
A U.S. Transmission Model under Bayesian Specifications
Master’s Degree programme in Economics and Finance - Curriculum Quantitative

Economics - Ca’ Foscari University - Academic Year 2022/2023

Graduand Filippo Dell’Andrea Supervisor Prof. Roberto Casarin

27 September, 2023



Abstract

This study considers the model of Miranda-Agrippino and Rey (2020) implementing the framework
of Plagborg-Moller and Wolf (2021), but with various Bayesian configurations. Specifically, we use
a Bayesian Structural Vector Autoregression (SVAR) approach to analyze the causal relationships
between our variables. To do this, we utilize Impulse Response Functions and Forecast Error Variance
Decompositions. To delve deeper into our analysis, we build a hierarchical model that incorporates
both a Stochastic Volatility model and a Markov Switching model. We then proceed to compare the
results obtained from these three different model specifications.
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Chapter 1

Introduction

In this thesis, we replicate and extend Miranda-Agrippino and Rey (2020), implementing an original

approach proposed by Plagborg-Moller and Wolf (2021). The former authors jointly evaluate the effects

of financial, monetary and real variables, in the U.S. and abroad, following a 1% shock of the Federal

Reserve (FED) interest rate. In particular, the authors rely on an instrumental variable to identify

U.S. monetary policy shocks, building upon the framework introduced by Mertens and Ravn (2013).

This approach circumvents implausible restrictions on the variable of interest. Our primary objective

is to reimagine and expand upon this framework using various Bayesian specifications as an analytical

exercise. Our journey begins with the development of a Bayesian Structural Vector Autoregression

(SVAR) model, wherein we introduce a Hierarchical prior for the autoregressive parameter denoted as

𝐴, along with the variance-covariance matrix Σ. The foundations of Bayesian SVAR can be traced back
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to the seminal work of C. A. Sims (1980), with subsequent refinements contributed by scholars such as

Sims Christopher A. and Zha (1998), Canova and Gambetti (2006), Baumeister and Hamilton (2006),

Canova and Ciccarelli (2009), Koop and Korobilis (2010), Bańbura, Giannone, and Reichlin (2010), and

Karlsson (2013). Structural analysis, a core component of this framework, has become indispensable in

economic forecasting due to its ability to shed light on how current factors shape economic trends and

predictions. We develop a Bayesian framework as suggested by Litterman (1980) to address the issues

of overfitting in macroeconomic data. We identify the contemporaneous effects in our model through

the application of triangular restrictions, as exemplified in Christiano, Eichenbaum, and Evans (1996).

Bayesian approaches offer distinct advantages over Maximum Likelihood Estimation, particularly in

mitigating the overparametrization challenges inherent in VAR models. Our exploration then delves

into Stochastic Volatility (SV) modeling, influenced by Jacquier, Polson, and Rossi (1994), enabling

time-varying parameters within our SVAR formulation. To improve the precision of our estimates,

we model error terms as time-varying, akin to Clark and Ravazzolo (2014). Pioneering works in this

domain, including those by Cogley and Sargent (2005) and Primiceri (2005), have paved the way for

our investigation. Recent advancements by scholars such as D’Agostino, Gambetti, and Giannone

(2013) and Carriero and Clark (2016) have further enriched this field. Additionally, building upon the

foundation laid by Hamilton (1989) and adopting the algorithm by Chib (1996), we extend our analysis

to encompass Markov Switching (MS) models. MS models prove invaluable when there is a belief that

different economic regimes and turning points influence time series data. Our approach allows us to

structure the model with multiple states of the economy, aligning with prior research by Kim and
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Nelson (1998), Kim and Nelson (1999), Sims Christopher A. and Zha (2006), and Sims Christopher

A., Waggoner, and Zha (2008). Recent works by Billio et al. (2016), Casarin, Sartore, and Tronzano

(2017), Droumaguet, Warne, and Woźniak (2017), Bianchi et al. (2019), and Lütkepohl and Woźniak

(2017) have further advanced this area of study. Our most promising findings emerge from Bayesian

specifications that leverage a simple Minnesota Prior and Matrix-Variate-Normal specifications, as

seen in Woźniak (2016). It is essential to note, however, that we have not undertaken an exhaustive

sensitivity analysis of our prior values. Given the complexity and high dimensionality of our model,

the results of our Impulse Response Functions are notably sensitive to the initial choices of prior values,

often yielding less insightful outcomes.

1.1 Global Factor in Risky Asset Prices

Miranda-Agrippino and Rey (2020) in the first part of the paper estimate a global factor to proxy

the movement of world risky asset prices. They do so by collecting 858 prices of different risky assets

traded in North America, Latin America, Europe, Asia Pacific, and Australia, from 1990 to 2012.

Their method is to pick a representative market index (i.e. S&P 500) for each market at the end of

2012, including all of its components, selecting prices that allow them to cover at least 80% of cross

sectional observations by 1990 and 95% in 1995. They do so to avoid over-representation of each

category. They use the first difference log-priced series. With this global factor, they can explain

over 20% of global risky asset price volatility in their time span. Given the small time frame and

VAR analysis limitations, they estimate a global factor with commodities from the U.S., Europe, and
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Japan, spanning back to 1975. This factor covers 60% of the volatility in this period. The appendix

of their paper provides detailed information on this VAR estimation. To provide more intuition on

this factor, the authors correlate it with some implied indexes of volatility such as the VIX (a measure

of monthly expected volatility of the U.S. stock market), outlining its co-movement with common

measures of market variation (in this case a negative correlation). The global factor will be used later

in the impulse-response section.

1.2 Proxy-VAR with Rich-Information Bayesian VAR

In this project, we will avoid the computation of the global factor. Instead, we will concentrate on

the Bayesian VAR analysis of Miranda-Agrippino and Rey (2020). The main reason why the authors

studied the monetary effects of U.S. interest rate changes is that the dollar is the currency of global

banking. A change in FED monetary policy affects banks’ borrowing capacity, the pricing of dollar

denominated assets, and cross-border capital flows on a global scale. In order to isolate its effects, the

two scholars identify U.S. monetary policy shocks by exploiting 30-min price revisions around Federal

Open Market Committee FOMC announcements in the fourth federal funds futures contracts (FFF4),

using the techniques developed by Gürkaynak, Sack, and Swanson (2005) and Gertler and Karadi

(2015). The intuition is that these futures have an average maturity of three months, and they can

predict revisions of market expectations about future monetary policy one-quarter in advance. This

assumption holds only if market participants can distinguish between the systematic component of

policy and any observable policy action. Moreover, with asymmetrical information, the FF4 revisions
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contain information about the influence of economic factors relevant to U.S. monetary policy. Policy

announcements provide this information implicitly.
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Chapter 2

A Bayesian VAR Framework

From Herwartz, Rohloff, and Wang (2021) we define the model as:

𝑦𝑡 = 𝐵−1
0 𝐵1𝑦𝑡−1 + ... + 𝐵−1

0 𝐵𝑝𝑦𝑡−𝑝 + 𝐵−1
0 𝜀𝑡, 𝑡 = 1, .., 𝑇 , (2.1)

𝑦𝑡 = 𝐴𝑗𝑦𝑡−1 + ... + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡, (2.2)

where 𝑗 = {1, 2, … , 𝑝} and 𝐴(𝐿) = 𝐵−1
0 𝐵(𝐿) are a 𝐾 × 𝑁 coefficient matrices, and L is the lag

operator, and 𝑢𝑡 in (2.2) is serially uncorrelated with zero mean and positive definite (non-diagonal)

covariance matrix Σ𝑢. The structural shocks 𝜀𝑡 in the second reduced form are assumed to be mutually

uncorrelated and normalised to have unit variance. Ξ (𝜀𝑡𝜀′
𝑡) = 𝐼𝐾. Structural shocks are mapped to

the reduced-form system through a K x K non-singular matrix 𝐵0, such that 𝐵−1
0 𝐵−1′

0 = Σ𝑢. For
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simplicity, the process is assumed to be causal and det 𝐴(𝑧) = det(𝐼𝑘 − ∑𝑝
𝑗=1 𝐴𝑗𝑧𝑗) ≠ 0 for |𝑧| ≤ 1.

This ensures that the process has a Wold moving average MA representation. Moreover,

𝑦𝑡 = 𝜇 +
∞

∑
𝑖=0

Φ𝑖𝑢𝑡−𝑖 = 𝜇 +
∞

∑
𝑖=0

Φ𝑖𝐵0𝜀𝑡−𝑖 = 𝜇 +
∞

∑
𝑖=0

Θ𝑖𝜀𝑡−𝑖 (2.3)

with

𝜇 = 𝐴(1)−1𝜈, Φ0 = 𝐼𝐾, Φ𝑖 =
𝑖

∑
𝑗=1

𝐴𝑗Φ𝑖−𝑗, 𝐴𝑗 = 0 𝑓𝑜𝑟 𝑗 > 𝑝. (2.4)

The MA representation in Eq. (2.3) is of particular importance because the structural MA coefficients

Θ𝑖 = Φ𝑖𝐵0 cannot be recovered without a proper identification. We will briefly outline the Proxy

SVAR approach.

Let 𝑧𝑡 be an external instrument to identify the structural shock of interest 𝜀𝑘𝑡, ∀𝑘 𝑖𝑛 {1, … , 𝐾}.

𝑧𝑡 has to satisfy the relevant condition Ξ(𝜀𝑘𝑡𝑧𝑡) = 𝜙 ≠ 0 and the exogeneity condition Ξ(𝜀𝑙𝑡𝑧𝑡) =

0, ∀𝑙 𝜖 {1, … , 𝐾} ∖ {𝑘}.

From these conditions, it follows that the population covariances between the instrument and VAR
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residuals obtain the k-th column 𝐵0, denoted by 𝐵0𝑘, are:

Ξ(𝑢𝑡𝑧𝑡) = 𝐵0,𝑘,

Ξ(𝜀𝑘𝑡𝑧𝑡) = 𝜙𝐵0,𝑘.
(2.5)

Moreover, let 𝜋 denotes the 1x𝐾 coefficient vector from the regression of the instrument on the residual

vector 𝑢𝑡 gives the shock 𝜀𝑘𝑡 up to a scale 𝜙. 𝜋𝑢𝑡 = Ξ(𝑧𝑡𝑢
′
𝑡)Σ−1

𝑢 𝑢𝑡 = 𝜙𝐵′
0,𝑘 [𝐵0𝐵′

0] 𝑢𝑡 = 𝜙𝑒′
𝑡𝜀𝑘𝑡.

Plagborg-Moller and Wolf (2021), exploiting their result that Local Projections and VAR impulse

response function are equal up to a constant of proportionality and show that proxy SVARs impulse

responses can be computed by putting the instrument in the first row of the data vector 𝑦𝑡 in a

SVAR framework. This result follows from the invertibility of 𝜀 and two assumptions: the data 𝑦𝑡 is

covariance-stationary and a jointly Gaussian vector time series.

In our Bayesian approach, these requirements are met when we define the distributions of our error

terms and prior specifications. We will outline them in the next section.

2.1 A Linear VAR Model

We specify our model as Woźniak (2016) that is:

𝑌 = 𝑋𝐴 + 𝐸,

𝐸|𝑋 ∼ 𝑀𝑁𝑇 ×𝑁(0𝑇 ×𝑁 , Σ, 𝐼𝑇 ),
(2.6)
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where 𝑀𝑁𝑇 ×𝑁(𝐴, Σ, Σ𝑎) denotes a matrix-variate normal distribution with location 𝐴, and scales Σ

and Σ𝑎. Given that the function Y is a linear combination of the error terms E, we can write (2.6) as

𝑌 |𝑋, 𝐴 ∼ 𝑀𝑁𝑇 ×𝑁(𝑋𝐴, Σ, 𝐼𝑇 ). (2.7)

Hence, the Likelihood function follows a Matrix-Variate-Normal form:

𝐿(𝐴, Σ|𝑌 , 𝑋) ∝ det(Σ)− 𝑇
2 exp {−1

2𝑡𝑟 [Σ−1(𝑌 − 𝑋𝐴)′(𝑌 − 𝑋𝐴)]}

∝ det(Σ)− 𝑇
2 {−1

2𝑡𝑟 [Σ−1(𝐴 − ̂𝐴)′𝑋′𝑋(𝐴 − ̂𝐴)]}

exp {−1
2𝑡𝑟 [Σ−1(𝑌 − 𝑋 ̂𝐴)′(𝑌 − 𝑋 ̂𝐴)]} ,

that can be presented as a Normal-Inverse Wishart distribution for (𝐴, Σ).

𝐿(𝐴, Σ|𝑌 , 𝑋) = 𝒩ℐ𝒲𝐾×𝑁 ( ̂𝐴, (𝑋′𝑋)−1, (𝑌 − 𝑋 ̂𝐴)′(𝑌 − 𝑋 ̂𝐴), 𝑇 − 𝑁 − 𝐾 − 1) , (2.8)

where

̂𝐴 = (𝑋′𝑋)−1𝑋′𝑌 ,

Σ̂ = 1
𝑇 (𝑌 − 𝑋 ̂𝐴)′(𝑌 − 𝑋 ̂𝐴)

(2.9)

are the Maximum Likelihood Estimation estimator of 𝐴 and Σ, respectively. In the basic model, our
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prior distribution follows a natural-conjugate prior distribution of the same form:

𝑝(𝐴, Σ) = 𝑝(𝐴|Σ)𝑝(Σ),

𝐴|Σ ∼ 𝑀𝑁𝐾×𝑁(𝐴, Σ, 𝑉 ),

Σ ∼ 𝐼𝑊𝑁(𝑆, 𝜈)

(2.10)

with parameters:

𝐴 = [01×𝑁 𝐼𝑁 0𝑁×(𝑝−1)𝑁 ]′, (2.11)

𝑉 𝑎𝑟[𝑣𝑒𝑐(𝐴)] = Σ ⊗ 𝑉 , (2.12)

𝑉 = 𝑑𝑖𝑎𝑔([𝜅2 𝜅1(𝑝−2 ⊗ 𝐼𝑁)]) (2.13)

with

𝑝 = [1, 2, ...𝑃 ],

where 𝑉 represents the Minnesota prior firstly introduced by Doan, Sims, and Litterman (1984) and

Litterman (2020), and 𝜅2 and 𝜅1 describe, respectively, the priors of the overall shrinkage level of the

constant term and the variance-covariance matrix of the autoregressive slopes for the constant term.

We specify 𝜅2 = 1 and 𝜅1 = 0.02 to respect Plagborg-Moller and Wolf (2021) assumptions. Moreover,

we set the prior of the autoregressive parameters 𝐴 equal to a vector of zeros. The resulting full
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conditional posterior is:

𝑝(𝐴, Σ|𝑌 , 𝑋) = 𝑝(𝐴|𝑌 , 𝑋, Σ)𝑝(Σ|𝑌 , 𝑋),

𝑝(𝐴|𝑌 , 𝑋, Σ) = 𝑀𝑁𝐾×𝑁( ̄𝐴, Σ, ̄𝑉 ),

𝑝(Σ|𝑌 , 𝑋) = 𝐼𝑊𝑁( ̄𝑆, ̄𝜈).

(2.14)

We can derive the full conditional posterior:

𝑃(𝐴, Σ|𝑌 , 𝑋) ∝ 𝐿(𝐴, Σ|𝑌 , 𝑋)𝑝(𝐴, Σ) ∝ 𝐿(𝐴, Σ|𝑌 , 𝑋)𝑝(𝐴|Σ)𝑝(Σ) ∝

det(Σ)− 𝑇
2 × exp {−1

2𝑡𝑟 [Σ−1(𝐴 − ̂𝐴)′𝑋′𝑋(𝐴 − ̂𝐴)]} × exp {−1
2𝑡𝑟 [Σ−1(𝑌 − 𝑋 ̂𝐴)′(𝑌 − 𝑋 ̂𝐴)]}

× det(Σ)− 𝑁+𝐾+𝜈+1
2 × exp {−1

2𝑡𝑟 [Σ−1(𝐴 − 𝐴)′𝑉 −1(𝐴 − 𝐴)]} × exp {−1
2𝑡𝑟 [Σ−1𝑆]} .

After some calculations we obtain:

𝑝(𝐴, Σ|𝑌 , 𝑋) ∝

det (Σ)− 𝑇+𝑁+𝐾+𝜈+1
2 × exp {−1

2𝑡𝑟 [Σ−1 [(𝐴 − ̄𝐴)′ ̄𝑉 −1(𝐴 − ̄𝐴) + 𝑆 + 𝑌 ′𝑌 + 𝐴′𝑉 −1𝐴 − ̄𝐴′ ̄𝑉 −1 ̄𝐴]]} ,
where the full conditional posterior has the same natural-conjugate form of our prior:

𝑝(𝐴, Σ|𝑌 , 𝑋) = 𝑝(𝐴|𝑌 , 𝑋, Σ)𝑝(Σ|𝑌 , 𝑋),

𝑝(𝐴|𝑌 , 𝑋, Σ) = 𝑀𝑁𝐾×𝑁( ̄𝐴, Σ, ̄𝑉 ),

𝑝(Σ|𝑌 , 𝑋) = 𝐼𝑊𝑁( ̄𝑆, ̄𝜈)

(2.15)

with posterior parameters:
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̄𝑉 = (𝑋′𝑋 + 𝑉 −1)−1, (2.16)

̄𝐴 = ̄𝑉 (𝑋′𝑌 + 𝑉 −1𝐴), (2.17)

̄𝜈 = 𝑇 + 𝜈, (2.18)

̄𝑆 = 𝑆 + 𝑌 ′𝑌 + 𝐴′𝑉 −1𝐴 − ̄𝐴′ ̄𝑉 −1 ̄𝐴. (2.19)

In order to compute our posterior parameters in R, we first specify values for our priors, then calculate

the posteriors and draw 𝐴 and Σ respectively from Matrix-Variate-normal and Inverse Wishart distri-

butions. At this point, we can obtain our structural parameters through a Cholesky decomposition of

our matrix Σ, namely with Σ−1 = (𝐵0𝐵′
0).

2.2 A Bayesian Hierarchical Model

In the hierarchical model, we set hyperprior parameters for the autoregressive parameter 𝜅𝐴 to follow

an Inverse Gamma 2 distribution 𝐼𝐺2(𝑆𝜅, 𝜈𝜅) and 𝜅Σ hyperprior parameter for the variance-covariance

matrix to follow a Gamma Distribution 𝐺(𝑆Σ, 𝑎Σ). We define a hierarchical model to provide flexibility

and reduce uncertainty in our model. We will define the full conditional posterior of the hyperparameter

𝜅𝐴 first.
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𝑝(𝜅𝐴|𝐴, Σ, 𝑌 , 𝑋) ∝ 𝐿(𝑌 |𝑋, 𝐴, Σ) × 𝑝(𝜅𝐴) × 𝑝(𝐴|Σ, 𝜅𝐴) × 𝑝(Σ|𝜅𝐴) ∝ 𝑝(𝜅𝐴) × 𝑝(𝐴|Σ, 𝜅𝐴)

∝ (𝜅𝐴)−
𝜈𝑎𝜅𝐴

+2
2 exp {−1

2
𝑠𝑎
𝜅𝐴

} × exp {−1
2𝑡𝑟 [Σ−1(𝐴 − 𝐴)′ 1

𝜅(𝑉𝜅)−1(𝐴 − 𝐴)]} × det(𝜅𝐴𝑉 )− 𝑁
2

∝ (𝜅𝐴)−
𝜈𝑎𝜅𝐴

+2+𝑁𝐾
2 exp {−1

2
1

𝜅𝐴
[𝑠𝑎𝜅𝐴

+ 𝑡𝑟 [Σ−1(𝐴 − 𝐴)′𝑉 −1(𝐴 − 𝐴)]]} ,

where we recognise the kernel of an Inverse Gamma 2 Distribution with parameters:

̄𝑠𝑎 = 𝑠𝑎 + 𝑡𝑟 [Σ−1(𝐴 − 𝐴)′𝑉 −1(𝐴 − 𝐴)] , (2.20)

̄𝜈𝑎 = 𝜈𝑎 + 𝑁𝐾. (2.21)

In addition, we obtain a similar full conditional posterior of the hyperparameter 𝜅Σ.

𝑝(𝜅Σ|𝐴, Σ, 𝑌 , 𝑋) ∝ 𝐿(𝑌 |𝑋, 𝐴, Σ) × 𝑝(𝜅Σ) × 𝑝(𝐴|Σ, 𝜅𝐴) × 𝑝(Σ|𝜅Σ) × 𝑝(𝜅𝐴)

∝ 𝑝(𝜅Σ) × 𝑝(Σ|𝜅Σ)

∝ (𝜅Σ)− 𝜈𝑁
2 exp [−1

2
𝜅Σ

𝑡𝑟 [Σ−1𝑠Σ]−1 } × (𝜅Σ)𝑎Σ−1 exp [−𝜅Σ
𝑠Σ

]

∝ (𝜅Σ) 𝑁𝜈+2𝑎Σ−2
2 exp

⎡⎢⎢
⎣

− 𝜅Σ

[2𝑡𝑟 [Σ−1𝑠Σ]−1 + [𝑠Σ]−1]
−1

⎤⎥⎥
⎦

,

where we can recognise the kernel of a Gamma Distribution with parameters

̄𝑠Σ = [2 [𝑡𝑟Σ−1𝑠Σ]−1 + [𝑠Σ]−1]
−1

, (2.22)

̄𝑎Σ = 𝑁𝜈
2 + 𝑎Σ. (2.23)

Therefore, our new full conditional posterior distribution will be as follows:
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𝑝(𝐴, Σ|𝑋, 𝑌 , 𝜅𝐴, 𝜅Σ) ∝ 𝐿(𝐴, Σ|𝑌 , 𝑋) × 𝑝(𝐴|Σ, 𝜅𝐴) × 𝑝(Σ|𝜅Σ)

∝ det(Σ)− 𝐾
2 exp {−1

2𝑡𝑟 [Σ−1(𝑌 − 𝑋𝐴)′(𝑌 − 𝑋𝐴)]}

× exp {−1
2𝑡𝑟 [Σ−1(𝐴 − 𝐴)′(𝜅𝐴𝑉 )−1(𝐴 − 𝐴)]}

× det(Σ) 𝜈+𝑁+1
2 exp {−1

2𝑡𝑟 [Σ−1𝜅Σ]} .

We recognize the kernel of a matrix-normal inverse Wishart distribution, with parameters as follows:

̄𝑉 = (𝑋′𝑋 + (𝜅𝐴𝑉 ))−1, (2.24)

̄𝐴 = ̄𝑉 (𝑋′𝑌 + (𝜅𝐴𝑉 −1𝐴)), (2.25)

̄𝑆 = 𝐼𝑁𝜅Σ + 𝑌 ′𝑌 + 𝐴′(𝜅𝐴𝑉 )−1𝐴 − ̄𝐴′ ̄𝑉 −1 ̄𝐴, (2.26)

̄𝜈 = 𝑇 + 𝜈. (2.27)

2.2.1 Posterior Approximation

In order to reach our analytical solutions we update our Gibbs Sampler procedure with an additional

step. We generate random draws from the joint posterior distribution and update them at each

iteration to compute our posterior distribution parameters. In our case, we exploit the following

procedure: initialize 𝜅𝐴 and 𝜅Σ at 𝜅(0)
𝐴 and 𝜅(0)

Σ . We input starting values following Giannone, Lenza,

and Primiceri (2015).

At each iteration i:

1. Draw (𝐴, Σ)(𝑖) ∼ 𝑝(𝐴, Σ‖𝑋, 𝑌 , 𝜅(𝑖−1)
𝐴 , 𝜅(𝑖−1)

Σ );
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2. Draw 𝜅(𝑖)
𝐴 ∼ 𝑝(𝜅𝐴|𝑌 , 𝑋, 𝐴, Σ);

3. Draw 𝜅(𝑖)
Σ ∼ 𝑝(𝜅Σ|𝑌 , 𝑋, 𝐴, Σ).

Repeat steps 1 and 2 for (𝑆1 + 𝑆2) times. Discard the first 𝑆1 repetitions. Return the output as

{𝐴(𝑖), Σ(𝑖)}𝑆2

𝑖=𝑆1+1.

2.3 A Bayesian Stochastic Volatility Extension

We present an alternative Bayesian model where the conditional heteroskedasticity of the error terms

follows a dynamic model (Jacquier, Polson, and Rossi (1994)). Further developments of this kind of

framework include Jacquier, Polson, and Rossi (2004). We apply the auxiliary ten-mixture approach

of Omori et al. (2007) and the precision sampling of Chan and Jeliazkov (2009).

𝑌 = 𝑋𝐴 + 𝐸, (2.28)

𝐸|𝑋 ∼ 𝑀𝑁𝑇 ×𝑁(0𝑇 ×𝑁 , 𝑑𝑖𝑎𝑔(𝜎2)), (2.29)

where

𝜎2 = {exp(ℎ1), ..., exp(ℎ𝑇 )} ,

and each ℎ𝑡 is obtained from a Stochastic Volatility model
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̃𝑦 = ℎ + ̃𝜖,

𝐻ℎ = ℎ0𝑒1.𝑇 + 𝜎𝑣𝑣,

̃𝜖|𝑠 ∼ 𝒩𝑇 (𝜇𝑠, 𝑑𝑖𝑎𝑔(𝜎2
𝑠)),

𝑣 ∼ 𝒩𝑇 (0𝑇 , 𝐼𝑇 ),

where 𝑠, 𝜇𝑠, and 𝜎𝑠
2, are 𝑇 × 1 vectors. The hierarchical prior is given by

𝑝(ℎ, 𝑠, ℎ0, 𝜎2
𝑣) = 𝑝(ℎ|ℎ0, 𝜎2

𝑣)𝑝(ℎ0)𝑝(𝜎2
𝑣)𝑝(𝑠), (2.30)

and the prior distribution of ℎ|ℎ0, 𝜎2
𝑣 is given by

𝑝(ℎ|ℎ0, 𝜎2
𝑣) ∼ 𝒩𝑡(ℎ0𝐻−1𝑒1.𝑇 , 𝜎2

𝑣(𝐻′𝐻)−1)

∝ det(𝜎2
𝑣𝐼𝑇 )− 1

2 exp {−1
2

1
𝜎2𝑣

(𝐻ℎ − ℎ0𝑒1.𝑇 )′(𝐻ℎ − ℎ0𝑒1.𝑇 )}

The marginal priors are

𝑝(ℎ0) = 𝒩(0, 𝜎2
ℎ), (2.31)

𝑝(𝜎2
𝑣) = ℐ𝒢2(𝑠, 𝜈), (2.32)

𝑝(𝑠𝑡) = ℳ𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚10
𝑚=1, 𝑃 𝑟(𝑠𝑡 = 𝑚)10

𝑚=1). (2.33)

Combining the priors with the conditional likelihood

exp {−1
2(ℎ − ( ̃𝑦 − 𝜇𝑠)′𝑑𝑖𝑎𝑔(𝜎2

𝑠)−1(ℎ − ( ̃𝑦 − 𝜇𝑠))} ,
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we obtain the full conditional posterior of ℎ|𝑦, 𝑠, ℎ0, 𝜎2
𝑣 ∼ 𝒩𝑇 (ℎ̄, ̄𝑉ℎ) with parameters:

�̄�ℎ = [𝑑𝑖𝑎𝑔(𝜎2
𝑠)−1 + 𝜎−2

𝑣 𝐻′𝐻]−1 , (2.34)

ℎ̄ = ̄𝑉ℎ [𝑑𝑖𝑎𝑔(𝜎2
𝑠)−1( ̃𝑦 − 𝜇𝑠) + 𝜎−2

𝑣 ℎ0𝑒1.𝑇 ] . (2.35)

In addition, incorporating the results from the posterior distributions of ℎ, 𝑠, 𝜎2
𝑣, and ℎ0, we obtain the

updated parameters of the full conditional posterior of our Matrix-Variate-normal and Inverse Wishart

distribution:

̄𝑉 = (𝑋′𝑑𝑖𝑎𝑔(𝜎2)−1𝑋 + (𝜅𝐴𝑉 ))−1, (2.36)

̄𝐴 = ̄𝑉 (𝑋′𝑑𝑖𝑎𝑔(𝜎2)−1𝑌 + (𝜅𝐴𝑉 −1𝐴)), (2.37)

̄𝑆 = 𝐼𝑁𝜅Σ + 𝑌 ′𝑑𝑖𝑎𝑔(𝜎2)−1𝑌 + 𝐴′(𝜅𝐴𝑉 )−1𝐴 − ̄𝐴′ ̄𝑉 −1 ̄𝐴, (2.38)

̄𝜈 = 𝑇 + 𝜈. (2.39)

In this model - and also in the Markov Switching case - we use posterior mean values of 𝜅𝐴 and 𝜅Σ of

the hierarchical model as initial values of the 𝜅s

2.3.1 Posterior Approximation

Based on the previous model, we can update the Gibbs sampler. Initialize 𝜎2, 𝜅𝐴 and 𝜅Σ at 𝜎2(0) 𝜅(0)
𝐴

and 𝜅(0)
Σ .
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At each iteration 𝑖:

1. Draw (𝐴, Σ)(𝑖) ∼ 𝑝(𝐴, Σ‖𝑋, 𝑌 , 𝜅(𝑖−1)
𝐴 , 𝜅(𝑖−1)

Σ , 𝜎2(𝑖−1));

2. Draw (𝜎2)(𝑖) ∼ 𝑝(ℎ|𝑦, 𝑠, ℎ0, 𝜎2
𝑣);

3. Draw 𝜅(𝑖)
𝐴 ∼ 𝑝(𝜅𝐴|𝑌 , 𝑋, 𝐴(𝑖), Σ(𝑖));

4. Draw 𝜅(𝑖)
Σ ∼ 𝑝(𝜅Σ|𝑌 , 𝑋, 𝐴(𝑖), Σ(𝑖)).

Repeat steps 1 and 2 for (𝑆1 + 𝑆2) times. Discard the first 𝑆1 repetitions. Return the output as

{𝐴(𝑖), Σ(𝑖), 𝜅(𝑖)
𝐴 , 𝜅(𝑖)

Σ , (𝜎2)(𝑖)}
𝑆2

𝑖=𝑆1+1
.

2.4 Bayesian Markov Switching

We present a final extension using a Markov Switching (MS) model. We make a brief presentation of

MS models using Song and Woźniak (2021), Frühwirth-Schnatter (2006), and Hamilton (1994). The

first MS model applied in autoregressive economic model is the one of Hamilton (1989), who finds that

with two regimes GNP data follow closely NBER recession dates. In our model, we similarly assume

two states 𝑠𝑡 = {1, 2} where we constrain the autoregressive parameter such that Σ̄𝑢𝑝 > Σ̄𝑑𝑜𝑤𝑛 . The

transition probability is 𝑃 = [𝑝𝑖𝑗]𝐾𝑥𝐾 , 𝑖, 𝑗 = {1, 2} that is the probability of going from state 𝑖 to state

𝑗, where ∑𝐾
𝑗 𝑝𝑖𝑗 = 1. In our case, 𝐾 = 2. 𝑠𝑡 is an irreducible, aperiodic Markov Chain that starts

from its ergodic distribution. Irreducibility implies that ∀𝑖, 𝑗 ∈ S, ∃𝑡 ≥ 0 ∶ 𝑃 (𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗) > 0.

Aperiodicity states that 𝑔𝑐𝑑 {𝑃(𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗) > 0} = 1, where 𝑔𝑐𝑑 is the greatest common divisor.

We can solve for the invariant (ergodic) probabilities 𝜂 from 𝑝′𝜂 = 𝜂. Solving for 𝐾 = 2 we obtain
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𝜂1 = 𝑝21
𝑝21+𝑝12

and 𝜂2 = 𝑝12
𝑝21+𝑝12

. We first derive a MS model where the states are exogenously given,

namely

𝑠𝑡 =
⎧{{
⎨{{⎩

1 if 𝑡 ∈ High Volatility

2 if 𝑡 ∈ Low Volatility
(2.40)

We determine periods of high volatility by identifying outliers using a method developed by Chen

and Liu (1993), which involves using the R package tso applied to our estimated variance (𝜎2) in

the Stochastic Volatility model. Then, we utilize the results obtained from the posterior mode of

the intercept terms of ̄𝐴𝑢𝑝 and ̄𝐴𝑑𝑜𝑤𝑛 as initial parameters for the intercepts of 𝐴𝑢𝑝 and 𝐴𝑑𝑜𝑤𝑛 in the

subsequent endogenous model that I will explain later. Previous works that use results from previously

estimated models as priors for the model of interest are Del Negro and Schorfheide (2004) and Ciccarelli

and García (2021). The endogenous Markov Switching (MS) model we are introducing is similar to

the extended hierarchical model, but it differs in that it now accounts for two distinct regimes, and we

need to compute the transition probability matrix to describe these regimes. Given a Beta prior for

𝑝𝑖𝑗 𝑝(𝑝𝑖𝑖, 1 − 𝑝𝑖𝑖) ∼ 𝐵𝑒(𝜏𝑖𝑗, 𝜏𝑖𝑗) with 𝑖, 𝑗 = {1, 2}, one gets the following:
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𝑝(𝐴(𝑠𝑡), Σ(𝑠𝑡), 𝑠𝑡, 𝑝11, 𝑝22|𝑋(𝑠𝑡), 𝑌 (𝑠𝑡), 𝜅𝐴(𝑠𝑡), 𝜅Σ(𝑠𝑡)) ∝

𝐿(𝐴(𝑠𝑡), Σ(𝑠𝑡), 𝑠𝑡, , 𝑝11, 𝑝22|𝑌 (𝑠𝑡), 𝑋(𝑠𝑡))×

𝑝(𝐴(𝑠𝑡), 𝑠𝑡|Σ(𝑠𝑡), 𝜅𝐴(𝑠𝑡), 𝑝11, 𝑝22) × 𝑝(Σ(𝑠𝑡), 𝑠𝑡|𝜅Σ(𝑠𝑡), 𝑝11, 𝑝22) ∝

det(Σ(𝑠𝑡))− 𝐾
2 exp {−1

2𝑡𝑟 [Σ(𝑠𝑡)−1(𝑌 − 𝑋𝐴(𝑠𝑡))
′(𝑌 − 𝑋𝐴(𝑠𝑡))]}

× exp {−1
2𝑡𝑟 [Σ(𝑠𝑡)−1(𝐴(𝑠𝑡) − 𝐴(𝑠𝑡))

′(𝜅𝐴(𝑠𝑡)𝑉 (𝑠𝑡))−1(𝐴(𝑠𝑡) − 𝐴(𝑠𝑡))]}

× det(Σ(𝑠𝑡))
𝜈+𝑁+1

2 exp {−1
2𝑡𝑟 [Σ(𝑠𝑡)−1𝜅Σ(𝑠𝑡)]} × 𝑝 ̄𝜏11

11 (1 − 𝑝11) ̄𝜏12𝑝 ̄𝜏22
22 (1 − 𝑝22) ̄𝜏21

with parameters:

̄𝑉 (𝑠𝑡) = (𝑋′(𝑠𝑡)𝑋(𝑠𝑡) + (𝜅𝐴(𝑠𝑡)𝑉 (𝑠𝑡)))−1, (2.41)

̄𝐴(𝑠𝑡) = ̄𝑉 (𝑠𝑡)(𝑋(𝑠𝑡)′𝑌 (𝑠𝑡) + (𝜅𝐴(𝑠𝑡)𝑉 (𝑠𝑡)−1𝐴(𝑠𝑡))), (2.42)

̄𝑆(𝑠𝑡) = 𝐼𝑁𝜅𝜎(𝑠𝑡) + 𝑌 ′(𝑠𝑡)𝑌 (𝑠𝑡) + 𝐴(𝑠𝑡)
′(𝜅𝐴(𝑠𝑡)𝑉 (𝑠𝑡))−1𝐴(𝑠𝑡) − ̄𝐴(𝑠𝑡)

′ ̄𝑉 (𝑠𝑡)
−1 ̄𝐴(𝑠𝑡), (2.43)

̄𝜈 = 𝑇 + 𝜈, (2.44)

̄𝜏𝑖𝑗 = 𝜏 𝑖𝑗 + 𝑛𝑖𝑗 for 𝑖, 𝑗 ∈ {1, 2} , (2.45)

where 𝑛𝑖𝑗 specifies the number of one-step transitions from state 𝑖 to 𝑗, following Chib (1996) nota-

tion. So, when it comes to our Matrix-Variate-Normal and Inverse-Wishart distributions, they closely

resemble our hierarchical model. The main difference is that now we need to perform two separate

simulations, each with its own unique prior settings. Additionally, we must calculate the transition

probability and determine the regime for each specific 𝑡.
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2.4.1 Posterior Distribution

Given the transition probability obtained from the Beta distribution posterior parameters, with a ran-

dom initialization of 𝑛𝑖𝑗, we can compute the smoothed states 𝑠𝑡, 𝑡 ∈ 1 ∶ 𝑇 implementing the Hamilto-

nian Forward-Backward Filtering Algorithm in Hamilton (1989). Define 𝜐 = (𝐴, Σ, 𝜅𝐴, 𝜅_Σ, 𝑝11, 𝑝22) .

In the forward step, calculate the one-step ahead prediction of 𝑠𝑡 𝑝(𝑠𝑡 = 1|𝑦𝑡−1, 𝜐) = 𝑝11𝑝(𝑠𝑡−1 =

1|𝑦𝑡−1, 𝜐) + 𝑝21𝑝(𝑠𝑡−1 = 2|𝑦𝑡−1, 𝜐) and similarly for 𝑝(𝑠𝑡 = 2|𝑦𝑡−1, 𝜐). Then filter for 𝑠𝑡 through

𝑝(𝑠𝑡 = 1|𝑦𝑡, 𝜐) = 𝑝(𝑦𝑡|𝑠𝑡=1,𝑦𝑡−1,,𝜐)𝑝(𝑠𝑡=1|𝑦𝑡−1,𝜐)
𝑝(𝑦𝑡|𝑦𝑡−1,𝜐) , where 𝑝(𝑦𝑡|𝑠𝑡 = 1, 𝑦𝑡−1,, 𝜐) is obtained evaluating the

parameters 𝜐 in the first regime at time 𝑡 − 1, and 𝑝(𝑦𝑡|𝑦𝑡−1, 𝜐) is the summation of the numerator

and its counterpart for the second state; repeat the filtering for all the times 𝑡 in {1 ⋯ 𝑇 }. In the

backward filter, for each 𝑡 = {𝑇 − 1, ⋯ , 1} the smoothed probability distribution is obtained through

𝑝(𝑠𝑡 = 1|, 𝑦, 𝜐) = ∑2
𝑗

𝑝1𝑗(𝑡)𝑝(𝑠𝑡=1|𝑦𝑡,𝜐)𝑝(𝑠𝑡+1=𝑗|𝑦,𝜐)
∑2

𝑖 𝑝𝑖𝑗(𝑡)𝑝(𝑠𝑡=𝑖|𝑦𝑡,𝜐) , where 𝑝(𝑠𝑇 = 𝑗|𝑦, 𝜐) is sampled from the multinomial

sampler using the filtered probability at time 𝑇 , and the other smoothed probabilities are obtained

recursively.

2.4.2 Posterior Approximation

Initialize 𝜅𝐴 and 𝜅Σ at 𝜅(0)
𝐴 and 𝜅(0)

Σ . Initialize the regimes for each time at random from a normal

distribution. At each iteration i:

1. Draw (𝐴(𝑠), Σ(𝑠))(𝑖) ∼ 𝑝(𝐴(𝑠), Σ(𝑠)‖𝑋(𝑠), 𝑌 (𝑠), 𝜅𝐴(𝑠)(𝑖−1), 𝜅Σ(𝑠)(𝑖−1), 𝑠(𝑖), 𝑝(𝑖)
𝑖𝑗 );

2. Draw 𝜅𝐴(𝑠)(𝑖) ∼ 𝑝(𝜅𝐴(𝑠)|𝑌 (𝑠), 𝑋(𝑠), 𝜐(𝑠));

3. Draw 𝜅Σ(𝑠)(𝑖) ∼ 𝑝(𝜅Σ(𝑠)|𝑌 (𝑠), 𝑋(𝑠), 𝜐(𝑠));
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4. Draw 𝑝(𝑖)
𝑖𝑖 ∼ 𝑝(𝑝𝑖𝑖|𝜐(𝑠), 𝑌 (𝑠), 𝑋(𝑠), 𝑠);

5. Draw 𝑠(𝑖)
𝑡 from the multinomial distribution.

Repeat steps 1 and 2 for (𝑆1 + 𝑆2) times. Discard the first 𝑆1 repetitions. Return the output as

{𝐴(𝑖), Σ(𝑖), 𝜅(𝑖)
𝐴 , 𝜅(𝑖)

Σ , 𝑝(𝑖)
𝑖𝑖 , 𝑠(𝑖)

𝑡 }
𝑆2

𝑖=𝑆1+1
.

25



Chapter 3

Data Description

We download the data directly from the website of Miranda-Agrippino. The two authors study the

consequences of a 1% increase in the U.S. monetary policy considering:

1. a domestic VAR with the effects on domestic financial markets and macroeconomic aggregates

in the United States;

2. a global VAR with the effects on global asset markets, global domestic credit and international

capital flows;

3. a “floaters” VAR to study if a fixed or pegged exchange rate affects the global contraction.

We will study the global specification, and include the variables in Figure 3.1, Figure 3.2, and Figure 3.3.

Against this framework, our interest is to study the degree by which U.S. monetary policy shocks can
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Figure 3.1: Time series plot of the endogenous variables at monthly frequencies for the 1990:1-2012:12
sample, including the Fourth Federal Fund Futures Contract (FF4) Instrument, the 1 Year Treasury
Rate of the FED, the Personal Consumption Expenditures (PCE), Industrial Production of the U.S.,
and The Global Real Production excluding the U.S.
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Figure 3.2: Time series plot of the endogenous variables at monthly frequencies for the 1990:1-2012:12
sample, including Global Inflows for all Sectors, the BIS Effective Exchange Rate (EER), the Miranda-
Agrippino and Rey (2020) Global Factor and Global Risk Aversion, and Global Credit excluding the
U.S.
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Figure 3.3: Time series plot of the endogenous variables at monthly frequencies for the 1990:1-2012:12
sample, including the leverage of US Brokers and Dealers, EU Global Banks, US Banks, and EU banks
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propagate throughout the world’s economies. In order to have a global picture we study macroeconomic

variables that are affected and influenced by a FED change in the interest rate. The global variable

included are constructed by scrutinizing the major global markets.1

We include the following variables:

1. the U.S. industrial production index that measures the real output of all relevant establishments

located in the U.S.;

2. the Personal Consumption Expenditures (PCE) of the U.S.;

3. the Bank for International Settlement (BIS) effective exchange rate (EER) for the United States,

i.e. a summary measure calculated by the BIS to account for changes in the U.S. bilateral exchange

rate against other countries by their trade importance;

4. global inflows, defined as direct cross-border credit flows from the U.S. to the aforementioned

countries’ banks and non-bank recipients. This variable is pivotal to explain the degree of finan-

cial dependency of the rest of the world vis-à-vis the financial hegemon;

5. global domestic credit, another key variable in our VAR that outlines the total amount of funds

in the world economy, including loans, debt instruments, and other forms of credit provided by

financial institutions;

6. the FED policy rate coupled with the global real economic activity index (excluding the US).

We can observe the lag effect of an increase in interest rates with a decrease in international
1Including Argentina, Australia, Austria, Belarus, Belgium, Bolivia, Brazil, Bulgaria, Canada, Chile, Colombia, Costa

Rica, Croatia, Cyprus, Czech Republic, Denmark, Ecuador, Finland, France, Germany, Greece, Hong Kong, Hungary,
Iceland, Indonesia, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Malaysia, Malta, Mexico, Netherlands, New
Zealand, Norway, Poland, Portugal, Romania, Russia, Serbia, Singapore, Slovakia, Slovenia, South Africa, South Korea,
Spain, Sweden, Switzerland, Thailand, Turkey, U.K., and the U.S.
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economic activity;

7. the global factor discussed in the introductory chapter, rotated to provide an intuitive view that

an increase in the factor reflects an increase in world asset prices.

8. global risk aversion, obtained as the inverse of the residual of the projection of the global factor on

the monthly global realized variance measured using the MSCI index, a measure of performance

of global stocks.

Then, we outline four types of leverage. First of all, leverage can be defined as the ratio between assets

and equity, with equity being the difference between assets and debts. In finance, this measurement

refers to the use of borrowed funds to finance assets or investments. Against this backdrop, the authors

construct this variable as the ratio between claims in the private sector, i.e. credit extended by banks

and other financial institutions to the private sector, and the sum of transferable deposits held by

depository corporations, excluding central banks. This ratio reflects the proportion of credit extended

to the private sector relative to deposits held by depository corporations, excluding central banks.

A higher ratio suggests a higher banking leverage level. The authors differentiate between different

leverages given financial agents’ risk-taking behavior. As a matter of fact, we can observe that the

leverage between EU global banks and US brokers and dealers is much larger than the leverage of big

but not systemic EU and US banks. EU global banks include systematically important banks such

as UBS and Unicredit. The importance of EU Global banks in influencing credit conditions in the

U.S. has been documented by Shin (2012). Global banks’ leverage is high for several reasons such as

size and risk appetite. Brokers and dealers’ behavior can be explained by their risk-loving approach.
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Lastly, we will add the aforementioned instrument on top of the 𝑦𝑡 variable. In the next section, we

will provide the reason for this procedure.

3.1 Autocorrelation Analysis

Figure 3.4: Autocorrelation Plots (ACF) at 50 lags of the variables in level terms

When we look at the autocorrelation plots (ACF) for our variables in Figure 3.4 at 50 lags, we observe a

robust and positive autocorrelation pattern that slowly decreases over time, except for our instrument.

Additionally, the partial autocorrelation plots (PACF) in Figure 3.5 reveal a nearly one value at the first

lag and statistically insignificant values at later time lags. This suggests that these macroeconomic
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Figure 3.5: Partial Autocorrelation Plots (PACF) at 50 lags of the variables in level terms
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variables behave like a random walk with a drift component and, as a result, are considered non-

stationary due to the presence of a unit root. Hence, the dynamic models we have presented are an

ideal candidate to handle the non-stationarities and non-linearities of the data.
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Chapter 4

Empirical Results

Figure 4.1 reports the posterior mean of the first cell of three matrices: 𝐴, Σ, and 𝐵. This helps us get

a sense of what these matrices look like under different specifications. In the context of our analysis,

the autoregressive parameter 𝐴 increases when we use the hierarchical prior structure, but it decreases

when we switch to the Stochastic Volatility model. Similar patterns can be observed for Σ. On the

other hand, in the Markov Switching (MS) model, we have fewer data points for each regime compared

to the other specifications. As a result, our parameter estimates tend to show more variability. It is

interesting to note that the Hierarchical model 𝐴 is higher than the MS low volatility counterpart.

Furthermore, it is important to consider the values of the hyperprior parameters 𝜅𝐴 and 𝜅Σ as shown

in Figure 4.2. We can see that the hyperprior parameter 𝜅𝐴 for the Hierarchical model has a very

high value, which could potentially affect our results. This influence can be seen in the Impulse

35



Figure 4.1: MCMC samples for 5000 draws with 10 thousands iterations of burn-in from the posterior
probabilities of the first cell (the instrument variable) of the autoregressive parameter (in blue), the
variance-covariance matrix (in orange), and the contemporaneous effects matrix (in red)
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Figure 4.2: Histogram of the MCMC samples for 5000 draws with 10 thousands iterations of burn-in
from the posterior probabilities of the hyperior parameters of the autoregressive coefficient (in red),
and the variance-covariance matrix (in blue)
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Response Functions (IRFs) presented in Figure 4.9. We have noticed that the posterior results of

these 𝜅 parameters are strongly influenced by the parameters’ initial values used in the Gamma and

Inverse Gamma distributions approximations. In our future research, we plan to focus on improving

the tuning of these hyperpriors to enhance the accuracy of our analysis.

4.0.1 Estimated Stochastic Volatility

Our algorithm in the Stochastic Volatility BVAR effectively estimates the volatility (represented by 𝜎2)

during significant financial turbulence periods, such as the Japanese Asset Price Bubble in the early

1990s, the UK Black Wednesday, the Russian Financial Crisis of 1998, the Stock Market Downturn

of 2002 following the Dot-Com Bubble burst, and, notably, the Global Financial Crisis that began in

2007-08. In Figure 4.3, we present a graphical representation of these estimates alongside Global Risk

Aversion.

4.0.2 Markov Switching Results

We can observe that our Markov Switching model behaves as expected, with the states that follow

closely the estimated volatility of the Stochastic Volatility model. The transition probability results

show that there is high persistence of the second regime, i.e. the state with low volatility, whereas the

other regime tends to be very volatile and with little persistence. Further draws would be needed to

assess convergence, but due to our small computational power we can only draw 15 thousand iterations.

Moreover, we report the posterior distribution MCMC draws of the parameter of the Beta distribution
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Figure 4.3: Estimated Stochastic Volatility Plot (in blue) with Global Risk Aversion (in green)
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Figure 4.4: Markov Switching States (in green) and the estimated Stochastic Volatility (in blue)
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Figure 4.5: MCMC samples from the posterior probabilities of the transition probabilities

41



𝜂𝑖𝑗 in Figure 4.6. We can observe that the parameters converge nicely, with the concentration of the

regimes in the bottom right quadrant, which represents the number of occurrences of state 2 repeating

itself.

Figure 4.6: 2000 MCMC samples from the posterior probabilities of the Beta distribution parameters

4.1 Impulse Response Functions

The impulse response functions are the dynamic causal effects of the underlying shocks 𝑢𝑡 on the

economic measurements 𝑦𝑡 (Kilian, Lütkepohl (2017)). Our model features the instrument in the first

position. We will compute impulse response functions (IRFs) assuming that the instrument affects all
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the other variables exogenously. We define an IRF as a shock of the first variable in 𝑢𝑡 (the instrument)

on the 14 variables 𝑛 of our model in 𝑌𝑡 at time 𝑡 until time 𝑡 + 𝑖. In our case 𝑖 = 24 because we

want to study the IRFs for two years as the original paper authors do. Compactly, we can describe

the computations as follows:

𝜕𝑦𝑛.𝑡+1
𝜕𝑢1.𝑡

= 𝜃𝑛𝑗.1. (4.1)

The assumption of Plagborg-Moller and Wolf (2021) regarding the invertibility of 𝜀 is satisfied given

a Cholesky Decomposition. From our IRFs, we compute Forecast Error Variance Decompositions

(FEVD):

𝕍𝑎𝑟 [𝑢𝑡+ℎ|𝑡] = Ξ [(𝑦𝑡+ℎ − 𝑦𝑡+ℎ|𝑡) (𝑦𝑡+ℎ − 𝑦𝑡+ℎ|𝑡)
′] =

Ξ [(Φ0𝑢𝑡+ℎ + ⋯ + Φℎ−1𝑢𝑡+1) (Φ0𝑢𝑡+ℎ + ⋯ + Φℎ−1𝑢𝑡+1)′] =

Ξ [(Θ0𝜖𝑡+ℎ + ⋯ + Θℎ−1𝜖𝑡+1) (Θ0𝜖𝑡+ℎ + ⋯ + Θℎ−1𝜖𝑡+1)′] =

Θ0Ξ [Ξ𝑡+1 [𝜖𝑡+ℎ𝜖′
𝑡+ℎ] Θ′

0] + ⋯ + Θℎ−1Ξ [Ξ𝑡 [𝜖𝑡+1𝜖′
𝑡+1] Θ′

0] =

Θ0Θ′
0 + ⋯ + Θℎ−1Θ′

ℎ−1.

4.1.1 IRFs Basic Model

We will outline IRFs for both our basic and extended models, computing 10 thousand draws for our

estimates. For our empirical estimation we employ a SVAR(12) as Miranda-Agrippino and Rey (2020),

and we normalize the IRFs so that the Treasury rate has a percentage point increase at horizon 0.

From the 14 variables, we present only 10 of them. We abstain from plotting the global factor because
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it provides inverted results of global risk aversion. In addition, we do not plot US brokers & dealers’

leverage and US banks’ leverage. This is because our main interests lie in spillovers of monetary policy

outside the US. The abscissa scale is in months, given that we use monthly variables, and display

the 68% and 90% density intervals. We will briefly outline the results. Upon realisation, the one-year

Treasury rate spikes in the first quarter, then it decreases and increases in the third and fourth quarter,

hoovering around zero in the remaining lags; we observe the PCE deflator to shrink in the first three

quarters and increases thereafter; industrial production shrinks in the first three quarters, and then

mean-reverts; global real production excluding the financial hegemon provides insignificant results

in the first two lags and then increases, similarly to global inflows; the BIS real effective exchange

rate increases upon realisation as expected following the monetary policy shock, decreasing from the

second quarter onwards; global risk aversion - the proxy for global risky asset prices - spikes and

hoovers around zero from the third quarter; global credit excluding the US decreases as expected

in the first two quarters and then increases thereafter; the leverage drop immediately, but contrary

to the original paper it does not mean-revert in the first quarter, and EU banks’ leverage provides

insignificant results;

4.1.2 FEVD Basic Model

Moreover, we include FEVD of two variables, i.e. EU Global banks’ leverage, and EU big but not

systemic banks’ leverage. FEVD provide the information of how much each variable contributes to the

information of the other variables’ forecast variability at each horizon. We can observe that the FEVD
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Figure 4.7: Impulse Response Functions (IRFs) Plot of the Linear Bayesian SVAR Model
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for Global banks and the other variables account significantly for the aforementioned information at

further horizons. The larger contributors at the last horizon are the leverage of US and EU global

but not systematically important banks (>38%). In addition, similar conclusions can be drawn to the

FEVD of EU big but systematic banks’ leverage. Other larger contributors at the last horizon are

Leverage for EU global banks and US banks. FEVD for the other models look similar and therefore

are only reported in the appendix.

Figure 4.8: Forecast Error Variance Decomposition (FEVD) Plot of the Linear Bayesian SVAR Model
for the Leverage of EU Global Banks and EU Banks
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4.1.3 IRFs Extended Model

Regarding the extended model, the IRFs are generally in line with previous results or expectations.

Generally, we observe significant responses to be temporary and not persistent. The treasury rate

decreases upon realization of the shock and then hovers around zero. The PCE displays a puzzling

behavior, increasing in the all quarters following the shock. The remaining variables show a similar

pattern compared to the basic model, but in general, we can observe less insightful shapes, maybe due

to hyperprior sensitivity of our results. We have worked on tuning different parameters for the 𝜅𝐴 and

𝜅Σ, but we still have to improve our prior selection. This will be done in future work.

Figure 4.9: Impulse Response Functions (IRFs) of the Hierarchical Model
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4.1.4 IRFs SV Model

Plots of IRFs for the Stochastic Volatility provide little insight, they are not smooth and have erratic

movements around zero. Further work is needed to improve these results.

Figure 4.10: Impulse Response Functions (IRFs) Plot of the Stochastic Volatility Model

4.1.5 IRFs Markov Switching Model

For our MS model we propose three IRFs. Two of these are given from the distinct full conditional

posterior distributions of our parameters for the different regimes. A third IRF is provided as a

weighted IRF between the two states, where we forecast the two future regimes’ weights given the IRF
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computed in the future. Hence, this particular IRF in our MS framework is given as

Ξ(Ξ(𝑌𝑇 +1|𝜐𝑇 , 𝑠𝑇 +1)|𝜐𝑇 ) =
2

∑
𝑗=1

𝑝(𝑠𝑇 +1|𝜐𝑇 )𝐼𝑅𝐹(𝑠𝑇 +1 = 𝑗), (4.2)

where the inner expectation is equal to 𝐼𝑅𝐹(𝑠𝑇 +1) and

𝑝(𝑠𝑇 +1|𝜐𝑇 ) =
2

∑
𝑖=1

𝑝(𝑠𝑇 +1 = 𝑗|𝑠𝑇 = 𝑖)𝑝(𝑠𝑇 |𝜐𝑇 ) (4.3)

where the first term can be obtained from our Gibbs Sampler and the second term is estimated from

the Hamiltonian Forward-Backward Algorithm. We can observe that in periods of High volatility a

shock to the treasury rate is associated with an insignificant response in all the variables. This may be

due to the small number of data points used to estimate these shocks. On the other hand, the weighted

IRFs follow closely the Low Volatility IRFs. The results of these IRFs generally provide insignificant

results, but there are nice exceptions on the first quarters like for the leverage of the EU Global Banks,

Global Risk Aversion, Global Credit, and the BIS EER.
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Figure 4.11: IRF Plot of the Markov-Switching Model - Weighted IRF (green); IRF high volatility
(red); IRF low volatility (blue)
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Chapter 5

Conclusion

In our project, we have used four different methods to estimate a Bayesian Structural Vector Autore-

gression (SVAR) model, implementing the framework of Miranda-Agrippino and Rey (2020). We have

dealt with hierarchical modelling, with two additional extensions implementing Stochastic Volatility

and Markov-Switching. We have derived the posterior distributions and we have approximated their

results via Gibbs Sampling. In the hierarchical model we have seen that the tuning of the hyper-

prior parameters is a fundamental driver for the posterior distribution approximations, and we need

to improve the tuning of the 𝜅s to gain more insights from our results. The priors are particularly

important in our model because we implement a VAR with 12 lags and 14 variables, and given only

251 data points it is of paramount importance to have a good prior specification. With regard to

the Stochastic Volatility model, we have estimated nicely the time varying volatility of our dataset,
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that captures the main financial busts of our time series span. Lastly, in the Markov-Switching model

identified through periods of high and low volatility, the regimes follow the aforementioned stochastic

volatility, and the transition probability displays persistency in the low-volatility state as expected.

In the Impulse Response Functions (IRFs), we observe the most plausible responses using a linear

model without hyperprior parameters. It may be that simple models can offer strong explanations.

Nevertheless, there is more work ahead to ensure our results are consistently smooth, as pointed out

in the study by Miranda-Agrippino and Rey (2020). In particular, the IRFs for the remaining models

do not seem to provide realistic results. Furthermore, we have not quantified the model fits, and the

next step will include the computation of marginal likelihood, for instance using Chib (1996). Despite

the challenges, going through the process of developing and coding these models has been a valuable

exercise. It is important to note that this work is not the final destination but rather a foundation for

future research and improvements in our understanding of Bayesian Analysis.
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Appendix

Table 1: Augmented-Dickey-Fuller (ADF) Test on Level Variables {.striped .hover}

Variable Names

Dickey-

Fuller Lag p-value

Dickey-

Fuller diff Lag diff p-value diff

FF4 Instrument -4.492 6 0.010 -10.666 6 0.01

1Y Treasury

Rate

-2.612 6 0.318 -4.047 6 0.01

PCE -2.349 6 0.429 -6.200 6 0.01

Industrial

Production

-1.692 6 0.706 -4.354 6 0.01

Global Real

Production ex

US

-3.305 6 0.071 -5.053 6 0.01

59



Variable Names

Dickey-

Fuller Lag p-value

Dickey-

Fuller diff Lag diff p-value diff

Global Inflows

All Sectors

-2.032 6 0.562 -4.474 6 0.01

BIS EER -1.425 6 0.818 -7.129 6 0.01

Global Factor -2.031 6 0.563 -7.166 6 0.01

Global Risk

Aversion

-1.857 6 0.636 -6.564 6 0.01

Global Credit

ex US

-1.520 6 0.778 -5.558 6 0.01

Leverage US

Brokers &

Dealers

-2.699 6 0.282 -5.411 6 0.01

Leverage EU

Global Banks

-3.276 6 0.076 -5.696 6 0.01

Leverage US

Banks

-1.529 6 0.774 -5.348 6 0.01

Leverage EU

Banks

-1.637 6 0.729 -6.037 6 0.01
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Figure 1: Forecast Error Variance Decomposition (FEVD) Plot of the Hierarchical Bayesian SVAR
Model for the Leverage of EU Global Banks and EU Banks
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Figure 2: Forecast Error Variance Decomposition (FEVD) Plot of the Stochastic Volatility Bayesian
SVAR Model for the Leverage of EU Global Banks and EU Banks
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Figure 3: Forecast Error Variance Decomposition (FEVD) Plot of the Markov-Swotching Volatility
Bayesian SVAR Model for the Leverage of EU Banks for the Low and High Volatility Regimes
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Figure 4: Histogram of the MCMC samples of the Linear SVAR for 5000 draws with 10 thousands
iterations of burn-in from the posterior probabilities of the second diagonal matrix element (the 1 Year
Treasury Rate) of the autoregressive parameter (in blue), the variance-covariance matrix (in orange),
and the contemporaneous effects matrix (in red)
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Figure 5: Histogram of the MCMC samples of the Hierarchical SVAR for 5000 draws with 10 thousands
iterations of burn-in from the posterior probabilities of the second diagonal matrix element (the 1 Year
Treasury Rate) of the autoregressive parameter (in blue), the variance-covariance matrix (in orange),
and the contemporaneous effects matrix (in red)
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Figure 6: Histogram of the MCMC samples of the Stochastic Volatility SVAR for 5000 draws with 10
thousands iterations of burn-in from the posterior probabilities of the second diagonal matrix element
(the 1 Year Treasury Rate) of the autoregressive parameter (in blue), the variance-covariance matrix
(in orange), and the contemporaneous effects matrix (in red)
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Figure 7: Histogram of the MCMC samples of the Markov-Switching SVAR with Low Volatility for
5000 draws with 10 thousands iterations of burn-in from the posterior probabilities of the second
diagonal matrix element (the 1 Year Treasury Rate) of the autoregressive parameter (in blue), the
variance-covariance matrix (in orange), and the contemporaneous effects matrix (in red)
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Figure 8: Histogram of the MCMC samples of the Markov-Switching SVAR with High Volatility for
5000 draws with 10 thousands iterations of burn-in from the posterior probabilities of the second
diagonal matrix element (the 1 Year Treasury Rate) of the autoregressive parameter (in blue), the
variance-covariance matrix (in orange), and the contemporaneous effects matrix (in red)

68


	Introduction
	Global Factor in Risky Asset Prices
	Proxy-VAR with Rich-Information Bayesian VAR

	A Bayesian VAR Framework
	A Linear VAR Model
	A Bayesian Hierarchical Model
	A Bayesian Stochastic Volatility Extension
	Bayesian Markov Switching

	Data Description
	Autocorrelation Analysis

	Empirical Results
	Impulse Response Functions

	Conclusion
	References
	Appendices
	Appendix


