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Abstract

Graph databases have gained immense popularity as a leading choice for data
representation and analysis, especially when it comes to modeling diverse types
of networks. They are constructed using the property graph data model, which
involves nodes and edges being valued with property-value combinations. Even
though time is present in most real-world problems, the majority of prior research
in this field revolves around graphs in which the temporal aspect is overlooked.
This thesis describes the model presented in a paper published in The VLDB Jour-
nal 30[5] and offers an analysis of the problem of modeling, storing, and querying
temporal property graphs, enabling the preservation of a graph database’s his-
torical data. Specifically, the thesis focuses on addressing a temporal graph data
model, where nodes and relationships contain key-value pair attributes within a
defined time interval. In this model, graphs may encompass different kinds of
relationships.
Also, the paper introduces a high-level graph query language known as T-GQL,
accompanied by a collection of algorithms for computing various types of temporal
paths within a graph. These paths capture distinct temporal path semantics,
including continuous paths, pairwise continuous paths, and consecutive paths. T-
GQL proves to be particularly significant, capable of expressing queries like ”Find
paths between Anchorage and Los Angeles, taking into account flights where the
arrival time precedes the departure time of the subsequent flight.”
To validate the feasibility of the concept, a practical demonstration is provided
through the utilization of Neo4j. Moreover, a user interface on the client side
facilitates the submission of queries written in T-GQL to a Neo4j server.
In addressing the disparity between synthetic data set and real-world complex-
ities, this thesis introduces the pivotal Price attribute, reflective of real-world
aviation dynamics, into the analysis. It delves into how this variable influences
algorithmic outcomes, shedding light on the intricate interplay between price and
path selection. While recognizing that real-world aviation presents multifaceted
attributes, the primary focus here remains on price and distance. This exploration
aims to unravel the impact of price fluctuations on algorithmic results, offering
insights into how practical considerations influence path selection. The study’s
outcomes encompass experiments on a synthetic data set, serving to both demon-
strate method viability and assess the impact of variables, such as path length and
graph dimensions.
This thesis expansion endeavors to bridge the theory-to-practice gap, offering valu-
able insights into the real-world dynamics of temporal property graphs. It culmi-
nates in a comprehensive set of experiments conducted on a synthetic data set,
serving a dual purpose: firstly, to validate the method’s feasibility, and secondly,
to evaluate the variables influencing performance, including queried path lengths
and graph dimensions.
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Chapter 1

Introduction

1.1 Problem Description

These days, there has been much use of property graphs[4, 11, 14], especially to
analyze and model different kinds of networks. The property graph data model
is the base of most graph databases, including Neo4j1, Apache AGE2, and Re-
disGraph3. The predominant focus of researchers and practitioners, thus far, has
revolved around static graphs, whereby the temporal facet remains unexplored.
Nevertheless, there are a lot of examples of applications and graphs in the real
world that use time. When using time in property graphs, many changes oc-
curred. Edges, nodes, and their properties can be changed, added, deleted, or
updated. For instance, as described in the paper[5]:

In transportation schedules, each vertex in a graph represents a location, and an
edge (u, v, t, λ) is a trip (flight, bus, etc.) from u to v departing at time t, whose
duration is λ.

1.2 Thesis Goal

Neglecting the temporal aspect might yield inaccurate outcomes or hinder the
exploration of intriguing analytical avenues. Therefore, the primary objective of
this dissertation is to expand upon the approach outlined in the paper [5], which
introduces incorporates time intervals as a fundamental component of the under-
taking, enabling the establishment of connections and paths among nodes that
lack a direct link. This component is accomplished through an assessment of edge
properties and their comparison, thereby identifying conditions that facilitate the
continuation of the path.

To facilitate the restoration process, three distinct approaches are adopted for path
detection, following the methodologies introduced in the referenced paper. During
the path detection process,

• The initial strategy employs continuous pathways, devoid of property consid-
eration and conditions, resulting in the retrieval of all pathways connecting
the two nodes.

1https://neo4j.com/
2https://age.apache.org/
3https://redis.com/
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• The second approach which is pairwise continuous paths harnesses the capa-
bilities of properties of the edges adept at identifying and precisely locating
a diverse path within a graph.

• Ultimately, consecutive pathways encompass the shortest path, fastest path,
earliest arrival path, and latest departure path. Similar to pairwise contin-
uous pathways, these also incorporate edge properties, but with additional
constraints to ascertain cumulative duration and distance, which are subse-
quently employed as determining factors.

In the context of evaluating algorithm performance, it becomes imperative to tran-
sition from surveying these algorithms’ inherent capabilities to exploring how they
respond when confronted with real-world features. In particular, the inclusion of
dynamic elements from the aviation industry, such as pricing dynamics, represents
a pivotal step in this analysis. This exploration aims to uncover the intricate
dynamics at play when practical, real-world considerations are integrated into al-
gorithmic decision-making processes, providing valuable insights into how these
elements shape path selection and overall outcomes within the aviation domain.

1.3 Contributions

This research delves into the application of temporal database principles in graph
databases, with a focus on enabling the modeling, storage, and querying of tempo-
ral graphs, preserving historical data. The research centers on the property graph
data model[4, 11, 14], associating timestamps with nodes, relationships, and node
properties to indicate their temporal validity intervals, all within heterogeneous
graphs. These graphs are termed Interval-labeled Property Graphs, as defined in
a paper [5]. The contributions of this thesis encompass the integration of the con-
cepts from the referenced paper and the introduction of new elements to extend
this work.

This includes a temporal data model specifically designed for property graphs, per-
mitting the retention of historical records for nodes, edges, and associated proper-
ties. The development of T-GQL, a sophisticated graph query language built upon
GQL, the established standard for property graph databases. A set of queries is
introduced for computing diverse temporal paths within graphs, accommodating
various interpretations of temporal path semantics. The implementation is real-
ized using Neo4j, and a client interface is established to query Neo4j graphs. A
series of experiments were conducted to evaluate the practical application of the
semantics explored in this study. These experiments involved synthetic data sets
simulating flights connecting different airports. Furthermore, this research delves
into the pragmatic aspects of temporal graph databases by exploring the sub-
stantial impact of flight costs and edge expenses within the temporal graph data
model. It uncovers how these real-world economic factors intricately influence the
length and spatial dimensions of journeys. This practical examination serves to
bridge the gap between theoretical modeling and real-world complexities, offering
valuable insights into how the dynamics of cost and journey length play a pivotal
role in shaping the characteristics of temporal graphs.

2



1.4 Outline

The initial section of this thesis, based on the paper [5], presents an overview of
the research problem and its objectives. Section 2 offers an extensive examination
of the existing literature and prior research in the realm of temporal relational
databases, laying the groundwork for the present study. Proceeding from this
foundation, Section 3 delves into the three-stage framework for temporal graph
databases. The first phase involves the implementation of a graph structure and
the execution of various queries within the Neo4j environment. In the second phase,
the focus shifts to the integration of T-GQL syntax, enabling the transformation
and translation of diverse query types into executable commands, extending the
capabilities of Cypher queries. The third phase concentrates on the development
of Java functions for each query, facilitating their migration to the server-side for
execution.
In the subsequent section, Implementation, the procedural details encompass the
comprehensive definition of each component of the T-GQL grammar, including the
generation of Lexers and Parsers integrated with Neo4j. Ultimately, this section
culminates in the deployment of a web application that enables the execution of
extended Cypher queries within the Neo4j environment.
The concluding portion, Experiments, provides insights into the research’s objec-
tives, the utilized data set, the adopted evaluation metrics, and the experimental
outcomes derived from the methodologies outlined in the ”Proposed Model” chap-
ter.
Finally, Section 6 encapsulates the thesis by summarizing its contributions and
the broader implications of the research.

3



Chapter 2

Related Works

The field of temporal relational databases has seen significant research and study
over the years[15, 19]. This study focuses on managing and querying data with
temporal aspects, such as time-stamped records, historical data, and evolving rela-
tionships between entities. Researchers and practitioners in this field have explored
various issues and challenges, leading to a rich body of literature.

2.1 Graph database models

A substantial collection of references concerning graph database models has been
thoroughly explored in[18, 2]. In practical real-world applications, two types of
graph database models are employed:

• Models based on RDF1, oriented to the Semantic Web.

• Models based on Property Graphs.

In RDF[10, 9], data is represented in triple format, where each triple comprises
three elements referred to as the subject, predicate, and object, delineating their
characteristics and connections with other entities.
Within the property graph data model[1, 3], nodes and edges are tagged with sets
of (attribute, value) pairs. Property graphs go beyond conventional graph struc-
tures and are the typical selection for contemporary graph databases employed in
practical applications. As the research problem explored in the paper referenced
as [5] is rooted in the property graph model, the forthcoming review exclusively
focuses on this particular graph data model.

2.2 Data models for temporal graphs

Data models[5] in the temporal graphs literature can be classified in three groups:

1. Duration-labeled temporal graphs (DLTG)

2. Interval-labeled temporal graphs (ILTG)

3. Snapshot-based temporal graphs (SBTG)

1https://www.w3.org/RDF/
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2.2.1 Duration-labeled temporal graphs

Wu et al.[20]. conducted research on these types of graphs. In these graphs, a node
is depicted as a string, and the edges are tagged with a value denoting the length
of the connection between two nodes. Definition 1 provides a formal elucidation
of the previously mentioned concept.

Definition 1 (Duration-labeled graphs (cf.[20])). Let Gd = (V,E) be a temporal
graph, where V is the set of vertices, and E is the set of edges in G.

• Each edge e = (u, v, t, λ) ∈ E is a temporal edge representing a relationship
from a vertex u to another vertex v starting at time t, with a duration λ.
For any two temporal edges (u, v, t1, λ1) and (u, v, t2, λ2), t1 ≤ t2.

• Each node v ∈ V is active when there is a temporal edge that starts or ends
at v.

• d(u, v): the number of temporal edges from u to v in Gd.

• E(u, v): the set of temporal edges from u to v in G, i.e., E(u, v) = {(u, v, t1),
(u, v, t2), . . . , (u, v, td(u,v))}.

• Nout(v) or Nin(v): the set of out-neighbors or in-neighbors of v in Gd, i.e.,
Nout(v) = {u : (v, u, t) ∈ E} and Nin(v) = {u : (u, v, t) ∈ E}.

• dout(v) or din(v): the temporal out-degree or in-degree of v ∈ Gd, dout(v) =∑
u∈Nout(v)

d(v, u) and din(v) =
∑

u∈Nin(v)
d(u, v).

Figure 2.1: a duration-labeled temporal graph (cf.[20])

2.2.2 Interval-labeled temporal graphs

Definition 2 provided below defines the characteristics of interval-labeled temporal
graphs (ILTG).

Definition 2 (Interval-labeled temporal graphs (cf. [5])). Let Gd = (V,E) be a
temporal graph, where V is the set of vertices, and E is the set of edges in G.

5



Figure 2.2: Interval-labeled temporal graphs (cf.[5])

The graph displays edges that are marked with their validity intervals, rather
than using a timestamp to indicate a duration. As an instance, consider the edge
connecting nodes a and i which is marked with the interval [10, 11]. This variation
arises because, in the Duration-labeled temporal graph[ 2.2.1] depicted in the same
figure, the same edge is labeled as 10, indicating the initial time of the edge, with
a duration of 1. In practical terms, if the graph represents a flight schedule, it
signifies that the flight departs from a at time instant 10, and the journey from a
to i lasts for a single time unit.

2.2.3 Snapshot-based temporal graphs

Huo and Tsotras[13] investigated the efficient calculation of shortest paths in evolv-
ing social networks. They introduce the concept of a temporal graph, which starts
as an initial snapshot and is then updated over time. To tackle this, they extend
the conventional Dijkstra’s algorithm[6] to calculate the shortest path distance(s)
for a specific time point or time interval within the evolving history of a social net-
work. Consequently, temporal queries are made by referencing particular historical
snapshots of the graph.

Definition 3 (Snapshot temporal graph (cf.[17])). A temporal graph G[ti, tj] in a
time interval [ti, tj] is a sequence {Gti, Gti+1, . . . , Gtj} of graph snapshots.

For example, temporal shortest-path queries in a flight can discover how close two
given cities were in the past and how their closeness evolved over time. Finally,
several different kinds of path queries are defined. For example, a time point
shortest path query returns the shortest-path p from a origin city vs to a destination
city vt, such that both are temporally valid at query time tq (all edges in p are
valid at query time tq).

6



Chapter 3

Proposed Model

Implement Graph

Queries to Return Paths

T-GQL Syntax

Implement Java Functions

Figure 3.1: Diagram of the proposed framework

This thesis presents a method intro-
duced in the paper [5], which pri-
marily focuses on enhancing temporal
graph databases and refining the pre-
cision of Cypher queries within Neo4j.
In this thesis, we endeavor to imple-
ment and further extend the method
outlined in the paper [5]. The en-
tire procedure can be visualized as a
sequence of stages within our frame-
work. These elements collectively
form a circumstance which can be fur-
ther elaborated upon in the next sec-
tion, defining a well-structured gram-
mar. The figure 3.1 is a flow dia-
gram illustration of our framework.
The initial phase of framework in-
volves the implementation of nodes

and edges. This crucial step is fundamental in constructing a graph that can effec-
tively manage and utilize various types of paths in the future. These path types
encompass continuous paths, pairwise continuous paths, shortest paths, fastest
paths, earliest arrival paths, and latest departure paths.

The second phase enables us to identify available paths between connections by
formulating queries. These queries involve specifying the names of the initial and
final nodes, along with the connecting edge. This phase is dedicated to path dis-
covery. In the third phase, T-GQL, as introduced in the reference paper [5], is
presented as a high-level query language for graph databases. This phase provides
an in-depth understanding of T-GQL syntax and query structure through practical
examples. In the Last phase, the model and language outlined were put into prac-
tice using the Neo4j graph database, an open-source Java-based solution. Neo4j1

facilitates the expansion of its capabilities through user-defined procedures, which
can be conveniently incorporated as plugins within a .jar file. These procedures
can subsequently be employed in Cypher queries much like any of the other native
functions provided by this language.

1https://neo4j.com/
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3.1 Implement Graph

In the pursuit of achieving visual restoration, the initial and pivotal phase in-
volves the implementation of the property graph by adding nodes and edges. The
property graph is a graph that is implemented by the nodes and edges, where a
collection of property-value pairs is held by them.

Definition 4 (Temporal property graph (cf. [5])). A temporal property graph is a
structure G(No, Na, Nv, E) where G is the name of the graph, E is a set of edges,
and No, Na, and Nv are sets of nodes, denoted as object nodes, attribute nodes,
and value nodes, respectively.

The figure[3.2] shows the graph with City and Airport as nodes, with edges rep-
resenting Flight and LocatedAt. The interconnections between airports are estab-
lished using the Flight edge, while each airport is linked to its respective home city
through the LocatedAt edge. As an illustration:

Figure 3.2: The graph visually represents the interconnected flights connecting cities, where these cities are joined
through their respective airports linked by the ”Located At” edges

Before introducing the constraints, it is essential to mention the concept of the
Lifespan of an edge, which we will formally delineate in Definition 6.

Definition 5 (Constraints cf. [5])). For the graph in Definition 4, the following
constraints hold:

1. ∀n, n′ ∈ No, n = n′ ∨ n.id ̸= n′.id

2. ∀n, n′ ∈ Na, n = n′ ∨ n.id ̸= n′.id

3. ∀n, n′ ∈ Nv, n = n′ ∨ n.id ̸= n′.id

4. ∀nv{na}, n′
v{na} ∈ Nv, nv = n′

v ∨ nv.value ̸= n′
v.value

5. ∀ei{n, n′}, ej{n, n′} ∈ E ∧ ei.name = ej .name, ei = ej ∨ ei.name ̸= ej .name

6. ∀n ∈ No, e{n, n′} ∈ E ⇒ n′ ∈ No ∪Na

8



7. ∀n ∈ Na, e{n, n′} ∈ E ⇒ n′ ∈ No ∪Nv

8. ∀n ∈ Nv, e{n, n′} ∈ E ⇒ n′ ∈ Nv

9. ∀n ∈ Na, (∃no ∈ No,∃e ∈ E(e(no, n) ∧ (∄n′ ∈ (Na ∪Nv ∪No) ∧ e′ ∈ E ∧ e′{n′, n})))

10. ∀n ∈ Nv, (e{n′, n} ∧ n′ ∈ Na) ⇒ ∄n′′ ∈ (Na ∪Nv ∪No)(e
′′{n′′, n} ∈ E ∨ e′′{n, n′′} ∈ E)

11. ∀ne{n, n′} ∈ Ne, ne.interval ⊂ n.interval ∩ n′.interval

12. ∀na{n} ∈ Na, na.interval ⊂ n.interval

13. ∀nv{na} ∈ Nv, nv.interval ⊂ nv.interval

14. ∀nv{na}, n′
v{n′

a}, nv ̸= n′
v, nv.interval ∩ n′

v.interval = ∅

Constraints 1 to 3 ensure that each node within the graph possesses a unique
identifier. Constraint 4 necessitates the consolidation of nodes sharing the same
value linked to the same attribute node. Consequently, the interval transforms into
a temporal entity encompassing all time periods during which the node held such
a value. Similarly, Constraint 5 applies to edges: it consolidates all edges with the
same name (i.e., representing identical relationship types) between identical node
pairs.
Constraints 6 to 8 govern the connections between nodes as follows: (a) Object
nodes can solely connect to attribute nodes or other object nodes; (b) Attribute
nodes can exclusively connect to non-attribute nodes; and (c) Value nodes can
only establish connections with attribute nodes. Constraints 9 and 10 specify the
cardinalities of these connections. Specifically, attribute nodes must be linked to
an object node by just one edge, while value nodes should have a single edge
connecting them to an attribute node.
Lastly, Constraints 11 to 14 impose limitations on the values of the interval prop-
erty.

3.1.1 Nodes

In Neo4j, nodes are fundamental entities that serve as the core building blocks of
a graph database. Each node corresponds to a distinct entity or concept and is
identified by a unique label. When creating nodes within Neo4j, it’s imperative to
approach them as objects, mirroring real-world entities, and meticulously assign
attributes to encapsulate pertinent information.
For instance, nodes representing ”City” entities should be endowed with attributes
such as ”name,” ”state,” and ”country,” providing contextual details about the
city’s location. Similarly, nodes representing ”Airport” entities must possess at-
tributes like ”name” and ”iata code,” offering essential information about the
airport.
By adhering to this meticulous approach of assigning attributes, the database
ensures that the nodes effectively capture the nuances of their real-world counter-
parts. This careful definition and skillful utilization of attributes guarantee the
nodes’ efficient integration and utilization within the graph, empowering data re-
trieval, analysis, and exploration. As an illustration, The nodes City and Airport
are defined like below:

CREATE (:City {name: ’Anchorage’, state: ’AK’, country: ’USA’});

CREATE (:Airport {iata_code: ’LAX’, name: ’Los Angeles Airport’});
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3.1.2 Edges

Edges within the Neo4j graph database serve as pivotal bridges between nodes,
forming the very essence of relationships and interactions.

Definition 6 (Lifespan of an edge (cf. [5])). Consider a node n, and a collection
of k edges outgoing from n, Eouti , i = 1, . . . , k, such that Outi.name is the same
for all Eouti . Also, let Einj , j = 1, . . . ,m, be the set of m edges with the same
name incoming to node n. The union of the temporal labels of all these edges is
called the lifespan of n, denoted l(n).

Two specific edge types hold profound significance: the Flight edge and the Lo-
catedAt edge. The Flight edge stands as a vital conduit, intricately binding two
distinct Airport nodes. This connection masterfully illustrates a direct or indirect
route linking the respective airports. Imbued within the Flight edge are essential
attributes that enrich its meaning – departure time, arrival time, distance, and
price. These four attributes collectively provide a comprehensive picture of air
travel and costs, encompassing not only connectivity but also the temporal, spa-
tial, and financial dimensions of flights. The Flight edge becomes a repository of
flight-specific information, enriching the graph with insights into the durations,
costs, and timings of these aerial journeys.
In contrast, the LocatedAt edge establishes a profound correlation between an
Airport node and its corresponding City node. Through this vital linkage, a spatial
narrative unfolds, revealing the precise geographic placement of the airport within
the context of its home city. The LocatedAt edge fuses the urban and aeronautical
realms, providing a vivid sense of place within the graph.
Both of these edge types operate as keystones in the architectural fabric of the
graph, expertly molding the intricate tapestry of connections and interactions
between nodes. These edges provide a rich foundation for diverse analyses and
inquiries, empowering the database to unveil hidden relationships, pathways, and
insights lying dormant within the data. The following queries, as an example,
implements two different edges, namely, Flight and LocatedAt, to connect the
Anchorage City to the corresponding Airport node and to create a flight from
Anchorage to Seattle by matching their IATA codes, respectively.

MATCH (a:City) , (b:Airport)
WHERE a.name= ’Anchorage’ AND b.iata_code=’ANC’
CREATE (a)<-[:LocatedAt]-(b);

MATCH (a:Airport),(b:Airport)
WHERE a.iata_code=’ANC’ AND b.iata_code=’SEA’
CREATE (a)-[e:Flight{departure_time:425, arrival_time:450, distance:

1448}]->(b);

Therefore, when creating a graph with a substantial number of nodes and edges,
we can either add them individually or import them from a data set.

3.2 Queries to Return Paths

During this phase, once the node and edge graph is set up, create queries to extract
the paths needed. These queries should aid in effectively retrieving available paths.
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In this specific scenario, the primary focus is on identifying continuous and consec-
utive paths. Within the consecutive path context, beside other crucial attributes
like arrival time, departure time, and distance, price serves as a crucial condition
that selection of these paths, potentially impacting their length. The following
section illustrates the creation of these queries using an example where the origin
city is ”Anchorage and the destination is Los Angeles. You can formulate these
queries using the fundamental grammatical structure in Neo4j.

3.2.1 Continuous Paths

Continuous Paths

In the context of ILTG, a continuous path [16], as introduced in Definition 7 ,
denotes a path that maintains its validity without interruption within the specified
time interval.

Definition 7 (Continuous path). A continuous path (cp) with interval T from
node n1 to node nk in a temporal document graph is a sequence (n1, . . . , nk, T ) of
k nodes and an interval T such that there is a sequence of containment edges of
the form e1(n1, n2, T1), e2(n2, n3, T2), . . . , ek(nk−1, nk, Tk) such that T =

⋂
i=1,k Ti.

As an example, The query retrieves all paths between the cities Seattle and Char-
lotte without considering any specific conditions or properties, as long as there is
a connection between these two cities in the graph.

MATCH (c:City {name: ’Seattle’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Charlotte’})
WITH c, a, b, c1, relationships(path) AS edges
RETURN edges

Figure 3.3: The graph shows continuous paths from the related query

Pairwise Continuous Path

In the context of temporal graphs, a pairwise continuous path refers to a sequence
of edges or relationships between nodes, where each edge represents a temporal
relationship with specified time intervals. The key characteristic of a pairwise
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continuous path is that there is an intersection or overlap in the time intervals
between consecutive edges in the sequence. This allows for a chain of pairwise
temporal relationships between nodes, even if there isn’t a continuous path between
the nodes. Essentially, it represents a sequence of relationships where the time
intervals of each relationship partially overlap with the time intervals of the next,
enabling transitive connections through time.

Definition 8 (Pairwise continuous path[5]). Given a temporal property graph G,
a pairwise continuous path between two nodes n1, nk, through a relationship r,
is a sequence of edges e1(n1, n2, r, [ts1 , tf1 ]), . . . , ek(nk−1, nk, [tsk−1, tfk ]), such that
(ts1 ≤ ts2 ≤ tf1 ∨ ts2 ≤ tf1 ≤ tf2) ∧ . . . ∧ (tsk−1 ≤ tsk ≤ tfk−1 ∨ tsk ≤ tfk−1 ≤ tfk).

For example, obtaining all paths between the cities of ’Anchorage’ and ’Los An-
geles’ entails ensuring that the time interval between each pair connected cities in
a sequence of cities is smaller than that of the next pair connected cities.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Los Angeles’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time < edges[i].departure_time)
RETURN edges

Figure 3.4: The graph shows pairwise continuous paths from the related query

3.2.2 Consecutive Paths

DLTG[2.2.1] can also be represented as ILTG[2.2.2]. Sometimes, queries ask for
the earliest, latest, fastest, and shortest path in DLTG. It requires a different
temporal graph than Sects 3.2.1 and 3.2.1. The following definition introduces the
notion of a consecutive path.

Definition 9 (Consecutive path[5]). A consecutive path Pc traversing a relation-
ship r in a temporal property graph G is a sequence of edges P = (e1, e2, r, [t1, t2]),
. . . , (ek−1, ek, r, [tk−1, tk]) where (ni, ni+1, r, [ti, ti+1]) is the ith temporal edge in P
for 1 ≤ i ≤ k, and ti−1 < ti for 1 ≤ i ≤ k. Instant tk is the ending time of P ,
denoted as end(P ), and t1 is the starting time of P , denoted as start(P ). The
duration of P is defined as dura(P ) = end(P ) − start(P ), and the distance of P
as dist(P ) = k.

Regarding consecutive paths, these paths resemble continuous paths due to their
adherence to the condition that the arrival time at the origin city must exceed
the departure time at the destination. Additionally, for each individual path, the
interpretations of first arrival path, last departure path, shortest path, and fastest
path vary. Additionally, we place significant importance on considering price as
a key factor in our path selection process, as it enables us to better comprehend
how price can impact the length and distance of the paths we identify. These
distinctions are explained in the pertinent section.
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Definition 10 (Types of Consecutive Paths [20]). Let G be a temporal property
graph, r a relationship in G, a source node ns, and a target node nt, both in G;
There is also a time interval [ts, te]. Let P (ns, nt, r, [ts, te]) = {P | P is a consecutive
path from x to y such that start(P ) ≥ ts, end(P ) ≤ te}. The following paths can
be defined:

• The earliest-arrival path (EAP) is the path that can be completed in a given
interval such that the ending time of the path is minimum. Formally,
EAP: P ∈ P (ns, nt, r, [ts, te]) such that end(P ) = min{end(P ′) : P ′ ∈ P (ns, nt, r, [ts, te])}

• The latest-departure path (LDP) is the path that can be completed in a given
interval such that the starting time of the path is maximum. Formally,
LDP: P ∈ P (x, y, [ts, te]) such that start(P ) = max{start(P ′) : P ′ ∈ P (ns, nt, r, [ts, te])}

• The fastest (FP) is the path that can be completed in a given interval such
that its duration is minimum. Formally,
FP: P ∈ P (ns, nt, r, [ts, te]) such that dura(P ) = min{dura(P ′) : P ′ ∈ P (ns, nt, r, [ts, te])}

• The shortest path (SP) is the path that can be completed in a given interval
such that its length is minimum. Formally,
SP: P ∈ P (ns, nt, r, [ts, te]) such that dist(P ) = min{dist(P ′) : P ′ ∈ P (ns, nt, r, [ts, te])}

Earliest Arrival Path

Earliest Arrival path or EAP Examining all paths connecting the cities Anchorage
and Los Angeles, the analysis factors in the stipulation that among the possible
paths, the earliest arrival path is determined by the one that reaches the destina-
tion with the minimum end time.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Los Angeles’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
RETURN edges, edges[-1].arrival_time AS earliestArrivalTime
ORDER BY earliestArrivalTime ASC
LIMIT 1

Figure 3.5: Earliest arrival path

Latest Departure Path

When we look at all the ways connecting Anchorage and Los Angeles, we find that
the analysis considers a rule. This rule says that out of all the possible ways, the
one where the starting city (Anchorage) has the latest time of leaving is called the
Latest Departure Path.
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MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Los Angeles’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(1, size(edges) - 1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, edges[0].departure_time AS lastDepartureTime
ORDER BY lastDepartureTime DESC
RETURN edges

Figure 3.6: Latest departure path

Fastest Path

When we study all the paths connecting ”Anchorage” and ”Los Angeles,” the
analysis takes into account a rule. This rule states that among all the options for
paths, the quickest path is the one that gets to the destination in the least amount
of time.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Los Angeles’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, reduce(duration = 0, edge in edges | duration

+ (edge.arrival_time - edge.departure_time)) AS TotalDuration
ORDER BY TotalDuration ASC
RETURN edges, TotalDuration

Figure 3.7: Fastest path

Shortest Path

Getting all the paths connecting ”Anchorage” and ”Los Angeles” considers the
condition that the arrival time at the beginning city must be after the departure
time of the following city within the path sequence. Additionally, the path’s dis-
tance between the two cities is kept as small as possible, making it the shortest
path.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
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MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Los Angeles’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, reduce(distance = 0, edge in edges | distance

+ (edge.distance)) AS totalDistance
ORDER BY totalDistance ASC
RETURN edges, totalDistance

Figure 3.8: Shortest path

3.2.3 Consecutive Paths With Respect Price

In the context of examining all paths connecting, two specific cities, for example,
Anchorage and Los Angeles, we introduce the element of price as a significant
consideration, recognizing its paramount importance for travelers seeking the most
suitable path. Let’s explore a scenario where price becomes a pivotal factor in the
path selection process:
Imagine a traveler who values not only reaching their destination quickly but also
keeping travel expenses to a minimum. In the traditional analysis, the focus has
primarily been on arrival time, departure time, and distance. However, in this
updated scenario, the traveler’s decision-making process now includes price as a
crucial determinant.
The traveler is presented with multiple path options, each with varying prices and
corresponding travel duration. One path offers a direct route with the fastest path
but comes at a relatively high cost. Another path involves a brief layover, slightly
extending the travel time but significantly reducing expenses.
Incorporating price into the path analysis means that the traveler’s decision is
no longer solely based on arrival time and distance. Now, they must strike a
balance between reaching their destination in a reasonable time and keeping their
budget in check. Therefore, they might opt for a path that allows them to save on
expenses, even if it means a slightly longer journey. This scenario illustrates how
the inclusion of price as a crucial factor can greatly influence the choice of path,
providing a more comprehensive approach for travelers who prioritize both time
and cost efficiency.
In the following scenario, I will illustrate how costs can significantly influence the
choice of path when connecting the cities of Anchorage and Los Angeles. Let’s
consider a traveler who is planning a trip from Anchorage to Los Angeles. She’s a
budget-conscious traveler, so the cost of journey plays a vital role in her decision-
making process. Traveler has different distinct options to choose:

Earliest arrival path with respect the price

If we consider price in the context of the earliest arrival path, we can observe that,
although the red path is the earliest arrival option in the scenario, the blue route
proves to be the more economical choice.
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MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Seattle’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, edges[-1].arrival_time AS earliestArrivalTime,

reduce(price = 0, edge in edges | price + edge.price)
AS TotalPrice

ORDER BY TotalPrice ASC
RETURN edges, earliestArrivalTime, TotalPrice;

Figure 3.9: Earliest arrival time with respect the price

Latest departure path with respect the price

While the latest departure path equals budget-friendly travel, it’s important to note
that the duration of the flight in this path is longer compared to the other options.
This trade-off between cost and time is a crucial consideration for travelers seeking
the most suitable route.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Seattle’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, edges[0].departure_time AS latestDepartureTime,

reduce(price = 0, edge in edges | price + edge.price)
AS TotalPrice

ORDER BY TotalPrice ASC
RETURN edges, latestDepartureTime, TotalPrice;

Figure 3.10: Latest departure path with respect the price

Fastest path with respect the price

In the context of selecting the fastest path when price falls within the regular,
neither cheap nor expensive range, and when the primary focus is on optimizing
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duration, travelers find themselves in a scenario where they prioritize efficiency
over extreme budget considerations. In this situation, the chosen path may not
necessarily align with the latest departure path or the earliest arrival path, as the
primary objective is to reach the destination with the best time efficiency. Such a
path could involve a direct flight, an efficient layover all aimed at minimizing travel
time. This scenario underscores the significance of striking a balance between
cost and speed, offering travelers a compelling alternative when neither the latest
departure nor the earliest arrival time is the top priority.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Seattle’})
WITH c, a, b, c1, relationships(path) AS edges
WHERE all(i in range(0, size(edges)-1)

WHERE edges[i-1].arrival_time > edges[i].departure_time)
WITH edges, reduce(duration = 0, edge in edges | duration +

(edge.arrival_time - edge.departure_time)) AS TotalDuration,
reduce(price = 0, edge in edges | price + edge.price)
AS TotalPrice

ORDER BY TotalPrice ASC
RETURN edges, TotalDuration, TotalPrice;

Figure 3.11: Fastest path with respect the price

Shortest path with respect the price

In our example, where we have four different paths connecting two specific cities,
the concept of the shortest path introduces a unique perspective on path selection.
The shortest path is typically determined by the number of edges, which reflects the
fewest intermediate stops or connections between the two cities. In this scenario,
the shortest path is depicted by the red line, signifying the most direct route with
the fewest stops.
However, it’s crucial to recognize that while the red path represents the shortest
journey in terms of the number of edges, it may not always be the optimal choice
for every traveler. The blue path, for instance, offers the best price, ensuring cost-
effectiveness while also featuring the latest departure time. On the other hand, the
green line guarantees the earliest arrival, although it comes at a higher price.
This scenario underscores that the selection of the shortest path is just one facet
of the decision-making process. Travelers must weigh factors like cost, departure
time, and arrival time to make a well-rounded choice that aligns with their specific
priorities, whether they value speed, cost-efficiency, or a balance of both.

MATCH (c:City {name: ’Anchorage’})<-[:LocatedAt*]-(a:Airport)
MATCH path = (a:Airport)-[e:Flight*1..8]->(b:Airport)
MATCH (b:Airport)-[:LocatedAt*]->(c1:City {name: ’Seattle’})
WITH c, a, b, c1, relationships(path) AS edges
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WHERE all(i in range(0, size(edges)-1) WHERE edges[i-1].arrival_time
> edges[i].departure_time)

WITH edges, reduce(distance = 0, edge in edges | distance +
(edge.distance)) AS totalDistance, reduce(price = 0, edge in
edges | price + edge.price) AS TotalPrice

ORDER BY TotalPrice ASC
RETURN edges, totalDistance, TotalPrice;

Figure 3.12: Shortest path with respect the price

3.3 T-GQL Syntax

This section introduces T-GQL, as denoted in the reference paper [5], as a high-
level query language for graph databases. While it has some similarities to SQL, it
is primarily built upon Cypher2, which is Neo4j’s high-level query language. The
formal semantics of Cypher can be referenced in [7, 8]. In the section 4.2, provides
instructions on how to convert T-GQL queries into Cypher and then transmit
these converted queries to the server side.

3.3.1 Basic Statements

The language’s syntax follows the familiar structure of SELECT-MATCH-WHERE.
Within this structure, the SELECT clause enables the selection of variables defined
within the MATCH clause, allowing for the use of aliases. The MATCH clause
can include one or more path patterns, fixed or variable length, and function calls.
The outcome of the query is a temporal graph.
Consider the query: “List the cities that are connected to the Anchorage through
intermediary city”.

SELECT c2
MATCH (c1:City) - [:Flight*2] -> (c2:City)
WHERE c1.name = ’Anchorage’

In this case, the query returns the object node Cities. To retrieve all possible
paths, the asterisk wildcard operator ’*’ is employed. The following expression
yields paths of a length of two starting from the node that represents Anchorage.

SELECT *
MATCH (c1:City) - [:Flight*2] -> (c2:City)
WHERE c1.name = ’Anchorage’

T-GQL includes support for the three path semantics described in earlier section
3.2: (a) Continuous path semantics, (b) Pairwise continuous path semantics, and
(c) Consecutive path semantics. These semantics are realized through functions
that are part of a Neo4j plugin library.

2https://neo4j.com/docs/cypher-manual/current/
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3.3.2 Continuous Paths Queries

Continuous paths [3.2.1], as a graph traversal algorithm, operate with a unique
simplicity. Unlike other path-finding algorithms that consider various attributes
and conditions like time, cost, or specific constraints, continuous paths focus solely
on establishing connections between nodes. Their primary objective is to uncover
any viable path that links these nodes together. In the context of navigating
a graph, continuous path algorithms effectively disregard any additional criteria,
prioritizing the concept of connectedness.
For instance, when using a continuous path algorithm to explore a network or
graph, it unearths all nodes that share a connection, forming a sequence of linked
nodes without concern for other factors. This approach can be particularly use-
ful when the primary goal is to identify the basic routes or establish connections
between specific entities, such as cities. Continuous path algorithms excel at iden-
tifying any connection that can bridge these cities, offering a comprehensive view
of the network’s underlying structure. They are a valuable tool for situations where
the focus is on mapping the fundamental relationships and connections within a
graph. In our queries, the cPath function operates as a semantic identifier for
finding continuous paths within the graph, emphasizing the importance of un-
broken node sequences. Conversely, pariCPath represents the concept of pairwise
continuous paths, highlighting connections between specific pairs of nodes.
For queries related to consecutive paths, such as earliest arrival, latest departure,
fastest path, and shortest path, the semantic function aligns with the respective
path’s name, signifying the primary focus on attributes like time, cost, and dis-
tance in determining the optimal route. In the following, some query examples of
continuous path exploration will be showcased.
Query 1 is about finding all the direct two-stop flight routes in the given flight
network example.
Query 1 List the cities that are connected to the Anchorage through intermediary
city, and the period such that the relationship occurred through all the path.

SELECT path
MATCH (n:City), path = cPath((n)-[:Flight*2]-> (c:City))
WHERE c.name = ’Anchorage’

Another example, searching for a continuous path between two particular cities.
Query 2 Find the continuous paths between ”Anchorage” and ”Los Angeles” with
a minimum length of two and a maximum length of three.

SELECT paths
MATCH (c1:City), (c2:City),
paths = cPath((c1) - [:Flight*2..3] -> (c2))
WHERE c1.name = ’Anchorage’ AND c2.name = ’Los Angeles’

The following query finds pairwise continuous paths (Definition 8) between two
cities with a specific length. While continuous paths generally aim to uncover any
unbroken sequences of connected nodes, pairwise continuous paths concentrate
their efforts on identifying and mapping routes between two selected nodes.
Query 3 Find pairwise continuous paths between ”Anchorage” and ”Los Angeles”
with a minimum length of two and a maximum length of three.

SELECT paths
MATCH (c1:City), (c2:City),
paths = pairCPath((c1)-[:Flight*2..3]->(c2))
WHERE c1.name = ’Anchorage’ AND c2.name = ’Los Angeles’
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3.3.3 Consecutive Paths Queries

The T-GQL implements consecutive path semantics (definition 9, 10). For experi-
ments, T-GQL supports the Fastest Path, Latest Departure Path, Earliest Arrival
Path, Shortest Path, and Cheapest Path. The first three ones receive two nodes as
City and Airport, work with time intervals defined as attributes. Shortest Path,
works with the distance attribute. And the last one, Cheapest Path feature in
T-GQL introduces an intriguing dimension to the pathfinding capabilities of this
query language. While the other path types such as Fastest Path, Latest De-
parture Path, Earliest Arrival Path, and Shortest Path focus on various attributes
like time intervals and distance, the Cheapest Path extends its reach by specifically
considering the price attribute in the path selection process.
The inclusion of the price attribute means that when searching for the Cheapest
Path, the query takes into account the economic aspect of the journey. In other
words, it aims to find the most cost-effective path between two nodes, such as
a city and an airport. This is particularly beneficial for travelers who prioritize
budget-conscious travel.
However, what makes the Cheapest Path even more compelling is its integrative
potential. It can be seamlessly incorporated into the other path types, offering
users the flexibility to balance various attributes. For example, you could look
for the Fastest Path that is also the Cheapest Path, optimizing both time and
cost efficiency. Alternatively, you could find the Latest Departure Path or Earliest
Arrival Path that minimizes expenses, allowing for more control over your travel
budget.
In essence, the Cheapest Path feature enhances the versatility of T-GQL, enabling
users to make well-informed decisions based not only on time, departure, arrival,
or distance but also on the price, offering a comprehensive approach to pathfinding
and route optimization.
In the example depicted in Fig. [3.2], Airport and City are the object nodes, two
temporal relationships, namely Flight and LocatedAt. Also, interval[td, ta] where td
is departure time and ta is arrival time and a distance attribute is used to calculate
the distance for the Shortest Path.
The queries provided below serve as examples of both their syntax and semantics.
Query 4 How can we go from ”Anchorage” to ”Los Angeles” as soon as possible?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),(c2:City)-[:LocatedAt]->

(a2:Airport), path = fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.name = ’Anchorage’ AND c2.name = ’Los Angeles’

Query 5 How can we travel from ’Anchorage’ to ’Los Angeles’ while ensuring we
reach our destination by the earliest arrival?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),(c2:City)-[:LocatedAt]->

(a2:Airport), path = earliestArrival((a1)-[:Flight*]->(a2))
WHERE c1.name = ’Anchorage’ AND c2.name = ’Los Angeles’

Query 6 How can we go from ”Anchorage” to ”Los Angeles”, leaving as late as
possible?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->

(a2:Airport), path = latestDeparturePath((a1)-[:Flight*]-> (a2))
WHERE c1.name=’Anchorage’ AND c2.name=’Los Angeles’
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Query 7 What is the shortest path between ”Anchorage” and ”Los Angeles”?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->

(a2:Airport), path = shortestPath((a1)-[:Flight*]-> (a2))
WHERE c1.name=’Anchorage’ AND c2.name=’Los Angeles’

3.4 Implement Java Functions

In reference to the last phase, Neo4j’s potential to employ defined functions as
user-defined procedures becomes evident. User-defined procedures in Neo4j enable
you to extend the functionality of the database by creating custom operations
and tasks in the form of procedures. These procedures can encapsulate complex
workflows, queries, and data manipulation tasks, making them available for reuse
and simplifying your interactions with the database. User-defined procedures are
typically written in Java and are particularly useful for advanced users who need
to implement custom logic within Neo4j. Here’s an overview of how to work with
user-defined procedures in Neo4j:

3.4.1 Creating a User-Defined Procedure

To create a user-defined procedure, you’ll write custom Java code that implements
the desired functionality. Neo4j provides a framework and a set of APIs for creating
these procedures. The code should be compiled into a JAR (Java Archive) file.

3.4.2 Registering the Procedure

After developing your user-defined procedure, you need to register it with Neo4j.
This involves placing the JAR file in the Neo4j plugins directory and configuring
the procedure in the neo4j.conf file.
Example of registering a procedure in neo4j.conf:

dbms.security.procedures.my_procedure=earliestArrival

3.4.3 Using the User-Defined Procedure

Once registered, you can call the user-defined procedure in your Cypher queries
and interact with it like any other built-in procedure. Procedures can take input
parameters and return results, which can be used in subsequent parts of your
Cypher query. Example of using a user-defined procedure in a Cypher query:

CALL earliestArrivale(’Los Angeles’,’Flight*’,’New York’)
YIELD result

RETURN result

In summary, user-defined procedures in Neo4j allow you to implement custom,
reusable functionality to meet specific database requirements. While they provide
powerful capabilities, they should be used carefully, and security considerations
should be a top priority. When employed effectively, user-defined procedures can
greatly enhance your ability to work with Neo4j and implement custom logic within
your graph database.

21



3.4.4 Integration of Procedures into Neo4j Environment

In this work, novel procedures can be established by crafting Java classes for dis-
tinct paths. The novel is on java version 83 or more ,and Apache Maven 3.9.3.4.
Apache Maven is a widely used build automation and project management tool
primarily used for Java projects, though it can be adapted for other languages
and platforms as well. Maven helps streamline the build process, manage project
dependencies, and standardize project structures. It was developed by the Apache
Software Foundation 5 and is a popular choice among Java developers for manag-
ing their software projects. Maven uses a Project Object Model, represented in an
XML file called POM.xml, to define project information, dependencies, build set-
tings, and plugins. The POM file is at the core of Maven and serves as a blueprint
for your project. To operationalize these user-defined procedures, integration of
the Neo4j Java driver within the POM.xml file, a fundamental element within
the Maven framework, is essential. To add the Neo4j Java driver dependency to
your pom.xml file, you need to edit the pom.xml file of your Maven project. The
pom.xml file is where you define the project configuration and dependencies.

<dependency>
<groupId>org.neo4j.driver</groupId>
<artifactId>neo4j-java-driver</artifactId>
<version>5.12.0</version>

</dependency>

This approach allows us to establish connections between our Java classes and the
Neo4j database.
To create user-defined procedures, the ”@Procedure” keyword is employed to an-
notate our functions, with an added mode attribute (Read, Write, DBMS). To
illustrate this point, consider the following example:

package functions;

import org.neo4j.procedure.Name;
import org.neo4j.procedure.UserFunction;
import org.neo4j.procedure.UserProcedure;

public class ConsecutivePath {

@Procedure(name = "earliestArrival", mode = Mode.READ)
@Description("Returns earliest arrival path between two cities.")
public void earliestArrival(@Name("startCity") String startCity,

@Name("flight") String relationshipType, @Name("endCity")
String endCity){

// Your custom logic here
}

}

These functions return Java 8 streams of simple objects with publicly accessible
fields. After the Java classes have been implemented, generating a .jar package
containing the functions and their dependencies can be achieved through mvn
clean package. The mvn clean package command, used to build a Maven project,

3https://www.java.com/
4https://maven.apache.org/
5https://www.apache.org/
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is executed from the root directory of the Maven project where the POM.xml file
is located.

mvn clean package

By incorporating this .jar file into the plugin directory of Neo4j and subsequently
restarting the Neo4j server, we can gain access to and list the functions and pro-
cedures. you can use the SHOW PROCEDURES command to display a list of
user-defined procedures that have been registered with the database. This com-
mand is used to view the available custom procedures that can be called within
your Cypher queries.
During this phase, we move our functions and pathways to the server, making them
accessible and operational within the Neo4j environment. This shift involves trans-
ferring these functions to the server side, where they can be effectively employed
within the Neo4j shell’s capabilities.
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Chapter 4

Implementation

Defining a custom grammar for Neo4j queries involves specifying the syntax and
structure of the queries you want to support. In this context, custom queries are
those that extend or modify the standard Cypher query language used with Neo4j.
Here’s an explanation of how to define a custom grammar to run these queries in
Neo4j.

4.1 Define T-GQL Grammar

To define the grammar in a way that allows running custom queries to return
continuous and consecutive paths, commence by specifying the grammar for the
custom query language. This grammar should encompass rules and structures
tailored to support the formulation of queries aimed at retrieving continuous and
consecutive paths in your specific context. Various parser generator tools, includ-
ing ANTLR v4 1 or JavaCC 2, can be employed for creating the grammar. In
this scenario, ANTLR v4 plugin in the IntelliJ IDEA is utilized for creating the
grammar. ANTLR (ANother Tool for Language Recognition) is a powerful parser
generator that allows you to create parsers and translators for various program-
ming languages and file formats. ANTLR 4 provides a plugin for the IntelliJ
IDEA integrated development environment (IDE) to facilitate the integration of
ANTLR grammars and generated code into your Java projects. The definition of
the grammar is typically located in a specific file with a .g4 extension, commonly
used for ANTLR grammar files. Within this grammar file, the syntax rules for
the language or parser are defined. A specific root is not assigned, as the root of
a parse tree is determined by the starting rule specified when generating a parser
for the grammar. This starting rule is commonly referred to as the ”entry point”
to the language or parser.

When the ANTLR tool is employed to generate parser code from the grammar,
the starting rule is specified, and a parser class with a method corresponding to
the starting rule is created by ANTLR. This method is where the parsing process
commences and is typically named after the starting rule.

1https://plugins.jetbrains.com/plugin/7358-antlr-v4
2https://javacc.github.io/javacc/
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4.1.1 Grammar Structure

The grammar begins with the TGQL rule, which is the starting point for parsing
queries. A query consists of one or more statements separated by semicolons (;).

4.1.2 Statement Types

There are three main types of statements: SELECT, MATCH, and optional
WHERE and WHEN clauses. SELECT statements are used to retrieve data
based on specified paths. MATCH statements define patterns for matching data
in the database. WHERE and WHEN clauses provide conditions to filter and
refine data.

4.1.3 Identifiers and Paths

identifier represents user-defined names. path specifies a sequence of identifiers and
relationships or other paths. Paths can include an optional alias using the AS key-
word. COMMA and DOT are used for path concatenation and alias assignment.
And, ASTERISK represents a wildcard path.

4.1.4 Matching Patterns

The match rule defines complex patterns for matching data. These patterns can
include conditions and filters. The function rule specifies supported functions for
matching. EQUALS is used to compare values in patterns.

4.1.5 Conditions and Boolean Expressions

booleanExpression and booleanExpression1 define conditions to filter results. Con-
ditions include comparisons using EQUALS. city represents city names and iden-
tifiers in conditions. range specifies numeric ranges.

4.1.6 Keywords

Keywords like SELECT, MATCH, WHERE, and WHEN are case-insensitive.

4.1.7 Whitespace and Comments

White space is defined using the WS rule and is skipped. And, comments are not
explicitly defined in the grammar.

4.2 Generate Lexers and Parsers

In this section, the process of converting T-GQL queries into Cypher queries will
be discussed. The parsing steps and the transformation of T-GQL queries into
their Cypher equivalents will be covered.
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4.2.1 Integrate with Neo4j

Integrating the TGQL grammar with the Neo4j database necessitates the estab-
lishment of the requisite infrastructure for processing custom queries defined using
the grammar and executing them within Neo4j.

4.2.2 Parsing and query translation

After implementing the grammar, testing can be conducted by composing queries
and inspecting the query tree to ensure that everything is in order before proceed-
ing. As an illustration, consider the parsing tree corresponding to the following
query shown in the figure[4.1].

SELECT c
MATCH (c:City)
WHERE c.name = ’Los Angeles’

Figure 4.1: Select the city names ”Los Angeles”

Once the grammar’s correctness has been verified, and all possible types of paths
have been taken into account as a customized query. Lexers and parsers are fun-
damental components of a compiler or interpreter, responsible for analyzing the
syntax and structure of source code written in a programming language. They
play a crucial role in converting human-readable code into an abstract represen-
tation that a computer can understand and execute. In the context of ANTLR4
and grammar definitions, the visitor and listener are two distinct mechanisms for
traversing and processing the parse tree. The visitor is an object-oriented design
pattern for navigating the parse tree and executing actions at specific nodes. On
the other hand, the listener represents an alternative mechanism for traversing the
parse tree within ANTLR4. The generation of lexers and parsers is achieved by
executing the subsequent code.

antlr4 -visitor TGQL.g4

Java files (e.g., TGQLLexer.java and TGQLParser.java) are generated by this
command. When generate a parser and lexer using ANTLR4, it creates Java
classes that correspond to your grammar rules. These classes provide methods for
traversing the parse tree and handling different parts of the input based on your
grammar. To enhance the functions generated by the parser and lexer, you can
seamlessly extend their capabilities. When parsing input utilizing the generated
parser, you can associate it with your customized listener or visitor. This strategic
association enables tree traversal while ensuring the invocation of your custom
methods at specific points during the parsing process. This approach empowers
you to tailor the parsing process to your specific requirements and enables the
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execution of personalized logic, ultimately enhancing the parser’s functionality to
accommodate your unique needs.
It’s important to understand that a query language conceals the underlying data
structure. Within this structure, three types of nodes are identified: object nodes,
attribute nodes, and value nodes. For instance, in the Fig.[3.2], we observe object
nodes like City and Airport, connected by various types of relationships. In this
scenario, these object nodes are linked to attributes and value nodes through a
common type of connection called ”Edge.” Consequently, in the implementation,
City and Airport become properties of objects (referred to as ”Title”). The City’s
name serves as a property (also referred to as ”Title”) of an attribute node, and
the actual City name is stored as a property of a value node, indicated as ”value.”
All these structures are hides from users but interact with and stored in the Neo4j
database. For example, the following queries:
Query 1 Fastest path between Phoenix and New York

SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),(c2:City)<-[:LocatedAt]-

(a2:Airport), path=fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.name=’Phoenix’ AND c2.name=’New York’

This is Translated to:

MATCH (c1:Object{title:’City’})<-[internal_l0:
LocatedAt]-(a1:Object{title:’Airport’}),
(c2:Object{title:’City’})<-[internal_l1:
LocatedAt]-(a2:Object{title:’Airport’})

MATCH (c1)-->(internal_n0:Attribute{title:
’name’})-->(internal_v0:Value)

MATCH (c2)-->(internal_n1:Attribute{title: ’name’})-->
(internal_v1:Value)

WHERE internal_v0.value=’Phoenix’ AND
internal_v1.value=’New York’
CALL consecutive.fastest(a1,a2,1,
{edgesLabel:’Flight’,direction:’outgoing’})
YIELD path as internal_p0, interval as
internal_i0
WITH paths.intervals.fastest({path:internal_p0,
interval:internal_i0}) as path
RETURN path

Query 2 Shortest path between Seattle and Chicago

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->

(a2:Airport), path = shortestPath((a1)-[:Flight*]-> (a2))
WHERE c1.name=’Seattle’ AND c2.name=’Chicago’

This is Translated to:

MATCH (c1:Object{title:’City’})-[:LocatedAt]->
(a1:Object{title:’Airport’}),
(c2:Object{title:’City’})-[:LocatedAt]->
(a2:Object{title:’Airport’})

MATCH (c1)-->(internal_n0:Attribute{title:’name’})-->
(internal_v0:Value)

MATCH (c2)-->(internal_n1:Attribute{title:’name’})-->
(internal_v1:Value)

WHERE internal_v0.value=’Seattle’ AND internal_v1.value=’Chicago’
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CALL consecutive.shortest(a1, a2, 1, {edgesLabel:’Flight’,
direction:’outgoing’})

YIELD path as internal_p0, interval as internal_i0
WITH paths.intervals.shortest({path:internal_p0, interval:internal_i0

}) as path
RETURN path

Query 3 Earliest arrival path between Charlotte and Los Angeles

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),(c2:City)-[:LocatedAt]->

(a2:Airport), path = earliestArrival((a1)-[:Flight*]->(a2))
WHERE c1.name = ’Charlotte’ AND c2.name =’Los Angeles’

This is Translated to:

MATCH (c1:Object{title:’City’})-[:LocatedAt]->(a1:Object{title:
’Airport’}), (c2:Object{title:’City’})-[:LocatedAt]->(a2:
Object{title:’Airport’})

MATCH (c1)-->(internal_n0:Attribute{title:’name’})-->(internal_v0:
Value)

MATCH (c2)-->(internal_n1:Attribute{title:’name’})-->(internal_v1:
Value)

WHERE internal_v0.value=’Charlotte’ AND internal_v1.value=
’Los Angeles’

CALL consecutive.earliestArrival(a1, a2, 1, {edgesLabel:’Flight’,
direction:’outgoing’})

YIELD path as internal_p0, interval as internal_i0
WITH paths.intervals.earliestArrival({path:internal_p0,

interval:internal_i0}) as path
RETURN path

Query 4 Latest departure path between New York and Phoenix

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->
(a2:Airport), path = latestDeparturePath((a1)-[:Flight*]-> (a2))
WHERE c1.name=’New York’ AND c2.name=’Phoenix’

This is Translated to:

MATCH (c1:Object{title:’City’})-[:LocatedAt]->(a1:Object{title:
’Airport’}), (c2:Object{title:’City’})-[:LocatedAt]->(a2:
Object{title:’Airport’})

MATCH (c1)-->(internal_n0:Attribute{title:’name’})-->(internal_v0:
Value)

MATCH (c2)-->(internal_n1:Attribute{title:’name’})-->(internal_v1:
Value)

WHERE internal_v0.value=’New York’ AND internal_v1.value=’Phoenix’
CALL consecutive.latestDeparturePath(a1, a2, 1, {edgesLabel:’Flight’,

direction:’outgoing’})
YIELD path as internal_p0, interval as internal_i0
WITH paths.intervals.latestDeparturePath({path:internal_p0,

interval:internal_i0}) as path
RETURN path
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4.3 Deploy Web Application

Incorporating the ability to create custom queries and thereby extend the func-
tionality of the Cypher query language is a standard practice in web applications
that engage with Neo4j. In the context of this study, a web page was meticulously
designed, employing the Javalin framework3, with a specific focus on version 5.6.1,
to facilitate a seamless interaction with Neo4j. This amalgamation of technologies
provides a potent and flexible approach, unlocking the potential of graph databases
for diverse applications. Furthermore, it establishes a web-based interface for the
execution of custom Cypher queries, with an emphasis on continuous and con-
secutive paths, measuring their execution times and presenting the results. The
locally hosted web application, accessible at localhost:7070, fosters an efficient and
intuitive platform for working with Neo4j, streamlining query execution and result
visualization, which is particularly valuable in the context of complex temporal
graph data models.

Figure 4.2: Neo4j itself provides and utilizes custom procedures. [12]

To effectively incorporate the Javalin framework into the project, it is crucial to
add the appropriate dependency within the project’s pom.xml file. The provided
dependency snippet is meticulously tailored to ensure the seamless integration of
Javalin into your project. It is as follows:

<dependency>
<groupId>io.javalin</groupId>
<artifactId>javalin</artifactId>
<version>5.6.1</version>

</dependency>

Figure 4.3: Web application to run the custom queries

In this scenario, it’s imperative to implement functions for continuous and con-
secutive paths in a manner that results in data being appropriately formatted in

3https://javalin.io/
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JSON (JavaScript Object Notation). This JSON formatting is a pivotal step to
render the data suitable for transmission to the web application, ensuring seamless
communication and understanding between the database and the application.
In essence, this setup constitutes a web-based interface that not only facilitates
the execution of extended and custom Cypher queries but also measures the time
required for their execution and presents the results. It harnesses the robust ca-
pabilities of the Javalin framework for web routing and managing requests and
responses, offering a versatile solution for working with graph databases in real-
world applications.
Overall, this sets up a web-based interface for executing extend and custom Cypher
queries, measures the time it takes to execute them, and displays the results. It
uses the Javalin framework for web routing and handling requests and responses.
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Chapter 5

Experiments

This section aim to take into account the experiments conducted from a two-
dimensional perspective. First, offers a comprehensive overview of the experiments
carried out to evaluate the range of queries outlined in the initial paper [5], which
were further developed and explored in the context of this study. In another di-
mension, in the real-world context of case study, which centers around the flight
data set, we sought to investigate the extent to which factors such as price and
duration can influence the length of the paths. In other words, the experiments
not only encompassed the queries presented in the original paper but also delved
into how practical factors, specifically ticket price and flight duration, could im-
pact the results of these queries. For instance, we explored whether optimizing for
the shortest path between two cities might lead to a trade-off between cost and
travel time and how these variables interacted with the overall length of the paths
discovered in the flight data set. This investigation was crucial in understanding
the practical implications of the queries and their relevance in real-world scenarios,
especially when making decisions related to travel or logistics based on the flight
data. These experiments encompass two categories of path algorithms under inves-
tigation: continuous paths and consecutive paths. Given that the implementation
serves as a proof-of-concept and Neo4j is not optimized for handling exceptionally
large graphs, the primary objective of this evaluation is to identify the factors
affecting performance rather than quantifying performance itself. Future research
will focus on addressing performance concerns through the implementation of in-
dexing schemes.

5.1 Goal

These experiments aim to examine how the length of paths and the size of the
data set affect algorithm performance. In addition to the thesis’s initial objective,
for the second dimension, the experiments aim to delve into how algorithm per-
formance is influenced not only by the length of paths and the size of the data set
but also by two critical real-world factors: price and flight duration. Thus, the
tests conducted encompass a dual perspective, examining the combined effects of
path length, data set size, price, and flight duration on algorithm performance. As
a result, various tests are being conducted, manipulating both variables.
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5.2 Data set and Setup

In this section, we present a comprehensive overview of the flight data set 1 which
served as the foundation for assessing the algorithms in the experiments. All
experiments were meticulously conducted within a controlled and consistent envi-
ronment, utilizing a Neo4j 5.9.0 server. This Neo4j server was operated on a 64-bit
Windows 11 system, featuring an Intel Core i7-7700 HQ processor with a clock
speed of 2.80GHz, equipped with 8 cores and 16 GB of RAM. This standardized
setup ensured the reliability and repeatability of our experiments, allowing us to
precisely measure and analyze algorithm performance.

For these experiments, the data set was extended by incorporating additional at-
tributes, most notably the Price attribute, into the edges of the graph. This
augmentation enabled us to explore the second dimension, wherein an exploration
was undertaken to investigate the influence of Price and Flight Duration on the
lengths of the paths. The introduction of the Price attribute provided valuable
insights into the practical implications of the queries and algorithms, as it al-
lows to examine not only the shortest or fastest paths but also those that were
the most cost-effective. Moreover, by considering the impact of both price and
flight duration on path lengths, Efforts were made to offer a more comprehensive
perspective on route planning and optimization in the context of the flight data
set. The foundation for a more nuanced understanding of the data set’s potential
applications and implications in real-world scenarios was established through this
dual-dimensional analysis. Additionally, in the experiment, it should be considered
that N represents the number of nodes, and R denotes the number of relationships
in a sequence as the path.

5.3 Continuous path algorithms

In our analysis, we conducted continuous path queries on the flight transportation
network, focusing on connecting two specific cities. These cities were identified
using a property known as City Name, which was generated during the population
of the data set. This property allowed us to precisely pinpoint cities within the
network.

For instance, consider the following query scenario: we sought to discover all con-
tinuous paths within a specific range of lengths, spanning from 2 to 8, between
nodes representing the cities of Anchorage and New York. It’s worth emphasiz-
ing that there are precisely 8 direct city relationships connecting Anchorage and
New York. Therefore, this particular query was applied to a range of city pairs,
encompassing different path lengths, to ensure a comprehensive exploration of the
flight transportation network. We meticulously examined all connections between
the following city pairs: [Anchorage, Seattle], [Anchorage, Los Angeles ], [Anchor-
age, Minneapolis ], [Anchorage, Phoenix ], [Anchorage, Chicago], [Anchorage, Char-
lotte], [Anchorage, San Juan], and [Anchorage, New York ]. Each of these pairs
presented a unique scenario, enabling us to assess how continuous paths of varying
lengths could be established between cities in the flight transportation network.
This extensive examination allowed us to gain valuable insights into the network’s

1https://www.kaggle.com/datasets/usdot/flight-delays?select=
flights.csv
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structure, connectivity, and the feasibility of passenger routes between these cities.
To investigate the scenario mentioned above, we can execute the following query:

SELECT path
MATCH (c1:City), (c2:City),

path = CPath((c1)-[:Flight*8]->(c2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

Figure 5.1: Time Vs. length for continuous path

Figure 5.2: Time Vs. length for continuous path with different number of nodes

The same query type was executed to assess the pairwise continuous path algo-
rithm, taking into account the definition of pairwise continuous paths as outlined
in [8].

SELECT path
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MATCH (c1:City), (c2:City),
path = pairCPath((c1)-[:Flight*8]->(c2))

WHERE c1.name=’Anchorage’ AND c2.name=’New York’

Figure 5.3: Time Vs. length for pairwise continuous path

Figure 5.4: Time Vs. length for pairwise continuous path with different number of nodes

In Figure [5.5], a comparative analysis is presented, offering valuable insights into
the performance differences between continuous and pairwise continuous paths
across varying node counts. This visual representation allows for a more in-depth
observation of how these two path types behave as the scale of the network, in
terms of the number of nodes, is altered.
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Figure 5.5: Comparison CPath and PairCPath

5.4 Consecutive paths algorithms

Continuing our exploration, we delve into consecutive path queries on the flight
transportation network, mirroring the approach described in the preceding section.
These queries maintain a primary objective: the discovery of consecutive paths
between two specific cities. These cities are unambiguously identified by their
respective names. In this intricate network, each city is intricately connected to
its corresponding airport through the locatedAt edge, which serves as a pivotal link
in the transportation chain. Furthermore, these airports are intricately interlinked
via the Flight edge, forming a comprehensive web of air travel connections.
Notably, each airport possesses a unique property known as the IATA (Interna-
tional Air Transportation Association) code. This three-letter code serves as an
exclusive identifier for airports worldwide, facilitating seamless recognition and
differentiation between them. This code is vital for pinpointing and navigating
the extensive network of airports.
The comprehensive range of queries conducted in this context encompasses all four
distinct types of consecutive path algorithms. These algorithms have been struc-
tured with precision to ensure thorough exploration and efficient navigation of the
flight transportation network. In essence, these queries are designed to uncover
the various pathways and connections between cities, and they serve as a critical
component in the analysis of the network’s structure and functionality. By thor-
oughly examining these diverse algorithms, our goal is to acquire comprehensive
insights into the operational dynamics of the flight transportation network as de-
picted within the data set. This effort lays the groundwork for a more nuanced
understanding of the network’s data-driven representation, shedding light on the
intricacies of air travel and logistics as simulated within this complex data set.
The queries encompass all four types of consecutive path algorithms and have the
following structure:
The first of the four consecutive path algorithms is the Earliest Arrival algorithm.
This algorithm is designed to find paths between two points (in this case, cities)
within the flight transportation network while prioritizing the earliest possible

35



arrival time. In other words, it focuses on identifying routes that minimize the
travel time, ensuring that reach their destination as soon as possible.

To achieve this, the Earliest Arrival algorithm considers the flight schedule and its
associated time constraints. It takes into account factors such as departure times,
stops , and flight durations to determine the most time-efficient route.

SELECT path
MATCH (c1:City), (c2:City),

path = earliestArrival((c1)-[:Flight*8]->(c2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

Figure 5.6: Time Vs. length for earliest arrival path

SELECT path
MATCH (c1:City), (c2:City),

path = latestDeparture((c1)-[:Flight*8]->(c2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

The second query in the set employs the Latest Departure algorithm, searching for
a path of exactly 8 consecutive flights between Anchorage and New York. This
query focuses on pinpointing routes where the emphasis is placed on the departure
time of each flight segment. It’s valuable for those who prioritize departing as
late as possible within the context of an 8-flight journey, offering flexibility in
scheduling and planning
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Figure 5.7: Time Vs. length for latest departure path

The third query within the set of consecutive path queries introduces the Shortest
Path algorithm. This query is designed to uncover the most concise path between
two cities, Anchorage and New York, with a strict requirement of traversing exactly
8 consecutive flight relationships. By applying the Shortest Path algorithm, the
query emphasizes efficiency in terms of distance or travel time. It is particularly
valuable in case of seeking to identify the quickest connection with a predefined
number of intermediate flights, making it a crucial tool for route optimization
within the flight data set.

SELECT path
MATCH (c1:City), (c2:City),

path = shortestPath((c1)-[:Flight*8]->(c2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

Figure 5.8: Time Vs. length for shortest path
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The final query among the four consecutive path queries introduces the Fastest
Path algorithm. This query is dedicated to discovering the speediest path be-
tween Anchorage and New York, with a strict requirement of traversing exactly
8 consecutive flight relationships. By employing the Fastest Path algorithm, the
query emphasizes minimizing travel time, making it a valuable tool for prioritizing
swift connections between these cities. This query is pivotal for planning scenarios
where a specific number of stops and a focus on minimal travel duration are of
utmost importance.

SELECT path
MATCH (c1:City), (c2:City),

path = fastestPath((c1)-[:Flight*8]->(c2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

Figure 5.9: Time Vs. length for fastest path

Figure [5.10] provides an insightful comparison of various path types within the
realm of continuous and consecutive paths when the number of nodes stands at
1000. This graphical representation aims to facilitate a more comprehensive obser-
vation of path behaviors in the context of a relatively moderate-sized network. The
figure encompasses continuous paths, pairwise consecutive paths, earliest arrival
paths, latest departure paths, fastest paths, and shortest paths. By juxtaposing
these distinct path semantics under the same node count, it enables a nuanced
analysis of how these paths perform and interact within a network of this scale,
enhancing our understanding of their respective characteristics and suitability for
different scenarios.
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Figure 5.10: Time Vs. length for 1000 Nodes

In Figure [5.11], a comparative analysis of various path types, encompassing both
continuous and consecutive paths, unfolds under the backdrop of a more extensive
network, consisting of 10,000 nodes. This illustration offers a broader perspective,
granting us a deeper understanding of how these path semantics behave when
subjected to the complexities of a larger-scale network. The depicted path cat-
egories encompass continuous paths, pairwise consecutive paths, earliest arrival
paths, latest departure paths, fastest paths, and shortest paths, all scrutinized in
the context of 10,000 nodes. This extended node count allows us to draw nuanced
insights into how these path types adapt to a more extensive network environ-
ment, shedding light on their performance characteristics and applicability within
scenarios involving larger data set.

Figure 5.11: Time Vs. length for 10,000 Nodes

Figure [5.12] presents a comprehensive evaluation of diverse path semantics, ex-
amining the intricate dynamics of continuous paths and consecutive paths within
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a significantly expanded network containing 100,000 nodes. This expansive data
set allows for a detailed exploration of how these path types adapt to the demands
of extensive networks. The visual representation showcases the same paths with
previous figure, all within the context of 100,000 nodes. The larger node count
provides a unique vantage point for understanding the scalability and behavior of
these path semantics in the realm of substantial data set.

Figure 5.12: Time Vs. length for 100,000 Nodes

5.5 Consecutive paths with respect price

In the preceding sections, we have delved into the theoretical underpinnings of
consecutive path queries within the context of a flight transportation network.
However, the real-world application of such queries is subject to multifaceted con-
siderations. Numerous factors can influence the decision-making process when
selecting flights between cities, extending beyond theoretical constructs. One of
the pivotal real-world elements is the economic aspect, specifically the price, which
can significantly impact route choices. Additionally, the physical distance between
cities is another crucial factor.
In the following section of this thesis, our focus shifts to the interplay between
consecutive paths and the economic aspect, particularly the influence of price on
the length of paths. We recognize that the real-world scenario is characterized
by numerous attributes affecting travel decisions, but for the scope of this study,
we primarily concentrate on the duality of price and distance. It’s noteworthy to
mention that, for the sake of simplicity, we adopt a straightforward model where
shorter distances and fewer intermediate stops between the origin and destination
cities are associated with higher prices.
We embark on an empirical exploration of consecutive path queries, considering
price as a fundamental variable in the context of the four distinct types of consec-
utive path algorithms. This empirical analysis aims to shed light on the practical
implications of price as a determinant in choosing flight routes between cities,
thereby contributing to a more comprehensive understanding of air travel logistics
in real-world applications. While the real-world encompasses a multitude of dy-

40



namic factors, this study serves as a focused examination of the specific interplay
between price, distance, and path selection.
Query Consider price in the earliest arrival path:

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->
(a2:Airport), path = earliestArrivalPrice((a1)-[e:Flight*2..8]->(a2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

In the context of economic decision-making, this scenario [5.1] involves the pursuit
of a cost-efficient approach to reach a destination, along with the enumeration of
various strategies for achieving this goal.

Earliest Arrival Time Total Price Number of Flights
190 930 8
150 970 7
150 1000 6
150 1050 5
150 1100 4

Table 5.1: Earliest arrival path ordered by price

In the following scenario [5.2], we are constrained by a limited budget and looked
for identifying viable pathways to reach a destination while adhering to our bud-
getary constraints.

Earliest Arrival Time Total Price Number of Flights
190 930 8
150 970 7

Table 5.2: Earliest arrival path limited by price less than 1000

Query Consider length in the latest departure path:

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->
(a2:Airport), path = latestDeparturePrice((a1)-[e:Flight*2..8]->(a2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

In the following table [5.3], the objective is to identify the latest departure path
from an origin to a destination while minimizing the number of connections or
transit points along the route. This aims to provide a travel solution that offers
flexibility in departure times while ensuring a streamlined and efficient journey
with fewer stops.

Latest Departure Time Total Price Number of Flights
100 1100 4
120 1000 4
122 970 5
100 1000 6

Table 5.3: Latest departure path ordered by length

Query Consider distance in the shortest path:
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SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport), (c2:City)-[:LocatedAt]->
(a2:Airport), path = shortestPathPrice((a1)-[e:Flight*2..8]->(a2))
WHERE c1.name=’Anchorage’ AND c2.name=’New York’

The goal of the information in the table [5.4] is to reach a destination by following
the shortest distance route. This entails finding the most direct and efficient
path that minimizes travel distance, ideal for situations where time efficiency and
resource optimization are paramount.

Shortest Path Total Price Number of Flights
58 1100 4
60 1100 4
80 1100 4
90 1050 5
95 1000 6
110 970 7
125 930 8

Table 5.4: Shortest path ordered by distance

The figure [5.13] provides a visual representation of the comparative analysis con-
ducted on the attributes of distance, price, and path length in routes connecting
the origin and destination cities.

Figure 5.13: Shows how price impact on the length and distance

5.6 Evaluation

5.6.1 Execution time evaluation for continuous paths

In Figure [5.1, 5.2], illustrates the time it takes to execute different data set sizes
and varying continuous path lengths. When N = 100,000, as the path length (L)
increases, the execution times also increase, starting at approximately 2700 ms for
L = 2 and reaching up to almost nearly 5000 ms for L = 8. In contrast, for N
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= 1,000 and 10,000, the execution times remain relatively low. When N equals
1,000 and 10,000, the execution times exhibit fluctuations up to a path length 5,
remaining consistently below 2,500 ms. However, beyond this point, their behavior
becomes more similar, and they stabilize at around 2,200 ms.

On the figure [5.3, 5.4], The results for pairwise continuous paths are depicted.
Similar to the continuous paths, as the number of nodes and path length increase,
execution times also rise, but in this case, they are generally lower.

Figure [5.5] illustrates the divergence in execution times between continuous
paths and pairwise continuous paths as the number of nodes and relationships
in the data set increases. This graphical representation serves as a visual aid to
understand how these path types adapt to more extensive networks. It sheds light
on the influence of data set size on their respective execution times and provides
valuable insights into the scalability of these path semantics. As evident from the
data, it is observable that the execution time for continuous paths exceeds that
of pairwise continuous paths in the same scenario. However, a notable observa-
tion is that when the data set comprises 10,000 nodes, the execution times for
both path types become remarkably similar, demonstrating a convergence in their
performance under these conditions.

5.6.2 Execution time evaluation for consecutive paths

Figures [5.6 5.7 5.8 5.9] present the findings of tests conducted on algorithms
related to earliest arrival, latest departure, shortest paths, and fastest paths. In
most cases, all the graphs exhibit a linear pattern. Due to significant variations in
algorithm run times based on the sequences of paths and the system’s inability to
process this variability, the sequence was restricted to Flight*8 instead of Flight
for the purpose of analyzing specific paths. As expected, the execution time of the
algorithm increases as the number of flights increases. The vertical axis represents
time in milliseconds. Regarding the figures, the tests highlight a clear connection
between the path’s length and the execution time.

In the case of the earliest arrival path [5.6], the tests reveal that when the
number of nodes (N ) and relationships (R) is approximately 1000, starting the
journey with a path length of 2 takes more than 2000 ms. Conversely, when N
and R are set to 10000 or 100,000 and 10,000, respectively, they commence in less
than 2000 ms.

In the case of the latest departure algorithm [5.7], when dealing with a data
set consisting of 1000 nodes and 1000 relationships, the algorithm’s execution
time exhibits fluctuations before reaching a path length of 5, where it consistently
hovers around 2400 milliseconds. Upon scaling the data set to 10000 nodes and
10000 relationships, the Latest Departure algorithm displays similar behavior, with
execution times exceeding 2300 milliseconds for a path length of 2 and maintaining
a similar pattern for longer path lengths. When applied to a larger data set
comprising 100,000 nodes and 10,000 relationships, the algorithm’s execution times
continue to increase as the path length extends, consistently following this upward
trajectory and reaching nearly 5000 milliseconds.
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Analyzing the performance of the Shortest Path algorithm 5.8, notable trends
in execution times across varying data sets are observed. When considering a
data set with 1000 nodes and 1000 relationships, the Shortest Path algorithm
demonstrates execution times spanning from 2170 milliseconds for a path length
of 2 to 2263 milliseconds for a path length of 5. These execution times display
minor fluctuations but consistently remain within this specific time frame. As
the data set is expanded to encompass 10,000 nodes and 10,000 relationships,
the algorithm’s performance exhibits stability, with execution times ranging from
2119 milliseconds for a path length of 6 to 2573 milliseconds for a path length of
7. Although there are slight variations, the execution times generally adhere to
this range. Upon further enlargement the data set to involve 100,000 nodes and
10,000 relationships, the Shortest Path algorithm mirrors a comparable pattern.
The execution times progressively increase with the elongation of the path length,
ultimately peaking at approximately 5062 milliseconds for a path length of 8.

Exploring the performance of the Fastest Path algorithm [5.9], distinct pat-
terns in execution times across varied data set configurations are uncovered. In a
data set featuring 1000 nodes and 1000 relationships, the Fastest Path algorithm
yields execution times ranging from 2118 milliseconds for a path length of 2 to
2297 milliseconds for a path length of 5. Notably, the execution times exhibit
minor fluctuations but consistently fall within this range. During the transition
to a larger data set comprising 10,000 nodes and 10,000 relationships, depend-
able performance is upheld by the Fastest Path algorithm, with execution times
spanning from 1745 milliseconds for a path length of 2 to 2255 milliseconds for
a path length of 4. While slight variations exist, the execution times generally
align within this interval. Elevating the data set to a grander scale of 100,000
nodes and 10,000 relationships, the ”Fastest Path” algorithm showcases a parallel
pattern. Execution times incrementally increase as the path length extends, cul-
minating at approximately 4970 milliseconds for a path length of 8. The Fastest
Path algorithm demonstrates a consistent relationship between the path length
and execution time across varying data set sizes. As the path length elongates,
execution times tend to rise, preserving this characteristic irrespective of the data
set’s magnitude.
Figures [5.10, 5.11, 5.12] offer a comprehensive comparison of various path types,
both continuous and consecutive, including continuous path, pairwise continuous
path, earliest arrival path, latest departure path, fastest path, and shortest paths.
These comparisons are conducted for data set featuring different node quantities,
specifically 1000, 10,000, and 100,000 nodes.

In Figure [5.10], with a node count of 1000 and a path length of 2, the exe-
cution times for all path types exceed 2000 milliseconds. This trend continues
when examining the general pattern, with the execution times remaining consis-
tently higher than in other scenarios with longer path lengths. In contrast, as the
path length increases from 3 to 8, the execution times exhibit stability, remaining
relatively constant across all path types.

In Figure [5.11], an insightful analysis of path execution times is provided for
scenarios where the node count is set at 10,000. The execution times for all path
types largely fall within the range of 2000 to 2500 milliseconds. Notably, the
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Fastest Path stands out as an exception when the path length is 2, with execution
times hovering around 1700 milliseconds. Conversely, the Earliest Arrival Path
exhibits the longest execution time among the path types when the path length
extends to 3, reaching approximately 2500 milliseconds. Similarly, the Shortest
Path, when the path length is 7, surpasses the 2500 milliseconds threshold. These
results unveil the varying performance of different path types under the same
node quantity and distinct path lengths, emphasizing the intricate dynamics that
influence their execution times.

Figure [5.12] extends the examination of path execution times to a significantly
larger node count, with the number set at 100,000. In this scenario, the algorithms
demonstrate a distinct pattern as the node count increases. The path length, in
particular, plays a pivotal role as it significantly influences execution times. As
the number of nodes expands, all path types exhibit an upward trajectory in their
execution times, with noticeable increases as path lengths extend. These changes
reflect the growing complexity of the graph as more nodes are added, impacting
the efficiency of path computation. In the final stage, with a path length of 8,
all path types converge, reaching an execution time of nearly 5000 milliseconds.
This convergence underscores the consistent trend of rising execution times with
larger node counts and longer path lengths, highlighting the interplay between
these variables in shaping algorithm performance.

5.6.3 Assessment of consecutive paths in terms of pricing

The table [5.1] provides insights into selecting flight routes between Anchorage
and New York, considering earliest arrival time, flight segments, and price. Price
significantly impacts path choice, prioritizing cost-efficiency. For instance, at a
price of 930, a 190 arrival time, not the earliest, becomes optimal, reflecting how
price affects the number of flights, 8 in this case. At 970, a 150 arrival time, not
the earliest, becomes optimal with 7 flights. This pattern continues at prices 1000
and 1050, highlighting price’s influence on cost-efficient routes with fewer flights.

In table [5.2] , we encounter budget constraints while striving for efficient routes,
with a primary focus on earliest arrival time, total price, and flight count. When
our budget is limited to 930, we emphasize achieving an earliest arrival time of
190, which results in an 8-flight route, showcasing the pivotal influence of budget
on travel decisions. Similarly, when adhering to a 970 budget, our selection prior-
itizes a 150 arrival time with 7 flights, underscoring the delicate balance between
budget constraints and travel efficiency. In both instances, we are navigating the
realm of budget-limited travel, seeking routes that align closely with our financial
constraints.

Table [5.3] assesses latest departure paths ordered by length, examining the
interplay of key factors: latest departure time, total price, and the number of
flights.
In the first row, a departure time of 100 yields a 4-flight route with a total cost
of 1100, showcasing the impact of budget constraints. In the second row, a 120
departure time maintains a 1000 cost and 4 flights, highlighting the subtle bal-
ance between departure time, price, and flight count. The third and fourth rows
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present variations, with 122/970/5 and 100/1000/6 combinations, emphasizing the
intricate relationships that influence path selection dynamics. This analysis offers
profound insights into travelers’ decision-making processes when navigating these
complex variables.

Table [5.4] provides a comprehensive evaluation of shortest path options, or-
ganized based on travel distance. This assessment explores the intricate balance
between path distance, total cost, and flight count. The primary objective is to
determine the optimal route for reaching the destination while prioritizing minimal
travel distance. In the initial row, a 58-unit path offers efficiency within a budget
limit of 1100 and includes 4 flights. Subsequent rows exhibit variations in distance
(60, 80), maintaining a total cost of 1100 and involving 4 flights, emphasizing the
importance of cost-efficient travel. The following rows showcase different distance
options (90 to 110 units) while gradually decreasing the total cost from 1050 to
930, which results in an increase in flight count from 5 to 8. These variations high-
light the intricate dynamics of minimizing travel distance within various budget
constraints, affecting the number of flights and the optimization of travel resources.

Ultimately, Figure [5.13] illustrates a contrast involving Path Length, Price, and
Distance. Notably, as the path length extends, it has a direct impact on distance,
while simultaneously resulting in a decrease in price.

5.7 Summary

The evaluation section provides an in-depth analysis of the execution times for
continuous paths, pairwise continuous paths, and consecutive paths with varying
attributes. In the continuous path execution time assessment, it is evident that
execution times increase as the path length grows, particularly pronounced when
the data set comprises 100,000 nodes. For pairwise continuous paths, the execution
times are generally lower but still exhibit a similar pattern of growth with path
length and data set size.
The evaluation of consecutive paths involving earliest arrival, latest departure,
shortest path, and fastest path algorithms reveals a linear relationship between
path length and execution time. This relationship is consistent across different
data set sizes, with the execution times increasing as the path length extends.
The analysis demonstrates how these algorithms perform under varying conditions,
such as different numbers of nodes and relationships.

The assessment of consecutive paths concerning pricing illuminates the impact
of price on route selection. Price significantly influences path choice, favoring cost-
efficient routes with fewer flights. For instance, at a price of 930, an optimal route
with a 190 arrival time, though not the earliest, is chosen, resulting in 8 flights.
A similar pattern continues at prices 970, 1000, and 1050, highlighting how price
considerations affect path selection.
In scenarios where budget constraints are imposed, the evaluation underscores the
delicate balance between budget, earliest arrival time, and flight count. With a
limited budget of 930, travelers prioritize routes that achieve an earliest arrival
time of 190, leading to an 8-flight route. When adhering to a 970 budget, a 150
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arrival time with 7 flights becomes the preferred choice, demonstrating the intricate
interplay of budget and travel efficiency.
The analysis of latest departure paths ordered by length reveals how departure
time, total price, and the number of flights influence route selection. Budget
constraints become apparent in the choice of a 100 departure time with 4 flights
and a total cost of 1100. The variations in departure times and costs in subsequent
rows emphasize the intricate relationships that travelers navigate when selecting
routes.
The assessment of shortest path options organized by travel distance provides
insights into the balance between path distance, total cost, and flight count. Trav-
elers seek to minimize distance while optimizing their budget. The analysis show-
cases how different distances, budgets, and flight counts impact path selection,
highlighting the complexities involved in minimizing travel distance.

Overall, the evaluation section offers a comprehensive understanding of how var-
ious attributes, including path length, price, budget, and departure time, influence
path selection within a flight transportation network. It sheds light on the prac-
tical implications of these factors and their impact on algorithm performance and
route choices.
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Chapter 6

Conclusion

In conclusion, this thesis embarks on an exploration of temporal property graphs,
shedding light on their practical relevance in real-world scenarios. While graph
databases have become a dominant choice for data representation and analysis,
the temporal dimension has often been sidelined in prior research. Building upon
a model introduced in The paper[5] published in the VLDB Journal, this study
delves into the intricate task of modeling, storing, and querying temporal property
graphs, introducing the T-GQL query language and an array of algorithms capa-
ble of computing various temporal path semantics, from continuous to pairwise
continuous, and consecutive paths.
Recognizing the practical disparities between synthetic data set and real-world
complexities, this thesis introduces the critical ”Price” attribute, a reflection of
real-world aviation dynamics, into the analysis. The exploration of how price in-
fluences algorithmic outcomes offers a glimpse into the complex interplay between
cost considerations and path selection. Although real-world aviation entails multi-
faceted attributes, the primary focus remains on price and distance. This endeavor
aims to unravel how price variations impact algorithmic results, providing insights
into how practical considerations influence path selection.
The culmination of this thesis includes a comprehensive set of experiments con-
ducted on a synthetic data set, encompassing three types of paths: continuous,
pairwise continuous, and consecutive. These experiments served a dual purpose:
firstly, to validate the viability of the methods proposed, and secondly, to evaluate
the variables that influence performance, including queried path lengths and graph
dimensions. Synthetic data set simulating flight transportation were generated,
featuring sizes exceeding 100,000 rows, composed of 100,000 nodes, 60,000 edges,
and more than 10,000 flights. By addressing the intricacies of temporal prop-
erty graphs and integrating real-world attributes like price, this research bridges
the gap between theory and practice, offering valuable insights into the practical
dynamics of temporal graphs in real-world applications.
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