spreads.

Another insightful statistic worth analyzing in conjunction with the number of

trades is market activity (the percentage of time the agent was in a position). Inter-

estingly, these two statistics provide insights into the agents’ behavioral operativity

and they differ significantly among the three agents. Indeed, the Log Return agent

had an average market activity of approximately 23% which combined with a high

number of annual trades (1194), means that it frequently opened and closed posi-

tions quickly. In contrast, the Sharpe Ratio agent achieved a 74% market activity,
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combined with a very low number of trades (292), indicating that it remained in the

market for extended periods without frequent position changes, thus intelligently

reducing spread commissions. Conversely, the Modified Log Return agent had the

highest number of trades (2761) and a 70% market activity, suggesting a tendency

to switch trade positions (from long to short and vice versa) more frequently.

Another key difference between the three DQN agents is the preference for long

trades rather than short trades. In particular, the agent using the Modified Log

Return reward function is the most balanced in these terms, with 53% of long trades

on average. Conversely, the agents employing the Log Return and the Sharpe Ratio

reward functions presented respectively a 25% and a 24% long trades preference.

The last statistic comparison is the win ratio. The Modified Log Return has

both the highest gross win ratio (with all values greater than 50%) and net win

ratio.

Figure 3.10: Best combination of parameters for the DQN agent with the Log

Return reward function.
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Figure 3.11: Worst combination of parameters for the DQN agent with the Log

Return reward function.

Figure 3.12: Best combination of parameters for the DQN agent with the Sharpe

Ratio reward function.
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Figure 3.13: Worst combination of parameters for the DQN agent with the Sharpe

Ratio reward function.

Figure 3.14: Best combination of parameters for the DQN agent with the Modified

Log Return reward function.
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Figure 3.15: Worst combination of parameters for the DQN agent with the Modified

Log Return reward function.
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3.6.2 DDQN Results

When comparing the results of the Double Deep Q-Network (DDQN) with

those of the standard DQN, it becomes evident that the improved agent achieved

performance levels that were very similar to those of the basic agent.

REWARD: LOG RETURN, AGENT: DDQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−7.09,−5.4] [0.96, 2.9] [28.69, 33.68] [4023, 4115] [66.53, 67.53] [45.63, 46.23] [49.57, 49.85] [47.37, 47.64]

4 1 [−8.48,−6.83] [0.68, 3.08] [32.15, 37.06] [4002, 4074] [65.14, 66.3] [45.62, 46.21] [49.38, 49.64] [47.16, 47.42]

8 1 [−8.76,−7.57] [0.7, 1.47] [34.01, 38.21] [3971, 4033] [65.28, 66.29] [45.91, 46.48] [49.56, 49.8] [47.31, 47.55]

16 1 [−9.55,−8.42] [0.58, 1.32] [36.96, 40.98] [3935, 3996] [64.73, 65.7] [45.65, 46.23] [49.64, 49.84] [47.35, 47.54]

1 2 [−7.54,−6.59] [0.84, 2.13] [30.47, 33.77] [3987, 4058] [67.16, 68.02] [45.71, 46.26] [49.59, 49.83] [47.37, 47.61]

4 2 [−9.33,−8.11] [0.79, 1.76] [36.09, 39.86] [3917, 4004] [65.99, 66.92] [45.8, 46.48] [49.7, 49.9] [47.46, 47.64]

8 2 [−9.41,−8.37] [0.91, 1.75] [37.46, 40.81] [3930, 4007] [65.6, 66.55] [45.6, 46.26] [49.6, 49.79] [47.35, 47.55]

16 2 [−10.23,−9.06] [1.04, 2.32] [39.26, 43.16] [3855, 3926] [65.42, 66.25] [45.5, 46.07] [49.61, 49.78] [47.35, 47.52]

RESULTS OF THE OPERATIVE SIGNAL

1 1 1.35 22.61 7.98 1683 27.74 30.05 47.21 45.1

4 1 −0.22 20.3 7.09 1337 24.17 27.9 48.66 46.74

8 1 0.72 14.23 10.56 1136 23.12 27.06 48.95 46.71

16 1 −1.81 3.86 11.65 1022 21.63 23.7 49.34 47.31

1 2 0.03 3.07 8.93 1401 25.82 28.5 47.81 45.98

4 2 0.22 6.18 8.37 1040 22.34 47.91 47.7 45.95

8 2 −2.46 4.72 13.39 976 21.54 24.9 49.06 47.12

16 2 −2.93 3.13 12.71 912 22.23 22.55 48.42 46.4

Table 3.8: Outcomes of the simulations conducted employing the DDQN agent with

the Log Return reward function for each combination of parameters. Both the 95%

bootstrapped confidence intervals and the operative signal metrics are shown.

Starting with the comparison between the DDQN employing the Log Return re-

ward function and its DQN counterpart, it’s worth noting that, while in DDQN there

were more instances obtaining positive annual returns, they were predominantly

close to zero. The only exception was the parameter combination of n = 1 and

h = 1, which achieved a 1.35% annual return, an outcome that can be considered

suboptimal.

Furthermore, the two best parameter combinations, which yielded annual returns

of 2.05% and 5.53% with the DQN agent, experienced a significant decline when

applied to the DDQN, resulting in annual returns of 1.35% and 0.03%, respectively.
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In all other metrics related to the operational behavior of the agent, the DDQN

remained consistent with the performance of the DQN.

REWARD: SHARPE RATIO, AGENT: DDQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−2.93,−1.84] [3.98, 11.6] [17.65, 20.29] [1641, 1659] [87.13, 89.1] [46.21, 47.07] [49.76, 50.04] [47.62, 47.89]

4 1 [−3.1,−1.87] [5.61, 14.73] [16.96, 19.36] [1653, 1674] [88.01, 90.32] [45.95, 46.96] [49.65, 49.97] [47.51, 47.82]

8 1 [−2.93,−1.57] [5.47, 15.26] [17.19, 19.91] [1650, 1671] [87.7, 89.54] [46.52, 47.56] [49.81, 50.05] [47.68, 47.91]

16 1 [−2.82,−1.34] [5.45, 11.29] [17.0, 20.04] [1658, 1679] [88.01, 89.78] [46.25, 47.36] [49.61, 49.87] [47.49, 47.73]

1 2 [−3.62,−2.39] [3.35, 9.72] [19.06, 22.01] [1630, 1664] [81.9, 84.97] [46.75, 47.81] [49.64, 49.92] [47.48, 47.76]

4 2 [−3.82,−2.19] [4.08, 11.88] [19.26, 22.57] [1661, 1687] [85.28, 87.57] [46.6, 47.73] [49.76, 49.98] [47.63, 47.87]

8 2 [−4.05,−2.59] [3.61, 9.69] [19.76, 22.87] [1652, 1687] [83.25, 86.58] [46.62, 47.69] [49.65, 49.9] [47.53, 47.8]

16 2 [−3.71,−2.48] [4.48, 13.85] [18.86, 21.4] [1661, 1700] [84.85, 87.12] [46.66, 47.65] [49.79, 50.08] [47.65, 47.92]

RESULTS OF THE OPERATIVE SIGNAL

1 1 4.19 57.7 9.17 229 78.32 18.82 50.88 48.25

4 1 3.58 66.1 10.81 234 78.89 11.75 54.59 51.82

8 1 4.32 73.51 9.91 223 76.92 27.38 47.03 44.78

16 1 3.89 61.32 8.68 220 77.52 20.32 50.62 48.24

1 2 1.84 41.57 10.09 379 71.9 30.23 52.01 49.97

4 2 1.44 40.99 12.59 298 73.16 21.14 51.85 49.66

8 2 2.9 68.89 11.56 267 73.73 29.68 50.0 48.41

16 2 4.45 73.28 9.9 371 73.08 22.2 50.4 48.11

Table 3.9: Outcomes of the simulations conducted employing the DDQN agent with

the Sharpe Ratio reward function for each combination of parameters. Both the

95% bootstrapped confidence intervals and the operative signal metrics are shown.

In the scenario where the Sharpe Ratio reward function was employed, the

DDQN demonstrated improvements in annual returns compared to the standard

DQN, but this was notably evident only when two hidden layers (h = 2) were used.

Conversely, when employing a single hidden layer, most of the annual returns saw

slight deterioration. Other performance metrics of the DDQN remained consistent

with those of the DQN simulations.

An interesting observation is that the combination of parameters n = 4 and

h = 1 exhibited the highest gross win ratio among all the simulations, reaching

54.59%. However, this noteworthy win ratio did not translate into significantly

impressive annual returns, as this particular parameter combination achieved a

3.58% annual return, which can be considered good but not exceptionally so. This
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example underscores that while a high win ratio is favorable, it is not necessarily a

guarantee of superior results. Indeed, parameter combinations with a lower win

ratio percentage managed to attain significantly better annual returns.

In the final comparison between the DDQN agent using the Modified Log

Return and its basic counterpart, the DQN, the results do not exhibit significant

improvements. In this scenario, there are certain parameter combinations that show

improvement when employing the DDQN, particularly when the state is represented

by n = 16. However, there are also cases where the performance deteriorated when

compared to the DQN.

Overall, the metrics describing the operational behavior of the DDQN and the

DQN remain relatively consistent with each other, indicating that the DDQN does

not consistently outperform the DQN when using the Modified Log Return as the

reward function.



90CHAPTER 3. REINFORCEMENT LEARNING APPLIED TO FOREX TRADING

REWARD: MODIFIED LOG RETURN, AGENT: DDQN

n
Hidden

Layers

Annualized

Return (%)

> v0

(%)

Maximum

Drawdown (%)

Annual

Trades

On Position

(%)

Long Trades

(%)

Gross Win

Ratio (%)

Net Win

Ratio (%)

RESULTS OF 50 SIMULATIONS (95% BOOTSTRAP CONFIDENCE INTERVAL)

1 1 [−2.68,−1.1] [14.68, 26.73] [19.44, 22.38] [4880, 4948] [87.17, 87.82] [51.35, 51.94] [50.26, 50.58] [48.09, 48.39]

4 1 [−2.61,−1.25] [4.95, 13.94] [18.47, 21.25] [3966, 4000] [88.95, 89.4] [50.58, 50.87] [50.05, 50.24] [47.96, 48.13]

8 1 [0.91, 2.16] [15.18, 24.78] [16.2, 18.32] [3671, 3714] [89.3, 89.81] [50.48, 50.7] [49.87, 50.06] [47.74, 47.95]

16 1 [0.78, 2.57] [18.49, 31.93] [16.3, 18.46] [3529, 3564] [89.77, 90.35] [50.45, 50.67] [49.93, 50.11] [47.77, 47.94]

1 2 [−3.68,−2.4] [13.01, 25.57] [21.47, 24.56] [4969, 5058] [87.64, 88.16] [51.27, 51.82] [50.31, 50.55] [48.1, 48.34]

4 2 [−3.23,−1.66] [3.84, 12.9] [19.92, 23.34] [4029, 4073] [88.27, 89.02] [50.52, 50.81] [50.01, 50.19] [47.84, 48.02]

8 2 [−0.03, 1.41] [10.21, 19.8] [17.17, 19.58] [3772, 3813] [88.8, 89.52] [50.32, 50.62] [49.81, 50.02] [47.64, 47.84]

16 2 [−0.3, 1.24] [11.44, 21.71] [17.01, 19.45] [3636, 3673] [89.65, 90.32] [50.43, 50.65] [49.93, 50.11] [47.71, 47.89]

RESULTS OF THE OPERATIVE SIGNAL

1 1 3.36 93.02 17.22 4160 69.61 54.24 51.58 49.55

4 1 3.83 87.51 11.95 2704 70.71 52.43 51.68 50.06

8 1 11.38 92.26 7.9 2271 71.06 52.55 51.01 49.44

16 1 10.13 93.77 13.78 1973 70.92 52.68 51.64 50.16

1 2 2.03 86.61 19.52 4135 67.93 54.51 51.77 49.62

4 2 3.56 68.04 10.86 2650 69.03 52.18 51.07 49.4

8 2 10.49 89.45 6.77 2261 69.55 51.66 50.28 48.5

16 2 10.66 84.39 11.27 1984 70.21 52.67 51.55 49.82

Table 3.10: Outcomes of the simulations conducted employing the DDQN agent

with the Modified Log Return reward function for each combination of parameters.

Both the 95% bootstrapped confidence intervals and the operative signal metrics

are shown.
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3.7 Future Work

The aforementioned results of the model can be considered satisfactory, demon-

strating the potential of the RL framework. It’s worth noting that the agent was

able to profit in the Forex market using only raw OHLC candle data as inputs.

It should be emphasized that the Forex market is influenced by a wide range of

external factors, including interest rates, inflation levels, import-export activities,

international politics, and more. It’s perhaps the most influenced market globally,

presenting a significant challenge that the agent successfully overcame. However,

the model is far from perfect, and there are several aspects that can be improved

upon.

Starting with the action space, the implemented model employed a discrete

action space with only three options available for the agent: buy, sell, or stay out

of the market. In reality, traders often manage their capital based on perceived

risks. Two potential solutions to this problem include expanding the action space

while keeping it discrete (e.g., A = {−1,−0.5, 0, 0.5, 1}) or employing a continuous

action space, although this would require modifying the DQN agent, as it’s not

designed for continuous action spaces.

Regarding the environment space, an improvement could involve incorporating

technical analysis indicators into the state signal to provide the agent with a more

comprehensive view of its environment.

Another enhancement could be the introduction of a risk management technique,

ideally within the reward function. This would enable the agent to learn risk

management autonomously, without external intervention.

Concerning the agent itself, one possible improvement is replacing the feedfor-

ward neural network with a recurrent neural network, which is better suited to

consider the temporal order of features.

Furthermore, starting the agent’s learning process before the actual testing period

could be beneficial, allowing the agent to familiarize itself with the environment

prior to trading.

An additional advancement involves a shift in the automated trading system’s

approach, transitioning from a completely online learning agent to a supervised
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learning agent with a sliding training-testing set. While this may seem counterintu-

itive for the RL setting, it offers advantages such as the ability to evaluate model

parameters and select the best-performing ones, as well as reducing the occurrence

of random actions, which can be detrimental in financial trading.

Lastly, testing the agent over a longer testing period exceeding four years could

provide stronger validation of its capabilities.



Conclusion

The rise of artificial intelligence has disrupted various industries, including the

financial sector. This research aimed to leverage advancements in AI by developing

an automated trading system and testing its performance in the Forex market.

The machine learning algorithm employed in this study falls under the subfield of

Reinforcement Learning. The primary objective of this research was to evaluate the

Deep-Q-Network (DQN) agent and its enhancement, the Double-Deep-Q-Network

(DDQN), within a four-year timeframe, using 30-minute interval EUR/USD OHLC

data. Each agent underwent testing with various parameter combinations to assess

their impact on performance. The findings were highly promising, particularly when

implementing the Modified Log Return reward function, an innovative reward signal

that takes into consideration the last closed trade performance. In fact, the DQN

agent, when combined with this reward function, achieved positive annual returns

in all eight parameter combinations. More notably, six out of eight combinations

exceeded a 4% annual return threshold, which served as the benchmark. The most

noteworthy achievement was an annual return of 11.69%, which is quite remarkable.

Moreover, this result was obtained with the balance being higher than the initial

balance in 99.58% of instances, while the maximum drawdown was limited to 7.01%.

Surprisingly, the addition of a second hidden layer in the neural network did not

enhance model performance. Furthermore, even the DDQN did not demonstrate

improved results compared to the basic DQN. Another intriguing observation is that

the agent using the Sharpe Ratio performed better when subjected to a commission

setting, as opposed to when it was tested without considering the bid-ask spread

commission.
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