
Zamperla Analytics Service: design
and deployment of a microservice

architecture with Kubernetes

Computer Science and Information Technology

Master’s Degree program

Stefano Sello - 864851

AY 2022-23

Advisors: Prof. Pietro Ferrara, Dr. Gianluca Caiazza

Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari University of Venice

Abstract

This thesis introduces Kubernetes, a software that falls into the cate-
gory of container orchestrators, and it applies it to the deployment of a
data collection and processing application developed for the company
Zamperla, a supplier of thrilling rides for amusement parks. Rides
produce huge amounts of data when they are in operation. Remotely
collecting, storing, and processing such data is a computational chal-
lenge that requires the adoption of modern software architectures
based on the microservice pattern, and to replicate and orchestrate
them through technologies like Kubernetes. The work is based on
the candidate’s experience gained during the thesis project, which
involved using technologies such as Docker, RabbitMQ, and, precisely,
Kubernetes, applied to a microservices architecture project developed
by third-party actors within the academic realm.

i

Contents

Contents ii

1 Introduction 1

2 Docker and Kubernetes Overview 3
2.1 Docker and containerized applications 3
2.2 Kubernetes and microservices 4
2.3 Kubernetes basic concepts 7

3 Development environment 10
3.1 Docker Setup . 11
3.2 Kubernetes setup . 12

3.2.1 Minikube installation and setup 13
3.2.2 kubectl installation and setup 14
3.2.3 Kubernetes Hello World 16

4 Design and Implementation of the infrastructure underlying
the Zamperla Analytics application 20
4.1 System overview and application services 20

4.1.1 UI component . 21
4.1.2 BackEnd component 22
4.1.3 DB component . 22
4.1.4 Data component . 23

4.2 Basic service/deployment setup: the UI component 24
4.2.1 Setting up a deployment 24
4.2.2 Setting up a Service 27

4.3 Adding persistent storage: the DB component 29
4.3.1 Requesting storage: PersistentVolume (PV) 31

ii

Contents

4.3.2 Using storage: PersistentVolumeClaims (PVC) . . . 33
4.3.3 Pod environment variables and database initializa-

tion: ConfigMaps . 35
4.4 Summing up: BackEnd component and Data component . . 37

4.4.1 The Data component configuration 38
4.4.2 Project directories structure 39

5 Scaling jobs with RabbitMQ and Keda 41
5.1 Scaling data-intensive jobs: an application need 41

5.1.1 Message queues: how RabbitMQ helped to manage
complexity . 42

5.1.2 Jobs, i.e. Kubernetes disposable Pods 43
5.1.3 Keda: autoscaling Jobs 44

5.2 Jobs split-up: reporter, postprocessor & sftp_downloader 45
5.2.1 Step 1: startup script 45
5.2.2 Step 2: Docker image 48
5.2.3 Step 3: Kubernetes Jobs and Keda 52
5.2.4 Step 4: turn direct calls into messages 57

5.3 Different jobs require different priorities 59
5.3.1 Hierarchize Kubernetes objects with PriorityClass . 60

6 Infrastructure monitoring and observability 62
6.1 Prometheus: observability implementation in a Kubernetes

cluster . 63
6.1.1 Introduction to Prometheus 63
6.1.2 Prometheus setup in a Kubernetes environment 64

6.2 Next steps: Graphana and Alert System 69
6.2.1 Graphana: a visualization tool 69
6.2.2 Alert Manager: real-time alerting system 72

7 Conclusions 73

Bibliography 75

iii

Chapter 1

Introduction

The goal of this master thesis concerns the design and implementation of
a Kubernetes cluster able to properly execute, replicate, and orchestrate
a microservices application. Such application collects and processes large
amounts of data coming from several rides located in different amusement
parks. The core microservices were previously developed mostly in Python,
while the data elaboration core software was developed in Rust, and it was
considered an untouchable black box. The aim of this project is the adoption
of Kubernetes to build a scalable and reliable system able to process the
requested jobs of data retrieval and manipulation in the most efficient,
scalable, and effective way, with limited hardware resources. This thesis
will discuss the reasons why Docker and Kubernetes were introduced in
the first place, and the entire design process that took from the initial
idea to the completed infrastructure. The architecture that is going to
be explained consists of four main components, all described in detail
in section 4.1, which are: a Web user interface, a backend application,
which provides a data-access layer and an interface that provides cross-
components interaction, a PostgreSQL service, used for data persistency,
and a data manipulation component, which is the core of this system
and responsible for those tasks that require to interact with data, such
as the retrieval of remote data and the report generation task. All these
services had initially their application code and their own Dockerfile.
During the development of this project, a set of Kubernetes (explained in
sections 4.2, 4.3 and 4.4) objects have been designed and developed in
order to make each component up and running inside a Kubernetes cluster.
Then, in chapter 5 the service dedicated to the data manipulation tasks has
been divided into one Web service and three independent jobs, in order
to improve scalability and fault-tolerance. Technologies like RabbitMQ

1

and Keda have helped to achieve this goal. Finally, in chapter 6 it has
been discussed how to set up an observability infrastructure to monitor the
performances and the behavior of a system running in a Kubernetes cluster,
in particular using Prometheus as the main application layer responsible for
collecting and analyzing performance data.

2

Chapter 2

Docker and Kubernetes
Overview

In recent years, the proliferation of Web applications, followed by huge
growth in the complexity of the hardware infrastructures that these appli-
cations were backed by, has led to an incremental interest of the developer
community in containerization technologies. Even if virtualization and
resource isolation technologies were available since 1979 with chroot[1],
the real game-changing software product that made more and more IT
professionals switch to container-based applications was Docker, released
in 2013[2].

2.1 Docker and containerized applications

Docker is a virtualization technology that allows users to execute virtual
environments, called containers starting from a sort of snapshot, called
image, which is built itself from a written declarative description of how
this container should be made and what it should contain. Unlike stan-
dard virtual machines, which are abstractions of physical machines,Docker
containers are an abstraction of the application layer that packages code
and dependencies together.[3] The main advantages of adopting Docker as
containerization technology were (and still are) the following ones[4]:

• Since containers include the minimum configuration needed to run
the containerized application, deployments are really fast.

• Containers include both the operating system and the software com-
ponents needed to run a containerized application, which means that

3

2.2. Kubernetes and microservices

Figure 2.1: Docker and Hypervisor different approaches to virtualization

no OS/kernel constraint is required, and no other software except an
installation of the Docker runtime is needed in any physical or virtual
machine to run such application. Hence, containerized software is
extremely portable.

• Using containers, developers can take advantage of the version con-
trol system, which allows simple version tracking (with changelog
inspection) rollback operations.

• The built containers can be shared among developers thanks to
public registries, making it easy to reuse popular and solid containers.

All these features make Docker one of the most widely used technologies
in the development of modern applications, but it does not suffice if the
objective is to deploy large-scale automatically scalable self-healing sys-
tems eventually made of dozens of different components. This is where
Kubernetes comes into play.

2.2 Kubernetes and microservices

Kubernetes is a technology born to tame the complexity of large and complex
applications. It is no coincidence that it was first developed by Google in
2014[5]. Kubernetes is a container orchestrator, i.e., a software able to
automate most part of the operational effort required to run containerized
services and workloads. Why do present-day software developers need
software like this? Isn’t it easier to provision physical servers in the "old but
gold" manual way rather than learning a completely new technology that

4

2.2. Kubernetes and microservices

leads to almost the same results? The answer lies in the dramatic differences
between themonolithic approach and themicroservices approach to software
architectures.

Figure 2.2: Monolithic architecture vs. microservices architecture

In monolithic software architectures all the modules that contribute to
the correct execution of a program (such as data access layer, business
logic, user interface, etc.) reside in a single program, which is deployed
as a standalone application in a single machine. This type of approach
has been widely adopted for many years and still is. But in recent years
another approach has become popular: the microservices architectural
pattern[6]. When using a microservices approach, every module needed
for the application to work properly can be developed and deployed as a
standalone service, possibly on different physical or virtual servers. Every
service can access different databases and can potentially interact with every
other service through lightweight protocols, such as HTTP or AMQP. There
are several advantages that can lead a software developer to choose to
adopt a microservices architecture instead of a monolithic approach. Some
of the most important are the following[7].

5

2.2. Kubernetes and microservices

• Better maintainability: When software applications grow in size
and functionality, complexity tends to increase, and maintainability
becomes harder to accomplish. Breaking a system into smaller, self-
deployable, and standalone modules allows developers to test and
develop each service independently from the other, knowing little or
nothing about how other microservices work. Nevertheless, smaller
codebases are better for readability and understandability, which
makes them easier to maintain and update.

• Improved scalability: Frequently, there are a few components in
a software application that require a higher amount of resource al-
location, while other components require lower resources. If the
application modules reside in microservices, developers can allocate
resources and set up replicas and auto-scaling systems only for those
modules that have a higher demand for resources and reliability.

• Components replaceability: Since every component interacts with
the others using a specific formal protocol, each of these components
can be replaced with another one that "talks the same language", i.e.,
uses the same protocol to interact with the sibling services. This pos-
sibility becomes useful when old legacy services need to be replaced
with others developed with newer technologies or made available by
third-party actors such as S.a.a.S. products.

Certainly, there are also some disadvantages when adopting microservices
as an architectural choice. The main compromises that must be taken into
account when transitioning to a microservice architecture are the following
ones[8]:

• Communication overhead: Communication between modules hap-
pens in a network environment where messages and information
exchange introduce an increased latency if compared to in-system
calls of monolithic applications.

• Increased operational complexity: Managing and monitoring many
applications in a microservices environment can be more complex
than handling a single monolithic application, as it requires robust
monitoring, logging, and error handling across different services.

Depending on the needs of the application and the previously made architec-
tural choices, adopting a microservices architectural approach can be more
or less suitable. In recent years, many products and methodologies have
evolved in the direction of service-oriented architectures, enhancing the
benefits and mitigating the disadvantages. For example, all the main play-

6

2.3. Kubernetes basic concepts

ers in the field of cloud computing services (Amazon with AWS, Google with
Google Cloud, and Microsoft with Azure) are evolving their IaaS products,
making microservices-designed architectures more and more appealing
to software developers and DevOps engineers. Of course, Kubernetes is
also one of the technologies that enabled this transition from monolithic
architectures to service-based architectures.

Even if in the last couple of years microservice architectures have been
involved almost everywhere for the creation of new products, there are
now some perplexities about the adoption of Kubernetes and microservice
solutions for every kind of application. Indeed there are some scenarios
where microservices are useful and others where they bring a lot of useless
complexity. There are big tech companies, like Shopify, which are decon-
structing their monolith product into a more manageable componentized
code base without involving the microservices paradigm, because not suit-
able for their needs.[9] There are authoritative and respected voices in the
tech industry, like the one of David Heinemeier Hansson, creator of the
widely-used Web framework Ruby on Rails, which say that the microservice
pattern is useful and inevitable when it is used in a company of thousands
of developers working on the same product but should be avoided as long
as it can be when the team is relatively small, even if the product is big.
For these cases, there exists the Majestic Monolith. [10] In other words, the
microservices world is living its maximum in Gartner’s Hype Cycles[11]:
as a new technology adopted by the majority of the Big Tech companies,
it is something that everyone wants to use and master. But soon the hype
for this new software creation paradigm will fall, leaving room for the
rationality to choose the best technology. It will initially seem to fall in
complete disuse, due to the fact the disadvantages will be exaggerated and
advantages will be belittled. Eventually, the adoption of this infrastructure
philosophy will reach an equilibrium: large companies will continue to
use microservice infrastructures because it is more convenient for realities
with many developers; small companies will understand that maybe a
more traditional monolith can do the same things being more maintainable,
observable and easy to understand.

2.3 Kubernetes basic concepts

Kubernetes is a container orchestration tool, which means that it is respon-
sible for executing containers and managing the resources behind them.
Kubernetes comes with many handy features, such as container failure

7

2.3. Kubernetes basic concepts

recovery, auto-scaling, and automatic resource allocation. But how is it
done? What modules and components cooperate to achieve these goals?
Kubernetes is a complex and articulated system. From a hardware point of
view, it requires at least two different entities:

• Control plane node (or master node): a node of the cluster that
contains all the modules needed to interact with the other nodes and
with all the Kubernetes modules. More in-depth, API server, Scheduler,
Controller / Manager and etcd are the main services installed on the
master node, each of which is required to execute a part of the Kuber-
netes infrastructure. Application services are generally not executed
on the control plane node.

• Worker node(s): a node (or a set of nodes) responsible for the exe-
cution of the application containers. The master node communicates
with the worker nodes in order to tell them to initiate a new container,
recover an old one, and so on. Worker nodes also send to the master
node information about the healthy or unhealthy state of services and
the resource allocation possibilities.

Figure 2.3: Kubernetes architecture components and interactions

Figure 2.3 shows which are the main modules required by Kubernetes to

8

2.3. Kubernetes basic concepts

work properly and how they interact. A brief description of these modules
follows[12].

Control plane modules

• API server (kube-apiserver) is the frontend server responsible for
handling API requests.

• etcd is a persisted database where Kubernetes stores the information
it needs: what nodes are part of the cluster, which resources exist in
each node, etc.

• Scheduler (kube-scheduler) is the module that decides where the
newly created pods should run.

• Controller - Manager (Kube-Controller-Manager) is responsible
for running resource controllers, such as deployments.

Worker nodes modules

• Kubelet is the main worker nodes service which drives the container
runtime to start the workloads scheduled for the node, monitoring
also their status.

• Kube-proxy is the module responsible for the communication between
pods and between the cluster and the Internet.

• Docker is the software that actually starts and stops containers and
handles their communication. Docker is the most widely used software
for this purpose, but Kubernetes supports also other Container runtimes
like rkt or CRI-O.

All these modules allow developers to create objects through a RESTful API.
Each object is created and managed within the perimeter of the cluster,
taking the memory, storage, and computational power resources from the
worker nodes that make the cluster infrastructure. The object manipulation
request (creation, deletion, update, etc.) is sent to the API server, which
stores or modifies the related object state information in the etcd. If the
request involves the creation of new pods, the Scheduler is responsible for
allocating the required resources. Finally, the Controller-Manager decides
when and how allocated pods should start or stop. There exist many types
of Kubernetes objects. The most widely used are deployments, services, pods,
and volumes. Chapter 4 will explain in depth which types of objects have
been used for this project and how they operate.

9

Chapter 3

Development environment

Info: For the sake of clarity, from now until the end of this elaborate
the name of specific technologies will be written in italic (Kubernetes,
Docker, KEDA, etc.), while the Kubernetes resource types will be written
in monospaced CamelCase (ConfigMap, Service, ect.). This distinction
is useful to discriminate between words that have a double meaning.
For example, Services are Kubernetes objects, services are units of a
microservice architecture.

i

In this chapter, we will go through the steps necessary to establish the
basic development environment for running a Kubernetes cluster in a local
machine. The list of installations and setups applies to all platforms, but
the instructions provided in this thesis will focus on a MacOS environment.
If there are differences between Linux-based operating systems and MacOS,
notes will be included to point them out.

The conditions underlying the development of this project, in terms of
operating system version and hardware specifications, are the following:

• Operating System: MacOS Ventura 13.4

• CPU: Apple M1

• RAM: 8 GB unified memory

• Drive: 256 GB SSD

10

3.1. Docker Setup

3.1 Docker Setup

First Of all, the Docker runtime needs to be installed. For MacOS envi-
ronments, the Docker development team provides a .dmg file that allows
users to install Docker Desktop (as well as the Docker runtime) following
some basic steps through a graphic user interface. Details and download
links are provided on the following official Web pages: https://docs.dock
er.com/desktop/install/mac-install/. For Linux users there are different
procedures depending on the Linux distribution. Almost every Linux dis-
tribution supports the installation of the Docker runtime through Docker
Desktop (which is distributed through .rpm and .deb packages, available at
the following official link: https://docs.docker.com/desktop/install/linux-
install/). However, Docker Desktop comes with a limiting user agreement
that does not allow free use of the software for certain categories of users.
Due to these limitations, it may be more appropriate to opt for a standalone
installation. Taking as an example a Debian-based distribution like Ubuntu,
the installation requires the following steps:

1 Update the apt package index and install packages to allow apt to use
a repository over HTTPS:

Command Line

$ sudo apt-get update
$ sudo apt-get install ca-certificates curl gnupg

2 Add Docker’s official GPG key:

Command Line

$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg

| sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg↪→

$ sudo chmod a+r /etc/apt/keyrings/docker.gpg

3 Set up the Docker repository:

11

https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/

3.2. Kubernetes setup

Command Line

$ echo "deb [arch="$(dpkg --print-architecture)"
signed-by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/ubuntu "$(.
/etc/os-release && echo "$VERSION_CODENAME")" stable"
| sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

↪→

↪→

↪→

↪→

↪→

3 Update the apt package index:

Command Line

$ sudo apt-get update

4 Install the Docker engine:

Command Line

$ sudo apt-get install docker-ce docker-ce-cli
containerd.io docker-buildx-plugin
docker-compose-plugin

↪→

↪→

The whole procedure is fully described on the reference page. There are
other available installation options, depending on the OS version, or the
will to install a specific binary or a specific version of the engine, but these
are most useful for this thesis.

3.2 Kubernetes setup

Setting up Kubernetes is a difficult task initially, especially for development
purposes. First, we must choose between different Kubernetes distributions.
Kubernetes is a tool designed mainly for production purposes. This means
that it is hard to install and configure such a system on a development ma-
chine. Luckily, some products have been developed for this specific purpose:
to provide a lightweight Kubernetes installation for local environments,
allowing for enhanced development and debugging. Here, there are some
alternatives:

12

https://docs.docker.com/engine/install/ubuntu/

3.2. Kubernetes setup

• Minikube: the most widespread lightweight solution. It enables
developers to run a single-node Kubernetes cluster on their local envi-
ronment. It has a very good performance and is very easy to install.
Here there is a reference to the project page: minikube.sigs.k8s.io

• KIND (Kubernetes In Docker): a tool originally developed to test
Kubernetes itself that allows developers to run Kubernetes nodes into
Docker containers. It can be useful to test infrastructures that need to
be as close as possible to a production environment with many nodes.
To learn more visit the project webpage: kind.sigs.k8s.io

• k3s: a lightweight Kubernetes distribution developed for production
purposes, in particular for environments with low resource availability.
Due to its lightweightness, it can also be used for development in
local machines, but it is only available for Linux operating systems.
Please visit the official project page for more details: k3s.io

• Docker Desktop: the already mentioned Docker Desktop provides a
built-in Kubernetes solution that allows developers to interact with a
Kubernetes cluster.

For this project, Minikube has been chosen since it has better performance
in low-resource environments, it has a strong support community and, in
general, it is easier to find guides and documentation based on it. Therefore,
from now on, let us assume that Minikube is the underlying technology
used to run the development single node Kubernetes cluster.

3.2.1 Minikube installation and setup

According to the official installation instructions, a local machine running
Minikube requires at least:

• 2GB of free RAM

• 2 CPUs

• 20 GB of free storage

• an internet connection

• a preinstalled container manager (in this case we have already seen
how to install Docker, but Minikube supports also other container and
VM managers like Podman, VirtualBox and Hyperkit

To install and configure Minikube on MacOS, it suffices to execute the
following commands:

13

https://minikube.sigs.k8s.io/docs/start/
https://kind.sigs.k8s.io/
https://k3s.io/
https://minikube.sigs.k8s.io/docs/start/

3.2. Kubernetes setup

1 Download and install the binary:

Command Line

$ domain=https://storage.googleapis.com
$ base=$domain/minikube/releases/latest
$ arch=darwin-amd64
$ curl -LO $base/minikube-$arch
$ sudo install minikube-$arch$ /usr/local/bin/minikube

Depending on the OS distribution and the desired Minikube version, there
are different binaries made available. A whole list of Minikube executables
can be found at https://github.com/kubernetes/minikube/releases.

2 Start your cluster:

Command Line

$ minikube start

That’s it: now the single-node Kubernetes cluster underlined by Minikube is
in execution on our local development machine.

3.2.2 kubectl installation and setup

Even if the development cluster is up and running, we can not yet interact
with it, since a client for the Kubernetes API Server is missing. As explained
in section 2.3, Kubernetes allows to manipulate its internal objects, such as
Pods, Services, and Volumes, through a REST API. Requests to the latter
are made to the Kubernetes API Server, and to execute these requests, a
client able to handle this task is needed. Here kubectl comes in action.
kubectl allows developers to interact with a Kubernetes cluster providing
a simple cli interface that can be used to create, modify, get, and delete
all Kubernetes objects in a cluster. The following are the steps required to
install kubectl.

1 Download the latest version:

14

https://github.com/kubernetes/minikube/releases

3.2. Kubernetes setup

Command Line

$ arch=amd64
$ os=darwin
$ domain=https://storage.googleapis.com
$ baseurl=$domain/kubernetes-release/release
$ version=$(curl -s $baseurl/stable.txt)
$ curl -LO $baseurl/$version/bin/$os/$arch/kubectl

Note that, for different CPU architectures and operating systems, it suffices
to change the values of $arch and $os.

2 Make the file executable

Command Line

$ chmod +x ./kubectl

3 Move the executable file into a PATH directory:

Command Line

$ mv kubectl ~/bin/kubectl

Assuming that there exists the directory /bin and that its path is included
in $PATH.

Executing the command kubectl -h, a usage suggestion should be ob-
tained.

kubectl controls the Kubernetes cluster manager.

Find more information at:
https://kubernetes.io/docs/reference/kubectl/↪→

Basic Commands (Beginner):
create Create a resource from a file or from stdin
...

15

3.2. Kubernetes setup

3.2.3 Kubernetes Hello World

Now that all the components required to run a Kubernetes cluster are in-
stalled in the development machine, a goodway to check if the whole system
is working properly is that of executing some simple kubectl commands
to see if the cluster reacts as expected.

The first command to test is minikube dashboard, which will open in the
browser a Kubernetes dashboard containing a lot of useful information. If
this command succeeds, the cluster is proven to be up and running.

Figure 3.1: Minikube dashboard view

Other operations useful to try out:

A Create a Deployment:

Command Line

$ kubectl create deployment nginx --image=nginx
$ kubectl describe deployment/nginx

Name: nginx
Namespace: test
CreationTimestamp: Sun, 03 Sep 2023 17:27:05 +0200

16

3.2. Kubernetes setup

Labels: app=nginx
Annotations: deployment.kubernetes.io/revision: 1
Selector: app=nginx
Replicas: 1 desired | 1 updated | 1 total | 0 available

| 1 unavailable↪→
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:

Labels: app=nginx
Containers:
nginx:
Image: nginx
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>

Volumes: <none>
Conditions:

Type Status Reason
---- ------ ------
Available False MinimumReplicasUnavailable
Progressing True ReplicaSetUpdated

OldReplicaSets: <none>
NewReplicaSet: nginx-748c667d99 (1/1 replicas created)
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal ScalingReplicaSet 15s deployment-controller Scaled up

replica set nginx-748c667d99 to 1↪→

Info: The command executed creates a Deployment named nginx
where the related Pods execute a Docker container based on the nginx
Docker image. The command describe prints a summary of the queried
resource.

i

B Expose the nginx deployment through a Service:

Command Line

$ kubectl expose deployment/nginx --type="NodePort"
--port 80↪→

$ kubectl describe service/nginx

17

3.2. Kubernetes setup

Name: nginx
Namespace: test
Labels: app=nginx
Annotations: <none>
Selector: app=nginx
Type: NodePort
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.108.98.225
IPs: 10.108.98.225
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32063/TCP
Endpoints: 10.244.11.64:80
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

C Run a proxy to access the created service through an HTTP request:

Command Line

$ minikube service nginx

Figure 3.2: Nginx courtesy page

18

3.2. Kubernetes setup

These are the main commands that allow a software developer to interact
with a Kubernetes cluster to deploy a simple Docker container and to make
the service it is running reachable from a development machine.

Info: In this small tutorial the nginx Docker image, which was used
for convenience, is a pre-built Docker image made available directly by
Minikube since it is often used to run examples and tutorials. To use
a custom Docker image, a user can decide to opt for a remote image
hosted in an online Docker repository or build the image locally, with
the docker build command. In this second case, it is necessary at
first to tell Docker to use the minikube’s Docker environment, since
otherwise the image will not be visible inside the minikube context. In
this scenario, the instruction to run is eval $(minikube -p minikube
docker-env). Every image built after the execution of this command
(considering the same shell session) will be built inside the minikube
environment and will then become suitable to run inside Kubernetes
pods.

i

19

Chapter 4

Design and Implementation of
the infrastructure underlying

the Zamperla Analytics
application

4.1 System overview and application services

The Zamperla Web application, designed and implemented by Secura Fac-
tors (a spin-off of Ca’ Foscari University of Venice), is a Web application
based on microservices and written mostly in Pyhton. This Web application
aims to collect data from the PLC nodes, store it in a database, and pro-
duce periodic reports. These PLC nodes collect data from physical sensors
recording events on different rides inside an amusement park. The general
idea is that a park has several rides; each ride communicates with a specific
PLC node that collects some data about the ride it controls. Collected data
is composed of a set of values associated with parameters like the time of
a run, the time a ride has been in use, the number and type of eventual
errors, etc. An access node within the perimeter of the park collects data
coming from the different PLC nodes and makes them available to external
services through a predefined protocol that can be a simple SFTP server
or a more complex proprietary solution since the developed application
allows for expansions based on the nature of the chosen protocol/system.
Then a service running inside the application perimeter collects these data
by downloading .zip files containing .json files that encode data coming
from the different sensors. A service decodes the information contained in

20

4.1. System overview and application services

these .json files and saves it in a PostgreSQL database, which will then be
used to process data and generate general reports. The application itself
consists of 4 separate services: the UI component, the BackEnd component,
the DB component, and the Data component.

Figure 4.1: Graphic representation of the Zamperla infrastructure

4.1.1 UI component

The UI component is maybe the simplest service of the list. It consists of a
Flask application written in Python that provides a graphic user interface
that allows the end user to set up the general configuration of the system
and add parks and rides, making it possible to set up scheduled Jobs
or interact with the collected data in a simple and intuitive way. This
component enables operations to be initiated through a browser event,
such as submitting a form, but the service itself does not execute them.
When an action is triggered, the service gathers the relevant information
and sends it to the back-end service, which is responsible for managing it. It
is useful to emphasize that the front-end software does not make use of any
JavaScript framework nor of any additional technology like Websockets or
RTMP, which makes it easier to maintain and provision the Docker container
that will run it.

21

4.1. System overview and application services

Figure 4.2: The "ride" view of the graphic user interface made available by the UI service

4.1.2 BackEnd component

The BackEnd component is also very simple: its purpose is to receive requests
from the UI component and forward them to the DB component if the
requested operation is a simple CRUD operation, or to the Data service if
the request concerns the scheduling and management of the data-intensive
jobs.

4.1.3 DB component

The DB component is a service running an instance of PostgreSQL server.
Figure 4.3 shows a graphic representation of the schema of the database.
There are 8 relations:

• Park: the relation representing a physical park, with a certain geo-
graphic collocation and timezone.

• Ride: a ride, part of a Park. A Park can have many associated Ride
records, but not vice versa.

• Rules: records of this relation represent a execution rule, that is,
when a job should be started. It expresses relationships with both
Ride and Park.

• apscheduler_jobs: a support relation containing auxiliary APSched
uler-specific information about the execution of a job. APScheduler

22

4.1. System overview and application services

is the Python library used to schedule routines.

• Connection_mechanisms: different ways a job can connect to a PLC
gateway. Each Ride can have one or no connection mechanisms (the
default is SFTP).

• Settings: a generic relation to store connection parameters and other
types of configuration.

• Downloader and Job_status: auxiliary tables used to store the state
of different jobs running. The UI service accesses this information to
get the end user up-to-date on job status.

This database instance primarily interacts with the BackEnd service and
the Data component both for readings and writings.

Figure 4.3: A graphic representation of the application database schema

4.1.4 Data component

This component is the main service responsible for the management of data
coming from available rides. It includes all the logic required to interact
with park gateways to retrieve data, as long as the algorithms needed to
process these data and to generate reports consequently. This service is a

23

4.2. Basic service/deployment setup: the UI component

Flask application written in Python, which handles requests coming from the
Backend service. However, it also incorporates a Rust software, developed
by the Zamperla engineering team, which is responsible for the actual
processing of data. In fact, Rust is a more efficient programming language
than Python, and using this piece of software to run the post-processing
tasks makes the application significantly faster. This service also makes use
of APScheduler, a Python library that allows scheduling the execution of a
job at a specific time: as an example, the download of the data collected by
the sensors of a ride x can be scheduled to be executed once every week, at
9:00 AM on Mondays. However, this behavior is not very efficient because
when the execution of different jobs overlaps, the application can run out
of resources. This is one of the reasons for deciding to split this service
into different execution units: one main unit responsible for handling the
HTTP requests and for scheduling jobs, and 3 other units: one per job type
(download, postprocessing, reporting). The actions taken to get these 4
different containers out of the initial one are described later in this thesis.

4.2 Basic service/deployment setup: the UI
component

The UI component has been chosen as a starting point for the implementa-
tion of the Kubernetes infrastructure underlying the subject application for
two main reasons: the first is that it is a relatively simple service consisting
of just one Flask application serving HTTP requests. The second is that it pro-
vides a user interface, so it is simpler to check that the container is working
properly and also provides a way to interact with the other services, making
it trivial to test the system’s functioning. The general idea here is to start
with a simple Service/Deployment setup: a Kubernetes Deployment will
spawn a predefined number of Kubernetes Pods, each of which will run an
instance of the UI service. A Kubernetes Service will serve requests directed
to these instances, providing an entry point for HTTP requests.

4.2.1 Setting up a deployment

As seen in chapter 2, a Deployment is an object of the Kubernetes domain
that manages the execution and the updates of a set of Pods, which run
containers based on the same Docker image. In Kubernetes objects can be
managed thanks to the .yaml files, which represent the specifications of
the state that the object should reflect. These configuration files follow
strict conventions described in the Kubernetes reference document. The

24

https://apscheduler.readthedocs.io/en/3.x/
https://kubernetes.io/docs/reference/

4.2. Basic service/deployment setup: the UI component

configuration file of the majority of resources that can be managed through
the Kubernetes API contains at least 4 top-level properties:

• [string] apiVersion: expresses the version of the Kubernetes API
that must be used to update the resource accordingly with the syntax
adopted in the configuration file. As will be addressed later in this
thesis, Kubernetes APIs can be extended, so it is mandatory to express
which version should be used to guarantee proper management of
the managed resource.

• [string] kind: specifies the kind of resource to be managed.
• [object] metadata: a composed field that contains context informa-

tion about the resource that will be managed.
• [object] spec: the specification of the resource to be managed

represents the state that the resource should obtain and maintain,
as long as the cluster physical resources allow it. Its inner fields and
information depend on the kind of resource to be managed.

The file _k8s/zamperla-app/UI/deployment.yml contains the YAML repre-
sentation of the configuration of the UI service deployment. Here there
are a few points to underline: the resource that is managed by this piece
of YAML code is of type Deployment, named ui-deployment and created in
the default namespace. Kubernetes allows the creation of different names-
paces to supply an additional layer of isolation but, since there will be
only one main application running in the cluster, it is useless to create a
reserved namespace for it. It would only make kubectl commands more
verbose since custom namespaces need to be specified in many cases. The
usage of namespaces will make sense later in this thesis when supporting
resources not directly related to the main application operation will be
required (for instance, in chapter 5 a different namespace will be used
to host the KEDA supporting components). The resource will be labeled
with meta tags [app="zamperla-app"] and [tier="ui"]. Meta tags are
useful for identifying resource associations. The deployment will have the
following specifications: it will manage a single Pod, and the Pod that will
be managed by this resource will be labeled with the same metadata of the
deployment (as the property spec.template.metadata.labels specifies).
Now, if the cluster already has a Pod labeled as this deployment expects,
it would be sufficient to apply the configuration file to make the whole
system work. In many cases, the properties of the Pods managed by the
top-level resource are not predetermined. Therefore, the spec.template
property provides the ability to define the characteristics that Pods should
have.

25

4.2. Basic service/deployment setup: the UI component

apiVersion: apps/v1
kind: Deployment
metadata:

name: ui-deployment
namespace: default
labels:

app: zamperla-app
tier: ui

spec:
replicas: 1
selector:

matchLabels:
app: zamperla-app
tier: ui

template:
metadata:

labels:
app: zamperla-app
tier: ui

spec:
containers:
- name: ui

image: zamperla-fastapi/ui
imagePullPolicy: Never
resources:

limits:
cpu: 500m
memory: 500Mi

ports:
- containerPort: 5000

_k8s/zamperla-app/UI/deployment.yml

In this case, Pods should be labeled with the values contained in the
spec.template.metadata.labels property and should execute a container
named ui based on the zamperla-fastapi/ui Docker image, having re-
sources limited to 500 Mebibytes of RAM and the computational power of
500 millicpus. Also, the pods will expose port 5000 to the cluster, to make
such a port available to services. A noticeable fact about this configuration
is the value of the property spec.template.spec.containers.imagePu

26

4.2. Basic service/deployment setup: the UI component

llPolicy: here its value is set to Never only for development purposes
since the Docker image zamperla-fastapi/ui has been built only in the
local Docker repository, and therefore it should not be pulled from a remote
repository.

Info: The termmillicpu is a name used to express a unit of measure for
computational power. It represents a thousandth of the computational
power of 1 standard CPU. Its symbol is m and it is used in Kubernetes
specification files when there is the need to bind the CPU resource that
a pod can (or should) request inside a cluster.

i

Opening a terminal prompt on the project directory, to apply this config-
uration file it suffices to launch the following command-line command:

Command Line

$ kubectl apply -f _k8s/zamperla-app/UI/deployment.yml

It is a best practice to query the Kubernetes API to retrieve the status of
the newly created resource. The following command will accomplish this
purpose:

Command Line

$ kubectl get deployment ui-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
ui-deployment 1/1 1 1 30s

4.2.2 Setting up a Service

To access the applications hosted in each Pod, a Service object must be
created. This Kubernetes object provides a stable, discoverable endpoint for
accessing a group of Pods, and offers load balancing, service discovery, and
flexibility in how the application is exposed both internally and externally
within the cluster. The configuration file of the Service object associated
with the UI component has the following content:

27

4.2. Basic service/deployment setup: the UI component

apiVersion: v1
kind: Service
metadata:

name: ui-service
spec:

selector:
app: zamperla-app
tier: ui

type: NodePort
ports:
- port: 80

nodePort: 30080
targetPort: 5000

_k8s/zamperla-app/UI/service.yml

Probably the most interesting part of this configuration file is related to the
spec.type property. This property defines the behavior that the Service
should have. The Kubernetes API provides four different types of Services:
NodePort, ClusterIP, LoadBalancer, and ExternalName. ClusterIp is
used when the Service should only be accessible from other entities within
the cluster. LoadBalancer allows the Service to take advantage of an
external Load Balancer service, which is mainly used when the cluster is
hosted in a cloud infrastructure such as AmazonWeb Services orGoogle Cloud,
which provides their solutions for this type of product. ExternalName is used
if the application hosted in the Pods linked to the service has DNS software
that can make the application respond to a CNAME entry. NodePort is
suitable for most cases, as it makes the Web service reachable from the
IP address of any of the cluster nodes on a predefined port. This is the
behavior that best meets the needs of the UI component. Within a Service
of type NodePort, a port mapping must be explicitly defined. In this case,
the "source" port, which is the port exposed by the Pods in execution, is
5000, and the port exposed by the Service is port 80, which maps with
port 30080 on each node of the cluster. In conclusion, the UI component
will be available on every cluster node’s IP at port 30080. This would be
true in a production cluster, but in a development environment cluster
running on Minikube, it is also necessary to tell Minikube to expose the
service to the outside world. The command that will accomplish this task,
finally making the UI component interactive through a Web browser, is the
following:

28

4.3. Adding persistent storage: the DB component

Command Line

$ minikube service ui-service

|-----------|------------|-------------|---------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	ui-service	80	http://192.168.49.2:30080
-----------	------------	-------------	---------------------------
Starting tunnel for service ui-service.

|-----------|------------|-------------|------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	ui-service		http://127.0.0.1:63665
-----------	------------	-------------	------------------------
Opening service default/ui-service in default browser...

At this point, a browser tab should open showing the user interface of the UI
service. Note also that Minikube does not expose the service directly on the
node IP, but starts a tunnel to 127.0.0.1, mapping the node exposed port
to an arbitrary port of localhost. This is due to an internal implementation
of Minikube that allows the product to maintain a coherent behavior across
different operating systems.

4.3 Adding persistent storage: the DB com-
ponent

The DB component is a simple PostgreSQL instance, but configuring this
kind of service to run inside a Kubernetes instance hides some difficulties.
First, let us look at its Deployment and Service configuration files. For this
specific resource, file _k8s/zamperla-app/DB/deployment.yml represents
the content of the manifest file of the Deployment related to the resource
that is going to be created. The latter is indeed very similar to the one used
to set up the UI component, but here there are a few criteria to underline.

1. In this case, having just one replica is mandatory since having mul-
tiple replicas would require a multi-instance database setup, with
all the complexity a redundant database system requires, related in
particular to the data synchronization problem.

2. The image being run inside the Pods related to this Deployment is
no longer a locally built image, but the official PostgreSQL image,

29

4.3. Adding persistent storage: the DB component

retrieved from a default remote Docker repository. The spec.templ
ate.spec.containers.imagePullPolicy property is consequently
set to "IfNotPresent" since the image could not be present in the
local machine the first time.

3. The containerPort value is 5432, the default port for a PostgreSQL
service.

apiVersion: apps/v1
kind: Deployment
metadata:

name: db-deployment
...

spec:
replicas: 1
...
template:

...
spec:

containers:
- name: db

image: postgres
imagePullPolicy: "IfNotPresent"
ports:

- containerPort: 5432
...

_k8s/zamperla-app/DB/deployment.yml

Nevertheless, file _k8s/zamperla-app/DB/service.yml represents the
content of the manifest file of the related Service. Similarly to what
happened for the Deploymentmanifest, the Service specifications are quite
similar to those of the UI service; but instead of a Service of type NodePort,
a ClusterIp Service is used, since it is not necessary (nor convenient) to
make the Pods reachable from outside the cluster. The challenging part of
this configuration, however, is still missing, and it is the setup of persistent
storage able to persist database information even if the Pod running the
DBMS instance dies or restarts.

30

4.3. Adding persistent storage: the DB component

apiVersion: v1
kind: Service
metadata:

name: db-service
namespace: default
labels:

app: zamperla-app
tier: db

spec:
type: ClusterIp
ports:

- port: 5432
selector:

app: zamperla-app
tier: db

_k8s/zamperla-app/DB/service.yml

4.3.1 Requesting storage: PersistentVolume (PV)

A Pod running a Docker container can die for different reasons: the applica-
tion in execution inside the container fails, the cluster runs out of resources,
etc. When a Pod dies, all data inside the container that are not included in
the build of the Docker image are lost. This is a problem when there is a
need, for example in DBMS services, to persist additional data. The same
problem happens also when a container is executed in a docker compose
environment, or as a standalone Docker running instance: in these cases,
the problem is easily solvable by attaching a volume to the running con-
tainer. This way every data that will be saved inside the directory in which
the volume is mounted will live regardless of the state of the container. In
Kubernetes the problem can be solved using Persistent Volumes. Like the
official documentation says:

A PersistentVolume (PV) is a piece of storage in the cluster that
has been provisioned by an administrator [...]. It is a resource
in the cluster just like a node is a cluster resource.[13]

In practice, a PersistentVolume is a reserved piece of storage that lies at
a predefined path in the host node and will store the data from Pods that
use it. Here is the configuration file of the PersistentVolume used to store

31

4.3. Adding persistent storage: the DB component

data related to the PostgreSQL instance running within the DB component:

apiVersion: v1
kind: PersistentVolume
metadata:

name: pg-volume
namespace: default
labels:

app: zamperla-app
tier: db

spec:
storageClassName: manual
capacity:

storage: 3Gi
accessModes: [ReadWriteMany]
hostPath:

path: "/data/zamperla-app/db-volume"

_k8s/zamperla-app/DB/persistent-volume.yml

Most of the properties defined in this file are obvious. The key points of
this configuration are:

• spec.storageClassName: defines the provisioning policy. In this case,
it is a local storage provisioned by the system administrator. Other
available provisioners, depending on the nature of the cluster, could
be VsphereVolume, AzureFile, and so on.

• spec.capacity.storage: defines the storage size requirement. In
this case, it has been set to 3Gi. This is not sufficient for produc-
tion environments, but it is more than appropriate for development
purposes.

• spec.accessModes: defines a list of modes that Pods can use to access
this resource. In this case, it is set to ReadWriteMany, which means
that every Pod that requests it can read and write in this reserved
store location.

• spec.hostPath.path: defines the location inside the host node where
data will be managed. For example, if a Pod writes something in the
PersistentVolume created from this configuration, such data will be
available at the host node at this location. If there are more nodes in

32

4.3. Adding persistent storage: the DB component

a cluster, during the provisioning process it is necessary to specify in
which node the storage should be allocated.

Now it is possible to create the PersistentVolume resource where database
data will be saved:

Command Line

$ kubectl apply -f
_k8s/zamperla-app/DB/persistent-volume.yml↪→

$ kubectl get pv pg-volume

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM ...
pg-volume 3Gi RWX Retain Bound ...

The kubectl get command shows that the PersistentVolume has cor-
rectly been initialized and bound to the node resource allocation. Also,
the RECLAIM: Retain piece of information indicates that the data are not
erased when the PersistentVolume resource is destroyed: launching the
command

Command Line

kubectl delete -f
_k8s/zamperla-app/DB/persistent-volume.yml}↪→

will delete the Kubernetes resource, but not the data that were previously
stored at the node location associated with the PV. This is the default
behavior applied when no other retain policy is specified.

4.3.2 Using storage: PersistentVolumeClaims (PVC)

However, to allocate storage resources with PersistentVolumes is not
sufficient to allow a Pod to write to a persistent storage location. In fact, a
PersistentVolumeClaim is required. According to the official Kubernetes
website:

A PersistentVolumeClaim (PVC) is a request for storage by a
user. It is similar to a Pod. Pods consume node resources and
PVCs consume PV resources. Pods can request specific levels of
resources (CPU and Memory).[13]

33

4.3. Adding persistent storage: the DB component

The content of the configuration file for the DB PersistentVolumeClaim
follows.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: pg-volume-claim
namespace: default
labels:

app: zamperla-app
tier: db

spec:
storageClassName: manual
accessModes:

- ReadWriteMany
resources:

requests:
storage: 3Gi

_k8s/zamperla-app/DB/persistent-volume-claim.yml

As can be seen, most of the configuration simply doubles the properties of
the PersistentVolume that is going to be used. Note on the association
between a PV and a PVC: when the PVC is created, a control loop in the
control plane searches for compatible PVs that can be attached. When a
suitable PV is found, the latter is exclusively bound to the requesting PVC.
The match happens when a PVwith the same characteristics of - and at least
the amount of available memory requested by - the requesting PVC is found.
Otherwise, the PVC creation throws an error. Finally, a Pod should request
to use the PVC created adding some properties to its configuration file.
Note that the same PVC can be used in different deployment configurations,
as it provides a sort of "shared entry point" to a specific store location in
node storage. Referring to file _k8s/zamperla-app/DB/deployment.yml,
the following changes occur.

34

4.3. Adding persistent storage: the DB component

apiVersion: apps/v1
kind: Deployment
metadata:

omitted
spec:

#omitted
template:

spec:
containers:

...
volumeMounts:

- mountPath: /var/lib/postgresql/data
name: dbdata

volumes:
- name: dbdata

persistentVolumeClaim:
claimName: pg-volume-claim

_k8s/zamperla-app/DB/deployment.yml

The added configurations express the requested PVC and the container
path at which the volume bounded to the PVC will be mounted. The re-
sult now is that every information that the DB component will write to
/var/lib/postgresql/data will be permanently saved to the /data/zam
perla-app/db-volume location of the hosting node, and vice versa every-
thing written by third party actors to the node volume location will become
available inside the DB running container.

4.3.3 Pod environment variables and database initializa-
tion: ConfigMaps

The DB service utilizes a standard PostgreSQL image to operate correctly,
which necessitates some initial configurations. Specifically, two configura-
tions are required. The first one is the setup of predefined environment
variables, which will store information regarding the database user, the
database name, and the user password. The second one is the running of
an initialization script, which will create the appropriate database schema.
To perform these tasks, ConfigMaps will be used. Referring to the already
cited Kubernetes documentation:

35

4.3. Adding persistent storage: the DB component

A ConfigMap is an API object that lets you store configurations
for other objects to use. Unlike most Kubernetes objects that
have a spec, a ConfigMap has data and binaryData fields.[14]

The first ConfigMap, used to set environment variables inside the PostgreSQL
Docker container, has the following content:

apiVersion: v1
kind: ConfigMap
metadata:

name: db-secret
namespace: default
labels:

app: zamperla-app
tier: db

data:
POSTGRES_DB: backend
POSTGRES_USER: postgres
POSTGRES_PASSWORD: admin
PGDATA: /var/lib/postgresql/data

_k8s/zamperla-app/DB/secrets.yml

To use this ConfigMap content inside a container, the following directives
should be added to the container’s spec:

envFrom:
- configMapRef:

name: db-secret

This way, the environment variables defined in the ConfigMap will be avail-
able inside the running Docker container. A note about environment vari-
ables that contain secrets: it is not a good idea to version ConfigMap con-
figuration files with a versioning tool like git if they contain sensitive
information, such as passwords or SSH keys. In these cases, it should be
better to create ConfigMaps directly on the production nodes or to use
different tools for secret obfuscation. The Kubernetes API, for example,
provides the Secret API object to handle the storage of secret information,
but since the original git repository had secrets versioned in clear, being an
academic project more than a production-ready application, secrets have
been threatened accordingly. However, this is an important improvement
that would be great to develop with future revisions.

36

4.4. Summing up: BackEnd component and Data component

A ConfigMap has also been used to contain the SQL code to execute during
the database initialization phase. In this case, the data property of the
init-db.yml configuration file had only one key, i.e., initdb.sql. Its value
is a multiline string representing the content of the SQL initialization file.
Unlike a ConfigMap used as an environment variable store, however, this
resource needs to be mounted similarly to a PVC. The configuration file for
the DB Deployment needs to be changed in the following way:

spec:
template:

spec:
containers:

...
volumeMounts:

...
- mountPath: /docker-entrypoint-initdb.d

name: db-initdb
volumes:

...
- name: db-initdb

configMap:
name: db-initdb-config

_k8s/zamperla-app/DB/deployment.yml

This configuration will mount a file named initdb.sql, with the content
specified in the ConfigMap configuration file, inside the /docker-entryp
oint-initdb.d directory. By default, the first time that the PostgreSQL
container starts, it will run every SQL script inside this folder to initialize
the database instance. The changes made by the initialization script to the
database will be stored inside the /var/lib/postgresql/data container
directory, which is persistent due to the bounded PV. Now the container is
ready to run the PostgreSQL server and start accepting connections.

4.4 Summing up: BackEnd component and
Data component

Most of the Kubernetes features used for this project have been presented
during the previous chapters. The setup of the remaining components

37

4.4. Summing up: BackEnd component and Data component

mainly consists in configuring those features properly, to get the desired be-
havior out of each component execution. The BackEnd component setup, in
particular, is nothing more than what has already been presented with the
UI component and the DB component: it consists of a Flask application that
serves HTTP API requests and, depending on the nature of the request, for-
wards it to the database, to retrieve data, or to the Data component, when
the purpose is the management of scheduled jobs. Its configuration consists
of 3 files: deployment.yml for the Deployment specifications, service.yml
for the Service configuration, and configs.yml, which contains the configu-
ration of a ConfigMap aimed at setting the environment variables needed by
the running container (mainly the connection credentials for the database
connection and the URL of the Data service).

4.4.1 The Data component configuration

Differently from the BackEnd component, even if there are no new Kuber-
netes features that come into action, the configuration of the Data compo-
nent is quite more complex. As already mentioned, it consists of a Flask
application with a Rust executable responsible for the post-processing phase
of the data threat process. This component was initially set up as a service
running a single instance of its Docker image, but it has evolved into a more
complex system, which will be described in depth in the next chapter. For
now, it is important to note that this service uses many PVs and PVCs, to
keep the generated files tidy. To give an idea of the volumes that need to be
mounted, an extract of the deployment configuration file follows.

volumeMounts:
- mountPath: /app/config.cfg

name: data-config-volume
subPath: config.cfg

- mountPath: /app/logs
name: data-logs-volume

- mountPath: /app/z_acq
name: data-z-acq-volume

- mountPath: /app/zamperla_data
name: data-zamperla-data-volume

- mountPath: /app/Storage
name: data-storage-volume

_k8s/zamperla-app/Data/deployment.yml (volumeMounts only)

38

4.4. Summing up: BackEnd component and Data component

4.4.2 Project directories structure

From a folder structure perspective, each component has a separate direc-
tory where the configuration files are located. All component configuration
folders are contained in an application root folder called zamperla-app,
which contains configurations strictly related to the provisioning of the
application components. Some configurations do not change the state of
the objects that relate to the application services, like those required for
the management of the observability infrastructure: those files will have a
separate root folder at the same level as the zamperla-app folder. It is also
useful to note that all application-related configurations can be applied at
the same time with a single command, which is the following:

Command Line

$ kubectl apply -Rf _k8s/zamperla-app

When running recursive commands like this, it is important to pay attention
to the order of execution. kubectl follows an alphabetical order, which can
cause errors. For instance, PVs must be created before PVCs, and PVCs must
be created before Deployments that require them.

39

4.4. Summing up: BackEnd component and Data component

_k8s

zamperla-app

BackEnd

configs.yml

deployment.yml

service.yml

Data

configs.yml

deployment.yml

persistent-volume-claim.yml

persistent-volume.yml

service.yml

DB

deployment.yml

init-db.yml

persistent-volume-claim.yml

persistent-volume.yml

secrets.yml

service.yml

UI

configs.yml

deployment.yml

service.yml

40

Chapter 5

Scaling jobs with RabbitMQ
and Keda

5.1 Scaling data-intensive jobs: an applica-
tion need

As already mentioned, the Data application component is responsible for the
download of sensor data, the post-processing elaboration of those data, and
the generation of reports containing useful insights about the performance
of the various rides. To achieve these goals, this service uses a Python
library called APScheduler, which helps to schedule the execution of each
job at a user-defined time. However, different jobs may be executed at the
same time, and this represents a problem in terms of allocated resources. A
system that can execute an arbitrary amount of work should be able to scale
consequently, but this is not the case for the Data component, at least as it
has been implemented to this point. The proposal, then, is that of splitting
the component into four parts: a main part acting like an "orchestrator",
which collects the HTTP requests and acts by consequence, and three job
executors, which will handle one specific type of job at a time. Furthermore,
the system should be able to execute an arbitrary (with the limits given by
the physical resources) number of concurrent instances for each type of
job, allowing for a higher degree of concurrency and, consequently, for a
faster response to data operations requests. Designing a system capable
of this type of behavior is not trivial: many actors should be taken into
account and Kubernetes does not provide a standard method to scale Pod
instances concerning custom metrics like the number of jobs that should be
executed concurrently. The solution proposed with this project makes use

41

5.1. Scaling data-intensive jobs: an application need

of a message queue, of some Job Kubernetes objects, and of an event-driven
autoscaler called Keda.

5.1.1 Message queues: how RabbitMQ helped to man-
age complexity

According to the official AWS documentation:

A message queue is a form of asynchronous service-to-service
communication used in serverless and microservices architec-
tures. [15].

In practice, when working with message queues, a Pub/Sub mechanism
comes into action, where Pub/Sub stands for "Publisher/Subscriber": a
publisher publishes a message related to a certain topic on the message
queue, a subscriber subscribes to this topic waiting for messages to arrive.
When a message arrives, the subscriber consumes the message by reading
it and performing any task that this message may require. If the task ends
without errors, the message is deleted from the queue; otherwise, it is left
on the top of the queue. Message queues follow a FIFO (First In / First Out)
policy, so messages that arrive earlier are processed earlier. This project
uses RabbitMQ as a message broker. Another widely used solution that has
been taken into account is Apache Kafka, which is a well-known technology
used by several tech companies. Apache Kafka is capable of handling more
concurrent messages than RabbitMQ: Kafka can handle an order or millions
of messages exchanged per second, while RabbitMQ needs more brokers to
achieve this goal[16]. However, while Kafka uses a proprietary protocol
to interact with consumers and producers, RabbitMQ uses the standard
AMQP protocol to receive and publish messages, which makes things easier
when it comes to integrating a message queue with a Kubernetes cluster.
RabbitMQ is also capable of guaranteeing the quality of the arrival order
of messages, and, differently from Kafka, a RabbitMQ consumer is aware
of the status of a message (consumed/not consumed).[16] In conclusion,
even if Kafka is faster, log-centric, and capable of handling a higher degree
of parallelism, RabbitMQ provides more consistency guarantees out of the
box. These are the main reasons for the decision to adopt RabbitMQ as a
message broker instead of Apache Kafka.

RabbitMQ can be installed in a Kubernetes cluster like any other component
configured during the development of this project: the deployment is similar
to the one used for the DB component, but it does not use any external
configuration or volume, and its Pod runs the official rabbitmq Docker

42

5.1. Scaling data-intensive jobs: an application need

image, exposing port 5672. The Service is essential and simply exposes
port 5672 of the running container to the other Pods in execution inside
the perimeter of the cluster.

5.1.2 Jobs, i.e. Kubernetes disposable Pods

To better understand how the definitive system will be built up and how
the different actors of such a system will communicate, the concept of Job
as a Kubernetes API object must be introduced. According to the - many
times - already mentioned official Kubernetes documentation:

A Job creates one or more Pods and will continue to retry exe-
cution of the Pods until a specified number of them successfully
terminate. As Pods complete, the Job tracks the successful com-
pletions. When a specified number of successful completions is
reached, the task (i.e., Job) is complete. [17]

In other words, Jobs allow to start Pods that run containers having a single
task to accomplish. When the task ends successfully, the host Pod dies. A
Job configuration file is similar to a Deployment YAML:

apiVersion: batch/v1
kind: Job
metadata:

name: csvtojson
spec:

template:
spec:

containers:
- name: csvtojson

image: python:3
command: ["python", "-c", "import csv,json;print

json.dumps(list(csv.reader(open('csv_file.csv'))))",
">", "result.json"]

↪→

↪→

restartPolicy: Never

example Job configuration file

The configuration file listed below creates a Job that converts a csv file
named "csv_file.csv" into a json file named "result.json". Similarly,
Jobs will be used in the context of this project to run tasks that can start
and end autonomously, interacting only with the message queue.

43

5.1. Scaling data-intensive jobs: an application need

5.1.3 Keda: autoscaling Jobs

Let us suppose that the infrastructure that is going to be shaped consists of:

1. A message queue based on RabbitMQ, which exposes a queue topic for
each type of job that is going to be created

2. A Data component without the data management tasks, i.e. a Web
service that serves requests coming from other services. The purpose
of this unit is to schedule jobs concerning incoming requests. The
jobs are scheduled with the help of APScheduler, but are not executed
within this component. Instead, when the scheduler triggers an exe-
cution, a message is enqueued in the message queue related to the
requested type of job.

3. For each type of task, a Kubernetes Job that will read a message
from the queue, execute the relevant script, and, if necessary, add a
message to the queue of the next type of task that should be run in
the job sequence.

This is the main flow that should be executed every time a job is scheduled.
But what happens if a Job of a certain type is requested but there is an
old one still executing? The second job will have to wait until the first job
is completed successfully. In this way, if the scheduler triggers many jobs,
the system can enter a state of Congestion Collapse. This situation can be
prevented, or at least its impact can be minimized, by utilizing an autoscaler
to create a new Pod each time a message is received in a predetermined
queue. For this project, Keda will be used as autoscaler software. The Keda
official website reports:

KEDA is a Kubernetes-based Event Driven Autoscaler. With KEDA,
you can drive the scaling of any container in Kubernetes based
on the number of events needing to be processed.[18]

Keda interacts with the low-level Kubernetes API to spawn new Pods ev-
ery time a message comes to a queue. Keda APIs offer a straightforward
approach to establishing a scaling system in which the metrics used to
determine when and how to scale Pods can be based on the number and
type of messages sent to a configurable message queue. Additionally, Keda
is compatible with a variety of Pub/Sub and message queue technologies,
such as Apache Kafka, Redis, and, fortunately, RabbitMQ.

44

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

5.2 Jobs split-up: reporter, postprocessor &
sftp_downloader

This section describes how the initial Data component has been split into
three different processing units: the sftp_downloader job, responsible
for downloading data from the remote resources; the postprocessor job,
which provides post elaboration and processing for the downloader data;
the reporter job, which generates a summary report based on the processed
information. The tasks division process took 4 different steps to complete:

1. Development of the startup Python script that will run in the Docker
container related to each particular job.

2. Definition of a new Docker image to run for each type of job; the
image used to execute a specific type of job should only contain,
when possible, code and components strictly related to the process to
run.

3. Definition and creation of the Kubernetes Job object responsible for
the execution of the task.

4. Substitution of direct calls to task methods into the service code with
the insertion of messages into the appropriate queue.

A complete description of these steps follows.

5.2.1 Step 1: startup script

Supposing that a task will run inside a Docker container and that this
container will need a Python script to be defined as the entrypoint in the
Docker image, 3 new Python scripts are needed: one for the information
download process, one for the execution of the data postprocessing phase
and one for the creation of the weekly report. Even if there are already
some utility functions able to accomplish these tasks, such methods can not
run as standalone executables and therefore need a wrapper script capable
of:

1. reading messages sent to a given RabbitMQ queue

2. using the content of this message to get the information needed to
carry out the designed task

3. executing the proper utility functions to obtain the expected result

4. sending a message to the RabbitMQ queue responsible for the man-
agement of the successive type of task that needs to be executed, if

45

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

necessary, encoding all the useful information that the next script will
require

Taking the downloader job as an example, the utility function that needs to
be called is sftp_downloader, which is a method contained in the helper file
Data/helpers/downloader/sftp.py. Let us assume that the job will listen
to the RabbitMQ queue due to the execution of /usr/bin/amqp-consume,
an executable file shipped with the default installation of the RabbitMQ file.
Executing this program with the right arguments allows the developer to
call a Python script when a message is retrieved from the queue, passing
the content of the message to the script as a command-line argument. The
first point of the "TODO" list is then performed by a third-party actor: the
script can ignore this part and assume that the command-line argument
with which it is called contains the rule_id of the bounded rule that is
going to be executed. The second point of this list, reading the information
needed to properly run the task, can be easily accomplished: since messages
are strings, the content of a message can be safely considered as a well-
formatted JSON containing the id of the rule to execute (as well as a few
other pieces of information that will be faced later in this chapter). Once
the rule identifier has been obtained from the source, the script can acquire
the context information of the park and the ride it needs to initiate the
download for, by querying the Rules database relation. After that, the
script is ready to call sftp_downloader(...). Once the execution of this
method ends, it is necessary to check if there are elements suitable for the
post-processing phase, i.e. the configuration of the ride does not specify to
skip the data post-process task and there are elements that have not been
already post-processed. If these conditions apply, a message is sent to the
postprocessor RabbitMQ queue, which will trigger the execution of the
postprocessing procedure for the available data. The other jobs will have a
similar approach. Both the postprocessor job and the reporter job will
read the information they need from the command line argument that will
be passed to the script by the amqp-consume executable. Both scripts will
interpret this information as a well-formed JSON string, extracting from it
the information they need to execute their main utility method and execute
context operations like logging and updating the job status. A difference
between the reporter job.py script and the others is that at the end of
the execution of its main utility method, there will be no RabbitMQ queue
to notify since it is the last phase of the data processing tasks chain. Back
to the downloader task, taken as a general example, let us take a closer
look at what such job.py Python script looks like.

46

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

#!/usr/bin/env python
various imports...
from helpers.downloader.sftp import sftp_downloader
#...

def notify_queue(data):
using Pika python library to send a new message to

the post-process queue↪→

def job(rule_id, ...):
try:

rule = get_rule(rule_id)
ride = get_ride_info(rule.ride, rule.park)
...
sftp_downloader(...)
elem_to_process = get_to_process(rule.ride,

rule.park)↪→

check if there are elements to postprocess in
the list elem_to_process↪→

if len(elem_to_process) != 0 and
ride.PostProcess_Default != 'skip':↪→

start_date = min(elem_to_process)
finish_date = max(elem_to_process)
notify_queue({

'operation_id': operation_id,
'rule_id': rule_id,
'start_date': start_date,
'finish_date': finish_date,
...

})
errors handling, job status update and logging

if __name__ == '__main__':
args = json.loads(sys.stdin.readlines()[0])
rule_id = args['rule_id']
...
job(rule_id, ...)

Data/jobs/sftp_downloader/job.py

47

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

It is useful to know that these scripts will all be called invoking the following
command, which is going to be used as the entrypoint of the Docker images
that will run these processes:

Command Line

/usr/bin/amqp-consume --url=$BROKER_URL -q $QUEUE -c 1
./job.py↪→

This command listens for events sent to the message queue named by
$QUEUE and reachable at the URL given by $BROKER_URL. When a mes-
sage arrives, job.py is called with the content of the message passed as a
command-line argument.

5.2.2 Step 2: Docker image

The next step consists of building a Docker image for each different type
of task. This Docker image should be able to execute its related Python
script requiring as little as possible of the initial Data service code. To do
this, it is necessary to analyze how the original Data Docker image was
made. Since the original instance of the Data, service was responsible for
everything related to the data manipulation tasks, from the download to
the report generation, the initial Data component image included all code
present within its folder. It was also responsible for building and executing
the Rust code deputy to post-processing elaboration. Most of this code is
no longer required, since the whole part concerning data manipulation is
delegated to the single job Docker image. The Data service now has three
main responsibilities:

1. collecting HTTP requests coming from the BackEnd component, which
will contain the instructions to set up the job scheduling

2. scheduling jobs, with the help of APScheduler

3. sending the right data payload to the right queue when a job is
triggered by the scheduler

These actions do not require the Rust software integration code, nor the
different helper functions delegated to the download, postprocess, and
report creation tasks.

48

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

The starting point of the development of each job’s Docker image is the
file below, which represents the original content of the Data component
Dockerfile.

STAGE 1: Build Rust app
FROM rust:1.68.2-bullseye
WORKDIR /Rustapp
COPY Rust .
RUN rustup install nightly
RUN cargo +nightly build --release

STAGE 2: Build python service
FROM python:3.10.9-bullseye
WORKDIR /app
RUN apt-get -y update && apt-get install -yqq unzip
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY --from=0 ./Rustapp/target/release/..._TZ_004* .
COPY privateKey.pem .
COPY Report/zamperlacertificate.crt .
COPY ./*.py .
COPY helpers ./helpers
COPY Report/helpers ./helpers/Report/
COPY Rust/settings ./settings
COPY Report/AlarmTables ./AlarmTables

ENTRYPOINT ["uvicorn", "main:app", "--host", "0.0.0.0",
"--port", "8081"]↪→

Data/Dockerfile.production

This Dockerfile uses a feature called Multi-stage Build, which allows the
construction of complex Dockerfiles capable of building Docker images
that contain artifacts from different environments without making them
too large in size and number of layers. The build process of the Docker
image resulting from this Dockerfile produces a set of 2 stages:

1. the first FROM instruction defines the beginning of the first stage,
responsible for the production of the executable file resulting from the

49

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

compilation and build of the Rust code contained in the Data/Rust
folder.

2. The second FROM instruction represents the starting point of the second
stage, which sets up the suited environment for the Python microser-
vice execution.

The second stage starts with an official Python image and, at first, installs
all pip project dependencies. Then it copies the release file obtained during
the build process of the first stage to its root folder, obtaining the ability to
run it without weighing down the final image release with all the Rust code
and compilation/build products. Finally, the build process copies inside the
image all the Python code available in the folder.

The image of the Downloader job does not need all these features. It is quite
easy:

FROM python:3.10.9-bullseye
ENV BROKER_URL="amqp://guest:guest@rabbitmq-service:5672"
ENV QUEUE="sftp-download"

WORKDIR /app
RUN apt-get update && apt-get install -y curl

ca-certificates amqp-tools unzip
--no-install-recommends && rm -rf /var/lib/apt/lists/*

↪→

↪→

COPY requirements.txt .
RUN pip install -r requirements.txt
COPY privateKey.pem .
COPY helpers ./helpers
COPY Report/helpers ./helpers/Report/
COPY jobs/sftp_downloader/job.py ./job.py

CMD /usr/bin/amqp-declare-queue --url=$BROKER_URL -q
$QUEUE -d↪→

CMD /usr/bin/amqp-consume --url=$BROKER_URL -q $QUEUE -c 1
./job.py↪→

Data/jobs/sftp_downloader/Dockerfile.production

This Dockerfile is built from an official Python image, like the second stage
of Data/Dockerfile.production and in addition, it defines $BROKER_URL

50

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

and $QUEUE as environment variables. Moreover, it sets up the amqp-tools
apt package, which includes a variety of utilities that make it easier to
communicate with RabbitMQ servers. All Python code necessary to run the
sftp_downloader task is also included in the build, within some files that
are not strictly used by this procedure, but that are required due to strange
dependencies still present in some parts of the code.

The postprocessor job has a more complex Dockerfile since its image
also requires running the Rust executable, which contains the algorithm
used to post-process the data. It shares the two-stage structure of the
initial Data component image. Plus, along with the software included in
the second stage, it also requires the amqp-tools apt package installed
because it needs to interact with a RabbitMQ queue to get the information
it needs to execute its job. The build process then is the following:

1. build a first image stage identical to the one seen with the initial Data
component image, to get the data postprocessing software out of the
Rust code

2. build a second stage based on an official Python image which also
includes the amqp-tools toolbox

3. install in this second stage the required pip dependencies

4. copy the Rust executable from the first stage to the second

5. copy the remaining Python scripts from the local directory

The third and last image, the one related to the reporter job, is identical
to the first one since most of the files are shared between all jobs. It only
differs for the different job.py script, which is specific for each type of
job. It is worth noting that, as an entrypoint, all tree images perform two
program executions: at first, the amqp-declare-queue program is executed.
It has the purpose of ensuring that a queue with the right name has been
created. The second command, amqp-consume, listens for events in the
queue related to its specific job. Without the execution of the first command,
it would not work, as a blank RabbitMQ server does not come with a queue.
This guarantees that there will always be a queue named appropriately and
ready-to-accept listeners.

These Dockerfiles seen in this chapter could be lighted by providing a
more granular separation of concerns in the application code. It is always
a good idea to make the Docker images as small as possible, both in size
and in build layers, since it significantly speeds up the interaction with an

51

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

eventual repository. However, even if working on this aspect could be a
strategic improvement occasion, it lies outside the scope of this thesis.

5.2.3 Step 3: Kubernetes Jobs and Keda

As already mentioned before, a Job in Kubernetes is an API object that
provides a way to spawn Pods executing a program. After the successful
end of the program, the job is terminated. The general structure of a
Job configuration YAML file resembles that of a Deployment: there are 4
top-level properties, which are the same as requested by a Deployment
file (apiVersion, metadata, kind and spec), where the spec attribute is
a key-value object with a template key that contains the specifications of
the Pod that will run within the Job, in the same way a Deployment defines
the specifications of its related Pods. Additionally, a Job can define some
other configurations. For instance, a developer can indicate the degree of
parallelism required to execute a job (property spec.parallelism), the
number of Pods that need to terminate successfully to consider the job
accomplished (property spec.completions), and so on. The full list of
features can be found on the official documentation page.

However, a Job itself is unable to scale its instances concerning the number
of messages coming to a queue. Kubernetes has not been designed with
this specific scope in mind and this case history is rare compared to many
other cases. There exist some projects on GitHub aimed at obtaining this
particular behavior, but the majority of them are not maintained and are
based on obsolete technologies. Some of them were also taken into account
for the development of this project, but within a few tries they turned out
to be unsuitable for the project’s sake. For example, onfido/k8s-rabbit-pod-
autoscaler consists of a simple bash script polling the queue to know the
number of messages and interacting with the Kubernetes APIs to scale up or
down the number of Pods. The project is now archived, and since it was also
difficult to configure, a better alternative was needed. Fortunately, a better
alternative exists and it consists of Keda. Keda extends the Kubernetes APIs
to provide some new types of objects, which act as wrappers for more native
Kubernetes objects and allow to specify a scaling policy based on events.
Keda allows scaling of Deployment and Job objects and therefore exposes
an API to manage the wrapper objects for these types of resources. In
particular, this project uses the ScaledJob API, which manages a resource
that wraps the native Job Kubernetes object to make it easily scalable. To use
Keda, however, it is necessary to deploy the Keda runtime in the Kubernetes
cluster of interest. There are different ways to execute this task. In this

52

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/
https://github.com/mbogus/kube-amqp-autoscale
https://github.com/mbogus/kube-amqp-autoscale

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

project, the Keda runtime was deployed using an Helm chart. Helm is a
package manager for Kubernetes: it provides a command-line interface that
allows integration of a Kubernetes cluster with third-party plugins. These
plugins, which consist of a collection of files that describe a related set of
Kubernetes resources, are called Charts. The steps required to install the
Keda runtime in a Kubernetes cluster using its Helm chart are the following.

1 Install the Helm package manager

Command Line

$ gitdomain=https://raw.githubusercontent.com
$ url=$gitdomain/helm/helm/main/scripts/get-helm-3
$ curl -fsSL -o get_helm.sh $url
$ chmod 700 get_helm.sh
$./get_helm.sh

2 Add the Helm Keda repository to the local Helm package list

Command Line

helm repo add kedacore https://kedacore.github.io/charts

3 Update the Helm package index

Command Line

helm repo update

4 Deploy the Keda Helm runtime in a reserved namespace

Command Line

helm install keda kedacore/keda --namespace keda
--create-namespace↪→

53

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

It is not mandatory to deploy the Keda runtime in a dedicated namespace,
but it is advised by the official tutorials. This should limit the possibilities of
corrupting in any way the Keda installation, by overwriting its components
with custom resources.

Once the environment has been set up, the first ScaledJob can be config-
ured. An example can help to comprehend how a ScaledJob can be config-
ured. Hence, let us consider the YAML configuration file of the sftp_downloader
ScaledJob.

apiVersion: keda.sh/v1alpha1
kind: ScaledJob
metadata:

name: data-sftp-downloader-scaledjob
namespace: default
labels:

app: zamperla-app
tier: data-sftp-downloader

spec:
jobTargetRef:

template:
spec:

containers:
...

backoffLimit: 4
pollingInterval: 2
minReplicaCount: 1
maxReplicaCount: 100
successfulJobsHistoryLimit: 3
failedJobsHistoryLimit: 3
triggers:
- type: rabbitmq

metadata:
queueName: sftp-download
host: amqp://guest:guest@rabbitmq-service:5672
mode: QueueLength
value: "1"

_k8s/zamperla-app/Data/scaledjobs/sftp_downloader.yaml

54

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

The first interesting thing to note here is the apiVersion property: the file is
not using an official Kubernetes API version, but it is using a Keda extension of
such API. In this way, resources such as ScaledJob and ScaledDeployment
can be handled within the context of a Kubernetes configuration file. The
metadata property, on the contrary, does not contain anything different
from what has already been described in the previous chapters. The spec
property contains most of the aspects that characterize a ScaledJob:

• jobTargetRef contains the specs that define the Job to trigger and,
for extension, the definition of the template describing its Pods and
the containers they should run, as long as a backoffLimit quote,
which expresses the number of Pod failures that can occur before
considering the Job as failed.

• pollingInterval indicates the time, in seconds, to wait between
each request made to the RabbitMQ server aimed at knowing how
many messages need to be processed.

• minReplicaCount expresses the minimum number of active Jobs: in
this case, at least one Job should always be ready to read from a
message queue.

• maxReplicaCount expresses the maximum number of active Jobs:
there should not be more than 100 active Jobs at the same time, since
they would require too many resources. This threshold should be
tuned in a production environment to maximize the number of jobs
that can be executed concurrently without taking resources destined
for other processes.

• successfulJobsHistoryLimit is the number of successful jobs to
show when the kubectl get job is executed.

• failedJobsHistoryLimit is the number of failed jobs to show when
the kubectl get job is executed.

• trigger contains the parameters to tune the scaling conditions to
apply to the ScaledJob:

– type expresses the type of trigger to use. In this case rabbitmq
is used, as it reflects the technology adopted to implement the
message queue.

– metadata.queueName is the name of the RabbitMQ queue to
listen for.

– metadata.host reports the host address where the RabbitMQ
instance is running.

55

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

– metadata.mode indicates the type of metric to apply. There are
2 available metrics in Keda that allow defining a trigger condi-
tion: the QueueLength, which indicates the number of messages
present in the queue as the value to which the trigger condi-
tion should be applied, and MessageRate, which uses the arrival
rate of the messages instead. In this case, the most suitable
alternative is QueueLength.

– metadata.value is the threshold to apply to the metadata.mode
metric in order to fire a new job. In this case, its value is 1, which
means that "every new message adds a job instance to the jobs
pool".

The Keda API supplies many other options, both in terms of job and trigger
configuration. However, those listed in this file have been chosen as the
most useful in the scenario of this specific project. Other possibilities will be
examined in a production setting to refine the ScaledJob setup document
to make the system as reliable and effective as possible.

The configuration files related to the reporter and postprocessor jobs are
identical, except for the name of the queue to connect to, the container image
to execute in each Pod, and the name of the object to create. Therefore,
there is no need to report their content here. These files have been placed
in the _k8s/zamperla-app/Data/scaledjobs folder. The resource can be
created using the following command.

Command Line

kubectl apply -Rf _k8s/zamperla-app/Data/scaledjobs
kubectl get scaledjobs

NAME MIN MAX TRIGGERS READY ACTIVE PAUSED AGE
data-postproce... 1 30 rabbitmq True True Unknown 2m32s
data-reporter-... 1 30 rabbitmq True True Unknown 2m32s
data-sftp-down... 1 30 rabbitmq True True Unknown 2m32s

Querying the API controller, we obtain a list of the created ScaledJobs,
which are both ready (meaning they are ready to scale, i.e. to create new
job instances) and active (meaning that there is at least one job instance
running since the minimum number of active jobs has been set to 1 there
is one instance running for each type of job). The system, however, is not

56

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

complete: as the last step, the service code should be altered so that instead
of making direct calls, a message is placed in the appropriate queue.

5.2.4 Step 4: turn direct calls into messages

The last step missing to complete the lap is to physically replace function
calls to sftp_downloader, auto_postprocessing, and create_reports,
present in the Data service code, with the insertion of a message into
the appropriate queue. There are mainly a couple of points where this
substitution is an actual necessity. In fact, each of these 3 functions can be
called synchronously from the frontend, through an HTTP API request, but
synchronous requests are not a big issue from a performance point of view:
since the graphic user interface made available by the UI component will be
rarely used, it is unlikely that so many requests to overload the system will
overlap. Therefore, in the first phase, those points where the task methods
are called synchronously can be left out. The two main points where,
instead, it is crucial to use an asynchronous execution passing through the
message queue are:

• POST /jobs/add/complete_process

• POST /jobs/add/sftp

These two endpoints are handled by the Data/main.py file and the code
line responsible for the scheduling and execution of such methods is similar
to the following:

Schedule.add_job(task_function, trigger =
CronTrigger_from_rule(id_rule), args=[...])↪→

Here, the execution of task_function is scheduled, thanks to APScheduler,
within the chronological condition given by CronTrigger_from_rule(id
_rule) (which is a utility function that queries the database to retrieve
information related to the rule of interest). Once the chronological condition
is met, the execution of task_function is triggered. Instead of directly
triggering the task function, the desired behavior is that of triggering the
insertion of a message into a RabbitMQ queue. The following code fits with
this necessity well.

def task_function_substitute(id_rule):
... retrieving context information
data = { "rule_id": id_rule, "operation_id":

str(id_operation), "log_file_path": name_log_file }↪→

57

5.2. Jobs split-up: reporter, postprocessor & sftp_downloader

queue_connection = pika.BlockingConnection(
pika.ConnectionParameters('rabbitmq-service'))↪→

queue_channel = queue_connection.channel()
queue_channel.basic_publish(exchange='',

routing_key='queue-name', body=json.dumps(data))↪→

This code basically initiates a connection with the RabbitMQ server and
sends a message with a JSON body, containing basically the id of the rule,
which is the critical piece of information, plus the operation_id and the
log_file_path, which are context pieces of information used for outline
tasks like logging, to the specified queue. Then, as described in the previous
sections, a job will be triggered and will accomplish the task requested
within the message body.

This last step completes the system roundtrip, which can now be fully
described by the following sequence of actions:

1. The scheduling of a job is triggered by a user from the Web interface
made available by the UI service.

2. The request is initially handled by the Backend component but then
is forwarded to the Data service.

3. The Data service inserts in the database the information related to
requests and then schedules the job with the help of APScheduler.

4. When the trigger condition is met, the Data service sends the infor-
mation needed to process the job to the right RabbitMQ queue.

5. The arrival of the message to the queue triggers the execution of
the right type of job, which consumes the message that executes its
related task function. If many messages arrive at the same time, many
Pods are spawned: one for each message. (The limit of concurrent
Pods at the moment is set to 100, but it can be tuned to best meet
the peculiarities of the production environment.)

6. Once the task has been accomplished, if the setting requires further
data manipulation (for example, the execution of the postprocessor
job after the end of its related sftp_downloader job), then a message
is sent to the right RabbitMQ queue, and so on until the whole pro-
cessing chain has been executed or a terminating condition is met
(e.g. no new items have been downloaded and so there are no items
to post-process)

58

5.3. Different jobs require different priorities

7. every time a task changes its status (waiting, running, completed) the
database is updated consequently so that the job status can always
be displayed updated in the Web interface

5.3 Different jobs require different priorities

The resulting system includes a pool of jobs that get executed when precise
events happen. However, the infrastructure that underlies the system is
made up of limited physical resources. Thus, it is impossible to think
that the system will be able to scale indefinitely: there is a concrete limit
of Pods that can be executed concurrently. Since each Pod allocates some
resources, this limit is given by the number of Podswith the sum of resource
requests that saturates the system resource availability, whatever it is the
kind of resource that comes to saturation: storage, computational power, or
memory. The first limit that is reached determines that the system cannot
execute any additional Pod. However, there is a hierarchy that defines which
processes must always be alive, which processes should be alive whenever
possible, and which processes can instead wait for resources to become
available without any particular urgency. Table 5.3 defines the priority of
each process, where 1 is the highest priority and 4 is the lowest.

Service Priority
UI service 1
DB service 1

BackEnd service 1
Data service 1

sftp_downloader job 2
postprocessor job 3

reporter job 4

Web services have the highest priority since they are the main actors in the
system: they are responsible for handling the user interaction and thus they
should always be reachable and usable. Plus, it is unlikely that they will
consume remarkable quantities of resources: the tasks they have to execute
are easy and quite straightforward. Jobs, instead, have lower priority with
respect to Web services, and do not share the same priority even between
themself: the sftp_downloader job is the job with the highest priority,
since without downloading data no processing task is possible. Then the
postprocessor job has higher priority with respect to the reporter job,
since without the post-processing phase no report generation can be made.

59

5.3. Different jobs require different priorities

In the end, the reporter job has the lower priority. It is necessary to
tell Kubernetes to give these Pods a higher or lower priority according
to this hierarchy, to ensure a resource allocation compliant with these
specifications. A particular type of Kubernetes resource, the PriorityClass
resource, can help achieve this result.

5.3.1 Hierarchize Kubernetes objects with PriorityClass

Kubernetes provides a set of tools aimed at configuring in a more granular
and specific way the scheduling logic applied by the scheduler to start
resources. It exposes such tools through the scheduling.k8s.io API. One
of the tools provided is precisely the PriorityClass API object. According
to the official documentation:

A PriorityClass is a non-namespaced object that defines a map-
ping from a priority class name to the integer value of the
priority. The name is specified in the name field of the Priority-
Class object’s metadata. The value is specified in the required
value field. The higher the value, the higher the priority.[19]

In order words, priority classes can be assigned to Pods to alter the normal
scheduling of resource allocations to encourage the execution of some Pods
instead of others. For simplicity, and to exaggerate the difference between
priority classes, the higher priority (the one associated with Web services,
which in table 5.3 had value 1) will have the value 1000000 and will be
named always-up. Its configuration file content is reported below.

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:

name: always-up
value: 1000000
globalDefault: false

_k8s/zamperla-priority-classes/always-up-priority-class.yaml

Another interesting concept is that of the Preemption Policy. The default
preemption policy for a priority class is PreemptLowerPriority, which
means that, when the scheduler tries collecting resources to start a Pod, it
can kill other Pods with a lower priority class (Pods without an explicitly
defined priority class have a value of 0). This is the case for Web services

60

5.3. Different jobs require different priorities

that must always be up and running, even if some lower-priority Pods need
to be killed to achieve the target. However, this is not the case for job
priority classes, which will not be able to kill lower-priority Pods, since it
would involve losing the work made by the running Pods. For example,
if a new download job is started, but there are not enough resources to
satisfy the request, postprocessor or sftp_downloader jobs should not
be interrupted because their work otherwise would get lost. Then these
priority classes will have the property preemptionPolicy set to Never.
Table 5.3.1 contains a summary of the priority classes created to manage
the scheduling of the Pods for this project.

Name Value Preemption Policy Ref. to table 5.3
always-up 1000000 PreemptLowerPriority 1

high-priority 100000 Never 2
mid-priority 10000 Never 3
low-priority 1000 Never 4

Now priority classes can be added to the template of each Pod by setting the
property template.spec.priorityClassName: <priority class name>
in each deployment or ScaledJob configuration file. Obviously, resources
like RabbitMQ Pods must have the highest available priority.

61

Chapter 6

Infrastructure monitoring and
observability

Monitoring and observability are nowadays key points in the design and
development of software infrastructures. The policies of many companies
require a high level of system monitoring and observability from service
providers, eventually accompanied by certifications released by experts and
auditors. A system should be as reliable as it can be, preventing incidents
and giving the possibility to inspect the reasons if one happens. System
Monitoring, in the first place, is defined as "the process of collecting and an-
alyzing data about IT systems, including their performance, availability, and
security"[20], while Software Observability can be described as "Software
observability is the ability to understand the internal state of a software system
based on its external outputs"[21]. Thus, observability and monitoring are
not the same thing, even if monitoring is necessary to achieve observabil-
ity. With the rise of distributed systems and microservice architectures,
observability has become more and more relevant for the maintainability,
resilience, and dependability of software solutions, which explains the
growing interest in observability technologies, even in academic research
fields. However, observability can also be achieved using a set of strate-
gies that do not require the necessary complexity of software solutions.
The practices that are often involved in the observability processes are the
collection of logs, the collection of metrics (which are numerical values
that measure the performance of a system), and the monitoring of traces
(i.e. sequences of events that show how requests flow through a system).
Nevertheless, the collection of logs, metrics, and traces can be a tedious
task for a developer team that works with large infrastructures. Fortunately,

62

6.1. Prometheus: observability implementation in a Kubernetes cluster

some software tools have been developed to automate these tasks. One of
these is Prometheus, which is the main tool used in this project to achieve
clear monitoring and a painless observability process.

6.1 Prometheus: observability implementa-
tion in a Kubernetes cluster

6.1.1 Introduction to Prometheus

Prometheus is an open-source framework that provides a way to implement
monitoring and observability in distributed infrastructures. It also provides
features that allow for easy interaction with Kubernetes clusters. Plus, it
is gaining more and more popularity in recent years: for example, 7Pixel,
owner of the widely-used price comparator trovaprezzi.it, which is the com-
pany I worked in from January to August 2023, is going to replace NewRelic,
a widespread closed-source software for system monitoring and observ-
ability, with Prometheus and Grafana. Describing in detail Prometheus, its
whole set of features, and its inner functional specifications, is out of the
scope of this thesis. However, some key points are worth mentioning.

• For metric collection Prometheus uses the pull method, which allows
metrics retrieval over HTTP protocol. Thus, the services under ob-
servation should expose metrics at /metrics endpoint, which will
be polled by Prometheus at regular intervals. There are cases when
this method does not work properly, such as the case of short-lived
processes that do not run enough time to allow Prometheus to scrape
the metrics. In these cases, the metrics can be sent to Prometheus
from the interested job through a service called Pushgateway.

• Prometheus exposes an API that allows software developers to develop
extensions called Prometheus Exporters. Exporters can be used to
export different types of metrics from any third-party product into
the compatible Prometheus metrics format.

• In order to allow external services to query information, Prometheus
exposes data through PromQL, which is a flexible query language.
Third-party extensions, as well as the Prometheus user interface, can
use this querying language to retrieve metrics from a Prometheus
server.

• Prometheus uses time-series databases, particularly suited to manage
data that are correlated with time, to store information. Plus, even if

63

https://trovaprezzi.it

6.1. Prometheus: observability implementation in a Kubernetes cluster

it stores data in the local storage by default, Prometheus also gives the
possibility to set up remote replicas, to avoid single points of failure.

• Alert manager in Prometheus can be configured to offer real-time
notifications when predetermined thresholds are reached for specific
metrics. Notifications can be sent via emails or pub/sub messaging
services.

It comes naturally that a Prometheus installation requires many components
and is not as trivial as it may seem at first sight. Image 6.1 extensively
represents a service infrastructure that is surrounded by a Prometheus setup,
which resembles all the points listed above. In the following subsection the
steps required to configure a monitoring architecture, similar to the one
exposed in this image, will be described.

Figure 6.1: A graphic representation of a software architecture using Prometheus for
monitoring

6.1.2 Prometheus setup in a Kubernetes environment

To set up Prometheus within the context of this project, the following steps
are required.

64

6.1. Prometheus: observability implementation in a Kubernetes cluster

1 First of all, let us create a separate namespace. In our case, the iden-
tity name of this namespace will be zamperla-monitoring. To do this, it
suffices to execute the following command:

Command Line

kubectl create namespace zamperla-monitoring

This way, all the monitoring components that will be created within this
namespace will be logically separated by the application resources.

2 Since the Prometheus server needs to query the Kubernetes API to retrieve
metrics related to the cluster resources, an RBAC role should be defined.
This step is needed because, otherwise, Prometheus would perform requests
with the default role, which does not have enough permissions to retrieve
data about Kubernetes object states. The manifest file of the RBAC role will
look like the following.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: prometheus
rules:
- apiGroups: [""]

resources: ["nodes", "nodes/proxy", "services",
"endpoints", "pods"]↪→

verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]

verbs: ["get"]

_k8s/zamperla-monitoring/cluster-role.yml

A ClusterRole defines a set of accessible resources within the modes these
resources can be accessed, but it does not assign these permissions to an
account. Thus, a ClusterRoleBinding object is used to assign these permis-
sions to the default ServiceAccount of the zamperla-monitoring names-
pace, whichmeans that all processes running inside the zamperla-monitoring
namespace will grant the permissions defined in the ClusterRole manifest
file.

65

6.1. Prometheus: observability implementation in a Kubernetes cluster

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: prometheus
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus

subjects:
- kind: ServiceAccount

name: default
namespace: zamperla-monitoring

_k8s/zamperla-monitoring/cluster-role-binding.yml

The cluster role and the cluster role binding can be created using the
kubectl command like any other Kubernetes resource.

3 Prometheus makes use of a configuration file called prometheus.yaml,
which handles all the scrape specifications, service discovery details, stor-
age locations, data retention configurations, etc. Furthermore, another
file called prometheus.rules is used to configure the Prometheus alerting
rules, which specify the metrics to watch and the thresholds that, if reached,
will require the system administrator to be notified. These files will be
mounted to the Pod directory /etc/prometheus through a ConfigMap. De-
scribing in detail how Prometheus can be configured, its various features
and preferences is outside the scope of this thesis and would require alone
a whole book (which has also been written, though [22]). For this thesis,
it is sufficient to say that the scrape configuration is a list of jobs, where a
job in Prometheus is intended as the process that collects metrics from a set
of endpoints of the same type. In the standard configuration used for this
project, there are the following jobs:

• kubernetes-apiservers, which collects metrics from the Kubernetes
API server

• kubernetes-nodes, which collects metrics exposed by the cluster
nodes

• kubernetes-pods, which collects metrics from those Podss that have
the metadata attributes prometheus.io/scrape and prometheus.io
/port

66

6.1. Prometheus: observability implementation in a Kubernetes cluster

• kubernetes-service-endpoints, which collects metrics from those
Services that have the metadata attributes prometheus.io/scrape
and prometheus.io/port

The /etc/prometheus/prometheus.yaml is YAML file that contains:

• A globals section that specifies generic configurations. For example,
in the configuration file used in this context, the scrape_interval
(the time to wait between two adjacent polling requests) and the
evaluation_interval are defined.

• A rule_files array containing the absolute paths of the alerting
configuration files.

• A scrape_configs array of objects. Each object defines a job and con-
tains the information needed to allow the Prometheus server to scrape
the resource correctly - like endpoint, protocol, security certificates,
etc.

• Many other context-specific configurations are available. A complete
list of available features can be found at prometheus.io/docs/promet
heus/latest/configuration/configuration.

4 The next step consists of creating the Deployment that will run the
Prometheus server. It consists of a simple Deployment created in the zamperla-monitoring
namespace. It has 1 replica and it makes use of the official Prometheus
Docker image. The following arguments are passed to the entry point of
the Docker image:

• –storage.tsdb.retention.time=12h: sets the metrics retention pe-
riod to 12 hours, which means that after 12 hours metrics will get
lost.

• –config.file=/etc/prometheus/prometheus.yml: indicates the path
of the configuration file.

• –storage.tsdb.path=/prometheus/: indicates where to store the
database data.

Moreover, the ConfigMap defined in step 3 is mounted as a volume, and an
emptyDir volume is mounted to the /prometheus path, making Prometheus
data persist until the Deployment is deleted. The attached file _k8s/zampe
rla-monitoring/deployment.yml reports the content of the Prometheus
Deployment configuration file, which however lacks a persistent storage
configuration, essential in a production environment.

67

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

6.1. Prometheus: observability implementation in a Kubernetes cluster

...
metadata:

name: prometheus-deployment
namespace: zamperla-monitoring
...

spec:
replicas: 1
...
template:

...
spec:

containers:
- name: prometheus

image: prom/prometheus
args:

- "--config.file=/etc/prometheus/prom.yaml"
- "--storage.tsdb.path=/prometheus/"

ports:
- containerPort: 9090

volumeMounts:
- name: prometheus-config-volume

mountPath: /etc/prometheus/
- name: prometheus-storage-volume

mountPath: /prometheus/
volumes:

- name: prometheus-config-volume
configMap:

defaultMode: 420
name: prometheus-server-conf

- name: prometheus-storage-volume
emptyDir: {}

_k8s/zamperla-monitoring/deployment.yml

5 The fifth and last step plans to define a Kubernetes Service to provide
an access point for the Web UI component of Prometheus. Since the Pod
exposes the 9090 port, it is sufficient to create a NodePort Service that
exposes the 9090 port to the outside world at any port available in the
node.

68

6.2. Next steps: Graphana and Alert System

Command Line

kubectl expose deployment prometheus-deployment
--type=NodePort --port=9090 --name=prometheus-service
--namespace zamperla-monitoring

↪→

↪→

minikube service prometheus-service

Launching the Service will open the Prometheus Web UI, which is a power-
ful tool to visualize the time-based data collected by the software.

Now Prometheus is up and running, ready to collect metrics and expose
data from its endpoints. If there is the need to collect metrics from running
Pods, all Deployment configuration files should include the metadata prop-
erties prometheus.io/scrape=true and prometheus.io/port=<exposed
port> to all Pods. For this use case, it is considered sufficient to monitor
node resources only, since for the application domain events monitoring
there is already a functional, properly working logging system that can
handle this need.

6.2 Next steps: Graphana and Alert System

Prometheus is easily expandable with plugins and libraries that allow shap-
ing the product on the infrastructure needs. It can also be used as-is, but
the Web UI provided by Prometheus is quite complex to use, and data are
often presented in a conflictual form. This is the main reason why it could
be convenient to integrate Prometheus with Graphana.

6.2.1 Graphana: a visualization tool

Grafana is a free, open-source platform for monitoring and observability.
It enables organizations to gain insights into the performance of their
systems, applications, and infrastructure by visualizing and analyzing data
from multiple sources. This tool is widely used in DevOps and is often
combined with other tools such as Prometheus, InfluxDB, and Elasticsearch,
that help create an omnicomprensiva monitoring experience with complete
and powerful dashboards. In particular, the creation of dashboards makes
it easy to have quick access to the most crucial performance indexes of a
software architecture. In our infrastructure, Graphana can be configured
as follows.

69

6.2. Next steps: Graphana and Alert System

1 A ConfigMap should be set up to contain the contents of the configura-
tion file for Graphana, similar to what was done for the Prometheus setup.
This configuration is used to provide Graphana with the parameters it needs
to connect to the data source, which in this case is Prometheus. Thus, the
configuration file should be named prometheus.yml and should include
the following:

...
{

"apiVersion": 1,
"datasources": [

{
"access":"proxy",
"editable": true,
"name": "prometheus",
"orgId": 1,
"type": "prometheus",
"url":

"http://prometheus-service.monitoring.svc:8080",↪→

"version": 1
}

]
}

/etc/grafana/provisioning/datasources/prometheus.yml

The configuration file mainly expresses the URL to query and retrieve the
time-series data from the Prometheus Service. The _k8s/zamperla-monit
oring/graphana-datasource-config.yml file will contain a data.prome
theus.yml property valued with the content of this file.

2 The next step requires the configuration of a Deployment that uses
the official Graphana Docker image. This Deployment is very similar to
the one created for the Prometheus installation. it pulls the image from
the official Graphana repository and it mounts two volumes: one for the
configuration file and one for those data that should be persisted. Also in
this case the persistent volume will be mocked with an EmptyDir volume.
This Deployment also makes use of 1 replica and exposes the 3000 port.
Within the Deployment, a Service should be configured to make its Pod
reachable by the browser: in this case, a NodePort Service forwarding the

70

6.2. Next steps: Graphana and Alert System

container port 3000 to the node port 32000. The GraphanaWeb UI can then
be accessed at the specified node port. The credentials to enter the admin
panel in a fresh Graphana installation are: user: "admin", password:
"admin".

3 The last step consists of setting up a Graphana dashboard to visualize
Prometheus metrics. Fortunately, there are some templates ready to be im-
ported and shared directly from the official Graphana website. As an exam-
ple, the configuration hosted at grafana.com/grafana/dashboards/8588-1-
kubernetes-deployment-statefulset-daemonset-metrics will be used. These
are community-developed solutions that can help make the Graphana setup
process easier. The import process is well described in the official Graphana
documentation. In particular, the content of the manage dashboards sec-
tion of the official documentation website is exactly the procedure that has
been used for this project.

Once the dashboard has been imported we can visualize all the metrics
that have been set up, such as CPU utilization and memory usage, from
Prometheus in a clear, ordered, and easily understandable manner.

Figure 6.2: A Graphana dashboard showing some metrics

71

https://grafana.com/grafana/dashboards/8588-1-kubernetes-deployment-statefulset-daemonset-metrics/
https://grafana.com/grafana/dashboards/8588-1-kubernetes-deployment-statefulset-daemonset-metrics/
https://grafana.com/docs/grafana/latest/dashboards/manage-dashboards/#import-a-dashboard
https://grafana.com/docs/grafana/latest/dashboards/manage-dashboards/#import-a-dashboard

6.2. Next steps: Graphana and Alert System

6.2.2 Alert Manager: real-time alerting system

Alert Manager has not been set up for this project, but it is an interesting
feature that can be configured as a future improvement and that can surely
be useful in many scenarios. It consists basically of watching for anomalies
in the values reported by the metrics and notifying the system administrator,
through different channels (email, pub/sub system, third-party application
integration, etc.) of the occurrences of these anomalies. To set up an Alert
Manager within a Prometheus installation monitoring a Kubernetes cluster,
at first, the Prometheus instance should be properly configured to support
an alert manager. In particular, 2 things are needed:

• a configuration file with the extension .rule

• an alerting section in the configuration file, which should set the
values needed to connect to the alert manager (in particular, the
property alerting.alertmanagers[].targets is an array of URLs
containing the endpoints serving an alert system).

The Alert Manager needs a configuration file formatted following the
Prometheus configuration file conventions. This file should be mounted
as a ConfigMap, as seen for other setups. Then an instance of Alert Man-
ager can be installed by setting up a Deployment that runs the official
prom/alertmanager:latest Docker image. This Service should expose a
port, reachable by the Prometheus server, which will be used to exchange
messages with the latter. A detailed and descriptive configuration guide for
alert managers is hosted on official Graphana website.

In conclusion, Prometheus and Graphana are powerful tools when it
comes to setting up a complete and reliable observability ecosystem in
a Kubernetes cluster and offer tons of configurations and customizations.
However, the more customizable and powerful the tool is, the more it
requires specific competencies to work on it. The result is worth the effort
but requires an investment in time and staff training that cannot be taken
for granted.

72

https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/

Chapter 7

Conclusions

The development of this project has been a challenging experience from
many points of view: the project focuses on the design and development of
a Kubernetes infrastructure for an application that involves many compo-
nents and technical aspects, which needed to be handled with tools and
methodologies often outside of my initial knowledge. However, it has been
an engaging project to work on, and I learned a lot about the Kubernetes
world, but also about the necessities of a growing reality like Zamperla,
which applies technology at a higher level. The project is far from being
finished: at least it misses a production setup, but also the way secrets are
stored is not suitable for a final release. Moreover, there is still a bug in
the logging procedure when it comes to scale jobs that I have not managed
to fix yet. However, I am proud to say that the overall setup, except for
some fine-tuning to do on the production infrastructure, is, in my opinion,
reliable, well-organized, and easily maintainable. It is important to note
that Kubernetes is a Google product, thus it has been developed to interact
particularly well with Google Cloud, as well as any managed cloud I.A.A.S.
products like Azure and AWS. A Kubernetes cluster that relies only on pro-
prietary infrastructure is not a widespread solution and, therefore, it is
harder to develop. However, the result is compelling and adaptable and can
lead to a solid and reliable option. I would like to thank Professor Pietro
Ferrara, who allowed me to work on this fantastic project and supported
me throughout the development process. I would like to equally thank Dr.
Gianluca Caiazza for the support, the helpful tips, and the interesting points
of view on the discussed technologies and their applications. I hope that
the work done with this thesis will help investigate the future involvement
of Kubernetes for other university projects: many times new technologies
are not adopted because the effort needed to learn how to use them is

73

considered to be greater than the benefits provided. Kubernetes, at least in
the working environments I have been in the last five years, is one of these.
But now this powerful tool has been uncovered, at least in the academic
context of Ca’ Foscari, and hopefully, there will be many other projects to
which this technology can be applied in the future.

74

Bibliography

[1] Bernstein, David, “Containers and cloud: From lxc to docker to
kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.
doi: 10.1109/MCC.2014.51.

[2] Mobi, Mobi, https://github.com/moby/moby, 2013.
[3] Microsoft Community, Containers vs. virtual machines, https://

learn.microsoft.com/en-us/virtualization/windowscontainers/
about/containers-vs-vm, 2023.

[4] The Red Hat Authors. “Advantages of using docker.” (2018), [On-
line]. Available: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/7.0_release_notes/
sect-red_hat_enterprise_linux-7.0_release_notes-linux_
containers_with_docker_format-advantages_of_using_docker
(visited on 05/18/2018).

[5] Burns, Brendan and Beda, Joe and Hightower, Kelsey and Evenson,
Lachlan, Kubernetes: up and running. " O’Reilly Media, Inc.", 2022.

[6] Gos, Konrad and Zabierowski, Wojciech, “The comparison of mi-
croservice and monolithic architecture,” in 2020 IEEE XVIth Inter-
national Conference on the Perspective Technologies and Methods in
MEMS Design (MEMSTECH), Apr. 2020, pp. 150–153. doi: 10.1109/
MEMSTECH49584.2020.9109514.

[7] De Lauretis, Lorenzo, “From monolithic architecture to microservices
architecture,” in 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Oct. 2019, pp. 93–96.
doi: 10.1109/ISSREW.2019.00050.

75

https://doi.org/10.1109/MCC.2014.51
https://github.com/moby/moby
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.0_release_notes/sect-red_hat_enterprise_linux-7.0_release_notes-linux_containers_with_docker_format-advantages_of_using_docker
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.0_release_notes/sect-red_hat_enterprise_linux-7.0_release_notes-linux_containers_with_docker_format-advantages_of_using_docker
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.0_release_notes/sect-red_hat_enterprise_linux-7.0_release_notes-linux_containers_with_docker_format-advantages_of_using_docker
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.0_release_notes/sect-red_hat_enterprise_linux-7.0_release_notes-linux_containers_with_docker_format-advantages_of_using_docker
https://doi.org/10.1109/MEMSTECH49584.2020.9109514
https://doi.org/10.1109/MEMSTECH49584.2020.9109514
https://doi.org/10.1109/ISSREW.2019.00050

Bibliography

[8] Smith, John and Johnson, Sarah, “Microservices vs. monoliths: A
comparative study,” Software Engineering Journal, vol. 28, no. 3,
pp. 237–245, 2020.

[9] K. Westeinde. “Deconstructing the monolith: Designing software that
maximizes developer productivity.” (), [Online]. Available: https:
//shopify.engineering/deconstructing-monolith-designing-
software-maximizes-developer-productivity.

[10] D. H. Hansson. “The majestic monolith.” (), [Online]. Available:
https://m.signalvnoise.com/the-majestic-monolith/.

[11] J. F. A. Linden, “Understanding gartner’s hype cycles,” May 30, 2003.
[Online]. Available: http://ask- force.org/web/Discourse/
Linden-HypeCycle-2003.pdf.

[12] Arundel, John and Domingus, Justin, Cloud Native DevOps with
Kubernetes: building, deploying, and scaling modern applications in
the Cloud. O’Reilly Media, 2019.

[13] The Kubernetes Authors. “Persistent volumes.” (), [Online]. Available:
https://kubernetes.io/docs/concepts/storage/persistent-
volumes/.

[14] The Kubernetes Authors. “Configmaps.” (), [Online]. Available: https:
//kubernetes.io/docs/concepts/configuration/configmap/.

[15] The Amazon Web Services Authors. “Amazon message queues.”
(2023), [Online]. Available: https://aws.amazon.com/message-
queue/.

[16] The Amazon Web Services Authors. “Rabbitmq vs. kafka: A compar-
ison.” (), [Online]. Available: https://aws.amazon.com/compare/
the-difference-between-rabbitmq-and-kafka/.

[17] The Kubernetes Authors. “Jobs | kubernetes.” (2023), [Online].
Available: https://kubernetes.io/docs/concepts/workloads/
controllers/job/.

[18] The Keda Authors. “Keda | kubernetes event-driven autoscaling.”
(2023), [Online]. Available: https://keda.sh/.

[19] The Kubernetes Authors. “Pod priority and preemption.” (2023),
[Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/pod-priority-preemption/.

[20] S. Y. Lee and A. C. Pang, “A survey of system monitoring tools for IT
infrastructure,” Journal of Network and Systems Management, vol. 16,
no. 4, pp. 417–447, 2008.

76

https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity
https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity
https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity
https://m.signalvnoise.com/the-majestic-monolith/
http://ask-force.org/web/Discourse/Linden-HypeCycle-2003.pdf
http://ask-force.org/web/Discourse/Linden-HypeCycle-2003.pdf
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://aws.amazon.com/message-queue/
https://aws.amazon.com/message-queue/
https://aws.amazon.com/compare/the-difference-between-rabbitmq-and-kafka/
https://aws.amazon.com/compare/the-difference-between-rabbitmq-and-kafka/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://keda.sh/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/

Bibliography

[21] P. R. Cook and A. J. Andrews, “On the definition of observability,”
ACM Transactions on Computer Systems, vol. 38, no. 1, pp. 1–4, 2020.

[22] B. Brazil, R. Warren, and V. Marmol, Prometheus Up and Running.
O’Reilly Media, 2019.

77

	Contents
	Introduction
	Docker and Kubernetes Overview
	Docker and containerized applications
	Kubernetes and microservices
	Kubernetes basic concepts

	Development environment
	Docker Setup
	Kubernetes setup
	Minikube installation and setup
	kubectl installation and setup
	Kubernetes Hello World

	Design and Implementation of the infrastructure underlying the Zamperla Analytics application
	System overview and application services
	UI component
	BackEnd component
	DB component
	Data component

	Basic service/deployment setup: the UI component
	Setting up a deployment
	Setting up a Service

	Adding persistent storage: the DB component
	Requesting storage: PersistentVolume (PV)
	Using storage: PersistentVolumeClaims (PVC)
	Pod environment variables and database initialization: ConfigMaps

	Summing up: BackEnd component and Data component
	The Data component configuration
	Project directories structure

	Scaling jobs with RabbitMQ and Keda
	Scaling data-intensive jobs: an application need
	Message queues: how RabbitMQ helped to manage complexity
	Jobs, i.e. Kubernetes disposable Pods
	Keda: autoscaling Jobs

	Jobs split-up: reporter, postprocessor & sftp_downloader
	Step 1: startup script
	Step 2: Docker image
	Step 3: Kubernetes Jobs and Keda
	Step 4: turn direct calls into messages

	Different jobs require different priorities
	Hierarchize Kubernetes objects with PriorityClass

	Infrastructure monitoring and observability
	Prometheus: observability implementation in a Kubernetes cluster
	Introduction to Prometheus
	Prometheus setup in a Kubernetes environment

	Next steps: Graphana and Alert System
	Graphana: a visualization tool
	Alert Manager: real-time alerting system

	Conclusions
	Bibliography

