
On the Robustness of Prunnig
Algorithms to Adversarial Attacks

Ca’ Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis
Year 2022-2023

Graduand Muhammad Tajwar
Supervisor Sebastiano Vascon

Assistant supervisor Antonio Emanuele Cinà

Acknowledgments

First and foremost, I express my sincere gratitude to my mentor, Professor Sebas-
tiano Vascon. His unwavering support and guidance have been invaluable through-
out the development of my thesis. His recommendations for relevant research pa-
pers have not only been useful but also a source of inspiration for expanding the
scope of this work. Under his tutelage, I have gained profound insights into the
art of research, making him an exceptional advisor.
I must also acknowledge the collaborative efforts of Antonio Emanuele Cina, one
of Professor Vascon’s Ph.D. colleagues. Together, we formed an outstanding team,
generating numerous innovative ideas that have not only contributed to the success
of this project but also laid the groundwork for future endeavors that I plan to
pursue during my after journey.
I extend my appreciation to my friends whose unwavering support and contribu-
tions were a constant source of motivation during the demanding phases of this
project.
Last but certainly not least, my heartfelt thanks go to my parents and especially
my brother Muhammad Zakwan for his unconditional support. Their unwavering
support has enabled me to receive the best education possible and to pursue my
academic career here in Venice. Their patience, encouragement, and warm smiles
have been a source of comfort that I will forever cherish.

i

Abstract

Pruning is a technique in machine learning used to simplify models, reduce over-
fitting, and improve efficiency. It works by reducing the complexity of a model
through the removal of certain components. In the context of neural networks,
traditional weight pruning involves setting the smallest weights to zero, effectively
eliminating their contribution to the network’s output. Structural pruning, on the
other hand, takes this concept further by removing not just individual weights,
but entire neurons, connections, or layers. This leads to a change in the network
architecture itself, potentially resulting in a model that’s more efficient, easier to
understand, and simpler to implement on hardware. The challenge lies in achieving
the right balance, removing enough components to gain efficiency without sacrific-
ing too much model performance. In the context of pruning, a dependency graph
can help determine which parts of a neural network can be removed without dis-
rupting the remaining architecture. The graph visualizes how different operations
and layers of the network rely on each other. By examining these dependencies,
we can identify nodes or connections that, if removed, would not affect the overall
data flow, or would only minimally impact the model’s performance. This makes
dependency graphs a valuable tool for optimizing the process of structural prun-
ing in neural networks. On one hand, a pruned network could potentially be more
robust against adversarial attacks. Its reduced complexity might limit the avenues
an attacker can exploit. Additionally, the increased interpretability could help in
identifying and understanding potential vulnerabilities, pruning could also poten-
tially make a model more vulnerable if important defensive features are pruned
away. Also, the change in data flow and dependencies from the pruning process
could open up new vulnerabilities.

Keywords Structural Pruning, Spars Learning, Dependency Graph, Neural Net-
works, ResNet,Wideresnet , Adversarial Attacks, DDN, FMN, Robust Models,
Non-Robust Models

ii

Contents

1 Introduction 1
1.1 Problem Description . 3
1.2 Outline . 4

2 Adversarial Machine Learning 5
2.1 The Attacker Goals . 5
2.2 Attacker’s Knowledge . 6
2.3 Adversarial Attacks . 7

2.3.1 Poisoning Attacks . 7
2.3.2 Evasion Attack . 7
2.3.3 DDN (Decoupling Direction and Norm) 8
2.3.4 FMN(Fast Minimum-norm Attack) 11

3 Pruning Methods 17
3.1 Structural and Unstructural Pruning 18

3.1.1 Pruning Grouped Parameters 18
3.2 Methods . 19

3.2.1 Dependency in Neural Networks 19
3.2.2 Dependency Graph . 20
3.2.3 Magnitude Pruners . 23

3.3 Methodologies . 27

4 Experiments 33
4.1 Experimental Setup . 33
4.2 Experimental Results . 35

5 Conclusions and Future Work 45

iii

Chapter 1

Introduction

Machine learning has gained unprecedented momentum in various fields, revolu-
tionizing how we approach complex tasks and make data-driven decisions. How-
ever, as models continue to grow in size and complexity, they become resource-
intensive and often suffer from issues such as high memory consumption, slow
inference times, and overfitting. This is where pruning algorithms come into play.
Pruning algorithms offer an effective solution to optimize and enhance the effi-
ciency of machine learning models. The concept of pruning draws inspiration
from horticultural practices, where unnecessary branches or leaves are trimmed to
promote healthier growth. Similarly, in the context of machine learning, pruning
involves selectively removing parts of a model that contribute less to its overall
performance. This process not only reduces the computational burden but also
improves generalization and prevents overfitting.The primary goal of pruning is
to create a more compact, efficient, and manageable model without significantly
sacrificing its predictive capabilities. Pruning algorithms achieve this by identi-
fying and removing redundant or irrelevant features, nodes, or branches within a
model. This leads to a streamlined architecture that retains the essential informa-
tion necessary for accurate predictions while discarding the noise or unnecessary
complexity.

There are several motivations for employing pruning algorithms in machine learn-
ing:

Model Efficiency Pruned models are more lightweight, making them suitable for
deployment on resource-constrained devices such as mobile phones or Internet of
Things (IoT) devices. Reduced model size also translates to faster inference times,
enabling real-time applications.

Generalization Improvement Pruning helps prevent overfitting, a common is-
sue in machine learning, by removing parts of the model that memorize noise in
the training data rather than learning meaningful patterns. This results in models
that generalize better to unseen data.

1

Interpretability A pruned model often has a simpler structure, which enhances
its interpretability. Understanding the relationships between features and predic-
tions becomes easier, promoting trust and accountability in critical applications.

Energy Efficiency In scenarios where energy consumption is a concern, such as in
edge computing or embedded systems, pruned models require less computational
resources, leading to reduced power consumption.

There are several various pruning algorithms used in machine learning. Brief
overview of different types of pruning techniques, including:

Weight Pruning This technique involves removing connections with low-weight
magnitudes from neural networks. Various criteria can be used to determine which
weights to prune, such as small weight values, gradients, or sensitivity analysis.

Node Pruning Node pruning focuses on removing entire nodes (neurons) from
a neural network. Nodes that contribute less to the overall network performance,
based on metrics like activation values or gradients, are pruned.

Filter Pruning Commonly applied to convolutional neural networks (CNNs), fil-
ter pruning involves removing entire convolutional filters. Filters that correspond
to less important features or channels are pruned, resulting in a more efficient
model.

Structural Pruning This technique involves removing entire layers or groups
of layers from a neural network architecture. Structural pruning requires careful
consideration of the network topology and its impact on performance.

Throughout this paper, we will explore the mechanics of these pruning algorithms,
discuss their advantages and limitations, and showcase real-world applications to
highlight their efficacy. By the end, readers will have a comprehensive understand-
ing of how pruning algorithms contribute to the optimization of machine learning
models, enabling the development of faster, more efficient, and highly performant
applications across diverse domains.Moreover Pruning algorithms have found ex-
tensive applications across a spectrum of real-world domains, showcasing their
versatility and impact on enhancing machine learning systems. These applications
demonstrate how pruning algorithms address challenges and drive efficiency in
various industries including Autonomous Vehicles,Healthcare Diagnostics,Natural
Language Processing (NLP),Image and Video Compression,Climate Research and
so on.

2

1.1 Problem Description

In recent years, pruning algorithms have emerged as a powerful tool for optimizing
and streamlining machine learning models. These algorithms selectively remove
redundant or less influential components of models, resulting in more efficient,
lightweight, and faster-to-infer architectures. While pruning brings significant
benefits to model efficiency and performance, there is a growing concern about
the susceptibility of pruned models to adversarial attacks. Adversarial attacks,
aimed at exploiting vulnerabilities in machine learning models, pose a unique
challenge to the robustness of pruned models. The question arises: How well
do pruned models withstand adversarial manipulations of their input data, and
how do pruning algorithms’ choices impact this vulnerability? The problem lies
at the intersection of two critical domains: pruning algorithms and adversarial
machine learning. On one hand, pruning algorithms carefully decide which com-
ponents to remove, considering factors like weight magnitudes, importance scores,
and architectural constraints. On the other hand, adversarial attacks craft subtle
perturbations in input data, intending to deceive models into making incorrect
predictions.The complexity arises from the potential interaction between pruning
choices and adversarial perturbations. Pruned models may have altered decision
boundaries, making them differentially sensitive to adversarial attacks compared
to their unpruned counterparts. Moreover, the removal of certain components dur-
ing pruning might lead to the loss of valuable information, rendering the model
more susceptible to adversarial manipulations.

3

1.2 Outline

For the remainder of this thesis, we structure our presentation as follows, Chapter
1 Introduction.In this section, we provide an overview of the context and moti-
vation of our work. We introduce the challenges and significance of addressing
Pruning algorithms and adversarial attacks in machine learning models.Chapter
2 is all about the Adversarial Machine learning , we explained in details about
how the adversarial machine leaning help us to verify how any machine learning
models is effected by the attack, and how it makes any model robust or vulnerable,
furthermore we explained in details how DDN(Decoupling Direction and Norm)
and FMN(Fast Minimum Norm) attack works and what algorithm they use to
perturbed the model thus degrading it.In chapter 3 we present the pruning meth-
ods,which is dedicated to the exposition of various pruning techniques employed to
enhance the efficiency and performance of machine learning models. We delve into
the specifics of these methods, discussing their formulation, operation, and notable
properties moreover, we specifically choose two of the pruning techniques namely
L1 and Random, to perform pruning on the models, these techniques are known
as magnitude pruning,that constitute the core of our research. We begin by eluci-
dating the fundamentals of the machine learning models paradigm. Subsequently,
we delve into the intricacies of the various models namely, Addepalli(Resnet18),
SehwagProxy(Resnet 18) and Engstrom(Resent18) of which all of these are ro-
bust models, and rest of the models are Non-Robust models i.e VGG19, ResNet50
and WideResNet.We expound on their inner workings, formulation, and key at-
tributes.In chapter 4 Experiments is dedicated to the comprehensive presentation
of our experimental setup. We detail the experimental scenarios and parameters
employed to evaluate the robustness of the proposed algorithms. Through a va-
riety of visualization techniques, we demonstrate how these algorithms respond
to changes in the attacker’s capacity.In this section, we analyze the outcomes and
implications of our experiments. We provide a thorough examination of the robust-
ness demonstrated by the six models in the face of adversarial attacks.Moverover,
we use DDN(Decoupling Direction and Norm) and FMN(Fast Minimum Norm)
attach to check the robustness of the Robust models and Non-robust models. The
results shed light on the effectiveness of our proposed methodologies.Lastly, in
chapter 5 Conclusions and Future Work encapsulates our conclusions drawn from
this study. We summarize the findings and contributions of this thesis, addressing
the achievements made and the broader implications of our work. Additionally,
we identify open issues, suggest potential improvements, and outline avenues for
future research in the domain of adversarial machine learning.

4

Chapter 2

Adversarial Machine Learning

Adversarial machine learning has emerged as a critical field aimed at understand-
ing and mitigating vulnerabilities in machine learning models. It explores the
susceptibility of models to adversarial attacks, deliberate manipulations of input
data with the intent to deceive or mislead the model’s predictions. These at-
tacks exploit the underlying vulnerabilities of machine learning algorithms, raising
concerns about model security and reliability.

In adversarial machine learning, attackers craft perturbations that are impercepti-
ble to humans but can lead machine learning models to make incorrect predictions.
These attacks can have far-reaching consequences, from misclassifying objects in
image recognition systems to fooling natural language processing models into gen-
erating inappropriate content. As models are increasingly integrated into safety-
critical systems, such as autonomous vehicles and medical diagnostics, the need
for robust defenses against adversarial attacks becomes paramount.

2.1 The Attacker Goals

The goals of attackers in the context of adversarial machine learning are to exploit
vulnerabilities in machine learning models for their own advantage. Attackers aim
to manipulate the behavior of the models by introducing carefully crafted pertur-
bations into the input data. These perturbations are designed to be imperceptible
to humans but can lead the model to make incorrect predictions. The primary
objectives of attackers in adversarial machine learning include:

Misclassification Attackers aim to cause misclassification by altering input data
so that the model assigns it to the wrong class. For example, an attacker might
manipulate an image of a stop sign to make it look like a yield sign to a self-driving
car’s image recognition system.
Evasion Attackers try to evade detection or security mechanisms by crafting input
data that is incorrectly classified as benign or safe. This can be problematic in sce-
narios where machine learning models are used for security screening or anomaly
detection.
Data Poisoning In situations where models are trained on data from multiple
sources, attackers might attempt to manipulate the training data to inject mali-
cious samples. These samples can compromise the model’s integrity and lead to
incorrect predictions.
Privacy Violation Attackers may attempt to extract sensitive information about

5

the training data or the model itself. This can be particularly concerning when
models handle confidential or private data, such as medical records or financial
information.
Generating Adversarial Examples Attackers create adversarial examples to
understand model vulnerabilities, evaluate the effectiveness of attacks, or test the
robustness of defense mechanisms. These adversarial examples can also serve as a
means to expose flaws in machine learning systems.

Understanding attackers’ goals is essential for developing effective defense mech-
anisms and strategies to safeguard machine learning models against adversarial
attacks. Adversarial machine learning research focuses on creating models and
techniques that can withstand these manipulation attempts, ensuring the security,
reliability, and trustworthiness of machine learning systems in real-world applica-
tions.
Targeted and Untargeted Attacks Targeted attacks focus on undermining the
Adversarial Machine Learning model’s performance for specific instances. In con-
trast, untargeted attacks are broader in scope, aiming to diminish the model’s
accuracy across a variety of instances.

2.2 Attacker’s Knowledge

Based on the attacker’s level of knowledge, various types of attacks are orchestrated
to exploit system vulnerabilities. These attacks can be categorized as follows:

• White-box Attack: The attacker possesses comprehensive knowledge of
the target system, including its architecture, gradients, and parameters. This
in-depth understanding empowers the attacker to execute precise and sophis-
ticated attacks.

• Gray-box Attack: In this scenario, the attacker’s access and knowledge
are limited, making it challenging to breach the system’s defenses effectively.
The attacker grapples with partial insights into the system’s workings.

• Black-box Attack: A Black-box Attack unfolds when the attacker is en-
tirely unaware of the system’s details, with the sole ability to query samples.
This restricted access necessitates creative approaches to exploit vulnerabil-
ities.

• No-box Attack: No-box attacks are characterized by the attacker’s uti-
lization of a surrogate model. This strategy capitalizes on the attacker’s
comprehensive understanding of the surrogate model to target the desired
system, despite minimal access to the original data.

Black-box, Grey-box, and White-box Attacks These attacks differ based on
the attacker’s level of knowledge about the model. Black-box attacks stem from
limited understanding of the model’s architecture and functioning. Grey-box at-
tacks, on the other hand, involve intermediate knowledge, while white-box attacks
assume comprehensive knowledge about the model’s design and parameters.

6

In addition to these attack classifications, there exist gradients of attacker knowl-
edge:

• Perfect Knowledge: Entails complete awareness of the graph’s structure
and components.

• Moderate Knowledge: Reflects a relatively limited understanding of the
dataset.

• Minimal Knowledge: Represents the most challenging scenario, where the
attacker has access to only a small fraction of the dataset’s information.

Each level of attacker knowledge and the corresponding attack techniques con-
tribute to a complex landscape of security challenges, underscoring the importance
of robust defense strategies to safeguard against adversarial exploits.

2.3 Adversarial Attacks

Adversarial attacks within the realm of machine learning extend their reach to
neural networks dealing with graph data, aiming to disrupt the accuracy of pre-
dictions. These attacks are orchestrated to introduce intentional distortions in
order to deceive Adversarial Machine Learning models into making incorrect fore-
casts. Several attack categories exist in this context:

2.3.1 Poisoning Attacks

Poisoning attacks represent a malicious tactic in the realm of cybersecurity, wherein
adversaries exploit vulnerabilities within machine learning models by deliberately
introducing tainted data during the training process. These attacks aim to com-
promise the integrity and functionality of the model’s learning process, leading to
erroneous predictions or behaviors during deployment. Such attacks can mani-
fest in various forms, including the injection of misleading or fabricated training
samples, often designed to influence the model’s decision boundaries. Poisoning
attacks can be particularly harmful as they compromise the trustworthiness of ma-
chine learning systems, impacting sectors like autonomous driving, e-commerce,
and security applications. Detecting and mitigating these attacks requires ad-
vanced defense mechanisms such as outlier detection, robust training techniques,
and vigilant data validation. The dynamic nature of these attacks calls for ongo-
ing research and development to stay ahead of evolving threats and safeguard the
reliability of machine learning models.

2.3.2 Evasion Attack

Poisoning attacks, also referred to as training-time attacks, occur during the
model’s training phase. They involve the insertion of manipulated data into the
training set, causing the Adversarial Machine Learning model to learn from these
misleading instances. Conversely, evasion attacks, or test-time attacks, transpire
during the testing phase. In these attacks, models trained on unaltered data are
tested using data intentionally perturbed or modified to produce misleading out-
comes.

7

An evasion attack is a type of cyberattack that targets machine learning models,
specifically aiming to manipulate their decision-making processes by intentionally
altering input data in ways that evade detection or mislead the model’s predic-
tions. These attacks are designed to exploit vulnerabilities within the model’s
training and inference process, often by adding imperceptible perturbations to
input samples. Evasion attacks can compromise the integrity and reliability of
machine learning systems, allowing malicious actors to trick the model into mak-
ing incorrect classifications or decisions.

Evasion attacks typically involve crafting adversarial examples – subtly modified
inputs that appear similar to the original data but can lead the model to produce
erroneous outputs. These attacks are particularly concerning in applications where
machine learning systems play a critical role, such as security, finance, and health-
care. Countermeasures against evasion attacks include the development of robust
machine learning models, adversarial training, input sanitization techniques, and
improved model evaluation procedures. As evasion attacks continue to evolve,
ongoing research and the adoption of advanced defense strategies are crucial to
maintaining the security and effectiveness of machine learning systems.

2.3.3 DDN (Decoupling Direction and Norm)

The DDN (Decoupling Direction and Norm) attack is an advanced and sophis-
ticated form of adversarial attack in the field of machine learning, particularly
targeting deep neural networks. This attack strategy is designed to manipulate
the network’s behavior by simultaneously perturbing both the direction and the
norm of the input data. Unlike traditional adversarial attacks that focus solely
on perturbing the data points within a constrained region, the DDN attack ex-
ploits a more comprehensive approach by allowing for variations in both direction
and magnitude. This technique is particularly insidious as it can potentially over-
come defensive mechanisms like input normalization and regularization that many
neural networks employ.

The DDN attack, due to its dual focus on direction and norm, seeks to deceive the
network into misclassifying input samples. By allowing for more varied perturba-
tions, it can bypass existing defense mechanisms that predominantly account for
norm-based perturbations. The attack can effectively exploit the network’s sensi-
tivity to variations in input data and lead to misclassification or other undesirable
outputs. To counter this sophisticated form of attack, researchers and practition-
ers need to develop novel defense mechanisms that account for a wider range of
adversarial perturbations and vulnerabilities. This underscores the ongoing need
for innovative strategies to enhance the robustness and security of deep neural
networks in the face of evolving adversarial threats like the DDN attack.

Problem Formulation

Let’s consider a scenario where we have a sample, denoted as x, from the input
space χ, and it’s associated with a true label, ytrue, which belongs to a set of
possible labels, . Now, there exists a distance measure, D(x1, x2), which quantifies
the comparison between two input samples, ideally capturing their perceptual
similarity. P (y|x, θ) represents a model or classifier parameterized by θ. We define
an example, x̃ ∈ X, as adversarial, particularly for non-targeted attacks, if the

8

label with the highest probability, argmaxj P (yj | x̃, θ) ̸= ytrue , is not equal to
ytrue, and the distance D(x, x̃) ≤ ϵ to a specified maximum perturbation ϵ.
For targeted attacks, which additionally require achieving a desired class ytarget,
it must hold that argmaxj P (yj | x̃, θ) ̸= ytarget . Here, we denote J(x, y, θ) as the
cross-entropy between the model’s prediction for input x and label y. You can
visualize a targeted attack in Figure 2.3.3 on the ImageNet dataset against an
Inception v3 model.
Generally, attacks generated through gradient-based optimization procedures, lim-
iting our analysis to differentiable classifiers. These attacks can be framed in two
ways: first, to minimize the distortion D(x, x̃), and second, to maximize the loss
within a defined region where D(x, x̃) ≤ ϵ.
As an illustration, consider a scenario where the distance function is a norm (e.g.,
L0, L2, or L∞), and the inputs are images where each pixel value is constrained
between 0 and M. In a white-box setting, the optimization process to obtain a
non-targeted attack with the least distortion δ can be expressed as:

min
δ

∥δ∥ subject to argmax
j

P (yj | x+ δ, θ) ̸= ytrue

and 0 ≤ x+ δ ≤ M
(2.1)

A similar formulation applies for targeted attacks, where the constraint is modified
to enforce equality with the target class.
Now, if the objective is to achieve the worst possible loss within a specified maxi-
mum noise of norm ϵ, we can frame the problem as follows:

min
δ

P (ytrue | x+ δ, θ) subject to ∥δ∥ ≤ ϵ

and 0 ≤ x+ δ ≤ M
(2.2)

Our focus primarily revolves around gradient-based attacks optimizing the L2 norm
of the distortion. Although this measure may not perfectly capture perceptual
similarity, it finds widespread usage in computer vision to gauge image similarity.
For instance, when comparing image compression algorithms, the Peak Signal-to-
Noise Ratio (PSNR), directly related to the L2 measure, is frequently employed.
Nonetheless, developing a differentiable distance measure that effectively captures
perceptual similarity remains an ongoing research challenge.

Figure 2.1: Illustrates an instance of an adversarial image within the ImageNet dataset. The original sample x is
correctly recognized as a Curly-coated retriever. However, when we introduce a perturbation δ to this image, we
create an adversarial image that is now classified as a microwave with ||δ||2 = 0.7

9

DDN Working

The problem definition indicates that identifying the worst adversary within a fixed
region is a relatively more straightforward task. In Equation 2.2, both constraints
can be expressed in terms of δ, allowing for optimization using projected gradient
descent.

However, finding the closest adversarial example is more challenging. Equation
2.1 introduces a constraint related to the model’s prediction, which cannot be
effectively managed through a straightforward projection. A common approach, as
employed by Szegedy et al. [53] and in the C&W [3] attack, is to approximate the
constrained problem in Equation 2.1 with an unconstrained one by replacing the
constraint with a penalty term. This approach involves optimizing both the norm
of δ and a classification term concurrently, where a sufficiently high parameter C
is introduced. In the broader context of constrained optimization, this penalty-
based approach is a well-established principle [19]. However, it’s worth noting that
penalty methods pose practical challenges. The primary challenge lies in selecting
an appropriate parameter C, which often requires ad hoc decisions. If C is too
small , the resulting example may not be adversarial, while an excessively large
C can dominate, resulting in an adversarial example with more noise. This can
become particularly problematic when optimizing with a limited number of steps,
such as when applied in adversarial training scenarios.

10

Figure 2.2: Here is the illustration of an attack which is untargeted:We have a shaded region representing the
portion of the input space directed as ytrue.In scenario (a), x̃k for now is not considered adversarial yet.For the
next iteration, we then increase the ϵk+1 norm, or conversely, reduce it in scenario (b).In both scenario, we take a
g steps starting from the point where are at right now represented as x̃, and x which is the center of ϵk+1-sphere
we then project it back .This process involves adjusting the perturbation ϵ to iteratively explore the input space
and find the adversarial example.

The complete procedure is outlined in Algorithm 1 and visually depicted in Fig.
2.2. We initiate the process with the original image x and progressively refine the
noise δk.

During iteration k, if the sample x̃k = x + δk is considered as adversarial yet, we
then take a larger norm which is ϵk+1 = (1+γ)ϵk. Conversely, if we see that sample
is already adversarial, we opt for a smaller ϵk+1 = (1 − γ)ϵk. In both scenarios,
we take a g steps(as shown in step 5 of Algorithm 1) from the point x̃k (indicated
by the red arrow in Figure. 2.2) and directs it back onto an ϵk+1 -sphere centered
at x (following the direction represented by the blue line in Figure. 2.2). This
projection yields x̃k+1. Finally, x̃k+1 is further projected onto the valid region of
the input space . For instance, in the case of images which are normalized to the
range [0, 1], we clip the value of each and every pixel to make sure that it fall
within this range (which is the step 13 of Algorithm 1). Additionally, it’s also
important to take into consideration of the concept quantizing of the image during
each iteration to make sure that the attack generates a valid image.

If we reach a point where we see that decision boundary is making tangent to
the sphere as aforementioned, the direction of g aligns with δk+1. It then will be
projected in the same direction as δk. Consequently, the norm will go back and
forth between the two sides of the boundary in that direction. By multiplying ϵ by
1 + γ and 1− γ, we achieve a global reduction of the norm by 1− γ2, facilitating
a perfect search for the optimal norm.

2.3.4 FMN(Fast Minimum-norm Attack)

In this section of the thesis, we focus on the FMN attack, also referred to as
the Fast Minimum-Norm attack, to assess the robustness of the models employed
in this study. As mentioned earlier, our model selection comprises three robust
models and three non-robust models. The FMN attack operates based on the
chosen norm and aims to identify perturbations within the input data, even when
they are of minimal magnitude.

Within the realm of gradient-based minimum-norm attacks, there are three pri-
mary sub-categories:

• Soft-constraint attacks, such as CW, strike a balance between the confidence
of misclassified samples and the perturbation size. These attacks require

11

fine-tuning of a trade-off hyperparameter on a per-sample basis to find the
smallest perturbation, necessitating numerous iterations for convergence.

• Boundary attacks, like BB and FAB, move along the decision boundary
toward the nearest point to the input sample. These attacks converge rela-
tively quickly. However, BB relies on an adversarial starting point, and both
methods involve solving relatively complex optimization problems at each
step.

• Recent minimum-norm projected-gradient attacks like DDN perform a maximum-
confidence attack at each step while adhering to a specified perturbation bud-
get ϵ. They iteratively adjust ϵ to reduce the perturbation size.It’s important
to note that DDN is specific to l2 norm and can’t diverse to others.

Figure 2.3: (a) The FMN attack algorithm is conceptually depicted in the leftmost plot. It involves two steps: the
ϵ-step, which updates the constraint size ϵ to minimize its distance to the decision boundary, and the ϵ-step, which
updates the perturbation δ using a projected-gradient step to maximize confidence in misclassification within the
current ϵ-constraint.(b) An example of our attack on a two-dimensional problem is shown in the middle plot, that
shows the loss function and the size of their constraint ϵ. The algorithm initiates by pushing the starting point
(represented as a red dot) toward the adversarial region (highlighted in red). Subsequently, it perturbs the point
around the decision boundary to enhance the current solution towards a local optimum.If we take a look at the
vertical lines they are just showing the steps (characterized by a smaller ||δ∗|| and L < 0) is discovered.

To address these limitations, we introduce a novel and efficient minimum-norm
attack method referred to as FMN (Fast Minimum-Norm) attack, as outlined in
Section 2. FMN retains the key advantages of DDN while extending its appli-
cability to various lp norms, where p can take on values of 0, 1, 2, or ∞. Our
extensive experimentation on diverse datasets and models is detailed in Section 3,
demonstrating that FMN offers substantial improvements in terms of convergence
speed and computational efficiency when compared to existing minimum-norm
attacks. This superior performance is particularly notable in scenarios involving
l0, l1, and ‘l∞ norms, while FMN also achieves comparable results to lp-norm at-
tacks. Moreover, FMN consistently identifies equal or better optimal solutions
across the majority of tested scenarios and lp norms. In summary, FMN presents
a comprehensive solution that possesses the essential attributes required for a ro-
bust adversarial attack, representing a significant advancement in the evaluation
of adversarial robustness.

12

Minimum-Norm Adversarial Examples with Adaptive Projections

Problem formulation. In the context of an input sample x within the range
of [0, 1]d, where x belongs to class y within the set 1, ..., c, the objective of an
untargeted attack is to discover the minimum-norm perturbation denoted as δ∗

This perturbation should be such that it transforms the original input x into an
adversarial example x∗ = x + δ∗ leading to a misclassification of x. The problem
can be mathematically expressed as follows:

δ⋆ ∈ argmin
δ

∥δ∥p, (2.3)

s.t. L(x+ δ, y,θ) < 0, (2.4)

x+ δ ∈ [0, 1]d, (2.5)

where ||.||p indicates the lp-norm operator. The loss L in the equation 2.4 is defined
as :

L(x, y,θ) = fy(x,θ)−max
j ̸=y

fj(x,θ) (2.6)

In this context, fj(x, θ) represents the confidence score assigned by the model f
to classify input x as class j, where θ represents the model’s learned parameters.
If we assume that the classifier assigns x to the class with the highest confidence,
denoted as y∗ = arg maxj∈1,...,cfj(x, θ), then if the x is not correctly classified it
makes the loss function L(x, y, θ) negative.In the Eq. (2.5) the constraint keep
sure the perturbed sample x + δ remains within the valid input space. It’s im-
portant to note that this problem typically involves a non-convex loss function L

13

(with respect to its first argument) due to the non-convex nature of the underly-
ing decision function f. As a result, it can have multiple locally optimal solutions.
Additionally, when the input sample x is already adversarial (i.e., L(x, y, θ) < 0),
the solution is trivial, with δ∗ = 0.

Extension to the targeted case. The objective of a targeted attack is to
ensure that the input sample gets misclassified into a specific target class, de-
noted as y0. This is achieved by modifying the loss function in Eq. (2.6) to
become Lt (x, y′,θ) = maxj ̸=y′ fj(x,θ) − fy′(x,θ) = −L (x, y′,θ), which essen-
tially changes the sign of the loss and replaces the true class label y with the
target class label y′.

Solution Algorithm. To gain more insight to the problem (2.3)-(2.5), we rewrite
it using the upper bound ϵ on ||δ||p :

min
ϵ,δ

ϵ, s.t. ∥δ∥p ≤ ϵ (2.7)

We can outline the algorithm into two primary steps, akin to the DDN approach
[43], illustrated in Fig. 2.3(a). These steps involve the adjustment of the max-
imum perturbation size, denoted as ϵ, independently of the perturbation itself,
represented as δ. Specifically, the first step focuses on adapting the constraint
size ϵ to reduce its distance from the decision boundary, referred to as the ϵ-step.
Meanwhile, the second step updates the perturbation δ using a projected-gradient
method to minimize the loss function L while adhering to the constraint of the
given ϵ, known as the δ-step. This approach essentially translates into an iterative
process resembling projected gradient descent, where ϵ is dynamically modified
to seek the minimum-norm adversarial example. The complete algorithm, named
Algorithm 1, is provided above, with a detailed explanation of the two principal
steps which is explained below.

ϵ-step: In this phase (lines 4-12 in Algorithm 1), the objective is to refine the upper
bound ϵ on the perturbation’s norm. The underlying principle involves increasing
ϵ if the current sample is not adversarial, which is indicated when L(xk1, y, θ) ≥
0. Conversely, if the sample is adversarial then L(xk1, y, θ) < 0, the aim is to
reduce ϵ . When determining the increment or decrement of ϵ, the attack strategy
depends on whether an adversarial example has been previously discovered. If
no adversarial example has been found so far, an estimate of the distance to
the decision boundary is made using a linear approximation, and ϵk is updated
as follows:ϵk = ∥δk−1∥p + L (xk−1, y,θ) / ∥∇L (xk−1, y,θ)∥q,this equation help us
to attack in a fast manner that leading to the boundary decision.In contrast, if a
previous adversarial sample exists but the current one is not adversarial, it suggests
that the current ϵ estimate is mannerly smaller than the solution with the minimum
norm. In this scenario, ϵ is increased by a small fraction as ϵk = ϵk−1 (1 + γk), with
γk representing a decaying step size.Furthermore, when decreasing ϵ, if the current
sample is indeed adversarial i.e L (xk−1, y,θ), the algorithm aims to verify if the
current solution can be improved. If the corresponding ϵk value is greater than the
best-known ||δ∗||p found thus far, the best value is retained, and ϵk is set to ||δ∗||p.
These updates of ϵ, performed multiplicatively, this is because of the fluctuating
fashion near to the boundary and seeking the points of adversarial. To make sure
of convergence, the step size γk is subjected to cosine annealing.

14

γk = h (γ0, γK , k,K) = γK +
1

2
(γ0 − γK)

(
1 + cos

(
kπ

K

))
(2.8)

where k being the current step, K is number of steps in total, and γ0 and γK initial
and final steps.

δ-step. This step involves the update of δ (lines 13-17 in Algorithm 1) with the
aim of finding the adversarial example that is misclassified with the utmost con-
fidence, essentially minimizing the loss function L within the current constraint
of ϵ (defined by Eq. 2.7) and subject to the bounds specified in Eq.2.5. This
process is achieved through a projected-gradient step, where we traverse along the
negative gradient of L. We employ a normalized steepest descent with a decreasing
step size σ to handle potential issues arising from noisy gradients while ensuring
convergence (line 14). It’s worth noting that in this step, the gradient is rescaled
by its l2 norm, preserving its direction. The step size σ undergoes cosine annealing
to facilitate convergence (Eq. 2.8). After updating δ, it is then projected onto the
lp-norm constraint of size ϵ, ensuring compliance with the constraint stated in Eq.
(2.7). The projection operation Πϵ is straightforward for p = ∞ and p = 2. In the
case of p = 1, we utilize an efficient algorithm proposed by Duchi et al. [8]. For p
= 0, only the first ϵ components of δ with the largest absolute values are retained.
Finally, any components of δ that violate the bounds specified in Eq. (2.5) are
clipped (line 16).

Execution example. In Fig. 2.3(b), we provide an illustration of our algorithm’s
execution in a two-dimensional context. Initially, the sample is adjusted by fol-
lowing the negative gradient of the loss function L towards the decision boundary.
As soon as an adversarial point is identified, the algorithm adapts by reducing the
value of ϵ to seek an improved solution. Consequently, the point is projected back
into the non-adversarial region, and ϵ is increased, albeit by a smaller, gradually
diminishing quantity. These oscillations facilitate the movement of the point along
the boundary, aiming to reach a local optimum—specifically, an adversarial point
situated on the boundary. This situation is characterized because of the loss func-
tion of the gradient as some contraints of the norm has opposite directions.FMN
would be converge relatively quickly to a favorable local optimum, given that the
step size is steadily reduced to a suitably small value and a sufficient number of
iterations are executed.

Adversarial initialization. Our attack offers the flexibility of being initiated
either from the original input sample x or from a designated point xinit. In cases
where the attack commences from xinit, whether for an untargeted or targeted at-
tack, we employ a ten-step binary search procedure that operates between x and
xinit. The primary objective of this search is to locate an adversarial point that is
in closer proximity to the decision boundary. Specifically, we aim to determine the
minimum value of ϵ for which the loss function L (x+Πϵ (xinit − x) , y,θ) < 0 (
or Lt < 0 for targeted attacks). Subsequently, our attack is launched with the
corresponding values of xk, ϵk, δk, and δ∗.

Differences with DNN.FMN introduces significant modifications to both the
algorithm and the formulation originally presented in DDN. The key distinctions

15

are as follows: Perturbation Rescaling: DDN always adjusts the perturba-
tion to a fixed size of ϵ. However, this approach poses challenges when employ-
ing different norms, particularly sparser ones, as it limits the attack’s ability to
explore neighboring regions effectively. In contrast, FMN adopts a more flexi-
ble approach.Choice of Loss Function: While DDN utilizes the cross-entropy
loss, FMN employs the logit difference as its loss function (L). This change is
motivated by the fact that the logit difference is less susceptible to saturation ef-
fects.Dynamic ϵ Estimation: FMN dynamically estimates the value of ϵ and
does not require an initial value. This adaptive approach contributes to the at-
tack’s effectiveness.Decay of γ: In FMN, the parameter γ is subject to decay to
enhance convergence, particularly around better minimum-norm solutions. This
adjustment helps dampen oscillations near the decision boundary.Adversarial
Initialization: FMN introduces the option of initializing the attack from an ad-
versarial point. This feature can significantly expedite the convergence process by
utilizing a rapid line-search algorithm to locate the boundary, followed by subse-
quent queries to refine the outcome

16

Chapter 3

Pruning Methods

The recent growth of edge computing applications has led to an increased need for
deep neural compression [14, 18, 20, 31, 32, 59, 61, 62, 64, 68]. Pruning is one of
the most effective and practical network compression methods [6, 11, 27, 28, 40,
54, 56, 67], which aims to remove redundant parameters from a network to reduce
its size and potentially speed up inference. There are two main types of pruning:
structural [5, 25, 66] and unstructural [7, 12, 40]. Structural pruning physically
removes grouped parameters, changing the structure of the neural network, while
unstructural pruning zeroes out partial weights without modifying the network
structure. Structural pruning is more widely applicable where we do not have
to be dependent on artificial intelligence tools or related tools that helps us to
eliminate the costs of computations and memory.[34, 63].

Nonetheless, the task of structural pruning itself presents a considerable chal-
lenge, particularly when dealing with modern deep neural networks that possess
intricate and interconnected internal structures. This challenge arises due to the
fact that deep neural networks are constructed using a multitude of fundamental
components, such as convolution, normalization, and activation functions. These
components, whether characterized by parameters or not, are inherently inter-
twined through complex connections. Consequently, even a seemingly simple task,
like removing a single channel from a convolutional neural network as depicted in
Figure 3.1(a), demands careful consideration of its interconnectedness across all
layers. Neglecting this aspect could result in rendering the network inoperable.
To elaborate, the concept of residual connections mandates that the output chan-
nels of two consecutive convolutional layers match, compelling them to be pruned
jointly. This principle is equally applicable when structurally pruning other archi-
tectures like Transformers, Recurrent Neural Networks (RNNs), and Graph Neural
Networks (GNNs), as shown in Figures 3.1(b-d).

17

Figure 3.1: Parameters across various layers exhibit inherent interdependencies throughout diverse network ar-
chitectures. As a result, the pruning of multiple layers simultaneously becomes necessary. For instance, when
considering the pruning of Conv2 as shown in (a), it becomes imperative to concurrently prune all associated
layers Conv1, BN1, BN2 within the same block.

3.1 Structural and Unstructural Pruning

Pruning has made remarkable advancements in the realm of network acceleration,
evident from numerous studies found in existing literature [4, 17, 16, 25, 33, 35].
Predominant pruning techniques can be broadly divided into two categories: struc-
tural pruning [5, 25, 29, 65] and unstructural pruning [7, 24, 40, 49]. The objective
of structural pruning is to eliminate a cluster of parameters, thereby reducing the
dimensions of neural networks. Conversely, unstructured pruning involves nullify-
ing specific weights while leaving the network’s architecture intact. In practical
terms, unstructured pruning is notably simple to implement and adaptable across
diverse networks. Nonetheless, it often mandates specialized AI accelerators or
software to facilitate model acceleration [13]. On the contrary, structural pruning
enhances inference efficiency by physically eliminating parameters from networks,
expanding its applicability across a broader spectrum [25, 34]. In existing lit-
erature, the scope of pruning algorithms encompasses various aspects, including
pruning strategies [16, 35], parameter identification [49, 39, 40], layer sparsity
[23, 48], and training methodologies [42, 55].

3.1.1 Pruning Grouped Parameters

Within intricate network configurations [25, 30, 34, 66, 69], interdependencies can
emerge among clusters of parameters, demanding their concurrent removal. The
pruning of interconnected parameters has garnered research attention from the
early stages of structural pruning [25, 33, 35]. For example, in the scenario of
pruning two consecutive convolutional layers, excising a filter from the initial layer
mandates the simultaneous pruning of related kernels in the subsequent layer [25].
While manual assessment of parameter dependencies is feasible, this approach be-
comes exceedingly labor-intensive when applied to intricate networks, as evident
in various prior investigations [25, 66, 69]. Additionally, such manual techniques
lack transferability to novel architectures, significantly limiting the scope of prun-
ing applications. Recently, some initial attempts have been made to decode the
intricate interrelations among layers [30, 66]. Nonetheless, existing methods still
rely on empirical guidelines or pre-defined architectural patterns, thus rendering

18

them inadequately versatile for a comprehensive range of structural pruning ap-
plications.
In this thesis we tried to solve all of the aforementioned issues regarding parameter
dependency and furthermore, we will see how pruning effects the different models
and their accuracies thus also diving into robustness against adversarial attacks.

3.2 Methods

3.2.1 Dependency in Neural Networks

This study is centered on the structural pruning of neural networks [10] while
considering the constraint of parameter interdependency. To maintain a broad
perspective, our method is developed using fully-connected (FC) layers. We com-
mence by examining a linear neural network comprising three consecutive layers,
as depicted in Figure 3.2(a). These layers are characterized by 2-D weight matri-
ces, namely wl, wl+1, and wl+2. The aim is to achieve network slimming through
structural pruning by eliminating neurons. In this context, it becomes evident that
certain dependencies arise among parameters, denoted as wl ⇔ wl+1. This linkage
mandates the simultaneous pruning of wl and wl+1. Specifically, when pruning the
k-th neuron bridging wl and wl+1, both wl[k, :] and wl+1[:, k] need to be removed.
Existing literature tackles layer dependencies and facilitates structural pruning
in deep neural networks through manually devised and model-specific strategies
[16, 25]. However, as illustrated in Figure 3.2(b-d), there exists a multitude of
dependencies. The manual analysis of each dependency on a case-by-case basis
becomes impractical, especially considering that straightforward dependencies can
be nested or combined to create more intricate patterns. To address the chal-
lenge of dependencies in structural pruning, this study introduces the concept of
a Dependency Graph. This approach offers a comprehensive and fully automated
mechanism for modeling dependencies.

Figure 3.2: Parameters that are grouped together and exhibit interdependence across various structures necessitate
concurrent pruning of the highlighted parameters.

19

3.2.2 Dependency Graph

Grouping

In order to facilitate structural pruning, the initial step involves categorizing layers
based on their interdependencies [10]. In a formal sense, our objective is to de-
termine a grouping matrix G ∈ RL×L, where L denotes the count of layers within
the network earmarked for pruning. Here, Gij = 1 signifies the presence of a de-
pendency between the i-th layer and the j-th layer. To ensure self-dependency for
ease of computation, we set Diag(G) = 11×L. Leveraging this grouping matrix, the
identification of all linked layers with interdependence to the i-th layer, denoted
as g(i), becomes straightforward:

g(i) = {j |Gij = 1}

However, discerning the grouping patterns from a neural network is intricate, as
contemporary deep networks could encompass numerous layers with intricate inter-
connections. Consequently, this results in a comprehensive and intricate grouping
matrix G. Within this matrix, Gij is influenced not solely by the i-th and j-th
layers, but also by intermediate layers positioned between them. Consequently,
such non-local and implicit relationships can’t be addressed through simple rules
in the majority of scenarios. To surmount this challenge, we avoid a direct esti-
mation of the grouping matrix G and propose an alternative, yet easily estimable,
method for modeling dependencies – the Dependency Graph. This Dependency
Graph facilitates the derivation of G in an efficient manner.

Dependency Graph

We shall initiate our exploration by taking into considerations of a group denoted
as g = {w1, w2, w3}, which exhibits several dependencies i.e w1 ⇔ w2, w2 ⇔ w3,
and w1 ⇔ w3. With closer analysis of this structure [10], it becomes apparent
that there exists some redundancy within it. For instance, the interdependency
w1 ⇔ w3 can be deduced from the relationships w1 ⇔ w2 and w2 ⇔ w3 through
a recursive process. Initially, we consider w1 as the starting point and assess its
dependence on other layers, such as w1 ⇔ w2. Subsequently, w2 serves as a fresh
starting point to recursively extend the dependency, thereby inducing the inter-
connection w2 ⇔ w3. This recursive iteration culminates in a transitive relation,
w1 ⇔ w2 ⇔ w3. In this scenario, a mere two dependencies suffice to depict the
relationships within group g. Likewise, the grouping matrix mentioned in Section
3.2 also harbors redundancy in terms of dependency modeling, permitting com-
pression into a more concise structure with fewer edges while upholding the same
information content. We substantiate that a novel graph D, which gauges the local
interdependency between adjacent layers and is termed the Dependency Graph,
can serve as a productive reduction of the grouping matrix G. Diverging from G,
the Dependency Graph exclusively records dependencies between contiguous layers
connected directly. This Graph D can be regarded as the transitive reduction [2]
of G, encompassing identical vertices as G while minimizing the number of edges.
Formally, the construction of D ensures that for all Gij = 1, a path exists in D
connecting vertex i and vertex j. Consequently, we can get Gij by just looking at
the vertices between the i and j.

20

Network Decomposition

However, we discover that constructing the dependency graph [10] on a per-layer
basis can present challenges in practical implementation. This is due to the fact
that certain fundamental layers, like fully-connected layers, can have multiple dis-
tinct pruning strategies such as w[k, :] and w[:, k], as elaborated in Section 3.1,
which involve reducing the dimensions of inputs and outputs, respectively. Further-
more, networks also encompass non-parameterized operations such as skip connec-
tions, which also influence the interdependencies between layers [36]. To address
these complexities, we introduce a fresh notation to disassemble a network F (x;w)
into more granular and fundamental constituents, denoted as F = {f1, f2, ..., fL},
in which all the { indicated the layers that can either be the layers of convolu-
tion or they can be either be related to operations perhaps non-parameterized.We
can do the modeling connections at the layer level, we direct our attention to-
wards the dependencies between the inputs and outputs of these constituents.
Specifically, we represent the input and output of constituent fi as f−

i and f+
i ,

respectively. For any given network, this final disassembly can be formulated as
F =

{
f−
1 , f

+
1 , . . . , f

−
L , f

+
L

}
. This notation simplifies dependency modeling and

accommodates distinct pruning approaches for the same layer.

Algorithm 1 Layer Grouping Algorithm

Require: Dependency Graph D(F,E)
Ensure: Groups G
1: G = {}
2: for i ∈ {1, 2, ..., 2 · |F |} do
3: g = {i}
4: repeat
5: UNSEEN = {1, 2, ..., 2 · |F |} − g
6: g′ = {j ∈ UNSEEN | ∃k ∈ g,Dkj = 1}
7: g = g ∪ g′

8: until g′ = ∅
9: G = G ∪ {g}
10: end for
11: return G

=0

Dependency Modeling

By leveraging this notation, we reformulate the neural network as depicted in
Equation 3.1, revealing two primary categories of dependencies: inter-layer depen-
dency and intra-layer dependency [10], demonstrated as follows:

(f−
1 , f

+
1

)
↔

(
f−
2︸ ︷︷ ︸

Inter-layer Dep

, f+
2) · · · ↔

(
f−
L , f

+
L

)︸ ︷︷ ︸
Intra-layer Dep

(3.1)

The symbol ↔ indicates the connection between two consecutive layers. Analysis
of these two types of dependencies leads to straightforward yet comprehensive
principles for dependency modeling:

• Inter-layer Dependency: A dependency fi− ⇔ fj+ consistently emerges when
layers fi− ↔ fj+ are connected.

21

Algorithm 2 Dependency Graph Generation Algorithm

Require: A neural network F (x;w)
Ensure: Dependency Graph D(F,E)
1: f− = {f−

1 , f
−
2 , ..., f

−
L } decomposed from F

2: f+ = {f+
1 , f

+
2 , ..., f

+
L } decomposed from F

3: Initialize Dependency Graph D = 02L×2L

4: for i ∈ {0, 1, ..., L} do
5: for j ∈ {0, 1, ..., L} do
6: D(f−

i , f
+
j) = D(f+

j , f
−
i) = Z

[
f−
i ↔ f+

j

]︸ ︷︷ ︸
Inter-layer Dep

∨Z
[
i = j ∧ sch

(
f−
i

)
= sch

(
f+
j

)]︸ ︷︷ ︸
Intra-layer Dep

7: end for
8: end for
9: return D

=0

• Intra-layer Dependency: A dependency fi− ⇔ fi+ exists if fi− and fi+ share
the same pruning scheme, denoted as sch(fi−) = sch(fi+).

Starting with inter-layer dependency, its estimation becomes straightforward if the
network’s topological structure is known. For connected layers with fi− ↔ fj+,
a dependency invariably exists since fi− and fj+ correspond to the same inter-
mediate features within the network. The intra layer depicts us that in order
to maintain the neural network authenticity the input and output later must
be pruned together. Numerous network layers adhere to this criterion, such as
batch normalization, where inputs and outputs share the same pruning scheme
(sch(fi−) = sch(fi+)), leading to simultaneous pruning, as depicted in Figure 3.3.
On the contrary, layers like convolutions exhibit distinct pruning schemes for their
inputs and outputs (e.g., w[:, k, :, :] ̸= w[k, :, :, :]), as demonstrated in Figure 3.3.
Consequently, sch(fi−) ̸= sch(fi+) and no dependency exists between the input
and output of a convolution layer.

With these established principles, we can formally define dependency modeling as
follows:

D
(
f−
i , f

+
j

)
= Z

[
f−
i ↔ f+

j

]︸ ︷︷ ︸
Inter-layer Dep

∨Z
[
i = j ∧ sch

(
f−
i

)
= sch

(
f+
j

)]︸ ︷︷ ︸
Intra-layer Dep

(3.2)

Here, ∨ and ∧ denote logical ”OR” and ”AND” operations, respectively, and
Z is an indicator function that returns ”True” if the condition holds. The first
term addresses inter-layer dependency arising from network connectivity, while
the second term handles intra-layer dependency introduced by shared pruning
schemes between input and output layers. Notably, DepGraph, being a symmetric
matrix, adheres to D(fi−, fj+) = D(fj+, fi−). In Figure 3.3, the DepGraph of a
CNN block with connections is visually depicted. Algorithms 1 and 2 outline the
procedures for dependency grouping and also modeling.

22

Figure 3.3: Layer grouping is established through a recursive propagation process on the Dependency Graph
(DepGraph), commencing from f4+. In this specific illustration, no intra-layer dependency exists between the
input f4− and the output f4+ of the convolutional layer due to the divergent pruning schemes highlighted earlier.

3.2.3 Magnitude Pruners

Up to this point in our thesis, we have employed two distinct pruning techniques:
the L1 pruner[26] and the Random pruner [26]. Both of these methods fall under
the category of magnitude pruners, as they rely on assessing the average magnitude
of their kernel weights. It is worth noting that the library we have utilized offers a
wide array of pruning strategies, including MetaPruner, Magnitude Pruner, BN-
ScalePruner, GroupNorm Pruner, and GrowingRegPruner. However, our thesis
primarily concentrates on the magnitude pruner approach.

Our approach focuses on the elimination of less essential filters from a pre-trained
model to enhance computational efficiency while keeping the decrease in accuracy
to a minimum. To assess the relative importance of a filter within each layer, we
compute the sum of its absolute weights, denoted as

∑
|Fi,j|, which is essentially

its l1-norm, represented as |Fi,j|1 . We represents the number of channels with
ni which are the input to the filter,

∑
|Fi,j|, and this sum of F is calculating

average magnitude by considering the kernel weights, the resulting value provides
an estimate of the magnitude of the resulting feature map. Filters with smaller
kernel weights typically generate feature maps with less pronounced activations
when compared to other filters within that layer.

The process of removing m filters from the ith convolutional layer follows these
steps:

• Calculate the sum of absolute kernel weights, denoted as sj =
∑ni

l=1

∑
|Kl|,

for each filter Fi,j

• Arrange the filters in ascending order based on their sj values.

• Eliminate m filters with the smallest sj values along with their associated

23

feature maps. Additionally, remove the corresponding kernels in the subse-
quent convolutional layer.

• Create new kernel matrices for both the ith and i+1th layers, and copy over
the remaining kernel weights to the new model.

Relationship To Pruning Weights

The process of pruning filters based on the sum of their absolute weights is akin to
magnitude-based weight pruning, as outlined by Han et al [14]. Magnitude-based
weight pruning removes entire filters when all the kernel weights within a filter
fall below a specified threshold. However, this method necessitates meticulous
threshold tuning, making it challenging to predict the precise number of filters
that will be pruned. Additionally, it results in sparse convolutional kernels, which
can be challenging to accelerate due to the absence of efficient sparse libraries,
particularly in cases of low sparsity.

Relationship To Group-sparse Regularization On Filters

Recent research, such as the work by Zhou et al [70] and Wen et al [58], has
employed group-sparse regularization, typically using l2,1-norm (

∑ni

j=1 ∥Fi,j∥2 for
each filter) on convolutional filters. This regularization technique also encourages
filters with small l2-norms to approach zero, effectively eliminating them (Fi,j = 0).
In practical applications, we have not observed a significant distinction between
the l2-norm and l1-norm when it comes to filter selection, as both measures tend
to highlight important filters with relatively large values. The process of zeroing
out weights in multiple filters during training achieves a similar outcome to the
strategy of iterative pruning and retraining, as discussed in a later section.

Pruning Filters Across Multiple Layers

Now, let’s delve into the process of pruning filters across the network. In previous
research, the typical approach involved pruning weights layer by layer, followed by
iterative retraining to compensate for any potential loss of accuracy, as outlined
in the work by Han et al [14]. However, there are compelling reasons to explore
the pruning of filters across multiple layers simultaneously:

1. Efficiency in Deep Networks: Pruning and retraining on a per-layer basis can
be exceedingly time-consuming in deep neural networks.

2. Holistic Network View: Pruning layers across the entire network provides a
more comprehensive perspective on the network’s robustness, resulting in a
more compact network architecture.

3. Complexity Considerations: In the case of intricate networks like ResNet,
taking a holistic approach may be essential. For instance, when pruning
ResNet, we have to take into consideration that if we pruned the indentity
maps or either ith layer of the any residual block, then we have to pruned
some more of the other layers.

This broader pruning strategy offers advantages in terms of efficiency, overall net-
work evaluation, and the management of complex network architectures.

24

When it comes to pruning filters across multiple layers, we explore two distinct
strategies for layer-wise filter selection:

• Independent Pruning: This approach independently determines which
filters to prune at each layer, without taking into account the status of filters
in other layers.

• Greedy Pruning: In contrast, the greedy pruning strategy considers filters
that have already been removed in previous layers. However, it does not
consider the kernels associated with previously pruned feature maps when
calculating the sum of absolute weights.

Figure 3.4 visually illustrates the difference between these two approaches in terms
of calculating the sum of absolute weights. While the greedy approach may not
be globally optimal, it offers a holistic perspective and often results in pruned
networks with higher accuracy, particularly when a significant number of filters
are being pruned.

Figure 3.4: When it comes to pruning filters across consecutive layers, it’s essential to understand the difference
between the two strategies:Independent Pruning, filter sums (represented by the green columns) are calculated
without considering feature maps that have been removed in the previous layer (depicted in blue). As a result,
the kernel weights indicated in yellow are still included in the pruning process. This approach ultimately leads to
a kernel matrix with dimensions of (ni+1 − 1)× (ni+2 − 1).Conversely, the greedy pruning strategy does not take
into account the kernels associated with previously pruned feature maps. Therefore, it calculates filter sums only
for the active feature maps in the current layer. This approach also results in a kernel matrix with dimensions of
(ni+1 − 1)× (ni+2 − 1).Both of these approaches have their implications and outcomes in the pruning process.

Figure 3.5: The figure represents blocks of residual blocks with the shortcut to projections,which is indicated in
green, can be found by the results of pruning the projection shortcut. However, the first layer of the residual block
can be pruned without any specific restrictions. This strategy ensures that pruning decisions for the second layer
are influenced by the preceding shortcut projection, optimizing the pruning process within the residual block.

25

When dealing with simpler CNNs like VGGNet or AlexNet, the process of pruning
filters in any convolutional layer is relatively straightforward. However, in the case
of complex network architectures like Residual networks (He et al [15]), the task
of filter pruning becomes more intricate. The architecture of ResNet introduces
certain constraints, requiring a careful approach to filter pruning.
In Figure 3.4, we illustrate the process of filter pruning within residual blocks
featuring projection mapping. In this context, the filters within the 1st layer of
the residual block can be pruned without constraints, as such pruning doesn’t
alter the count of output feature maps generated by the block.However, pruning
filters in the second convolutional layer of the residual block is more challenging.
This is because there is a correspondence between the output feature maps of
the second layer and the identity feature maps. Therefore, pruning this layer
necessitates careful planning. To ascertain the identity feature maps eligible for
pruning, we employ a selection criterion rooted in the characteristics of the filters
found within the shortcut convolutional layers, which are typically with 1 × 1
kernels. The pruning of the second layer of the residual block is aligned with the
filter index chosen during the pruning of the shortcut layer.This approach ensures
that the pruning process in Residual networks accounts for the importance of
identity feature maps and maintains the integrity of the network’s structure.

Retraining Pruned Networks To Regain Accuracy

Following the pruning of filters, it’s crucial to address the performance degradation
by retraining the network. There are two main strategies for pruning filters across
multiple layers [26]:

1. Prune Once and Retrain: In this strategy, filters from multiple layers
are pruned simultaneously, and the network is retrained until it regains its
original accuracy.

2. Prune and Retrain Iteratively: This approach involves pruning filters
either layer by layer or filter by filter, followed by iterative retraining. The
model is retrained before proceeding to prune the next layer. This allows
the model’s weights to adapt to the changes introduced during the pruning
process.

We have observed that for layers that are resilient to pruning, the ”prune once and
retrain” strategy can effectively remove significant portions of the network, and
any loss in accuracy can typically be recovered through a relatively short retraining
period (which is shorter than the original training time). However, in cases where
sensitive layers lose some filters or substantial portions of the network are pruned,
it may not be possible to fully restore the original accuracy. In such scenarios, the
iterative ”prune and retrain” approach may yield better results. It’s important to
note that the iterative process requires more training epochs, especially for very
deep networks.

26

3.3 Methodologies

We utilized three resilient models, namely, Addepalli2022Efficient(ResNet18)[1],
Sehwag2021Proxy(ResNet18)[52], and Engstrom2019Robustness(ResNet50)[9].In
parallel, we employed three models lacking robustness:

Wang2023Better-WideResNet-28-10 [57], ResNet-50[9], and VGG-19 [60], each fea-
turing distinctive parameter settings for a comprehensive comparative analysis.

Below we briefly explain all the models, including their architectures, parameters,
activation function and training of these models.

Addepalli2022Efficient(ResNet18)

This model is recently used by Addepalli [1] from effective and efficient data
augmentation technique in adversarial training.Addepalli2022Efficient-ResNet18
is likely based on the ResNet-18 architecture, which is a popular convolutional
neural network (CNN) architecture. It consists of multiple residual blocks.For the
reminder the figure 3.6 below illustrate a simple ResNet-18 model:

Figure 3.6: ResNet-18 Architecture

Moreover,in the paper [1] they purposed a new approach called Diverse Aug-
mentation based joint Adversarial Training as known as DAJAT for the better
data augmentation.The model is trained on CIFAR-10, CIFAR-100 and Ima-
geNette.For improving the quality of the training data they used empirical risk
minimization(ERM) which is based on the random transformation.In their re-
search, they initiated an examination of the underlying factors contributing to the
divergent patterns observed in Standard and Adversarial Training. Subsequently,
they demonstrated the feasibility of harnessing intricate augmentations within
Adversarial training by concurrently training models on both straightforward and
intricate data augmentations. This approach involved the utilization of distinct
batch-normalization layers for each augmentation type, as visually depicted in
Figure 3.7.

27

Figure 3.7: DAJAT Architecture

Sehwag2021Proxy(ResNet18)

This model is also based on the ResNet18 Architecture as explained in Figure 3.6,
In their research [52] they try to make the model more robust by using vast data
generated by the advanced generative models from the proxy distributions.Initially,
their aim is to establish a formal comprehension of the transference of robustness
from the classifiers that are trained on proxy distributions to the actual data. Their
analysis leads to the proof that the contrast in robustness between a classifier on
these two distributions can be bounded from above by the conditional Wasserstein
distance existing between them. Subsequently, they leverage proxy distributions
to yield substantial enhancements in the efficacy of adversarial training across five
distinct datasets. Notably, on the CIFAR-10, they achieve notable enhancements
in robust accuracy, boasting improvements of up to 7.5% and 6.7% in the l∞
model and l2 threat model, respectively, compared to baselines not utilizing proxy
distributions. Additionally, they enhance the robust accuracy on CIFAR-10 by
7.6%. Furthermore, they illuminate how various generative models offer varied
enhancements in robust training performance. Introducing a robust discrimina-
tion approach, they delve into the characterization of the individual impacts of
generative models, shedding light on why diffusion-based generative models, as
opposed to generative adversarial networks, constitute a superior choice for proxy
distribution.

Engstrom2019Robustness(ResNet50)

Engstrom2019Robustness is basically a robustness library which is based on ResNet-
50 architecture,many of the researchers used this library for making the model more
robustness, this includes [9, 50, 45, 51, 47, 46] research papers.Resnet-50 architec-
ture is moreorless the same resnet but with 50 layers,In Figure 3.8 below I tried
to briefly explain this architecture.

28

Figure 3.8: ResNet-50 Architecture

The ResNet architecture, comprising 50 layers, incorporates various key compo-
nents, as depicted in the table below:

• Initial Convolutional Layer: It consists of a 7×7 kernel convolution op-
eration with 64 distinct kernels, all executed with a stride of 2.

• Max Pooling Layer: Subsequently, a max-pooling layer with a 2-sized
stride is applied.

• Stacked Layers: The network then proceeds with a series of layers, each
composed of a 3×3 convolution operation employing 64 kernels, followed by
two more layers: one with 1×1 convolutional layers having 64 kernels and
another with 1×1 convolutional layers utilizing 256 kernels. This trio of
layers is recurrently applied three times.

• Additional Stacked Layers: The architecture further incorporates 12 lay-
ers, consisting of 1×1 convolutional layers with 128 kernels, 3×3 convolu-
tional layers with 128 kernels, and 1×1 convolutional layers with 512 kernels.
This set of layers is iterated four times.

• Further Layers: Following that, there are 18 more layers, encompassing
1×1 convolutional layers employing 256 cores, 3×3 convolutional layers with
256 cores, and 1×1 convolutional layers utilizing 1024 cores. These 18 layers
are repeated six times.

• Continuation of Layers: Subsequently, there are 9 additional layers, fea-
turing 1×1 convolutional layers with 512 cores, 3×3 convolutional layers
with 512 cores, and 1×1 convolutional layers with 2048 cores, repeated three
times.

• Final Layers: The network concludes with an average pooling layer, fol-
lowed by a fully connected layer containing 1000 nodes. The softmax acti-
vation function is employed in this final layer for classification purposes.

29

VGG19

In order to do the better comparison between the robust models we need to use
other non-robust models.We start with the VGG19 [60] model,VGG19 consist of
19 layers, below Figure explain the VGG19 architecture:

Figure 3.9: VGG19 Architecture

Let’s explore the architecture of VGG in a concise manner:

• VGGNet takes image of size 224×224 as input. As for ImageNet the model’s
creators consistently cropped the center 224×224 patch from each image to
maintain uniform input dimensions.

• VGG’s convol layers employ a minimal receptive field, specifically 3×3, which
is the smallest size capable of capturing vertical and horizontal information.
Additionally, 1×1 convolution filters are utilized for linear transformations
of the input. Following these convolutions, a ReLU (Rectified Linear Unit)
activation function is applied.

• Hidden layers within the VGG use the ReLU activation function. VGG
generally avoids using Local Response Normalization (LRN) as it tends to
increase memory usage and training time without delivering significant im-
provements in overall accuracy.

• VGGNet incorporates three fully connected layers. Among these layers, the
first two consist of 4096 channels each, while the third comprises 1000 chan-
nels, corresponding to the number of classes for classification tasks.

Wang2023Better-WideResNet-28-10

In the research paper [57], the authors used WideResNet-28-10 architecture to
make the model more robust, in this paper they use DDPM (denoising diffu-
sion probablistic model) to generate data that made improvements in adversarial
training.Before going further in details lets discuss about the WideResNet.Wide
Residual Networks (WRNs) involve the exploration of various parameters, includ-
ing the architecture of the ResNet block, depth (referred to as the deepening factor
l), and width (referred to as the widening factor k) within the ResNet block.

In the context of WRNs, when k equals 1, it maintains the same width as a stan-
dard ResNet. Conversely, for k greater than 1, it becomes k times wider compared

30

to the ResNet.

The notation WRN-d-k signifies a WRN with a depth of d and a widening factor
k.It’s worth noting that Pre-Activation ResNet is utilized for CIFAR-10, CIFAR-
100, and SVHN datasets, while the original ResNet is employed for the ImageNet
dataset. A key distinction lies in their architectural order, Pre-Activation ResNet
follows a structure of batch normalization and ReLU activation before convolu-
tion, whereas the original ResNet adheres to a structure of Convolution-Batch
Normalization-ReLU. Generally, Pre-Activation ResNet tends to outperform the
original variant, although the advantage is less pronounced for ImageNet when the
number of layers remains around 100.

Figure 3.10: ResNet Blocks

These ResNet blocks are designed as follows:

• B(3;3): This is the original basic block depicted in the figure 3.10(a).

• B(3;1;3): It features an additional 1×1 layer positioned between two 3×3
layers.

• B(1;3;1): This block maintains the same dimensionality for all convolutions,
creating a bottleneck.

• B(1;3): This network employs alternating 1×1 and 3×3 convolutions.

• B(3;1;1): This block is structured in a Network-in-Network style.

31

• B(3;1): This network follows a pattern of alternating 3×3 and 1×1 convolu-
tions.

Going back to the research paper that how they used this WideResNet architec-
ture to increase the robustness of their model.To begin with, their research paper
provides a resounding affirmation through the utilization of the latest diffusion
model, as introduced by Karras et al.[21] in 2022. This model, boasting supe-
rior efficiency and image quality in comparison to DDPM, forms the cornerstone
of their investigation. Remarkably, their adversarially trained models establish a
new benchmark for performance on RobustBench, solely relying on generated data.
When subjected to the l∞-norm threat model with ϵ set at 8/255, their models
deliver remarkable results, achieving a robust accuracy of 70.69% on CIFAR-10
and 42.67% on CIFAR-100. This marks a substantial improvement over previous
models, showcasing an impressive increase of +4.58% and +8.03%, respectively. to
mention, even with the l2-norm threat model with ϵ set to 128/255, their models
excel, achieving an accuracy of 84.86% on CIFAR-10, representing a impressive
gain of +4.44%. What’s more, these outcomes outperform prior endeavors that
incorporated external data sources.

32

Chapter 4

Experiments

In our research project, we conducted a series of experiments to assess the effi-
cacy of various pruning algorithms and evaluated their impact on model accuracy.
We used the CIFAR-10 dataset for both the pruning processes and adversarial
attacks across six distinct trained models. Initially, our focus was on two pruning
techniques: L1 [26] and random pruning [26]. To gauge the effectiveness of these
pruning methods, we manipulated a single hyperparameter, sparsity, which ranged
from 0.1 to 0.9, thereby pruning channels with varying probabilities.

Subsequently, we introduced a DDN (Decoupling Direction and Norm [43]) attack
with a duration of 1000 steps, targeting the best-performing model after the prun-
ing phase. The objective was to assess the robustness of these models in the face
of adversarial attacks. We selected three models that exhibited robustness and
three that did not, facilitating a comparative analysis of the attack’s impact on
different model types.

To facilitate transparency and reproducibility, we implemented our research using
PyTorch, and the complete source code is available on our GitHub repository:
https://github.com/Cinofix/pruning-robustness-2023.

4.1 Experimental Setup

Datasets

In our experimental design, we deliberately chose one distinct dataset with varying
characteristics to introduce diversity and complexity into our setup. This approach
aligns with the methodology proposed in previous research on poisoning attacks
[37], [38], [44]. One of the datasets we used is the CIFAR-10 dataset [22], which is
notable for its differences in data dimensionality, the number of classes, and class
balance.

The CIFAR-10 dataset comprises 60,000 color images, each measuring 32x32 pixels,
equally distributed across ten distinct classes. Our data split consists of 50,000
images allocated for training, 10,000 for validation, and another 10,000 for testing.
During the training phase, we introduced data augmentation techniques such as
random cropping and random rotation to enhance the model’s robustness and
generalization capabilities.

33

Models and Training phase

We assessed the performance of our pruning algorithms and the DDN attack across
neural networks of varying sizes in our experiments. Specifically, we employed three
robust models, Addepalli2022Efficient-ResNet18 [1], Sehwag2021Proxy-ResNet18
[52], and Engstrom2019Robustness-ResNet50[9], and for comparison, three non-
robust models: Wang2023Better-WideResNet-28-10[57], ResNet-50 [9], and VGG-
19 [60], each with different parameter configurations. Addepalli-Resnet18 and
Sehwag-ResNet18 have approximately 11 million parameters, while Engstrom-
ResNet50, similar to ResNet-50 (non-robust), boasts 23 million parameters.
Wang2023Better-WideResNet-28-10 is the largest among them, with 36 million
parameters, and it is also non-robust. Lastly, VGG-19 comprises 20 million pa-
rameters.
All models underwent training on the CIFAR-10 dataset for 50 epochs, utilizing
the SGD optimizer with a momentum of 0.9, weight decay set at 5e-4, and a batch
size of 256. The optimization process focused on minimizing the cross-entropy loss,
denoted as L. We also incorporated an exponential learning rate scheduler with
an initial learning rate of 0.001 and a decay rate of 0.1 to facilitate the training
process.
Furthermore, we subjected all models to the training phase employing two dis-
tinct pruning techniques: L1 and Random pruning. With each of these pruning
methods, we systematically varied the sparsity level, spanning from 0.05 to 0.9,
resulting in a total of ten models. During the training process, we implemented
a checkpoint system, saving model states every five epochs. Subsequently, when
it came to launching the attack, we selected the best-performing model based on
its performance at a specific epoch in order to ensure rigorous evaluation and
comparison.

Attack Setup

We conducted DDN (Decoupling Direction and Norm [43]) attacks, each compris-
ing 1000 steps, on all six models, both robust and non-robust. Within each model,
we performed attacks on various sub-models generated by varying the sparsity.
It’s essential to note that DDN relies on the l2 norm. For the scope of this the-
sis, we kept the hyperparameters of DDN unchanged, with our primary objective
being to assess the robustness of both pruned and non-robust models. Following
the attacks on all models, we generated a JSON file that encompasses diverse
metrics, including hashes, information about targeted attacks, accuracy, original
success, adversarial success, ASR (Attack Success Rate), execution times, the num-
ber of forward and backward passes, distances, and instances of box failures. This
comprehensive data set allowed us to thoroughly evaluate and compare the per-
formance and robustness of the various models.To facilitate a more comprehensive
comparison and gain deeper insights into the impact of different attack types on
both robust and non-robust models, we conducted experiments involving the FMN
attack, known as the Fast Minimum Norm attack [41]. This approach allowed us
to delve further into how the behaviors of these models evolve when subjected to
this specific attack type.

34

Performance Metrics

Following the training of our six models, each pruned at different levels, our next
step involved subjecting these models to adversarial attacks to evaluate their ro-
bustness. We specifically focused on measuring two key aspects: distances and
ASR (Attack Success Rate). By analyzing these metrics, we gained insights into
the effectiveness of the attacks and the models’ resilience to them.
Subsequently, we created plots that illustrate the relationship between sparsity
levels and the distances observed across all models. These plots serve as a valuable
visualization, offering insights into the success of the attacks and helping us identify
which model exhibited the least resistance to adversarial attacks. Detailed results
and graphical representations can be found in the experimental results section of
our study.

4.2 Experimental Results

Params and Flops

Considering the model parameters and floating-point operations is crucial in un-
derstanding the impact of pruning on different models. Sparsity, in essence, repre-
sents a probability assigned to pruning methods to remove channels. For instance,
a sparsity of 0.1 corresponds to cutting 10 percent of the channels, inevitably
leading to a reduction in model accuracy. Our primary focus revolves around
eliminating unnecessary neurons that contribute minimally to computations.
As we increase the sparsity level, more neuron layers are pruned, rendering the
model more susceptible to vulnerabilities. Concurrently, with increasing sparsity,
the parameters and FLOPs (Floating-Point Operations per Second) are also likely
to decrease. The figures below illustrate the variations in parameters and FLOPs
for the two pruning methods, L1 and Random, highlighting the distinct behaviors
of each approach.
Furthermore, as depicted in Figure 4.1, we present the parameters (Params) and
Floating Point Operations (Flops) of the robust models. As previously men-
tioned, our analysis involves three robust models: Addepalli (ResNet18), Sehwag
(ResNet18), and Engstrom (ResNet50). Interestingly, the figure illustrates that
the Random Pruning method outperforms L1 pruning. In theory, pruning more
channels should lead to a decrease in Params and Flops. However, this behavior is
notably observed in the Random method, whereas the L1 method tends to exhibit
over-pruning.
Moving on to Figure 4.2, we shift our focus to the non-robust models (VGG19,
ResNet50, and WideResNet) and their response to channel pruning. Remarkably,
both methods exhibit similar behaviors in these non-robust models. However, it’s
worth noting an unusual behavior with the L1 method, particularly after pruning
approximately 30% of the channels. This peculiar behavior can also be attributed
to over-pruning.
Conversely, when examining the Random pruning method closely, one can observe
that both Params and Flops tend to stabilize after pruning around 30% to 40%
of the channels. Beyond this point, the neurons exhibit an unusual behavior as
aforementioned in the over pruning, the neurons are now over pruned which means
most of the layers that play important role in the computation are now pruned
out, therefore models is corrupted and and shows unreliable results. In the case of

35

the Random method, they either remain relatively constant or, in the L1 method,
they might even increase, which is quite unexpected. Ideally, one would expect
either a constant or an exponentially decreasing trend.

36

0.2 0.4 0.6 0.8
Sparsity Level

6

7

8

9

10

Pr
un

ed
 P

ar
am

et
er

s

Addepalli with L1 Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

6

7

8

9

10

Pr
un

ed
 P

ar
am

et
er

s

Sehwag with L1 Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

10

12

14

16

18

20

Pr
un

ed
 P

ar
am

et
er

s

Engstrom with L1 Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

5

6

7

8

9

10

Pr
un

ed
 P

ar
am

et
er

s

Addepalli with Random Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

5

6

7

8

9

10

Pr
un

ed
 P

ar
am

et
er

s

Sehwag with Random Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

12

14

16

18

20

Pr
un

ed
 P

ar
am

et
er

s

Engstrom with Random Method
Pruned Parameters

300

350

400

450

500

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

300

350

400

450

500

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

300

350

400

450

500

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

300

350

400

450

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

600

700

800

900

1000

1100

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

600

700

800

900

1000

1100

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

Figure 4.1: Params and Flops of Robust models

0.2 0.4 0.6 0.8
Sparsity Level

10

11

12

13

14

15

16

17

18

Pr
un

ed
 P

ar
am

et
er

s

VGG19 with L1 Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

12

14

16

18

20

Pr
un

ed
 P

ar
am

et
er

s

Resnet50 with L1 Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

18

20

22

24

26

28

30

32

Pr
un

ed
 P

ar
am

et
er

s
Wideresnet with L1 Method

Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

10

12

14

16

18

Pr
un

ed
 P

ar
am

et
er

s

VGG19 with Random Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

12

14

16

18

20

Pr
un

ed
 P

ar
am

et
er

s

Resnet50 with Random Method
Pruned Parameters

0.2 0.4 0.6 0.8
Sparsity Level

16

18

20

22

24

26

28

30

32

Pr
un

ed
 P

ar
am

et
er

s

Wideresnet with Random Method
Pruned Parameters

250

300

350

400

450

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

250

300

350

400

450

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

600

700

800

900

1000

1100

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

600

700

800

900

1000

1100

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

2500

3000

3500

4000

4500

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

2500

3000

3500

4000

4500

Pr
un

ed
 F

LO
Ps

Pruned FLOPs

Figure 4.2: Params and Flops of Non-Robust models

37

Over-Pruning

In our previous experiment, we explored how the network’s size impacts the prams
and flops of two pruning methods. Now, we aim to investigate how these pruning
methods perform when the network is pruned to an extreme degree, resulting in a
substantial reduction in size, up to 99.6%. As before, we will compare the perfor-
mance of L1 pruning and Random pruning. It’s challenging to predict precisely
how Random and L1 pruning will behave under such severe pruning conditions.
However, we anticipate that Random pruning may perform slightly better than L1
pruning. Additionally, we suspect that Random pruning might lead to a decrease
in accuracy due to the emergence of a bottleneck in the network. This bottleneck
can occur when the random nature of pruning leads to the removal of most or all
nodes in a layer, severely limiting the information flow to the subsequent network
layer.
Figure 4.3 provides a comparison of the performance of Random pruning and L1
pruning. The left plot displays all 10 pruning iterations, ranging from 0.05 to 0.9,
using the L1 method, while the right plot presents the same pruning iterations
with the Random method. We exclude the last pruning iteration (1.0) to facilitate
a more direct performance comparison, as the final drop in accuracy affects the
y-axis scale. Initially, the performance of both pruning methods is highly simi-
lar, and for the first four pruning iterations (from 0.05 to 0.4), their performance
remains nearly identical. Beyond this point, some variations emerge, though the
performance still closely aligns. Notably, Random pruning exhibits a small accu-
racy peak at around 60% pruning. Further investigation is required to determine
whether this is an anomaly or a characteristic of Random pruning.

0.2 0.4 0.6 0.8
Sparsity

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Be
st

 A
cc

ur
ac

y

L1 Method
Addepalli Model
Sehwag Model
Engstrom Model

0.2 0.4 0.6 0.8
Sparsity

0.94

0.95

0.96

0.97

0.98

0.99

Be
st

 A
cc

ur
ac

y

Random Method
Addepalli Model
Sehwag Model
Engstrom Model

Figure 4.3: All Robust Model Best Accuracies against sparsity

In these experiments, we continue to work with a total of six models. In the figure
above, we compare three robust models using two pruning methods. We train
these models while increasing the sparsity and plot the best achieved accuracies.
To maintain clarity, the green plot represents the Sehwag model, the blue plot
corresponds to the Addepalli model, and the red plot represents the Engstrom
model. It is evident that the Random pruning method consistently outperforms
the L1 method. As expected, with increasing sparsity, the accuracy of the Random
model decreases. However, it’s worth noting that beyond a sparsity of 0.4, a
bottleneck phenomenon occurs, causing unusual behavior in the model’s accuracy.
Despite this, it still outperforms the L1 method. On the other hand, the L1 method
exhibits significant variation in accuracy beyond a sparsity of 0.4, resulting in poor
performance.

38

In Figure 4.4, we present all non-robust models along with their best achieved
accuracies across varying sparsity levels, ranging from 0.05 to 0.9. The red plot
represents the WideResNet, the green plot corresponds to ResNet50, and the blue
plot indicates VGG19. WideResNet achieves the highest accuracy, while VGG19
achieves the lowest. Comparing Figures 4.3 and 4.4, we can clearly observe the
differences between robust and non-robust models. Their behavior is influenced
by various factors, including the training process, parameters, and the number of
layers used in the models.More specifically, how well their layers and neurons are
dependent of each other.

0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Be
st

 A
cc

ur
ac

y

L1 Method

VGG19 Model
Resnet50 Model
WideResNet Model

0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Be
st

 A
cc

ur
ac

y

Random Method

VGG19 Model
Resnet50 Model
WideResNet Model

Figure 4.4: All Non-Robust Model Best Accuracies against sparsity

The consequences of over-pruning on these models are significant, as discussed
in section 3.2.2 on Dependency Modeling. This section illustrates how the layers
within these models are intricately interconnected. When we consider cutting off
certain layers or, in essence, reducing the depth of the model by removing neu-
rons or layers, it’s crucial to understand that these layers and neurons depend on
both their assessors and predecessors. If we decide to prune a neuron or layer,
it entails cutting off its assessors and predecessors. However, these assessors and
predecessors are also linked to their neighboring neurons and layers, which then
necessitates attention to these neighboring components as well.

In essence, over-pruning has a profound drawback: it can permanently damage
the models by severing critical connections and removing essential layers that
contribute to the model’s vulnerability and overall performance. This interdepen-
dence between layers and neurons underscores the importance of careful pruning
techniques to maintain model robustness and functionality.

Performing DDN attack on Robust Models

One of the pivotal aspects of this thesis involves assessing the robustness of the
pruned models. After subjecting all the models to L1 pruning and random prun-
ing, the next step is to evaluate their robustness. Initially, we employ the DDN
attack, also known as the ”Decoupling Direction and Norm” attack, as elucidated
in Section 2.3.3. This attack is conducted through 1000 iterations, and we closely
examine its behavior by analyzing various distance metrics. Following the attack,
we obtain four distinct distances for each sparsity level: l0, l1, l2, and l∞. We
then calculate the median distance for each of these metrics and plot them to gain
insights.

39

What’s particularly noteworthy is that L1 and random pruning methods exhibit
distinct behaviors when applied to robust models versus non-robust models. The
figures presented below offer a clear visual representation of these differences be-
tween the two categories of models, which is explained below.

0.2 0.4 0.6 0.8

1200

1400

1600

1800

2000

2200

L1 Method - l0 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

7

8

9

10

11

12

13

14

L1 Method - l1 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8
0.30

0.35

0.40

0.45

0.50

0.55

L1 Method - l2 Distance

Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8
0.06

0.08

0.10

0.12

0.14

L1 Method - linf Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

1800

1850

1900

1950

2000

2050

2100

Random Method - l0 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

5

6

7

8

9

10

11

12
Random Method - l1 Distance

Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Random Method - l2 Distance

Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

0.04

0.06

0.08

0.10

0.12

0.14

Random Method - linf Distance
Addepalli
Sehwag
Engstrom

Figure 4.5: All Robust Model with L1 and Random Methods

Distances metrics: Distances like l0, l1, l2, and l∞ play a crucial role in the
realm of adversarial attacks and defenses in machine learning, particularly with
deep learning models. These metrics serve as valuable tools for quantifying the
disparities between an initial input and a perturbed input, which is meticulously
engineered to deceive a machine learning model. These distance measures are
frequently employed to assess the effectiveness of adversarial attacks, such as the
DDN and FMN attack, on a model’s performance. Below, we’ll delve into what
each of these distances reveals about the nature of such an attack:
L0 Distance (Hamming Distance): The L0 distance serves as a gauge for
quantifying the number of elements that exhibit disparities between two inputs.
In the context of adversarial attacks, it essentially tells us the count of individual
features that have been altered to construct an adversarial example. When the L0

distance is small, it signifies that only a limited number of features have undergone
modification. This can make the perturbation less conspicuous to human observers,
yet it remains effective in misleading the model.The L0 distance is simply a count
of the number of differing elements between two inputs. Mathematically, it can be
expressed as:

L0 (x, x
′) =

n∑
i=1

I (xi ̸= x′
i) (4.1)

Where:

• L0(x, x
′) represents the L0 distance between input x and perturbed input x′.

• n is the total number of elements in the inputs.

• I(·) is the indicator function, which returns 1 if the condition inside the
parentheses is true and 0 otherwise.

40

• xi and x′
i are the individual elements of the inputs x and x′, respectively.

L1 Distance (Manhattan Distance): L1 distance calculates the absolute dif-
ference between each element of two inputs, aggregating the sum of these absolute
differences for corresponding elements. In the context of adversarial attacks, a
small L1 distance indicates that the perturbed input closely resembles the original
input in terms of the cumulative absolute differences between their elements.The
L1 distance is the sum of the absolute differences between corresponding elements
of two inputs. It is represented as:

L1 (x, x
′) =

n∑
i=1

|xi − x′
i| (4.2)

Where:

• L1(x, x
′) represents the L1 distance between input x and perturbed input x′.

• n is the total number of elements in the inputs.

• xi and x′
i are the individual elements of the inputs x and x′, respectively.

L2 Distance (Euclidean Distance): L2 distance computes the square root of
the sum of squared differences between corresponding elements of two inputs. In
adversarial attacks, a small L2 distance suggests that the perturbed input is akin
to the original input concerning pixel-wise disparities. However, it is important
to note that even when the L2 distance is small, the perturbed input can still be
adversarial.The L2 distance is the square root of the sum of squared differences
between corresponding elements of two inputs:

L2 (x, x
′) =

√√√√ n∑
i=1

(xi − x′
i)
2 (4.3)

Where:

• L2(x, x
′) represents the L2 distance between input x and perturbed input x′.

• n is the total number of elements in the inputs.

• xi and x′
i are the individual elements of the inputs x and x′, respectively.

L∞ Distance (Infinity or Chebyshev Distance): The L∞ distance quantifies
the maximum absolute difference between corresponding elements of two inputs.
In the context of adversarial attacks, a small L∞ distance indicates that the most
significant individual difference between the original and perturbed inputs is rela-
tively minor. This implies that the adversarial perturbation is not readily percep-
tible.The L∞ distance is the maximum absolute difference between corresponding
elements of two inputs:

L∞ (x, x′) =
n

max
i=1

|xi − x′
i| (4.4)

Where:

• L∞(x, x′) represents the L∞ distance between input x and perturbed input
x′.

41

• n is the total number of elements in the inputs.

• xi and x′
i are the individual elements of the inputs x and x′, respectively

When evaluating the impact of a DDN attack or any other adversarial attack on a
machine learning model, these distance metrics come into play to assess how closely
the perturbed input resembles the original input. Smaller distance values suggest
that the attack has successfully generated an adversarial example that closely re-
sembles the original input both visually and semantically. This is achieved while
causing a misclassification or model failure. The use of these distances aids in
quantifying the attack’s effectiveness in terms of evasion and its potential impli-
cations for the model’s reliability and security.

Figure 4.5 provides an overview of all the robust models employed in this thesis,
emphasizing the repeated usage of L1 and Random pruning methods. In the fig-
ure, the first row is dedicated to L1 methods, while the second row corresponds
to the Random methods. Each column signifies the distances l0, l1, l2, and l∞, re-
spectively. Our observations indicate that as the distance metrics become smaller,
signifying the increasing effectiveness of the attack, the L1 pruning method ex-
hibits a peculiar behavior. Initially, the attack proves successful up to 0.4 sparsity,
but beyond this point, it displays a resurgence, suggesting a weakening of the at-
tack. Notably, the DDN attack exhibits considerable variation in results and loses
its consistent trend.

Conversely, the Random method consistently delivers robust results. It adheres
to a clear trend: as more channels are pruned, the DDN attack becomes progres-
sively more potent. It is essential to highlight that while certain portions of the
graph maintain constant trends, increasing sparsity ultimately weakens the model,
rendering it more vulnerable to attacks.

Performing DDN attack on Non-Robust Models

Figure 4.6 illustrates, Non-robust models shows distinct trends compared to ro-
bust models. Due to their inherent vulnerability to adversarial attacks, non-robust
models behave differently when subjected to the DDN attack. For example, the
WideResNet models, under both L1 and Random pruning methods, follow a con-
sistent trend of decreasing robustness as sparsity levels increase, albeit with oc-
casional fluctuations. This pattern indicates that these non-robust models lack
resilience even after pruning, making them highly susceptible to adversarial at-
tacks.

Conversely, VGG19 and ResNet50 models demonstrate similar trends in distances
l1, l2, and l∞. However, they exhibit some variation in distance l0. These obser-
vations underscore the extreme vulnerability of non-robust models to adversarial
attacks, with their distances being consistently low and nearly constant with in-
creasing sparsity. In summary, non-robust models are exceptionally susceptible to
attacks and require effective defense mechanisms to bolster their security.

42

0.2 0.4 0.6 0.8

1400

1600

1800

2000

2200
L1 Method - l0 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12
L1 Method - l1 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

L1 Method - l2 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L1 Method - linf Distance
VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8

1300

1400

1500

1600

1700

1800

1900

2000

Random Method - l0 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0

2

4

6

8

Random Method - l1 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Random Method - l2 Distance
VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Random Method - linf Distance
VGG19
Resnet50
Wideresnet

Figure 4.6: All Non-Robust Model with L1 and Random Methods

Performing FMN attack on Robust Models

For a more meaningful comparison, we also conduct an attack using FMN, which
stands for Fast Minimum Norm attack. We use a specific hyperparameter setting
where norm is set to Float(”inf”). The FMN (Fast Minimum Norm) attack is a
method used in adversarial attacks on machine learning models, especially deep
neural networks. It aims to create adversarial examples that can mislead a model
by perturbing the input data in a way that is imperceptible to humans but confuses
the model’s predictions.
When we consider infinity norm in the FMN attack, it means the attack focuses
on maximizing changes within the l∞ norm. This norm measures the maximum
absolute difference between elements of two vectors, ensuring that no single change
in the perturbation exceeds a certain threshold.
Here’s how the FMN attack with norm = Float(”inf”) works.

1. Start with the original input data.

2. Calculate the gradient of the model’s loss concerning the input data.

3. For each input element, compute a perturbation that maximizes the l∞ norm
while keeping it small. Typically, this involves multiplying the gradient’s sign
by a small value (e.g., ϵ).

4. Add the calculated perturbation to the original data, creating an adversarial
example.

5. Feed the adversarial example into the model and observe its prediction, aim-
ing to create a different prediction from the correct classification.

6. The FMN attack can be iterative, applying smaller perturbations to make
the adversarial example less noticeable while still causing misclassification.

By focusing on the l∞ norm, the FMN attack aims to make minimal, imperceptible
changes to the input data while effectively confusing the model. This helps assess
model robustness and security.

43

0.2 0.4 0.6 0.8

2950

3000

3050

3100

3150

3200

Random Method - l0 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

20

30

40

50

60

70

Random Method - l1 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

Random Method - l2 Distance
Addepalli
Sehwag
Engstrom

0.2 0.4 0.6 0.8

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

Random Method - linf Distance
Addepalli
Sehwag
Engstrom

Figure 4.7: All Robust Model with Random Method

As depicted in Figure 4.7, the impact of Random pruning on model robustness
when subjected to FMN attacks is evident. Notably, the trends in distances,
specifically l1, l2, and l∞, appear quite similar. This similarity can be attributed to
the attack’s norm configuration, which predominantly emphasizes the l∞ distance.
Interestingly, as we progressively prune more channels, the FMN attack grows in
potency, consequently rendering the initially robust models more susceptible to
adversarial attacks.FMN attack didn’t consider the l0 distance therefore, it didn’t
effect any of the model.

Performing FMN attack on Non-Robust Models

Comparing the outcomes of attacks on non-robust models using DNN and FMN
approaches reveals an intriguing similarity. It appears that both DNN and FMN
attacks exhibit analogous behavior when targeting non-robust models. In Figure
4.8, we observe that the WideResNet model continues to respond to the attack,
but after pruning around 40%, its response stabilizes, indicating a consistent pat-
tern. It’s essential to acknowledge the influence of over-pruning in this context. In
contrast, VGG19 and ResNet50 display no significant variation, highlighting the
FMN attack’s effectiveness in compromising non-robust models.

However, it’s noteworthy that a substantial distinction emerges in the context
of the l0 distance when comparing robust and non-robust models. Each model
exhibits its unique but consistent trend in this regard. From this observation, it
can be inferred that the FMN attack does not give significant consideration to the
l0 distance.

0.2 0.4 0.6 0.8

3064

3065

3066

3067

3068

3069

3070

3071

3072
Random Method - l0 Distance

VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

Random Method - l1 Distance
VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Random Method - l2 Distance
VGG19
Resnet50
Wideresnet

0.2 0.4 0.6 0.8
0.000

0.005

0.010

0.015

0.020

0.025

Random Method - linf Distance
VGG19
Resnet50
Wideresnet

Figure 4.8: All Non-Robust Model with Random Method

44

Chapter 5

Conclusions and Future Work

In this research, we have delved into the realm of adversarial attacks, specifically
focusing on the FMN (Fast Minimum Norm) attack, and its impact on both robust
and non-robust machine learning models, all while considering the effects of prun-
ing techniques and the DDN (Decoupling Direction and Norm) attack.Our study
encompassed two key pruning methods, L1 pruning and Random pruning, which
served as the foundation for exploring model robustness. Pruning filters from neu-
ral networks offers computational efficiency, but it also introduces vulnerabilities
that can be exploited by adversarial attacks.The FMN attack, characterized by
its emphasis on the l∞ norm, was employed to craft adversarial examples, thereby
evaluating model susceptibility to subtle input perturbations. By systematically
adjusting sparsity levels through pruning, we scrutinized the ensuing effects on
model robustness under the FMN attack.Our findings illuminate distinct behav-
iors between robust and non-robust models when subjected to the FMN assault.
Robust models, designed to withstand adversarial attacks, exhibited varying trends
in l1, l2, and l∞ distances. Intriguingly, the l0 distance displayed consistent trends,
suggesting that the FMN attack may not prioritize it as a critical metric. This
highlights the complexity of robust model evaluation in the presence of prun-
ing.Conversely, non-robust models, inherently vulnerable to adversarial perturba-
tions, showed more uniform trends in l1, l2, l∞, and l0 distances when confronted
with the FMN attack. This observation underscores the efficacy of the FMN attack
in targeting non-robust models and emphasizes the need for robustness-enhancing
techniques, especially in safety-critical applications.In parallel, the study also shed
light on the DDN (Decoupling Direction and Norm) attack, which is a crucial
component in assessing model security. Future research endeavors should continue
to explore pruning techniques, defense strategies, and advanced attack methodolo-
gies to further our understanding of model robustness and security.For the future
work we can consider the exploration of adversarial attacks and model robustness
that remains an evolving field with numerous avenues for future investigation.To
enhance model security, it is imperative to develop and evaluate advanced adver-
sarial defense mechanisms. Investigating the interplay between various attacks
and defenses could yield insights into more robust models.Future research could
delve into novel attack techniques beyond the FMN attack. Understanding the
limitations and vulnerabilities of machine learning models under different attack
paradigms is crucial. Assessing the transferability of adversarial attacks across
different models and domains can provide valuable insights into the generalization
of attack techniques. Applying adversarial robustness research to real-world ap-
plications, such as autonomous vehicles, medical diagnosis, and cybersecurity, is

45

an essential step toward deploying secure machine learning systems.Collaborations
between machine learning experts, cybersecurity professionals, and domain-specific
researchers can lead to more comprehensive and robust defense strategies against
adversarial attacks.
In summary, the study of adversarial attacks and model robustness is pivotal for
advancing the reliability and security of machine learning systems. Future work
should continue to push the boundaries of knowledge in this domain and explore
practical applications across various industries.

46

Bibliography

[1] Sravanti Addepalli, Samyak Jain, and R. Venkatesh Babu. Efficient and effective augmen-
tation strategy for adversarial training. In Proceedings of the 36th Conference on Neural
Information Processing Systems (NeurIPS), 2022.

[2] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[3] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (SP), pages 39–57, 2017.

[4] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model
compression via learned global ranking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1518–1528, 2020.

[5] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for prun-
ing very deep convolutional networks with complicated structure. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4943–4953,
2019.

[6] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and
Guiguang Ding. Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4510–
4520, 2021.

[7] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon. In Advances in Neural Information Processing Systems,
volume 30, 2017.

[8] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the
l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, pages 272–279, 2008.

[9] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and
Aleksander Madry. Adversarial robustness as a prior for learned representations. Machine
Learning (stat.ML); Computer Vision and Pattern Recognition (cs.CV); Machine Learning
(cs.LG); Neural and Evolutionary Computing (cs.NE), 2019.

[10] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph:
Towards any structural pruning. CVPR’23, 2023.

[11] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng Huang. Network pruning via per-
formance maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9270–9280, 2021.

[12] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns.
In Advances in Neural Information Processing Systems, volume 29, 2016.

[13] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

47

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems (NIPS),
2015.

[15] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In International Confer-
ence on Learning Representations (ICLR), 2016.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
1389–1397, 2017.

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784–800, 2018.

[18] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, and et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[19] P. A. Jensen and J. F. a. Bard. Operations research models and methods. 2003.

[20] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-
aggregator: Learning to aggregate for 1-bit graph neural networks. In ICCV, 2021.

[21] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[22] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Technical Report, 2009.

[23] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive
sparsity for the magnitude-based pruning. arXiv preprint arXiv:2010.07611, 2020.

[24] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal
propagation perspective for pruning neural networks at initialization. In arXiv preprint
arXiv:1906.06307, 2019.

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[26] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. In International Conference on Learning Representations (ICLR),
2017.

[27] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and
quantization for deep neural network acceleration: A survey. Neurocomputing, 461:370–403,
2021.

[28] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian,
and Ling Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1529–1538, 2020.

[29] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang,
Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for
practical network compression. In International Conference on Machine Learning, pages
7021–7032, 2021.

[30] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang,
Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for
practical network compression. In International Conference on Machine Learning, pages
7021–7032. PMLR, 2021.

48

[31] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation
via factorization. In Conference on Neural Information Processing Systems, 2022.

[32] Songhua Liu, Jingwen Ye, Runpeng Yu, and Xinchao Wang. Slimmable dataset condensa-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[33] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2736–2744, 2017.

[34] Jian-Hao Luo and Jianxin Wu. Neural network pruning with residual-connections and
limited-data. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1458–1467, June 2020.

[35] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter-level pruning method for
deep neural network compression. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5058–5066, 2017.

[36] Xiaolong Ma, Geng Yuan, Sheng Lin, Zhengang Li, Hao Sun, and Yanzhi Wang. Resnet
can be pruned 60×: Introducing network purification and unused path removal (p-rm) after
weight pruning. In 2019 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pages 1–2. IEEE, 2019.

[37] T. A. Nguyen and A. Tran. Input-aware dynamic backdoor attack. In Advances in Neural
Information Processing Systems, NeurIPS 2020, 2020.

[38] T. A. Nguyen and A. T. Tran. Wanet - imperceptible warping-based backdoor attack. In
9th International Conference on Learning Representations, ICLR 2021, 2021.

[39] Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need.
In Advances in Neural Information Processing Systems, volume 33, pages 2925–2934, 2020.

[40] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: a far-sighted alternative
of magnitude-based pruning. arXiv preprint arXiv:2002.04809, 2020.

[41] Maura Pintor, Fabio Roli, Wieland Brendel, and Battista Biggio. Fast minimum-norm
adversarial attacks through adaptive norm constraints. In Proceedings of the 35th Conference
on Neural Information Processing Systems (NeurIPS), 2021.

[42] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning
in neural network pruning. arXiv preprint arXiv:2003.02389, 2020.

[43] Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, and
Eric Granger. Decoupling direction and norm for efficient gradient-based l2 adversarial
attacks and defenses. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4322–4330. IEEE, 2019.

[44] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang. Dynamic backdoor attacks against
machine learning models. arXiv preprint arXiv:2003.03675, 2020.

[45] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do
adversarially robust imagenet models transfer better? In NeurIPS, 2020.

[46] Hadi Salman, Andrew Ilyas, Logan Engstrom, Sai Vemprala, Aleksander Madry, and Ashish
Kapoor. Unadversarial examples: Designing objects for robust vision. 2020.

[47] Hadi Salman, Saachi Jain, Eric Wong, and Aleksander Madry. Certified patch robustness
via smoothed vision transformers. 2021.

[48] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity
by fine-tuning. In Advances in Neural Information Processing Systems, volume 33, pages
20378–20389, 2020.

49

[49] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity
by fine-tuning. In Advances in Neural Information Processing Systems, volume 33, pages
20378–20389, 2020.

[50] Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan Engstrom, and
Aleksander Madry. Image synthesis with a single (robust) classifier. Computer Vision and
Pattern Recognition (cs.CV); Machine Learning (cs.LG); Neural and Evolutionary Com-
puting (cs.NE); Machine Learning (stat.ML), 2019.

[51] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for sub-
population shift. 2020.

[52] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chi-
ang, and Prateek Mittal. Robust learning meets generative models: Can proxy distributions
improve adversarial robustness? In Conference Paper at the International Conference on
Learning Representations (ICLR), 2022.

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations, 2014.

[54] HuanWang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization.
arXiv preprint arXiv:2012.09243, 2020.

[55] HuanWang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization.
arXiv preprint arXiv:2012.09243, 2020.

[56] Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen, Jinming Hu, Haifeng Liu, Deng
Cai, Xiaofei He, and Wei Liu. Accelerate cnns from three dimensions: A comprehensive
pruning framework. In International Conference on Machine Learning, pages 10717–10726.
PMLR, 2021.

[57] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better dif-
fusion models further improve adversarial training. In International Conference on Machine
Learning (ICML), 2023.

[58] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep learning. In Advances in Neural Information Processing Systems (NIPS),
2016.

[59] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized con-
volutional neural networks for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4820–4828, 2016.

[60] Jian Xiao, Jia Wang, Shaozhong Cao, and Bilong Li. Application of a novel and improved
vgg-19 network in the detection of workers wearing masks. Journal Name, 2021.

[61] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne
Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile
applications. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 285–300, 2018.

[62] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowl-
edge from graph convolutional networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

[63] Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li, and Tong Zhang. Joint-detnas:
Upgrade your detector with nas, pruning and dynamic distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10175–10184,
2021.

[64] Jingwen Ye, Songhua Liu, and Xinchao Wang. Partial network cloning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

50

[65] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. In Advances in
neural information processing systems, volume 32, pages 1–10, 2019.

[66] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[67] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[68] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review.
arXiv preprint arXiv:2301.07014, 2023.

[69] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for
efficient image super-resolution. In Advances in Neural Information Processing Systems,
volume 34, pages 2695–2706, 2021.

[70] Hao Zhou, Jose Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In
European Conference on Computer Vision (ECCV), 2016.

51

	Introduction
	Problem Description
	Outline

	Adversarial Machine Learning
	The Attacker Goals
	Attacker’s Knowledge
	Adversarial Attacks
	Poisoning Attacks
	Evasion Attack
	DDN (Decoupling Direction and Norm)
	FMN(Fast Minimum-norm Attack)

	Pruning Methods
	Structural and Unstructural Pruning
	Pruning Grouped Parameters

	Methods
	Dependency in Neural Networks
	Dependency Graph
	Magnitude Pruners

	Methodologies

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions and Future Work

