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Abstract

In today’s fashion landscape, characterized by an abundance of competing brands,
establishing a unique and captivating visual identity has emerged as an essential
pillar of effective branding strategies.
The core challenge that drives our research is the extraction of brand-specific in-
formation from a diverse array of runway fashion presentations and the subsequent
classification of these images into six distinct fashion brands. To this end, we de-
veloped a sophisticated deep learning model, specifically a Convolutional Neural
Network (CNN)-based classification model enriched with attention mechanisms. Ac-
curate brand classification could signifies the presence of a highly recognizable brand,
one that boasts a robust and distinctive visual identity. Conversely, when our model
yields lower accuracy in brand classification, it hints at the possibility of a weaker or
less distinctive visual identity for the brand in question. The versatility and the ap-
plicability of this model in the fashion industry is evident in its multifaceted utility
across various domains. Fashion brands can leverage this tool to gain insights into
their brand identity, thereby enhancing their ability to resonate with their target
audiences effectively. It could be transformed into a tool aimed at amplifying fash-
ion houses’ ability to resonate deeply with their target audiences, creating stronger
connections and achieving greater engagement. To accomplish this, our training
process heavily relies on a meticulously annotated dataset of fashion images, where
each image is accompanied by detailed brand information, forming the bedrock of
our model’s training and learning.
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Chapter 1

Introduction

In the current competitive fashion enviorment, where numerous brands compete for
recognition, having a unique and captivating visual identity has become a funda-
mental element of effective branding strategies. The aim of our research is to assess
the utility of a Convolutional Neural Network (CNN) with an attention mechanism
for the multiclassification of images into six distinct fashion brands. The interest-
ing aspect of our approach is the utilization of an attention mechanism to extract
brand-specific information from the images, enabling us to discern and classify them
accurately. A brand that is consistently and accurately classified can be considered
highly recognizable, reflecting a strong and distinctive visual identity. Conversely, if a
brand’s classification accuracy is lacking, it may indicate a weaker or less distinctive
visual identity.

To achieve our goal, we annotated a dataset of fashion images. This dataset
contains comprehensive information about the brands represented in the images,
allowing our model to learn and generalize the distinctive features associated with
each brand. The applicability of our research extends beyond the realm of machine
learning and image classification. Understanding the nuances of brand identity in
the fashion industry holds significant implications for brand differentiation and es-
tablishing a meaningful connection with the target audience. In a crowded market-
place, where consumers are exposed to an abundance of visual stimuli, the ability
to identify and communicate a brand’s unique visual characteristics is a key driver
of success. In conclusion, our research delves into the realm of fashion image classi-
fication with a focus on brand recognition. By leveraging CNN with attention, we
aim to enlighten the visual identities of fashion brands, ultimately contributing to
a deeper understanding of how these identities influence consumer perception and
loyalty.

1



1 – Introduction

In this chapter, we will take a closer look at the topic of visual identity, with an
example aimed at helping the reader better understand the roots of the problem that
this thesis aims to address. Furthermore, even in these early pages, we will provide
an analytical insight by approaching the subject from a data analysis perspective.
We will discuss the benefits as well as the limitations that this approach inherits
from its statistical-mathematical framework.

1.1 Importance of Brand Identification

In today’s bustling marketplace, where countless brands vie for attention, a distinc-
tive and captivating visual identity has become a cornerstone of successful branding
strategies. [15] Visual identity transcends mere aesthetics; it encapsulates the essence
of a brand, communicating its unique attributes and resonating with consumers on
a profound level. At the heart of this concept lies the interplay between brand iden-
tity and visual identity – two interconnected facets that collaboratively shape how
a company is perceived. The visual identity of a brand refers to the visual and aes-
thetic aspects that identify a brand. It encompasses visual characteristics such as
the logo, colors, patterns, graphic style, and design that communicate the brand's
identity and values to consumers. As intuition, Visual Identity is a part of Brand
identity. In simple terms, brand identity built all the distinctive elements that make
a company recognizable to the public. On the other hand, visual identity is the col-
lection of visual languages and elements that a company utilizes to communicate.
With these basic notions, it becomes clear how visual identity plays a fundamen-
tal role in the success of a brand by establishing an emotional connection with the
target audience.

Visual identity acts as the face of a brand, offering consumers a first impression
that can significantly impact their perception of the company's values, personality,
and quality. A well-crafted visual identity not only captures the essence of a brand's
story and ethos but also communicates professionalism and attention to detail. A
distinctive logo, for instance, serves as a succinct representation of a brand's mission
and values, helping consumers recognize and remember it in a crowded marketplace.

To better capture the idea of what Visual and Brand Identity means, see the Etro
Case Study, which is a practical explanation of these concepts applied to the brand
Etro.

Etro Case Study 1
Before going into practical, note that Etro was founded in 1968 by Gerolamo "Gimmo"
Etro, and it is an Italian luxury fashion house known for its bohemian-luxe aesthetic.

2



1 – Introduction

Originally focused on textiles, it expanded to ready-to-wear fashion, accessories, and
home furnishings. Etro remains a family-run brand, celebrated for its vibrant prints
and eclectic designs. It worth to note that haute couture and ready-to-wear are two
distinct categories within the fashion industry, differing significantly in terms of
production, design, and exclusivity. Haute couture, derived from French, translates
to "high sewing" or "high dressmaking", representing the pinnacle of craftsmanship
and luxury. It involves creating custom-made garments tailored to individual clients’
precise measurements and preferences. Haute couture pieces are meticulously hand-
crafted by skilled artisans, utilizing intricate techniques and luxurious materials,
resulting in one-of-a-kind creations. Due to its exceptional craftsmanship and ex-
clusivity, haute couture is characterized by limited production and high price points.
In contrast, ready-to-wear, also known as prêt-à-porter, refers to clothing lines de-
signed for mass production and general consumption. These collections are produced
in standardized sizes and are readily available for purchase off-the-rack in stores or
online. While ready-to-wear garments may still feature high-quality materials and
craftsmanship, they are designed to appeal to a broader audience, striking a balance
between style, quality, and accessibility. In Figure 1.1 there is on the left the templete
of to build or read the brand identity and the brand visualization. On the right there
is the application ment for this case study.

Figure 1.1: Application of Brand and Visual Identity to Etro

Brand Identity of Etro

Etro is known for its unique blend of bohemian luxury and eclectic style. The
brand's identity revolves around the values of craftsmanship, innovation, and a cele-
bration of cultural diversity. The brand targets a sophisticated, free-spirited audience
that appreciates the artistry and individuality expressed through its collections. Etro's
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1 – Introduction

brand identity is associated with a sense of adventure, wanderlust, and a love for un-
conventional beauty. In Figure 1.2 there are two example of the Etro brand identity
application.

Figure 1.2: An example of free-spirited audience for Brand Identity of Etro - Images of SS23

Visual Identity of Etro - Images from multiple collections

Etro's visual identity is characterized by its iconic paisley patterns, which have
become synonymous with the brand. The paisley motif, inspired by traditional Indian
and Persian designs, is often incorporated into Etro's clothing, accessories, and even
its logo. The brand's visual language exudes a bohemian elegance, with a mix of cul-
tural references and artistic elements. Etro's visual identity is instantly recognizable
and conveys a sense of uniqueness and a love for artistry and craftsmanship. looking
at Figure 1.3 we can see how Etro play with its motif in several collections.

Figure 1.3: The paisley motif for Visual Identity of Etro - Images from multiple collections

Brand identification in today's competitive business landscape is crucial for suc-
cess. It encompasses the process by which consumers recognize and associate a brand
with its unique qualities, values, and offerings. Building a strong brand visual iden-
tity is crucial for the success and sustainability of a business, regardless of its indus-
try. First and foremost, brand identification plays a significant role in creating brand
loyalty. When consumers can easily identify and differentiate a brand from its com-
petitors, they are more likely to develop an emotional connection and trust in that
brand. This emotional bond fosters customer loyalty, encouraging repeat purchases
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and positive word-of-mouth recommendations1. Brand identification enables busi-
nesses to cultivate a community of loyal customers who become brand advocates,
driving long-term growth and success. Furthermore, brand identification facilitates
effective brand positioning. By clearly defining and communicating a brand's unique
selling proposition and value proposition. This positioning allows businesses to at-
tract and retain their desired customer segments, establishing a competitive advan-
tage in the market. Brand recognition and recall are led by several aspects. If it is
strong, it increases the likelihood of being top-of-mind during purchase decisions.
Whether through visual elements such as logos, colors, and packaging or through
consistent messaging and brand voice, brand identification enables businesses to
leave a lasting impression and enhance brand recall.

The aim of this work would be to provide insights into the distinctive aspects of
brand visual identity. The idea of using algorithms to detect recurring patterns, col-
ors, patterns, or specific product features2 of a brand can contribute to better brand
identification. However, it is crucial to recognize that brand identity goes beyond the
visual aspect. It involves a range of elements such as company philosophy, values,
brand experience, and customer interactions. These factors can profoundly influence
consumers' perception of a brand and the emotional connection they develop with
it.

While a classification model can provide information about visual identity, it is
important to emphasize that image analysis represents only a part of the overall
brand identity. Other components, such as brand communication, tone of voice, rep-
utation, company history, and social impact can influence the brand's image and
perception. The Balenciaga scandal, well explained in the New York Times article
"When High Fashion and QAnon Collide" by Elizabeth Paton and Vanessa Fried-
man, involving promotional photos depicting children in bondage-like poses serves
as a compelling example of how mishandling visual identity can be detrimental to
a company. This incident underscores the potential consequences of a controversial
and poorly executed visual identity, which can undermine a previously strong and
successful brand image. In this instance, the ill-conceived promotional images ignited
significant backlash and public outrage. The shocking and inappropriate nature of

1Word-of-mouth recommendations are when satisfied customers voluntarily share posi-
tive experiences with others, influencing their purchasing decisions through personal testi-
monials and recommendations.

2Features refer to specific and meaningful characteristics or patterns extracted from
data. In the context of machine learning, they represent relevant information used to make
predictions or perform tasks effectively.
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the images was deemed offensive and inappropriate, resulting in a barrage of neg-
ative media coverage and social media uproar. This controversy not only tarnished
Balenciaga’s reputation but also eroded the trust and loyalty it had built with its
audience over the years. The subsequent chaos, including instances of customers
burning their Balenciaga merchandise in protest and the ensuing negative media
coverage, showcased the power of visual identity in shaping public perception. The
incident underscored that even a well-established brand with a solid history can
face a severe blow if its visual representation contradicts its values and audience
expectations.

Ultimately, the Balenciaga case serves as a stark reminder that a brand’s visual
identity is a reflection of its core values and messaging. When not aligned with
these aspects or when poorly executed, it can lead to damaging repercussions that
erode the foundation of a previously successful brand identity. Another aspect to
consider while classifying the brand in the deep learning model is the issue of brand
identification. It’s essential to consider the concept of rebranding, which can pose
unique challenges. Rebranding involves altering a brand’s visual identity, messaging,
or overall image to adapt to changing market dynamics or to address issues that
may have arisen over time. While rebranding can be a strategic move to revitalize a
brand, it also carries risks. For instance, in the world of fashion, changes in creative
direction and the appointment of new artistic directors can significantly impact a
brand’s visual identity. The transition from one creative vision to another may lead
to shifts in the brand’s aesthetics, potentially causing confusion among consumers
accustomed to a particular brand image. In the upcoming section, we will address
this potential concern.

1.1.1 Visual Identity in Fashion and its Variation through
Releases

As already said the visual identity of a fashion brand extends beyond a mere logo;
it encompasses everything from color palettes, patterns, and typography to pho-
tography style, models, and overall design aesthetics.In the medium-to-high luxury
brand, visual identity often starts from a well-defined baseline. This visual identity
then evolves across various collections, absorbing the inspiration and conceptualiza-
tion of each, until it seamlessly integrates with the brand's core identity. In other
words visual identity for fashion industry is by no means static. Instead, it under-
goes a continuous evolution throughout the successive releases of various collections.
At the onset of each collection’s creative journey, the brand draws inspiration and
conceptualizes a distinct theme or narrative. [39] This inspiration then becomes a
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guiding force, shaping the design direction, color schemes, and even the finer details
of the collection’s visual components.To clarify this concept, excerpts of attire have
been selected from collections spanning several years under the Rick Owens brand,
see from Figure 1.4 to Figure 1.6.

Figure 1.4: Rick Owens Ready To Wear Fall Winter 2015 Paris

Figure 1.5: Rick Owens Ready To Wear Spring Summer 2016 Paris

Figure 1.6: Rick Owens Ready To Wear Spring Summer 2020 Paris

Despite originating from diverse years, encompassing both Fall/Winter and Spring/-
Summer seasons, a prominent underlying theme becomes evident, even amidst sub-
stantial diversity among the garments themselves. Foremost among these observa-
tions is the distinct color palette, in which gray assumes a prominent role as a neutral
or achromatic tone, positioned midway between black and white. These shades, in-
deed, are abundant. However, the shared traits extend beyond color; the designs of
the outfits display mutual gentleness and remarkable eccentricity, signifying a unique
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characteristic that binds them together. While the ensembles within the Stella collec-
tion demonstrate noteworthy similarity across various groups, a recognizable brand
identity is apparent even within individual assortments. Similarly remarkable is the
consistent alignment of the chosen locations with the attire’s palette. Moreover, the
selected locales appear notably subdued when juxtaposed with the outfits, further
enhancing the overall aesthetic appeal.

As each collection takes shape, the underlying inspiration merges harmoniously
with the brand's existing visual identity. This amalgamation is not merely a super-
ficial overlay, but rather a deep integration that seamlessly bridges the thematic
elements of the collection with the overarching identity of the brand. It's akin to
weaving threads of creativity and innovation into the fabric of the brand's established
character. This process of evolution and integration is very complex and considering
that there are typically two collection releases per year and genders, this process
represents a substantial commitment.To better understand how the construction of
a release takes place, it's essential to examine its key phases. The first phase is that
of inspiration and conceptualization. Here, the central idea of the collection is born,
drawing from sources such as art, culture, or personal experience. This concept be-
comes the guiding thread that informs the creation of the unique visual identity of
that specific release. Next, we move on to the development and design phase. De-
signers translate the initial idea into concrete designs, selecting fabrics, colors, and
materials in line with the collection's theme. This phase demands advanced techni-
cal skills and close collaboration between designers and artisans. Once the design is
finalized, the production and manufacturing phase begins. This stage involves ma-
terial selection, prototype creation, and quality control to ensure consistency with
the brand's vision. The timeline for this process can span several weeks or months,
depending on the collection's complexity. The marketing and promotion phase is
crucial for generating interest around the collection. Through teasers, previews, and
behind-the-scenes content, anticipation is built among the audience before the of-
ficial launch. This phase is vital for creating excitement and engaging the target
audience. Finally, we arrive at the collection's presentation through runway shows
or presentations. This moment offers an opportunity to showcase the creations in
a curated and engaging manner, often involving industry insiders, celebrities, and
media [19]. In Figure 1.7 a recent example of involving celebrities as guests.

Beginning with initial inspiration, it traverses multiple phases to become an in-
tegral part of the brand's visual identity. This process demands effort, time, and
attention to detail. The journey of visual identity in the realm of fashion brands,
particularly those occupying the medium-to-high segment, is a continuous evolution
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that begins with a well-defined foundation. As inspiration flows into each succes-
sive collection, it transforms and refines the visual identity, ultimately converging
with the brand's core essence. This approach not only sustains the brand's unique-
ness but also fosters a compelling narrative of evolution, adaptability, and creative
expression.

Figure 1.7: Elton John, Lil Nas, Miley Cyrus as guests in Versace’s FW 2023 Runway show in
Los Angeles

1.2 Role of Deep learning

Deep learning is playing a significant role in analyzing and understanding brand-
related topics, including brand identification and visual identity. With the advance-
ments in data availability, computational power, and algorithmic techniques, deep
learning has become a powerful tool for extracting insights from vast amounts of
data, including visual data. In the context of brand identification, Deep learning
algorithms can be trained on large datasets of images to classify and identify brand-
related features. For example, image classification models can be used to recognize
logos, patterns, colors, or specific product characteristics associated with different
brands. These models can provide automated and scalable solutions for analyzing
visual elements that contribute to brand identity.

To cite another kind of application, which is a recommendation system 1, we
can take a look at the paper named "Study of AI-Driven Fashion Recommender
Systems", authored by Shaghayegh Shirkhani, Hamam Mokayed, Rajkumar Saini
and Hum Yan Chai [36], which takes into accounts many application. The authors
explain how the recommendation can be applied to the whole outfit as part of it.
One of the most interesting applications concerns the Similar Item Recommendation

1A recommendation system is a technology that suggests personalized recommendations
or suggestions to users based on their preferences, behavior, or similarity to other users.
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(Item Retrieval). Researchers have explored various image retrieval methods, includ-
ing Text-based, Content-based, Multimodal Fusion, Semantic-based, and Relevance
Feedback-based Image Retrieval. Another innovative approach of DL to fashion is
Capsule Wardrobe Recommendations. This concept of a capsule wardrobe is often
referred to as a minimalist closet or wardrobe detox. A capsule wardrobe aims to
provide a minimal set of clothing items and accessories from a given inventory, al-
lowing for maximum mix-and-match outfit combinations. These techniques enable
businesses to gain insights into customer sentiments, brand perception, and emerging
trends contributing to a deeper understanding of brand identity.

In this study, Deep Learning will be used to identify salient points in a photo,
which will then be used for brand recognition. The model developed with the primary
objective of accurately assigning each outfit image to its corresponding brand can
have several valuable applications in the fashion industry and beyond. Here are some
possible applications:

1. Consumer Perception: If the model identifies outfits accurately across differ-
ent events, it suggests that the brand’s visual identity is resonating well with
designers, stylists, and other industry professionals, which can often influence
consumer perceptions.

2. Brand Recognition and Recall: A strong visual identity leads to better brand
recognition and recall. By analyzing how frequently and consistently the model
recognizes a brand’s outfits, one can gauge the effectiveness of the brand’s visual
cues [37].

3. Trend Analysis: Monitoring how well a brand adapts its visual identity to cur-
rent fashion trends can also indicate its strength. The model can identify if
a brand manages to maintain its identity while staying relevant in the ever-
changing fashion landscape [7].

4. Consistency Check: The model can analyze the consistency of a brand’s visual
identity across different fashion events. If the same or similar visual elements
(colors, patterns, logos) are consistently recognized in outfits attributed to a
particular brand, it indicates a strong and consistent visual identity.

5. Fashion Forecasting: The model’s output can contribute to fashion forecasting
by identifying emerging brands that are gaining traction in the industry. This
insight can guide retailers and designers in staying ahead of trends.

6. Intellectual Property Protection: Brands can use the model to monitor and
protect their intellectual property. It can help detect unauthorized use of brand
designs or products on runways and events[21].
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7. Customized Recommendations: E-commerce platforms can use the model to
provide personalized product recommendations to users based on their preferred
brands and styles.

Overall, deep learning plays a crucial role in leveraging data-driven insights to
understand and enhance brand identification and visual identity.
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Chapter 2

Deep Learning and CNNs
for Images Analysis

Deep Learning, according to IBM in its topic "What is deep learning?" [1], is a
subset of deep learning focused on training artificial neural networks to perform
complex tasks. These networks consist of layers that progressively learn features from
data. Through backpropagation, they adjust their internal parameters to minimize
errors and improve accuracy. Deep learning excels in tasks like image and speech
recognition, natural language processing, and game playing. It has revolutionized
AI by enabling computers to autonomously learn and make decisions from large
datasets. Its depth, scalability, and hierarchical learning mimic the human brain’s
structure, allowing machines to achieve human-level performance in various domains.
In recent years, there has been significant research in the area of image classification,
driven by the availability of large databases such as the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset[29]. Deep Convolutional Neural Networks
(CNNs) are a class of artificial neural networks designed to process and analyze data
that has a grid-like topology, like in Figure 2.1.

They have proven to be good in different computer vision tasks, that is why they

Figure 2.1: Representation of image as a grid of pixels from "Convolutional Neural Networks,
Explained" Article by Mayank Mishra, published in "Towards Data Science" on Aug 26, 2020. [22]

12
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are a crucial part of the data scientist CCNs became even more sophisticated over
the years, starting with AlexNet [42] proposed by Alex Krizhevsky et al., followed
by similar-depth architectures like Zeiler and Fergus's model [45]. Some early work
on convolutional neural networks (CNNs) dates back to the late 1980s and early
1990s, they did not gain significant attention and popularity during that time due
to various limitations, including the lack of processing power, limited availability of
large datasets, and the absence of efficient training algorithms.

The concept of CNNs can be traced back to the 1980s with the work of Yann
LeCun, who developed the first successful application of CNNs called LeNet-5[18] in
1998. LeNet-5 was primarily used for handwritten digit recognition tasks. However,
during this period, the computational power needed to train and deploy deep neural
networks like CNNs was indeed limited, which hindered their widespread adoption.
In the early 2000s, there was a renewed interest in neural networks and deep learning,
which led to some progress in training deeper architectures, but CNNs were still not
the dominant approach. Instead, other machine learning algorithms, such as Support
Vector Machines (SVMs), were popular for various computer vision tasks.

It wasn’t until around 2012 that CNNs experienced a resurgence and revolution-
ized the field of computer vision. The main reasons for this revival of interest can
be attributed to a few reasons. To mention a few the availability of large datasets,
hardware upgrades, and improved training algorithms. As already mentioned, the
ImageNet project was one of the first significant steps forward in the ascent of CNNs.
It started releasing massive labeled image datasets containing millions of images in
2009. At the same time, the advancements in hardware provide significant compu-
tational power and acceleration for training deep neural networks, including CNN.
Generally, the Graphics Processing Units (GPUs) became more accessible.

Another important reason is the improvement of training algorithms. Novel tech-
niques like the Rectified Linear Unit (ReLU) activation function and better weight
initialization methods helped in training deeper networks more effectively, overcom-
ing the vanishing gradient problem1.

1The gradient problem refers to a challenge encountered in training deep neural net-
works, which a class of machine learning models. These networks consist of numerous layers,
each containing interconnected nodes that process and transform data. During training, the
model adjusts its internal parameters based on a loss function to minimize prediction errors.
The gradient problem arises from difficulties in propagating gradients – derivatives of the
loss function with respect to the model’s parameters – through many layers. As the gradients
are backpropagated, they can either become vanishingly small (vanishing gradient) or exces-
sively large (exploding gradient). This can hinder the convergence of the training process,
making it difficult for the model to learn effectively from data. Researchers have developed
various techniques to mitigate the gradient problem, such as careful weight initialization,
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The last crucial point to note is that researchers discovered that pre-training
CNNs on extensive datasets and subsequently fine-tuning them for specific tasks
resulted in faster convergence and enhanced performance.

VGG16[38] is a convolutional neural network architecture that was introduced in
2014 by researchers from the Visual Geometry Group (VGG)1 at the University of
Oxford. The team, led by Karen Simonyan and Andrew Zisserman, aimed to design
a deep-learning model that could achieve high accuracy in image classification tasks.
VGG16 is so-called because it has 16 weight layers, including 13 convolutional layers
and 3 fully connected layers. The VGG16 architecture was mainly employed in the
2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [30], where the
objective was to categorize images into 1,000 distinct classes like "cat," "dog," "car,"
"bird," and more. VGG16 participated in this competition and achieved a ground-
breaking level of performance. VGG16 achieved significant success in the ILSVRC
2014 [30], demonstrating the effectiveness of deep convolutional neural networks for
image classification tasks. Its accuracy in the competition helped solidify the impor-
tance of deep learning in computer vision and marked a turning point in the field.
Since then, VGG16 and its variations have been widely adopted and adapted for
various computer vision tasks, including object detection, image segmentation, and
feature extraction in transfer learning 2 scenarios.

using specific activation functions, and employing gradient clipping or normalization meth-
ods. These approaches help stabilize the gradient flow, enabling more successful training of
deep neural networks.

1The VGG16 architecture was part of a series of network designs by the VGG team.
The "VGG" in the name stands for "Visual Geometry Group."

2Transfer learning is a method within the domain of machine learning where an already
trained model serves as an initial foundation for addressing a fresh and related problem.
In the context of VGG16, transfer learning involves leveraging the knowledge learned from
training VGG16 on a large dataset (e.g., ImageNet) and applying it to a different, but
related, task.
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2.1 Understanding the "Deep" in Deep Learning
and CNNs

Prior to delving into the functionality of CNNs, let's briefly concentrate on Convolu-
tional Neural Networks (CNNs). We’ll delve into the "deep" aspect of deep learning,
focusing on the increased layers and features in a CNN compared to traditional
neural networks. This will help clarify that while CNNs are a type of deep learning
model, they are not synonymous with deep learning itself, as the concept of deep
learning existed before the introduction of CNNs. The term "deep" in deep learning
has two main implications:

• The number of layers: In deep learning frameworks, such as Convo-
lutional Neural Networks (CNNs), there are typically more layers than
in traditional multi-layer perceptron or standard neural networks1.
Some CNN architectures can have up to 150 layers, making them sig-
nificantly deeper. Traditional neural networks vary in layer count but
often have 1 to 5 hidden layers. So, deeper architectures with 10+
layers are common in deep learning, enabling complex learning from
data.

• The number of features: Each layer in a CNN learns multiple "fea-
tures" through sets of weights2 that connects it to the preceding layer.
This aspect makes the network much deeper than a regular neural net,
where each layer typically learns only one set of weights.

Despite this depth, there are powerful neural networks, including some CNNs,
that consist of just a few layers. Hence, the term "deep" in deep learning reflects
the fact that each layer learns multiple features [13]. It is worth noting that deep
learning is not synonymous with CNNs, as the concept of deep learning existed
before the introduction of CNNs.

1Traditional multi-layer perceptrons, also known as standard neural networks, are ma-
chine learning models consisting of interconnected layers (input, hidden, and output) that
process data to learn patterns, make predictions, and perform various tasks. These models
use forward propagation to compute outputs and backpropagation to update weights during
training.

2In Deep learning, weights are parameters associated with the connections between nodes
(neurons) in a neural network. They determine the strength of each connection, affecting
the flow of information during training. Adjusting the weights through iterative processes
like backpropagation enables the network to learn and make accurate predictions.
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2.2 Model Architecture

In this section, we will provide an overview of the model architecture of CNNs,
followed by a more detailed exploration of their key components. At its core, a CNN
is composed of multiple layers that work collaboratively to process and extract
meaningful information from the input data. There three main types of layers are:

• Convolutional Layers: These layers find patterns and features in images, start-
ing with basic elements like edges and gradually identifying more complex
shapes as they go deeper into the network [5].

• Pooling Layers: They reduce the size of the data while keeping important in-
formation intact by selecting the most significant values within small regions
[41].

• Fully Connected Layers: These layers analyze the high-level relationships in the
extracted features and are crucial for making final decisions, like recognizing
objects in images [6].

Looking at Figure 2.2, we can see a graphical rapresentation of a typical CNN.

Figure 2.2: Representation of how a CNN works (source: "A Comprehensive Guide to Convolu-
tional Neural Networks") by Sumit Saha. [31]

It’s really important to note that sometimes CNNs, as in the case of the network
implemented for this thesis, also incorporate an attention mechanism. An "attention
mechanism" in machine learning refers to a mechanism that allows the model to
focus on specific parts or aspects of the input data, giving them more weight or
attention during processing. It’s a way to enhance the model’s ability to capture
important information from the input.
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2.2.1 Convolutional Layers

Francois Chollet in his book "Deep Learning with Python" [8], published by Manning
Shelter Island, in 2018, clearly explains how convolutional layers are the cornerstone
of CNNs. The basic operation in a convolutional layer is called convolution. In simple
words: they consist of small filters, also known as kernels, which slide over the input
data in a systematic manner. As they move across the input, they perform element-
wise multiplication and addition to produce a feature map, highlighting distinctive
patterns found in the data. These patterns can range from simple edges to more
complex shapes and textures. What distinguishes a dense layer from a convolutional
layer is that the former recognizes patterns across the entire input space, while the
latter focuses on parts of images.

First, the model takes into account the input image as a matrix of pixel values
with multiple channels (e.g., RGB images have three channels – red, green, and blue).
CNNs have one or more filters and each filter is a small matrix that is randomly
initialized during the training process. This means that width and height shrink
as the images go deeper into the network. This characteristic gave several powerful
properties to CNN. The most important advantage is translational invariance, which
means that a conv layer can recognize patterns or features in input data regardless
of where they are located within the input. In other words, it doesn’t matter if a
particular feature or pattern is in the center, left, right, top, or bottom of the input;
the conv layer can still detect it.

Moreover, convolutional layers are capable of learning hierarchical representations
of patterns. This means they can learn to recognize simple features (e.g., edges) in the
early layers and then build upon these features to recognize more complex patterns
in the deeper layers. Here's a step-by-step explanation of how convolution works
inspired by "Student Notes: Convolutional Neural Networks (CNN) Introduction"
[26]: Convolution operates over 3D tensors1 and these 3D tensors represent data
such as images, where each dimension corresponds to a different aspect of the data:
Width, Height and Depth or Channels Note that the depth dimension represents
different channels or layers of information. In the context of images, it can represent
color channels (e.g., Red, Green, Blue - RGB), or in more general cases, different
feature maps or channels extracted by previous layers in a CNN. The output of the
convolution is still a 3D tensor. In convolutional operation, two parameters can be

1In deep learning, a tensor is a multi-dimensional array that can store and represent data
of varying complexities and dimensions. PyTorch’s official documentation gives a practical
definition between a numpy array and a PyTorch Tensor: the last one can run on either
CPU or GPU.
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custom set. First is the size of Patches (Kernel Size), which refers to the dimensions
of the filter (also called a kernel) that is used during the convolution operation (like
3x3 or 5x5). The kernel size determines the spatial extent of the local region in
the input data that the convolution operation considers at a time. A larger kernel
captures more extensive spatial information. The second one is the depth of the
output feature map, often referred to as the number of filters or channels, which
represents the number of distinct kernels or filters applied to the input data. The
use of multiple filters allows the convolutional layer to learn different features and
patterns at different levels of abstraction. The filter is slid across the input image in
both the horizontal and vertical directions. At each position, the filter is element-
wise multiplied with the corresponding region of the input image, and the results
are summed up to produce a single value in the output feature map. This process
is repeated for every position in the input image to generate the entire feature
map. The filter’s movement across the input image can be controlled by the stride
parameter. The stride determines how many pixels the filter shifts at each step. A
stride of 1 means the filter moves one pixel at a time, while a stride of 2 means it
moves two pixels at a time, and so on. Padding is an elective method employed to
maintain the spatial dimensions of the input image [24]. It encompasses the addition
of additional pixels along the periphery of the input image before executing the
convolution operation. Padding can be advantageous in preventing information loss
at the image’s edges.

Figure 2.3: How Convolution Operation works from Student Notes: Convolutional Neural Net-
works (CNN) Introduction

After convolution, an activation function (commonly ReLU - Rectified Linear
Unit) is applied element-wise to introduce non-linearity in the feature maps. This
allows the network to learn more complex relationships in the data. Typically a
convolutional layer consists of multiple filters, see Figure 2.3 and Figure 2.4 for
visual representation. Each filter learns to detect different patterns and features
from the input image. The number of filters in a convolutional layer determines
the depth (number of channels) of the output feature map. Convolutional layers are
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Figure 2.4: How Convolution Operation works from Student Notes pt2: Convolutional Neural
Networks (CNN) Introduction

stacked together to form deep CNN architectures. By chaining multiple convolutional
layers, the network can learn increasingly complex and abstract features from the
input data, enabling it to recognize intricate patterns and objects in images. As the
network progresses through the layers, the receptive field of filters increases, allowing
the model to learn high-level features.

2.2.2 Pooling

Pooling layers come after convolutional layers and play a crucial role in Convolu-
tional Neural Networks (CNNs). Their main purpose is to downsize the feature maps,
primarily by diminishing their spatial dimensions while preserving critical details.
These pooling layers contribute to enhancing the CNN’s resilience to variations in
input data, cutting down on the number of parameters, and mitigating overfitting.

Figure 2.5 provide a visual representation of the most commonly used pooling
techniques:

Figure 2.5: How Max and Avg Pooling Operation works from Student Notes pt2: Convolutional
Neural Networks (CNN) Introduction

Max Pooling takes a small region (usually a 2x2 or 3x3 window) and outputs
the maximum value from that region to the new pooled feature map. The operation
is applied independently to each channel of the feature map. Here's a step-by-step

19



2 – Deep Learning and CNNs for Images Analysis

explanation of how Max Pooling works:

1. Input Feature Map: The input to the pooling layer is the feature
map obtained from the preceding convolutional layer. The feature map
is a matrix representation of learned features from the input image. In
other words, a feature map refers to the output of a specific filter
applied to input data, such as an image, in a convolutional neural
network. It highlights significant patterns or features for further pro-
cessing.

2. Pooling Operation: The pooling layer slides a small window (e.g.,
2x2 or 3x3) over the feature map and applies the pooling operation in-
dependently to each window. In the case of Max Pooling, the maximum
value within each window is extracted and placed in the corresponding
position of the pooled feature map.

3. Stride: Similar to the convolutional layer, pooling layers can also have
a stride parameter. The stride controls the step size at which the pool-
ing window moves across the feature map. A stride of 2, for instance,
means the pooling window moves two units at a time [28].

4. Reducing Spatial Dimensions: Since the pooling operation replaces
each window with a single value (the maximum value), it effectively
reduces the spatial dimensions of the feature map. For example, a 2x2
Max Pooling with a stride of 2 will halve the width and height of the
feature map.

5. Number of Channels: The pooling operation is performed indepen-
dently on each channel (the 3rd dimension of the 3D tensor) of the
feature map, which means the number of channels remains unchanged
after pooling.

To make the explanation more effective, see Figure 2.6 for a visual example of
the Max Pooling operation.

The main benefits of pooling layers can be summarized in three crucial points.
Pooling layers make CNNs more robust to small translations and distortions in the
input data. Since the pooling operation considers only the maximum value in each
local region, it captures the most important features, even if they are slight. More-
over, it reduced parameters. By reducing the spatial dimensions of the feature maps,
pooling layers decrease the number of parameters in the subsequent layers of the
network. This helps manage computational complexity and memory requirements.
Lastly; as the CNN progresses through multiple pooling layers, the receptive field of
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Figure 2.6: An example of Max Pooling Operation result from Student Notes pt2: Convolutional
Neural Networks (CNN) Introduction

the network increases, allowing it to learn high-level and more abstract features. It
is worth noting that in addition to Max Pooling, there are other types of pooling,
such as Average Pooling, which takes the average value within each pooling window
instead of the maximum value. While Max Pooling is the most common choice, the
choice of pooling technique may vary based on the specific problem and architecture
of the CNN.

2.2.3 Fully Connected Layers

After multiple convolutional and pooling layers, fully connected layers are intro-
duced. These layers establish connections between each neuron in the previous layer
and every neuron in the current layer, resembling the dense connections found in
conventional neural networks. Fully Connected Layers, also referred to as Dense
Layers, constitute the final elements of a Convolutional Neural Network (CNN) ar-
chitecture. Unlike convolutional and pooling layers, which mainly focus on learning
spatial features from the input data, fully connected layers are responsible for mak-
ing predictions and performing high-level reasoning based on the extracted features.

Before passing the data through the fully connected layers, the output feature
map from the last convolutional layer is typically flattened into a one-dimensional
vector. This means that all the spatial information is collapsed, and the features are
represented in a single continuous sequence. A fully connected layer consists of a set
of neurons, each corresponding to a specific class or category in the output. These
neurons are fully connected to all the elements in the flattened feature vector. The
number of neurons in the fully connected layer is equal to the number of classes or
categories in the classification task. Every connection between the neurons in the
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fully connected layer and the elements in the flattened feature vector has an asso-
ciated weight. These weights are learned during the training process and represent
the importance of each feature for each class. Additionally, each neuron has a bias
term, which allows for fine-tuning the prediction threshold for a particular class.
Like in other layers of the CNN, a non-linear activation function (commonly ReLU
or softmax) is applied to the output of each neuron in the fully connected layer.
Rectified Linear Unit is often used for intermediate fully connected layers, while
softmax activation is used for the final output layer in classification tasks. The soft-
max activation function ensures that the final outputs are probabilities, representing
the likelihood of the input belonging to each class. Fully connected layers enable the
CNN to use the learned features from the convolutional and pooling layers to make
predictions and classify the input into specific categories. The information flow in
these layers is fully connected, allowing the model to capture complex patterns and
relationships in the data. The final output of the fully connected layer is usually a
probability distribution over all the possible classes in the classification task.

The class with the highest probability is considered the predicted class for the
input. It is important to note that not all CNN architectures have fully connected
layers at the end. In some cases, the last convolutional layers output is used as the
final output, particularly in tasks such as object detection, where the model needs
to predict the positions and sizes of objects in addition to their classes. However,
for most image classification tasks, fully connected layers are a common component
to make predictions based on the extracted features.

2.2.4 Activation Function

Activation functions are a crucial component of Convolutional Neural Networks
(CNNs) and other types of artificial neural networks. They introduce non-linearity
to the model, allowing it to learn complex and non-linear relationships in the data.
In CNNs, activation functions are applied after convolutional and fully connected
layers to introduce non-linearity to the output of neurons. The purpose of activation
functions can be summarized as follows:

• Introducing Non-linearity.

• Enabling Gradient Flow

Without activation functions, the output of a neuron in a neural network would
be a linear function of its inputs. Linear functions can only learn linear relationships
in the data, severely limiting the model's ability to represent complex patterns and
make meaningful predictions. Activation functions introduce non-linearity, enabling
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the neural network to approximate any arbitrary function, making it capable of
learning from diverse and intricate data patterns. During the training process, neural
networks optimize their weights to minimize a loss function, often using gradient-
based optimization algorithms like backpropagation1. Activation functions play a
critical role in this process by providing gradients that indicate the direction and
magnitude of weight updates. Without activation functions, the gradients would be
constant or too simple, leading to inefficient learning or getting stuck in local minima
during optimization. Now we are going through the most commonly used activation
functions in CNNs2:

1. ReLU (Rectified Linear Unit): ReLU is the most widely used activation
function. It computes the output as the maximum between the input and zero, ef-
fectively turning off neurons with negative inputs and keeping neurons with positive
inputs active [2]. ReLU is computationally efficient and helps mitigate the vanishing
gradient problem.

2. Sigmoid: The sigmoid activation function compresses the input values within
a range of 0 to 1. Traditionally, the sigmoid function was applied in the output
layer for binary classification tasks, but its usage in hidden layers has become less
common today because of the vanishing gradient issue. [35]

3. Tanh (Hyperbolic Tangent): The tanh activation function compresses
the input values into a range spanning from -1 to 1. Tanh is akin to the sigmoid
function but generates outputs centered around zero, which makes it somewhat more
advantageous for the learning process [25].

4. Leaky ReLU: Leaky ReLU is a variation of the ReLU activation that ad-
dresses the "dying ReLU" problem, where neurons can become inactive during train-
ing and never recover [11] Leaky ReLU introduces a small negative slope for negative

1Backpropagation is an algorithm used in training artificial neural networks. It calculates
the gradients of the model's weights by propagating the error backward from the output
layer to the input layer. This process enables the network to learn and adjust its parameters
during training iteratively. Note that gradients represent the slope or rate of change of
a function concerning its input variables. In the context of machine learning, gradients
indicate how the output of a model changes concerning its parameters, guiding optimization
algorithms like gradient descent to update the model's parameters for better performance
during training.

2"Activation Functions in Neural Networks Sigmoid, tanh, Softmax, ReLU, Leaky ReLU
EXPLAINED !!!" by SAGAR SHARMA Published in ’Towards Data Science’ on Sep 6, 2017
[32]
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inputs, preventing neurons from dying.

5. Softmax: The softmax activation function is commonly used in the output
layer of multi-class classification tasks. It takes a vector of raw scores and converts
them into a probability distribution [33]. Softmax ensures that the sum of the prob-
abilities of all classes is equal to 1.

Choosing the right activation function for a CNN depends on the specific task
and the characteristics of the data. In practice, ReLU and its variants are widely
used due to their simplicity, efficiency, and effectiveness in avoiding the vanishing
gradient problem. For the purpose of this thesis, we choose Softmax and ReLu.

2.2.5 Attention Mechanism

Charu C. Aggarwal in his book named "Neural Networks and Deep Learning", pub-
lished by Springer in 2023 [3], define attention mechanism as a computational mech-
anism that allows a neural network to focus on specific parts of input data (such as
an image, text, or sequence) while performing a task. Instead of treating all input
elements equally, an attention mechanism assigns varying degrees of importance or
relevance to different elements or regions of the input. Attention mechanisms en-
hance the ability of neural networks to capture and process relevant information,
leading to improved model performance on complex tasks. This method is widely
used in sequence-to-sequence tasks, such as machine translation and natural lan-
guage processing, to handle variable-length input and output sequences effectively.

Highlighting the most influential parts of the input that contribute to a predic-
tion should be a strategically essential aspect to consider during model training [44].
Having the ability to comprehend why the model makes a particular output decision,
such as classification in this thesis, offers a significant advantage in dispelling the
black box phenomenon. This matter encompasses various aspects that will be fur-
ther explored later in this dissertation. Despite the advantages of events, attention
can be dangerous; adding attention mechanisms can make models more complex,
potentially requiring more training data and computational resources. Moreover,
complex attention mechanisms can lead to overfitting, especially when there is lim-
ited training data.

It can be applied in various ways, including:

• Spatial Attention: Emphasizing specific spatial regions of feature maps to high-
light important visual features. Which is the one I’m going to implement in the
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model [43].

• Channel Attention: Focusing on particular feature map channels to capture
relevant information in each channel [20].

• Global Average Pooling (GAP) Attention: Using global average pooling to com-
pute attention weights across spatial locations or channels [14].

• Self-Attention: Applying self-attention mechanisms, as seen in transformers,
to capture dependencies across all spatial positions and channels in feature
maps[34].

At the moment, our primary focus is on spatial attention because it will be the
one employed in this application. As for the other types, it suffices to be aware of
their existence.

It operates based on the idea that our visual system has limited processing capac-
ity, and we cannot process all visual information simultaneously. Spatial attention
allows us to prioritize processing for relevant regions and suppress processing for
irrelevant regions.

While spatial attention mechanisms are extensively employed in deep networks,
there has been a scarcity of research and analysis dedicated to them. This is the pri-
mary focus of the paper titled "An Empirical Study of Spatial Attention Mechanisms
in Deep Networks," authored by Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen
Lin, and Jifeng Dai [46]. Moreover, the authors support that there is a large range
for improvement in the design of spatial attention mechanisms in deep networks,
and the study’s findings pave the way for further exploration and optimization in
this field. The work also tries to understand the effects of different attention factors
and mechanisms. Key findings from the study challenge conventional beliefs about
the significance of query-sensitive attention. For instance, it suggests that in self-
attention, query-sensitive terms, especially query and key content, play a minor role,
while deformable convolution performs effectively in image recognition. This chal-
lenges the common perception that query-sensitive attention is the main driver of
success in attention mechanisms. Note that, the query is a representation of the ele-
ment or position in the input sequence for which we want to calculate the attention
scores. The key is a representation of all the other elements in the input sequence. It
provides information about these elements that is used to assess their importance or
relevance concerning the query. The key helps in determining how much attention
should be given to each element in relation to the query. Together, the query and
key are used to calculate attention scores or weights, which indicate the degree of
relevance or importance of each element in the input sequence concerning the query.
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Another crucial decision is where to integrate spatial attention within the neural
network architecture. Common choices include adding it to convolutional layers or
incorporating it into the attention mechanisms of transformer-based models. Later,
in this thesis, we will see an implementation on a conv layer. Moreover, when working
with attention is crucial to specify what convolutional layers we want to incorporate
spatial attention. Note that there is the possibility to add spatial attention to one
or more convolutional layers based on the task’s requirements and computational
resources. When attention is initialized it is fed by the input feature maps from the
previous convolutional layer and, optionally, the query content.

2.3 Model Train

In the preceding sections, we’ve examined the primary layers of a CNN, including the
attention layer, which introduces training complexity. Once again, the book "Neural
Networks and Deep Learning" by Charu C. Aggarwal published by Springer in 2023
[3], explains how expanding the network’s depth comes with its own set of challenges.
Deeper networks tend to be more challenging to train and are notably influenced
by parameter and hyperparameter selection. This is attributed to the heightened
complexity of the loss function due to recursive composition as depth increases,
resulting in unpredictable behaviors during gradient descent. Training the model is
a crucial process of teaching a deep learning model to recognize patterns and make
predictions or decisions based on input data. Remember that the goal of model
training is to find the optimal set of parameters that minimize the loss function,
allowing the model to make accurate predictions or decisions on new, unseen data.

The training process involves a combination of mathematical optimization, it-
erative updates, and fine-tuning of hyperparameters to achieve the desired level of
performance. Hyperparameters determine the model’s behavior, performance, and
generalization ability. In other words; the choice of hyperparameters can impact the
training process’s efficiency. Different machine learning tasks and datasets may re-
quire different hyperparameters: what works well for one problem may not work as
effectively for another. Here are some of the key hyperparameters along with brief
explanations:

• Loss Function: The choice of a loss function defines how the model’s perfor-
mance is measured during training. It quantifies the error between the predicted
values and the actual target values. Different tasks (e.g., classification, regres-
sion) require different loss functions (e.g., Mean Squared Error, Cross-Entropy)
to optimize effectively.
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• Optimization Algorithm: Optimization algorithms (e.g., Gradient Descent, Adam,
RMSprop) determine how the model’s parameters are updated based on the
loss function. Each algorithm has its strengths and weaknesses, and the choice
can significantly affect training speed and convergence.

In the following section, we’re going deeper into Loss Function and Optimization
Hyperparameters.

2.3.1 Loss Function

CNNs are trained using a loss function, which measures the disparity between the
predicted outputs and the actual ground-truth labels. The goal during training is to
minimize this loss, which is achieved using optimization algorithms like Stochastic
Gradient Descent (SGD) or its variants. The Loss Function (also called the Cost
Function or Objective Function) is a mathematical measure that quantifies the dif-
ference between the predicted output of the CNN and the true target labels. The
goal during training is to minimize this loss, which reflects how well the model is
performing on the training data. By minimizing the loss, CNN learns to make better
predictions on unseen data. The selection of the loss function is contingent upon the
particular task being addressed. Typical loss functions for various tasks encompass
Mean Squared Error (MSE), which is applied in regression tasks where the output
is continuous, aiming to minimize the average of the squared discrepancies between
the predicted values and the actual values.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (2.1)

Another one can be Binary Cross-Entropy, which is used for binary classification
tasks, where the output is a single value representing the probability of belonging
to one of two classes. It measures the difference between the predicted probability
and the true label. To name another one; Categorical Cross-Entropy, is used for
multi-class classification tasks, where the output is a probability distribution over
multiple classes. It measures the difference between the predicted probabilities and
the true one-hot encoded labels. The categorical cross-entropy loss is used for multi-
class classification problems[18]. It measures the dissimilarity between the true class
probabilities (yi) and the predicted probabilities (ŷi) for each class i.

Categorical Cross-Entropy = −
C∑

i=1
yi · log(ŷi) (2.2)
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Where:

• C is the number of classes.

• yi is the true probability of class i (one-hot encoded).

• ŷi is the predicted probability of class i.

One benefit of using the loss function is that it heavily penalizes incorrect predic-
tions. This emphasis on correctness helps the model focus on assigning high prob-
abilities to the correct classes. Categorical Cross-Entropy can be sensitive to class
imbalances, which is not the case. The logarithmic nature of Categorical Cross-
Entropy can cause sensitivity to extreme predictions. Very confident but incorrect
predictions can lead to disproportionately high losses[18].

2.3.2 Optimization

Optimization is the process of updating the parameters (weights and biases) of the
CNN in order to minimize the chosen loss function. The goal is to find the optimal
values for the model's parameters that make it perform well on the training data and
generalize well to unseen data[10] The process of optimization involves an iterative
approach using gradient-based algorithms. The most commonly used optimization
algorithms in CNNs include:

• Stochastic Gradient Descent (SGD): During every iteration, SGD
chooses a random subset of the training data known as a mini-batch.
It employs this mini-batch to calculate the gradients of the loss func-
tion concerning the model parameters. Subsequently, SGD adjusts the
parameters in the direction opposite to the gradients to reduce the
loss.

• Adam (Adaptive Moment Estimation): Adam is an algorithm
that adapts the learning rate for each parameter based on its past
gradient [10].

Adam maintains a running average of both the first-order moments (the mean)
and the second-order moments (the uncentered variance) of the gradients. This
helps the optimizer adaptively adjust the learning rates for each parameter during
training. The update step for the parameter θ at time step t in Adam is given by:

θt+1 = θt − η√
v̂t + ϵ

· m̂t (2.3)

Where:
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• θt is the parameter at time step t.

• η is the learning rate, determining the step size of the update.

• m̂t is the biased first-moment estimate (mean of gradients) at time step t:
m̂t = mt

1−βt
1
, where mt is the raw first-moment estimate and β1 is the exponential

decay rate for the first moment.

• v̂t is the biased second raw moment estimate (uncentered variance of gradients)
at time step t: v̂t = vt

1−βt
2
, where vt is the raw second-moment estimate and β2

is the exponential decay rate for the second moment.

• ϵ is a small constant to prevent division by zero.

Adam adapts the learning rates for each parameter based on their past gradi-
ents. This enables faster convergence and efficient updates, especially for features
with sparse gradients or in high-dimensional spaces. Doing this requires the stor-
age of past gradients’ first and second moments for each parameter, which can be
memory-intensive for large models and datasets. Moreover, it uses bias correction
to counteract the initial bias of the moving averages. This is particularly helpful
during the early stages of training when the moving averages are close to zero. Un-
fortunately, Adam has several hyperparameters such as the learning rate (η), and
the exponential decay rates (β1 and β2). Poorly tuned hyperparameters can result
in suboptimal convergence.

While Adam performs well in practice, its convergence guarantees are not as
well-established as some other optimization algorithms like SGD with momentum.

2.4 Classical CNN Architectures

Thanks to the growing importance of CNNs, the studies in computer vision over
the years have created various architectures. Each architecture is designed to tackle
specific challenges in image recognition, object detection, segmentation, and other
related tasks. In this introduction, I'll briefly outline some popular CNN architec-
tures.

2.4.1 LeNet -5

LeNet-5 is one of the earliest CNN architectures, developed by Yann LeCun et al.
in 1998. It was designed to recognize handwritten digits in images and played a
significant role in popularizing CNNs for image recognition tasks. LeNet-5 consists
of seven layers, see Figure 2.7, including convolutional, pooling, and fully connected
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layers.

Figure 2.7: A graphical rapresentation of LaNet -5 from "Student Notes: Convolutional Neural
Networks (CNN) Introduction" [26]

1. Input Layer: The input to LeNet-5 is a grayscale image of size 32x32 pixels. At
the time of its development, this size was suitable for recognizing handwritten
digits.

2. First Convolutional Layer (C1): The first layer is a convolutional layer
with six filters, each of size 5x5. The filters move across the input image with a
stride of 1 and apply element-wise multiplication with the corresponding pixels
in the receptive field. The result is then summed up to create a feature map.
The output of this layer is six feature maps with a size of 28x28, resulting from
a reduction in spatial dimensions due to the 5x5 convolutional operation.

3. First Average Pooling Layer (S2): The first pooling layer is an average
pooling layer with a filter size of 2x2 and a stride of 2. Average pooling replaces
the 2x2 regions in each feature map with their average value, effectively reducing
the spatial dimensions by half. The output of this layer is six feature maps with
a size of 14x14.

4. Second Convolutional Layer (C3): The second convolutional layer has 16
filters, each of size 5x5. Like in the first layer, the filters convolve over the output
of the first pooling layer (S2) and generate 16 feature maps of size 10x10.

5. Second Average Pooling Layer (S4): The second pooling layer is also an
average pooling layer with a filter size of 2x2 and a stride of 2. It reduces the
spatial dimensions further to 5x5, resulting in 16 feature maps of size 5x5.

6. Fully Connected Layer (C5): The fifth layer is a fully connected layer with
120 neurons. Each neuron is connected to every element of the 5x5x16 fea-
ture maps obtained from the second pooling layer. The fully connected layer
learns high-level abstract features from the lower-level features learned by the
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convolutional layers.

7. Fully Connected Layer (F6): The sixth layer is another fully connected
layer with 84 neurons. It is connected to the 120 neurons of the previous layer
(C5) and learns to represent even higher-level features.

8. Output Layer: The final layer is the output layer with ten neurons, corre-
sponding to the ten possible digits (0 to 9). The output layer employs a softmax
activation function to convert the output values into probabilities, indicating
the likelihood of the input image representing each digit.

LeNet-5's architecture might appear simple compared to modern CNNs, but its
design and success marked the beginning of using CNNs for image recognition tasks
[4]. Despite its age, LeNet-5's principles and concepts still influence many contem-
porary CNN architectures

2.4.2 Vgg-16

VGG16 is a deep CNN architecture with 16 layers, hence the name "16." It gained
popularity for its uniform structure, where most of the layers consist of 3x3 convo-
lutional filters and 2x2 max pooling layers. The VGG16 architecture, visualized in
Figure 2.8, has a straightforward and easy-to-understand design, making it widely
used as a baseline model for various computer vision.

Figure 2.8: A graphical rapresentation of Vgg16 from "Student Notes: Convolutional Neural
Networks (CNN) Introduction" [26]

1. Input Layer: The input to VGG16 is an RGB image of size 224x224 pixels.

2. Convolutional Layers: The model consists of 13 convolutional layers, with
varying numbers of filters in each layer (ranging from 64 to 512). Each convo-
lutional layer uses a small 3x3 filter with a stride of 1 and same padding.

3. Max Pooling Layers: After every two convolutional layers, there is a max
pooling layer with a 2x2 filter and a stride of 2. Max pooling reduces the spatial
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dimensions, making the model more computationally efficient and increasing
the receptive field of the filters.

4. Fully Connected Layers: Following the convolutional layers, there are three
fully connected layers with 4096 units each. These layers gradually reduce the
spatial dimensions to a 1x1x4096 feature vector.

5. Output Layer: The final layer is the output layer, which consists of 1000
units representing different classes (assuming it’s used on the ImageNet dataset,
which has 1000 classes). The activation function for the output layer is usually
softmax to convert the logits into probabilities.

VGG19 is an extension of VGG16 with 19 layers. It has a similar architecture to
VGG16 but includes four additional convolutional layers, making it deeper. The ex-
tra layers allow VGG19 to capture more complex patterns and features, potentially
leading to improved performance in certain tasks. However, the additional layers
also make VGG19 computationally more expensive [23]. The architecture of VGG19
is almost identical to VGG16, with the only difference being the number of convo-
lutional layers. The main difference is in the number of filters in each layer, which is
also increased to maintain the same pattern of doubling the number of filters after
each max pooling layer.

2.4.3 ResNet

ResNet, short for "Residual Network", is a deep convolutional neural network ar-
chitecture proposed by Kaiming He et al. from Microsoft Research in 2015[16]. It
addressed the challenge of training very deep neural networks by introducing the
concept of residual blocks, enabling the successful training of networks with hun-
dreds or even thousands of layers.

The main insight behind ResNet is the use of residual connections, also known
as skip connections or shortcut connections. These connections allow the model to
learn residual mappings, which makes it easier for the network to learn identity
functions and enables better optimization during training. The skip connections
directly connect the output of one layer to the input of a later layer, allowing the
gradient to bypass several layers and flow directly during backpropagation. This
helps alleviate the vanishing gradient problem, where the gradients become too
small to effectively update the weights in very deep networks. Here are the key
components of the ResNet architecture:

1. Identity Block: The building block of ResNet is the identity block, which is
used to learn the residual mapping. It consists of a series of convolutional layers
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with small 3x3 filters, followed by batch normalization and ReLU activation.
The output of the final convolutional layer is added element-wise to the input
of the block (shortcut connection), and the result is passed through another
ReLU activation. The purpose of this block is to learn the residual (difference)
between the input and output features.

2. Convolutional Block: The convolutional block is similar to the identity block
but includes an extra convolutional layer with a 1x1 filter at the beginning.
This additional layer helps to adjust the dimensions of the input and output
if they are not the same. The remaining layers are the same as in the identity
block, with a series of 3x3 convolutional layers, batch normalization, and ReLU
activation.

3. Skip Connections (Shortcut Connections): The key innovation in ResNet
is the skip connections, which allow the gradient to flow more efficiently during
training. In the identity block, the input is directly added to the output, creating
a shortcut connection. In the convolutional block, a 1x1 convolutional layer is
used to adjust the dimensions of the input before adding it to the output.

4. ResNet Architectures: ResNet comes in different variants, depending on the
depth of the network. The original ResNet paper proposed ResNet-18, ResNet-
34, ResNet-50, ResNet-101, and ResNet-152. The numbers indicate the total
number of layers in each variant (including convolutional, batch normalization,
and ReLU layers).

2.5 Interpretability of the Model: Into the black
box

The concept of understanding the interpretability of models, especially when deal-
ing with complex ones like CNNs, holds great significance for various reasons. The
rapid adoption of machine learning algorithms has surpassed the development of a
clear framework to comprehend them. This has eventually led to the issue of the
"black box problem", which suggests that these algorithms lack transparency and
are challenging to interpret or explain, particularly in ways that humans can easily
grasp. Maya Krishnan1, in her article "Interpretability in Deep Learning", questions
the prevailing consensus about the existence and importance of the black box prob-
lem. The terms such as "interpretability", "applicability", and related concepts lack

1"Against Interpretability: a Critical Examination of the Interpretability Problem in
Machine Learning" published in 2020 [17]
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precise definitions when applied to algorithms. This poses a challenge in using these
concepts effectively to address the issues that have prompted the need for inter-
pretability. Additionally, the absence of clear definitions makes it hard to determine
whether specific technical features can provide formal definitions for these concepts.

A book titled "Interpretability in Deep Learning" authored by Ayush Somani
[40], Alexander Horsch, and Dilip K., delves into understanding the functioning of
deep learning and artificial neural networks (ANNs). These networks resemble com-
puterized brains capable of learning and performing tasks akin to humans, such as
recognizing faces, deciphering handwriting, and driving vehicles proficiently. Never-
theless, the enigma arises when these networks behave like black boxes, concealing
the mechanisms behind their decisions. Imagine a self-driving car employing complex
deep learning algorithms suddenly failing to slow down at a roundabout, potentially
leading to dangerous situations. The opaqueness inherent in deep learning models
curtails their usability in critical domains, necessitating a comprehensive grasp of
their functionality, especially in contexts as crucial as healthcare. To tackle this
challenge, researchers are working on enhancing the transparency and comprehensi-
bility of Artificial Intelligence, termed as "eXplainable Artificial Intelligence (XAI)."
This pursuit aims to imbue AI with fairness, transparency, and reliability. The book
delves into the significance of understanding AI mechanisms, particularly in fields
like medicine.

The ambiguity surrounding AI terminology becomes apparent, emphasizing the
need for precise definitions. The authors also explore strategies to ensure the depend-
ability, impartiality, and adherence to ethical principles in AI systems. The authors
utilize the Five Ws—Who, What, Where, When, Why, and How—to systemati-
cally probe the intricacies of the black box problem. They highlight the challenge
of making AI comprehensible, particularly in intricate fields like medicine. When
introducing new systems, understanding their functioning and potential impacts is
imperative. An inadequately trained AI system can lead to errors and susceptibil-
ity to manipulation, underscoring the need for a balance between optimal perfor-
mance and interpretability. This equilibrium is depicted graphically in Figure 2.9,
illustrating the pivotal roles of both aspects in cultivating responsible, robust, and
accountable AI systems.

What Figure 2.9 wants to express is that in the realm of Deep Learning, there’s a
trade-off between model interpretability and raw performance. This trade-off reflects
the balance between having a model that can be easily understood and one that
achieves exceptional predictive accuracy but is challenging to dissect. In simple
words; Sometimes it’s better to have an interpretable model than a model that
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Figure 2.9: AI Payoff illustration from "Interpretability in Deep Learning" book. Authored by
Ayush Somani, Alexander Horsch, and Dilip K. Prasad. It is published by Springer Cham. [40]

performs very well but can’t be understood from within.

Sometimes, things get complicated because there are problems that can't be eas-
ily put into clear rules, like ethical questions. This makes it hard to fully understand
or explain those things. The book provides examples like the difficulty of creating
a fair criminal risk assessment tool aligned with human justice notions or ensuring
safety while exploring scientific problems. It is really important to find out if they
have any unfair biases. These biases could come from the data they were trained
on and continue to cause unfairness. Interpretable Deep Learning (IDL) emerges as
a valuable tool to uncover hidden relationships within intricate datasets, preclud-
ing unjust biases toward specific groups. The discussion underscores the potential
of algorithms to yield harmful discriminatory outcomes when employed in auto-
mated decision-making processes. Initiatives such as the Association for Computing
Machinery's (ACM) transparency and accountability statement and the Defense
Advanced Research Projects Agency's (DARPA) eXplainable Artificial Intelligence
(XAI) program strives to bestow models with clarity and accuracy. On the regula-
tory front, the European Union's General Data Protection Regulation (GDPR) plays
a pivotal role, mandating explanations for automated decision-making. This regu-
latory landscape resonates across sectors handling personal data, including finance,
social networks, and healthcare, necessitating accountability through measures like
auditability, mitigation of adverse effects, ethical trade-offs, and compensation for
unforeseen negative outcomes.

In the context of this project, several favorable aspects come to light in support of
Convolutional Neural Networks (CNNs). According to Francois Chollet, the author
of "Deep Learning with Python" by Manning Shelter Island in 2018 [8], the issue of
the black box is mitigated when we delve into the realm of convolutional networks.
Specifically, Francois highlights how since 2013, many methods have been developed
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to visualize what happens inside the network. What is learned by ConvNets can now
be visualized.

Francois mentioned three methods to visualize ConvNets:

1. Visualize Intermediate ConvNet Output (Intermediate Activation): As the in-
put image passes through each layer, intermediate activations are produced.
These intermediate activations represent the feature maps generated by each
filter in a particular layer. Each feature map highlights a specific aspect of the
input image that the corresponding filter is sensitive to.

2. Visualize ConvNet Filters: Convolutional filters are used in ConvNets to detect
specific patterns or features in an image, such as edges, textures, or more com-
plex structures. By visualizing the filters, I can gain insights into the network’s
feature extraction process.

3. Visualize Heatmap of Class Activation in an Image: Class activation maps
(CAMs) are used to visualize which parts of an input image are most important
in making a prediction for a specific class. This method helps to understand
which regions of the input image contributed the most to the network’s decision.
By overlaying a heatmap on the input image, with hotter areas indicating higher
activation for a particular class, it is possible to see where ConvNet is focusing
its attention to make a classification decision.

Remember, as mentioned in section 2.2.5, that another crucial method to let the
model begin more understandable is using an attention mechanism. To achieve this
goal, which is to break the black box, enter it, and understand it, for this thesis, we
implemented a classification model that internally incorporates an attention model.
After training the model, we then examined what happens within the attention
layers plotting the results and observing how attention changes in different scenarios.
After the practical application that we will see in the next chapter, it will become
evident how attention serves as a valuable strategy to make the model’s functioning
understandable, not only to data scientists but also to non technical stakeholders.

Black Box problem in corporate adoption

The black box issue is particularly relevant in industries such as fashion, where
businesses heavily rely on these models for brand recognition and decision-making.
In this context, let’s explore the importance of interpretability through the lens of
a fashion-focused CNN and its adoption within fashion enterprises.

Fashion companies, often structured in a hierarchical manner, tend to follow a
top-down approach when adopting complex solutions. Consider a scenario where a
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CNN is designed for brand recognition within the fashion sector. Such a solution
holds the potential to impact diverse areas of decision-making across the company.
To ensure its effective implementation, it’s imperative that key stakeholders, par-
ticularly the Global Leadership Team (GLT) and GLT-1, are deeply involved in
understanding, approving, and endorsing the solution. By involving these top-tier
decision-makers at the outset, the adoption process becomes smoother for other man-
agers and operational staff. Complex solutions like the CNN model, which enable
strategic decision-making, are more likely to be embraced if they are first embraced
by high-level executives. This initial buy-in builds trust in the decisions made by the
model and encourages its usage across the organization. When decisions are made
based on the model’s recommendations, they are viewed with less skepticism, as the
rationale behind each choice is clear.

In contrast, when organizations skip this top-down involvement and adopt com-
plex models from the bottom-up, they often face challenges in garnering trust and
understanding from higher levels of management. This can result in a lack of con-
fidence in the model’s decisions, hindering its effective implementation and leading
to wasted resources in its development. Without the endorsement and comprehen-
sion of decision-makers at the strategic level, the intricate insights generated by
the CNN model may go unnoticed or underutilized. To address this, the process
of integrating complex models should emphasize the interpretability of the black
box. This involves methods and tools that provide transparency into the decision-
making process of the CNN model. Visualizations, feature importance scores, and
other interpretability techniques can aid in showcasing how the model arrives at
its conclusions. These insights bridge the gap between the technical intricacies of
the model and the decision-makers understanding, enabling them to make informed
choices based on the model’s output.

In conclusion, while interpretable models may not consistently attain an high
accuracy comparing to their complex counterparts, the preference often leans decid-
edly toward choosing interpretability over models that remain enigmatic or difficult
to fathom.In other words, having a model that one can fully comprehend and explain
is frequently deemed more desirable than possessing a highly accurate but opaque
one.
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Chapter 3

Application of a CNN to
Runway Fashion Show
Images

In this chapter, we present the practical implementation of CNNs to tackle the task
of brand classification for a large dataset of runway fashion show images.

The model developed with the primary objective of accurately assigning each
outfit image to its corresponding brand can have several valuable applications in
the fashion industry and beyond. To achieve this, we leverage a VGG16 architecture
enhanced with attention mechanisms, specifically using heatmap visualization. We
explore transfer learning, initializing the VGG16 model with pre-trained weights
from a large-scale image recognition task; the ImageNet. By leveraging pre-trained
weights, we aim to capture meaningful image features that can be applied to our
specific domain; runway fashion show images.

Additionally, we enhance the standard VGG16 architecture with attention mech-
anisms, allowing the model to focus on distinctive regions of the input image, hope-
fully, it should potentially improve its discriminative power. Lately, the practical
implementation of the CNN-based will be fully detailed, viewing the model train-
ing, and testing phases, and conclude with a comprehensive visualization of the
model's results using heatmaps.
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3.1 Runway Dataset

In the context of fashion trend analysis and fashion show monitoring, one of the main
challenges we encountered was the lack of datasets containing images grouped by
brand and related to various fashion shows. To overcome this issue, we created an ad
hoc dataset aimed at collecting detailed data on fashion brand shows. We identified
the website "nowfashion.com" as a valuable source of information and images. The
creation of a specific dataset for our purpose became essential for several reasons: The
absence of preexisting datasets containing images organized by brand and fashion
shows made fashion trend analysis and brand performance evaluation challenging.
Collecting data from various unstructured sources could lead to inconsistent and
low-quality data, while creating an ad hoc dataset allowed us to ensure the accuracy
and consistency of the collected data.

To gather data from "nowfashion.com," we developed a web scraping script. This
script allowed us to automatically extract fashion show images, brand-related in-
formation, dates, locations, and other relevant data. The collected data was then
organized and saved into a CSV file as in Figure 3.1. We shared our dataset in Kag-
gle repository ( https://www.kaggle.com/datasets/martarello
elena/runways-from-major-brands-since-2011).

In Figure 3.1 there is a sample of the final output.

Figure 3.1: An extract of a CSV file

Here is a breakdown of the columns in the DataFrame:

1. ‘collection_url‘: This column contains URLs related to a collection.

2. ‘image_url‘: This column contains URLs images related.

3. ‘image_name‘: This column contains the name of the image file.

4. ‘image_path‘: This column contains the relative path to the image file
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within the collection or website directory.

5. ‘image_size‘: This column represents the size of the image in bytes.

6. ‘image_width‘: This column contains the width of the image in pixels.

7. ‘image_height‘: This column contains the height of the image in pixels.

8. ‘image_mode‘: This column might be used to store the color mode of
the image, and in this sample, it is RGB (Red, Green, Blue).

The amassed data quantity was quite captivating. Potentially, we could have en-
gaged with 132,153 images across 1,404 distinct brands. Regrettably, this proposition
proved unattainable within the confines of this project. Primarily, the computational
prowess required to effectively manage the substantial 30GB of photos loomed large.
The device we employed, an M1 MacBook Air, was not originally designed for data
science tasks. Furthermore, the vexing issue of class imbalance necessitated res-
olution. Among the 1,404 brands, image distribution was uneven due to disparate
origins or staggered entries into the realm of ready-to-wear fashion. One approach to
addressing this imbalance is oversampling the less-represented category. Regardless
of the technique employed, generating novel synthetic photos entails increased giga-
byte consumption. While undersampling could have been an option, it might have
introduced its own set of complications. This decision hinges upon the weight of the
selected sample in training the data, as indicated by the predicaments outlined. As
a result, the chosen path led to concentrating on a handful of brands with the most
substantial image count, due to these challenges. In the upcoming sections, we will
explore the selection of the brands used and how their photos were preprocessed.

3.2 Data Statistic

The loaded data frame, as presented at the conclusion of section 3.1, contains the
paths where the images are stored. Before proceeding to load images that might even-
tually go unused, we examined the brands with the highest photo counts, namely:

1. Valentino: 1140

2. Fendi: 940

3. Rick Owens: 880

4. Yohji Yamamoto: 880

5. Louis Vuitton: 880

6. Versace: 854

7. Giorgio Armani: 841

8. Hermes: 840

9. Dries Van Noten: 840

10. Chanel: 840
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We opted to focus on these specific brands: [’Rick Owens’, ’Dries Van Noten’,
’Versace’, ’Louis Vuitton’, ’Chanel’, ’Giorgio Armani’]. This choice stems from var-
ious reasons, some more objective than others. Certainly, personal taste plays a
significant role1. Another rationale behind this selection is the quantity of photos
associated with each brand. These brands exhibit a well-balanced class distribution,
contributing to a favorable data balance.

Compared to what was stated in chapter 1, the various artistic directions and
designers who have contributed to the creation of collections are a very important
factor. This is because each collaboration and director brings personal aspects to
their work that differentiate their work from that of others. The selected brands
generally maintain consistent artistic directors; however, every year and for some
releases, they involve different collaborations with various artists and designers.

3.3 Images Preprocessing

According to A. Famili, Wei-Min Shen, Richard Weber, and Evangelos Simoudis; im-
age data preprocessing refers to the procedures conducted on raw image data before
its utilization in analyses or its input into machine learning algorithms. These au-
thors in their paper "Data Preprocessing and Intelligent Data Analysis" [12] explain
how this process encompasses multiple stages designed to improve the image data’s
quality and appropriateness for subsequent tasks. This step encompasses actions
such as resizing, standardization, augmentation, and noise reduction, all aimed at
guaranteeing that the data is in a fitting state for analysis or model training. Some
of these steps are detailed in the next section.

3.3.1 Background removal

The first crucial transformation needed is removing the image’s background, which
means eliminating the surroundings from an image, leaving only the main subject,
in this case, the model. Please note that the model we will develop later in this
chapter is applied twice: once to the images with backgrounds and then to the
images without backgrounds. The objective is to determine whether the presence of
a background has any impact on the classification. By removing the background,
the focus is shifted solely to the clothing items showcased on the runway. What we
expect here, is that the model should be more focused on outfits. In other words; the
fashion analysis could be more effective without distractions from the surrounding

1I have a strong affinity for Versace and the style of Rick Owens. Chanel and Giorgio
Armani, in my view, are indispensable as well.
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environment. Backgrounds in runway images can vary greatly from one photo to
another, depending on the location of the show and the photographer's positioning.
Removing the background creates a consistent and uniform presentation of clothing
items, making it easier to compare different designs side by side.

To pursue this objective, we used the rembg library1. The rembg library has
garnered significant attention from developers alike due to its straightforwardness
and effectiveness in background removal. It finds applications in various domains,
including graphic design, image editing, and computer vision tasks. This open-source
library is continually maintained and updated by the community, ensuring that users
can easily harness its capabilities for background removal.

This library use a deep learning architecture known as U2-Net. The author let
some references, in particular, the paper "U2-Net: Going Deeper with Nested U-
Structure for Salient Object Detection" by Xuebin Qin, Zichen Zhang, Chenyang
Huang, Masood Dehghan, Osmar R. Zaiane, and Martin Jagersand from the Uni-
versity of Alberta, Canada [27]. Rembg library utilizes the U2-Net model, specifically
designed for salient object detection, as a component of its background removal pro-
cess.

The model starts by taking in the binary data of an image file. This data includes
information about the picture’s colors and other details. The U2-Net’s design is
like a set of nested layers, each with a specific job. These layers work together to
understand the image better, focusing on both the tiny details and the big shapes. As
the image goes through these layers, they look at it from different angles. This helps
the model recognize objects of all sizes and complexities. The layers combine all the
information they gather from different angles and levels. This way, they create a full
picture of what’s in the image, taking into account both local details and the overall
scene. With all this combined information, the U2-Net gets a deep understanding of
the image. It can spot the edges, shapes, textures, and other signs that show where
important objects are. Using the information it has gathered, the U2-Net performs
object segmentation. This means it creates a binary mask that distinguishes between
the salient objects (foreground) and the less significant areas (background). Pixels
corresponding to the salient objects are marked as "1", while pixels corresponding
to the background are marked as "0". The binary mask generated by the U2-Net is
the output of the model. This mask essentially highlights the regions of the image
where the salient objects are located. At this point, the map can be used to put on

1You can find the GitHub repository for the library at the following link:
https://github.com/danielgatis/rembg.
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top of the original image to show where the important objects are, or it can be used
to cut out the important objects from the background like rembg does. In Figure
3.2 there are some results:

Figure 3.2: Background removal: some results

3.3.2 Transforming the Images

As already mentioned, data preprocessing involves transforming and preparing the
data to be suitable for feeding into a machine-learning model. For the purpose of
this project, the process applied to images concerns different steps. Look at the code
below, in the Figure 3.3.

Figure 3.3: First custom CNN with self-attention layer

Images are typically represented as tensor array in machine learning because they
are efficient and easy to work with. Tensor arrays are multidimensional arrays that
can store data of numerical type. This makes them ideal for storing image data,
which is typically multidimensional. The function built for prepossessing performs
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the normalization of the pixels. Normalization is the process of scaling the data to
a specific range of values. In this case, the data is being scaled to a range of values
between 0 and 1. Moreover normalizing the data can help to ensure that all of the
features in the data are given equal weight. This can prevent the machine learning
model from overfitting the training data. Second, normalization can help to improve
the efficiency of machine learning models. We can reduce the amount of computation
that is required by the machine learning model. This can be especially important
for large datasets.

3.3.3 Data Augmentation

Data augmentation is a method employed in machine learning and data science to
expand a dataset’s size by implementing different alterations and adjustments to the
original data. These modifications introduce variety and unpredictability into the
dataset, potentially enhancing the effectiveness and resilience of machine learning
models. Data augmentation methods are frequently utilized with images, text, and
various other forms of data. The network built for this project has some layers born
to make data augmentation. The following bullet points briefly explain them:

1. RandomFlip Layer: This layer applies random horizontal flipping to the input
images, which helps the model learn from different orientations of the same
objects.

2. andomRotation Layer: Here is another data augmentation technique, this layer
applies random rotation to the input images. It rotates the images by a small
angle, up to 0.1 radians, to expose the model to variations in object orientations.
The output of the shape is: (None, 224, 224, 3)

3. RandomTranslation Layer: The last data augmentation layer is now run, which
performs random horizontal translation on the input images. It moves the pixels
in the image horizontally by up to 20This helps the model learn to recognize
objects even when they are slightly off-center.

3.4 The model

The network we implemented has a backbone part and a custom part. In this section
we are going into the customization made for this network. The full model structured
is display is figure 3.4, and the focus of the attention mechanism is display in Figure
3.5. For the backbone part, we used a pretrained VGG16 model without the top
classification layer, which is in TensorFlow. Note, that the top classification layer
in a deep learning model, like VGG16, consists of the final layer that performs
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predictions or classifications. This layer utilizes the high-level features acquired by
earlier layers to classify input data into distinct categories or classes. By eliminating
the top classification layer, the specific classification functionalities of the model
get eliminated while preserving its feature extraction capabilities. This enables the
addition of a new customized classification layer tailored to the particular task.
Initially, this model was applied to the original images. Subsequently, the same
model was applied to images with the background removed. This approach aims to
explore potential variations in the model’s performance under different conditions.

Figure 3.4: The structure of the Neural Netwrok implemented: backbone model (VGG16) and
the custom part

The architecture consists of several layers and some of them were already ex-
plained in section 2.2. Here the full of layers:

1. Input Layer

2. 13 convolutional layers and pooling layers (backbone Model)

3. Attention Mechanism

4. Element-wise Multiplication with Attention Map

5. Remaining Feature Extraction Layers (backbone Model)

6. Global Max Pooling Layer (global_max_pooling2d_2)
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7. Classification layers

Next, only some of the aforementioned layers will be explained. Element-wise
Multiplication with Attention Map, the Remaining Feature Extraction Layers (Back-
bone Model) and the dropout layer explained in the next section. In the application
we are discussing, their operation is not different from what has already been ex-
plained in chapter 2.

3.4.1 Attention Mechanism

In this section, we won’t explain so much what attention is but rather where it is
positioned within the network, how it is structured, and more generally, the steps it
takes. For an introduction to the topic, please refer to section 2.2.5.

During the fine-tuning process, we considered the option of placing the attention
mechanism at the penultimate position or in the sixth-to-last layer of the model
architecture. The task at hand involved the decision of whether to position the at-
tention mechanism closer to the input or closer to the output in the neural network
architecture. It’s crucial to acknowledge that this decision can be highly context-
dependent, influenced by the particular requirements of the task and the chosen
architectural design. However there are some shared best practices, for example,
placing attention mechanisms closer to the input can help with large input data,
such as high-resolution images, where not all parts of the input are equally im-
portant for the task. In this way the network focuses on relevant parts of the input
data, effectively performing feature selection. Attention at the input stage allows the
network to process and attend to salient information early in the forward pass, po-
tentially reducing the computational cost of processing irrelevant information later
in the network. On the other hand, placing attention mechanisms closer to the out-
put allows the network to access the full context and make decisions based on a
global view of the input data. Moreover; attention mechanisms can learn complex
interactions between different parts of the input and output sequences, enabling
the model to capture intricate patterns in the data. The attention mechanism is
inserted before the sixth-to-last layer of the backbone model. Specifically, it’s added
as a layer called attention, after a convolutional layer. Look at the Figure 3.5 to
have reference for the attention mechanism structure.

• Convolutional Layer (conv2d_2), which applies a convolution operation to the
feature maps from block4_conv3. The purpose of this convolutional operation
is to generate attention scores for each spatial location in the feature maps,
appling 512 filters. These attention scores are learned during training and rep-
resent the importance or relevance of each region in the feature maps.
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Figure 3.5: Scheme of how Attention Mechanism works. A stream which is part of Figure 3.5

• Dense Layer (dense_6): Following the convolutional layer, there is a single neu-
ron Dense layer called dense_6. Importantly, this Dense layer does not have
an activation function. The role of this Dense layer is to combine information
from the convolutional layer and transform it into a format suitable for fur-
ther processing. It helps in aggregating the attention scores produced by the
convolutional layer.

• Softmax Activation (softmax_2): After the Dense layer, the model applies a
softmax activation function, resulting in the layer named softmax_2. Before
applying attention to the input, the parameter ‘axis=[1, 2]‘, in the code, indi-
cates that the Softmax computation is performed separately along the height
and width axes of the image (i.e., along dimensions 1 and 2 of the tensor). The
softmax activation normalizes the attention scores to create a probability dis-
tribution. This distribution assigns probabilities to each location in the feature
maps, indicating how likely each location is to contain relevant information.
The softmax ensures that the sum of the probabilities across all locations is
equal to 1. Finally, the Multiply() operation is used to multiply the original
input by the normalized attention map. This means that the calculated atten-
tion determines how much each pixel of the input image contributes to the
final output of the network. The final output will be a weighted version of the
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input, where pixels that receive higher attention in the attention map will have
a greater impact on the output.

Basically the convolutional layer generated an attention map using the attention
mechanism. This attention map assigns importance scores to different spatial loca-
tions within the feature maps extracted from a specific layer (block4_conv3). In this
step, the model takes the attention map and performs element-wise multiplication
with the feature map. Element-wise multiplication means that it multiplies each ele-
ment (pixel) in the attention map by the corresponding element in the feature map.
In other words, each value in the attention map is used as a weight to scale the cor-
responding value in the feature map. The result of this element-wise multiplication
effectively emphasizes certain parts of the feature map while de-emphasizing others.
When these high values are multiplied by the corresponding elements in the feature
map, they have the effect of amplifying the information in those regions. In other
words, the features in the high-attention areas are highlighted and become more in-
fluential in subsequent processing. Conversely, locations in the attention map with
low values indicate regions that are less important. When multiplied with the fea-
ture map, they have the effect of reducing the influence of the information in those
regions. Features in the low-attention areas are downplayed or suppressed. The pur-
pose of this element-wise multiplication is to allow the model to dynamically adjust
its focus on different parts of the feature map based on what it has learned during
training. It’s a mechanism for the model to selectively attend to relevant features
and ignore less informative or noisy parts of the feature map.

In Figure 3.6, we can find an example of the output of the attention map, specif-
ically for the model applied to both images with the background and those without.
What we can notice at first glance is how the model seems to focus more on the
outfit in the model without the background, whereas when the model is presented
with an input with the background, it appears more distracted. Figure 3.6 shows
just an example of the product photos. However, we have made an effort to plot a
sufficient number of photos, subjecting them to a qualitative analysis. What follows
is that generally, the model without a background tends to focus better and with
more intensity on photos without the background. Where by intensity, we mean that
each pixel has a higher number.

After the element-wise multiplication step with the attention map, the model
proceeds with the remaining Feature Extraction Layers of the backbone Model.
Following the attention mechanism, the model resumes its feature extraction process
using the remaining layers in the backbone model. These layers consist, again, of
convolutional and pooling operations. It’s essential to note that the weights of these
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Figure 3.6: Visualizations of the Attention Maps for the same image using the two different
models trained with (top) and without (bottom) the background

layers are frozen, meaning they are not updated or modified during the training
process. This is a crucial aspect of transfer learning, where pre-trained models are
used as a starting point. By keeping these weights fixed, the model retains the
knowledge learned from a previous dataset (in this case, the ImageNet dataset) and
adapts it to the current task. As the data flows through these layers, higher-level
features are extracted, which are more abstract and semantically meaningful. These
features capture increasingly complex patterns and information in the input images.

3.4.2 Classification

The classification part of our network refers to the component of a model that is
responsible for assigning input data to specific categories or classes. Several layers
are set to perform classification, the fist one is a Global Max Pooling. This layer
reduces the spatial dimensions of the feature maps to a single vector. Global max
pooling selects the maximum value from each feature map, resulting in a fixed-size
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representation. The output of the Global Max Pooling Layer is a fixed-size represen-
tation, typically a one-dimensional vector. Each element in this vector corresponds
to the maximum value from a specific feature map. The number of elements in the
vector is equal to the number of feature maps. The resulting fixed-size representation
is a condensed and informative summary of the feature maps, making it suitable for
further processing in subsequent layers, which is a dense layer. Moving to the end
of this network, there is another fully connected layer with 512 units and ReLU
activation.

Finally the Dropout Layer, is a crucial component of neural networks, partic-
ularly for addressing the problem of overfitting. Overfitting occurs when a model
learns to memorize the training data rather than generalize from it. Dropout helps
mitigate this issue. In this model, a dropout rate of 20% is specified, meaning that
approximately 20% of the input units are randomly deactivated during each training
step. The key idea behind dropout is to introduce some level of randomness or un-
certainty into the model during training. By randomly deactivating units, dropout
prevents the network from relying too heavily on any specific set of neurons for
making predictions. This, in turn, encourages the model to learn more robust and
generalized representations of the data. Dropout acts as a form of regularization
because it discourages the network from fitting the training data too closely. During
inference or when making predictions, dropout is typically turned off, and all units
are used, ensuring that the model’s predictions are consistent and deterministic.

In this neural network architecture, the last layer is responsible for producing the
final predictions or outputs. Here, there are 6 units, which correspond to the six
different classes (brands).

The model architecture has a total of 15’275’463 parameters. Parameters in a
neural network are the tunable values that the model learns during training to
make accurate predictions. They include weights and biases associated with each
layer and neuron in the network. Among these parameters, 560’775 parameters are
trainable (weights that will be updated during training). Trainable parameters are
weights and biases that the model updates and adjusts during the training process
to minimize the loss and improve its performance on the given task. These param-
eters are typically found in the layers specific to the current task, such as the fully
connected layers or output layers. The remaining 14’714’688 parameters are non-
trainable (weights from the frozen backbone model). Non-trainable parameters are
weights and biases that come from a pre-trained backbone model and are not up-
dated during the training of the current model. These parameters capture knowledge
learned from a previous dataset (e.g., ImageNet) and are transferred to the current
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model through a process known as transfer learning. Non-trainable parameters are
often found in the layers of the backbone model, and they help the model leverage
existing knowledge to solve a new, related task.

3.5 Model Train

The first step in building a neural network model is defining its architecture. So, the
model is created using the Keras functional API. Before compiling the model, we set
a learning rate scheduler. This function is responsible for adjusting the learning rate
during training. Here, it starts with an initial learning rate of 0.001 and reduces it
by 10% after the first 100 epochs. This dynamic learning rate adjustment can help
improve training stability and convergence.

Once the model architecture is defined and the learning rate scheduler is in place,
the following step is to compile the model. As one training parameter, I’ve chosen
the Adam optimizer, a popular optimization algorithm that adapts the learning rate
during training to converge faster. Then, I’ve set the categorical cross-entropy loss
function.

The training steps takes into account the train data, validation data, epochs, and
batch size. The batch size specifies the number of training examples that are used
together to compute one update of the model’s parameters. In other words; when
training a neural network, I don’t typically update the model’s parameters after
every individual training example. Instead, I update the parameters based on a group
of examples, known as a "batch". Batch training is a technique that allows to perform
gradient descent and update the model’s weights using multiple training examples at
once. The noise in individual examples gradients can cancel each other out in a batch.
Averaging gradients across a batch has a slight regularization effect, similar to adding
a small amount of noise to the training process. This can help prevent overfitting. In
this case, 64 training examples are used in each batch. Batch training helps manage
memory and can speed up training through parallel processing on GPUs. Larger
batch sizes require more memory to store the gradients and intermediate results for
backpropagation. This can become a concern for large models and limited hardware
resources. With larger batches, updates occur less frequently, which can slow down
the training process. Smaller batches can update the model more frequently. Another
crucial parameter to set is the number of epochs. An epoch is a complete pass
through the entire training dataset. This parameter determines how many times
the model will see and learn from the entire dataset. In this case, the model is
trained for 100 epochs. The goal of using epochs is to improve the model’s ability
to generalize and make accurate predictions on new, unseen data. Training for more
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epochs can potentially improve model performance, but there’s a risk of overfitting
if the model starts fitting noise in the training data. After a certain number of
epochs, the model’s performance might plateau. Training beyond this point might
yield minimal improvements or even worsen performance due to overfitting. Multiple
epochs allow the model to see the data from different perspectives, learning various
patterns and relationships. This improves the model’s ability to generalize and make
accurate predictions on unseen data. Complex relationships in the data might require
several epochs for the model to learn effectively. Longer training times enable the
model to capture intricate patterns. As epochs progress, the model refines its weights
to minimize the loss. This helps the model approach convergence, where the training
loss stabilizes, indicating that the model has learned as much as it can from the data.

After training the identical model on two different sets of images—one set with
backgrounds and another set without backgrounds (as described in section 3.1.2)—it’s
essential to visualize and compare the results using appropriate plots. This compar-
ison will provide insights into the impact of including backgrounds on the model’s
performance.

3.6 Model Evaluation

Model evaluation is a crucial step in the machine learning and deep learning work-
flow. It involves assessing the performance and effectiveness of a trained machine-
learning model using various metrics and techniques. The goal of model evaluation
is to determine how well the model generalizes to unseen data and whether it meets
the desired criteria for a specific task.

3.6.1 Validation and Training Accuracy

Model with background

The training accuracy starts from a relatively low value and gradually increases
as the model learns from the training data. It exhibits a steady upward trend, in-
dicating that the model is improving and fitting the training data better over time.
The training accuracy reaches a high value, indicating that the model has learned
the training data well. The validation accuracy follows the training accuracy. It ex-
hibits an upward trend, indicating that the model is learning useful patterns from
the training data that generalize to the validation data. The validation accuracy
typically plateaus or fluctuates as the model encounters data it hasn’t seen during
training. A large gap between training and validation accuracy can indicate over-
fitting, where the model memorizes the training data but doesn’t generalize well to
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new data. In contrast, if both training and validation accuracies are low, it might
indicate underfitting, suggesting that the model is too simple to capture the un-
derlying patterns in the data. Here, a small gap between training and validation
accuracy suggests that the model is not overfitting the training data excessively. It
means that the model’s performance on unseen data (validation data) is consistent
with its performance on the training data, indicating that it has learned to generalize
effectively.

Model without background

The training accuracy starts from a relatively low value, indicating that the model
is initially performing poorly on the training data. As training progresses, there is a
gradual improvement in both training and validation accuracy. This suggests that
the model is learning and adapting to the data over time. Eventually, both training
and validation accuracy values appear to converge to a stable range. This suggests
that the model has learned the underlying patterns in the data to some extent and is
not overfitting. The gap between training and validation accuracy remains relatively
small until epoch 40. Validation accuracy reaches a point where it is around 0.70 and
the training accuracy is around 0.90, this could indicate overfitting. In other words,
while the model starts with a low accuracy, it gradually improves and converges
to a stable range with consistent performance on both the training and validation
datasets. However, the relatively large gap between training and validation accuracy
suggests overfitting. However, further fine-tuning or architectural adjustments could
potentially lead to even better performance.

3.6.2 Validation and Training Loss

Model with background

The training loss starts at a relatively high value (around 1.84) and gradually
decreases over the initial epochs. Figure 3.6 show clearly this trend indicates that the
model is learning and improving its fit to the training data. As training progresses,
both the training and validation loss continue to decrease, which is a positive sign.
The model appears to be generalizing well to the validation data as the gap between
training and validation loss is not widening significantly. Towards the end of the
training, the training loss reaches a very low value (around 0.38), and the validation
loss also decreases but at a slower rate, reaching a level of 0.69. This could be a sign
that the model is starting to overfit the training data more.

Model without background

As we can see in Figure 3.6 the training loss starts at a relatively high value
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(around 1.905) and gradually decreases over the initial epochs. This indicates that
the model is learning and improving its fit to the training data. The validation loss
follows a similar trend initially but starts to increase after a certain point (around the
40th epoch). This divergence between training and validation loss suggests that the
model might be overfitting the training data. Overfitting becomes more apparent
in the latter part of training as the training loss continues to decrease while the
validation loss increases or remains stable. This is a clear sign of overfitting. Towards
the end of training, the training loss reaches a very low value (close to 0.3), but the
validation loss remains relatively high (around 1.7 to 1.8), indicating a significant
gap between training and validation loss.

Figure 3.7: Validation-Training Accuracy and Validation-Training Loss for the model with the
images with and without background

3.6.3 Confusion Matrix and other Classification Metrics

The confusion matrix provides a detailed breakdown of the model’s performance in
individual classes. Each row in the matrix represents the actual class, while each
column represents the predicted class. This means that the diagonal elements (from
top-left to bottom-right) represent the true positives, indicating the number of in-
stances that were correctly classified for each class. Otherwise, off-diagonal elements
represent misclassifications. The precision scores for each class vary, a metric I’ll
comment on later, measures the accuracy of the positive class predictions Then,
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recall measures the ability of the model to correctly identify all positive instances.
The F1-score is the harmonic mean of precision and recall and provides a balanced
measure of model performance. Lastly, for each class, I’ll compute the "support",
that indicates the number of true instances for each class. Finally, I investigate if
the model performs well across all classes, with slightly more weight given to the
larger classes in the weighted average. That is done using the macro-average and
weighted-average F1-score.

Model with background

In table 3.1 you can see the confusion Matrix.

rick dries versace louis chanel giorgio
owens van noten vuitton armani

rick owens 143 6 9 1 0 2
dries van noten 5 148 10 5 3 3

versace 16 4 156 5 3 5
louis vuitton 5 7 9 152 4 2

chanel 3 1 2 0 153 1
giorgio armani 5 2 18 1 8 130

Table 3.1: Confusion Matrix for the model with the images with background

For all the other classes look at table 3.2. The precision scores are relatively high,
ranging from 0.76 to 0.93. This suggests that when the model predicts a fashion
category, it is often correct. The recall scores are also generally high, ranging from
0.79 to 0.96, indicating that the model is effective at capturing most of the items in
each category. The F1-scores for all classes are good, ranging from 0.79 to 0.92. Both
macro and weighted averages of precision, recall, and F1-score are approximately
0.86, which demonstrates that the model’s performance is consistent across different
categories, and it is not biased toward any particular class.

The model appears to be capable of effectively distinguishing between different
fashion items.

55



3 – Application of a CNN to Runway Fashion Show Images

Precision Recall F1-Score Support
rick owens 0.88 0.68 0.77 161
dries van noten 0.61 0.66 0.64 174
versace 0.56 0.63 0.59 189
louis vuitton 0.78 0.63 0.70 179
chanel 0.73 0.71 0.72 160
giorgio armani 0.61 0.75 0.67 164

Accuracy 0.68 1027
Macro Avg: 0.70 0.68 0.68 1027
Weighted Avg: 0.69 0.68 0.68 1027

Table 3.2: Classification Metrics for the Model with the images with background

Model without background

In table 3.3 you see the confusion Matrix.

rick dries versace louis chanel giorgio
owens van noten vuitton armani

rick owens 110 10 24 6 7 4
dries van noten 2 115 12 5 12 28

versace 5 24 119 7 7 27
louis vuitton 2 17 31 113 10 6

chanel 5 9 9 9 114 14
giorgio armani 1 13 16 4 7 123

Table 3.3: Confusion Matrix for model with the images without background

Looking at the other metrics in table 3.4, the model’s performance can be con-
sidered reasonably good, but there is room for improvement in certain areas. The
precision scores for each class vary, with the highest precision (0.88) for "rick owens"
and the lowest precision (0.56) for "versace". This indicates that the model is bet-
ter at precisely identifying some classes than others. The recall scores also vary
across classes, ranging from 0.63 to 0.75. Again, "rick owens" has the highest recall,
while "versace" has the lowest. The F1-scores for different classes vary but generally
fall between 0.59 and 0.77. The macro-average and weighted-average F1-scores are
both around 0.68, which indicates that the model performs reasonably well across all
classes, with slightly more weight given to the larger classes in the weighted average.
The model seems to be decent to classify fashion outfits into different categories, but
there are variations in its performance across classes. It performs better for some
classes than others, and there is room for improvement, especially for classes with
lower precision and recall. Further fine-tuning, data augmentation, or architectural
adjustments may help improve its overall performance.
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Precision Recall F1-Score Support
rick owens 0.81 0.89 0.85 161
dries van noten 0.88 0.85 0.87 174
versace 0.76 0.83 0.79 189
louis vuitton 0.93 0.85 0.89 179
chanel 0.89 0.96 0.92 160
giorgio armani 0.91 0.79 0.85 164

Accuracy 0.86 1027
Macro Avg: 0.86 0.86 0.86 1027
Weighted Avg: 0.86 0.86 0.86 1027

Table 3.4: Classification Metrics Model for the model with the images without background

3.6.4 Attention Mechanism Evalutation

After examining the attention maps generated by the model to see if they indeed
focus on relevant regions, we notice that, generally, those generated by the model
without the background tend to focus on much more salient points. The salient
points of comparison once again come from a qualitative analysis. Clearly, a massive
qualitative evaluation has been conducted, which required a significant amount of
time to complete. However, we have also provided some numerical summary

A more comprehensive approach to understanding how attention behaves across
different brands is achieved by visualizing the attention map, where we aggregate
the attention scores from all the images. Looking at 3.7 we can see this result for
the model applied to the images with the background. Again in 3.8 there are the
results for the model applied to the images with the background.

The aim of these two representations is to investigate not only how attention
has been allocated among different parts when comparing images with and without
the background, but also to facilitate the comparison between classes in order to
identify potential variations in attentional focus among the brands. When scrolling
through the heatmap readings across brands within the same application, it appears
that there isn’t a significant difference in attention values for the model with the
background. It’s worth noting that for both Figures 3.8 and 3.9 the values have
been recalculated on a logarithmic scale to highlight those parts of the matrix with
values very close to zero. As expected, attention on the images with the background
has shifted significantly towards the margins, reducing the focus on the outfit itself.
However, we still notice a faint silhouette in the center of the heatmap, indicating
that despite the noise generated by the background, the model has paid attention
to the runway models. Some brands show a greater focus on the background, such
as Rick Owens and Louis Vuitton in Figure 3.8. Chanel and Giorgio Armani do
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Figure 3.8: Model with the background: sum of all attention value by pixels for all the images
divided by brand

not appear to have a strong focus on the human figure. This aspect would deserve
further investigation in any potential development of this thesis.

Turning our attention to the results of the model applied to photos without the
background, we can clearly deduce that the higher attention values are concentrated
on the model. The silhouette of the model stands out distinctly. There are differences
between brands, with noticeable variations. For example, in the case of Chanel in
Figure 3.9, it appears to have generally lower attention, except for the lower part of
the photo.
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Figure 3.9: Model without the background: sum of all attention value by pixels for all the images
divided by brand

Reviewing the aggregated heatmaps by brand, specifically those for Rick Owens,
Chanel, and Versace, we have chosen significant photos that represent the key focal
points where the attention layer has most frequently concentrated. For all the brands,
photos from various collections spanning multiple years were selected. This serves to
demonstrate how certain trends for some brands appear to remain unchanged. For
example, looking at Figure 3.10 we notice that for Chanel, the lower area appears to
be significant. Indeed, Chanel often opts for above-the-knee skirts, leaving the legs
exposed, while the shoes in all this have a contrasting color compared to the models,
who appear to have fair skin. Again in Figure 3.10, it appears that Rick Owens also
tends to favor concentrations of faux leather in the central part of the model’s
body. Generally, Rick Owens features models with diverse physiques and colors,
which makes the evaluation of the outfit more heterogeneous when considering the
model as well. For Versace, we found it interesting to evaluate the upper part of
the outfit, although in Figure 3.10 the heatmap appears to concentrate on other
parts as well. In general, Versace seems to have some attention directed towards
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Figure 3.10: Model without the background: Contextualization of the sum of all attention value
by pixels for some images divided by brand

the models’ heads. This could be due to the hats worn by the models, which are
present in nearly all collections, but also perhaps because of the models’ hairstyles,
which are styled in a distinctive manner. In contrast to Chanel, which also features
many hats in its runway shows, those of Versace seem to be more prominent in the
classification. Evaluating the highlights of heatmaps across hundreds of photos is a
time-consuming and detail-oriented process. The provided images are representative
examples of what has been analyzed, but it’s important to note that this is only a
small selection, and the complete process can be much more in-depth and detailed.
Understanding the focal points in heatmaps can provide valuable insights into the
attention and key elements of fashion collections.
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For the sake of accuracy and completeness of results, we report below an example,
in Figure 3.11, of poorly captured attention. However, the model doesn’t always seem
to focus well, not even in the model without the background.

Figure 3.11: A bad example of attention

In conclusion, our analysis of the attention maps generated by the model has re-
vealed several interesting insights. Moreover this work has provided valuable insights
into the model’s attention distribution, offering implications for different brands and
background conditions. This work contributes to the broader understanding of at-
tention mechanisms in computer vision and highlights the importance of considering
attention allocation in various practical applications
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Chapter 4

Conclusion and Other
Considerations

In the development of this project, we focused on creating a multiclassification model
designed for brand classification. This challenge served as a significant test to eval-
uate the effectiveness of the Convolutional Neural Network (CNN) in identifying
the strength of the visual identity of various brands. To make our CNN even more
powerful, we implemented an attention layer, allowing the model to focus on crucial
features in the images. We explore the complex structure of a neural network and
gain understanding of potentiality.

The two models obtained have achieved satisfactory results, making them already
usable in well-structured business contexts. On these two promising basic classifica-
tion models, it would be interesting to carry out further optimization processes. The
potential of these two models highlights the strength of the tools employed: CNNs
and attention mechanisms. We have noted the promising capability of classifying im-
ages and extract intricate details and information. However, their implementation
necessitates substantial data labeling efforts and computational resources, which
represent the associated weaknesses to consider in their deployment.

4.1 Discussion

Both models, one trained with images containing backgrounds and the other with-
out backgrounds, show promising performance in classifying fashion items into six
different categories.

The model with the background appears to outperform the model without the
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background in the classification task. The presence or absence of background in
the images seems to have a noticeable impact on classification performance. The
background in fashion images often contains valuable contextual information. For
instance, the surroundings, scenes, or settings in which the fashion items are pho-
tographed can provide clues about the brand or style. The model with background
takes advantage of this context to make more informed predictions. Having the back-
ground might help the model distinguish between similar-looking items from differ-
ent brands. It can identify distinctive backgrounds associated with specific brands
or fashion styles, contributing to better discrimination between classes. In contrast,
the model without background faces challenges in cases where contextual cues from
the background are crucial for classification. It relies solely on the appearance of the
fashion item itself, which can be limiting, especially when multiple brands produce
visually similar items. In other words, we can infer that in some cases, the brands
may not be easily distinguishable solely based on the visual appearance of their
fashion items. This could imply that certain brands might not have a distinct visual
identity that sets them apart from others, at least in the context of the dataset
and the features the model relies on. Some brands may produce fashion items with
styles, designs, or aesthetics that are visually similar to those of other brands. This
similarity in styles can make it challenging for a model to differentiate between them
based solely on visual features. Look at Figure 4.1, to better understand the point.

Figure 4.1: Some classes (brand) which have similar outfits in different years and collection

Fashion brands often follow or adapt to current market trends, which can lead
to a convergence of styles and designs across different brands. This can result in
fashion items that look alike, further complicating brand identification. The visual
features available in the dataset may not capture the finer details or nuances that
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distinguish one brand from another. Certain brand-specific elements, such as lo-
gos, labels, or unique stitching patterns, might not be prominent in the images. As
mentioned earlier, context, including background information, can be important in
brand identification. If context is removed, the model loses valuable cues for distin-
guishing brands. Brand identity can sometimes be subjective and based on factors
beyond visual appearance, such as brand reputation, values, and associations. These
subjective aspects are not typically captured in image-based models. The point is,
that while some fashion brands may have a strong and easily recognizable visual
identity, others may share commonalities that make them less distinguishable in
certain contexts. The ability of a model to identify brands accurately depends on
the distinctiveness of visual features, dataset composition, and the importance of
context in brand recognition.

4.2 Retrospective Consideration and Possible Im-
provement

The models can benefit from further fine-tuning by adjusting hyperparameters,
learning rates, and optimization algorithms to address the potential overfitting is-
sue indicated by the gap between training and validation performance. Fine-tuning
can involve experimenting with various hyperparameters, including learning rates,
dropout rates, and batch sizes, through multiple model runs. User feedback and
domain experts’ input are crucial for identifying model strengths and weaknesses,
including areas of consistent misclassification or bias. Expanding the training dataset
with augmented data, such as random rotations and scaling, can enhance generaliza-
tion, though this was initially limited by machine capabilities. To mitigate overfitting
in the model without backgrounds, techniques like dropout layers and L2 regular-
ization can be added. Dropout introduces randomness during training, preventing
overreliance on specific neurons, while L2 regularization encourages smaller weights
to improve generalization. Experimenting with different model architectures, includ-
ing layers and units, can also boost performance. More high-quality labeled data
specific to fashion categories can be beneficial. Ensembling, combining predictions
from both models, may enhance overall performance.

In conclusion, pursuing these avenues is essential to determine if improvements
are achievable, considering the challenge posed by distinguishing certain fashion
brands due to limited distinctiveness in style and visual identity.
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